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Dirac node engineering and flat bands in doped Dirac materials
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We suggest the tried approach of impurity band engineering to produce flat bands and additional nodes in
Dirac materials. We show that surface impurities give rise to nearly flat impurity bands close to the Dirac point.
The hybridization of the Dirac nodal state induces the splitting of the surface Dirac nodes and the appearance
of new nodes at high-symmetry points of the Brillouin zone. The results are robust and not model dependent:
our tight-binding calculations are supported by a low-energy effective model of a topological insulator surface
state hybridized with an impurity band. Finally, we address the effects of electron-electron interactions between
localized electrons on the impurity site. We confirm that the correlation effects, while producing band hybridiza-
tion and the Kondo effect, keep the hybridized band flat. Our findings open up prospects for impurity band
engineering of nodal structures and flat-band correlated phases in doped Dirac materials.
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I. INTRODUCTION

Impurity band engineering is at the core of the modern
semiconducting industry because impurity bands enable the
functionality of a semiconductor. Similarly, electronic struc-
ture and the topology of Dirac materials (DMs) [1] can
be manipulated by impurity doping. A well-known example
of such manipulation is the quantum anomalous Hall ef-
fect (QAHE) [2,3], which is a new quantum state of matter
observed in magnetically doped three-dimensional (3D) topo-
logical insulators (TIs). It occurs as a result of a gap opening at
the Dirac node of TIs due to broken time-reversal symmetry.
It is known that impurities give rise to low-energy resonant
states near Dirac nodes [4–6]. For a magnetically doped 3D
TI, the magnetic energy gap is filled with impurity resonant
states. Hence, disorder effects have significant implications
for QAHE [7,8]. In this work, we consider another example of
impurity band engineering in DMs. Specifically, we propose
to use impurity bands to introduce flat bands and produce
additional Dirac nodes in DMs.

Flat bands can occur in a variety of systems, including
electronic materials such as superconducting wire networks
and engineered two-dimensional atomic lattices, in optical
lattices of cold atoms, and in photonic systems such as waveg-
uide arrays and exciton-polariton condensates [9]. Due to the
quenching of kinetic energy, flat bands are highly suscep-
tible to interactions. In particular, flat electronic bands are
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expected to give rise to interaction-driven quantum phases,
such as superconductivity and Bose-Einstein condensation.
Nearly flat electronic bands can be found in slow DMs, in
which Dirac states exhibit extremely low velocity, resulting
in a large coupling constant [10]. Recently, there has been
renewed interest in flat bands due to the discovery of super-
conductivity in twisted bilayer graphene near the so-called
magic angles which host slow Dirac fermions close to the
charge-neutrality point [11–13].

Here we consider impurity-induced flat bands that emerge
in doped DMs, e.g., in 3D TIs, with periodically arranged
impurities. In a certain range of impurity potentials, these
impurity bands appear near the Dirac nodes and hybridize
with the Dirac states.

We demonstrate, by using an effective model and tight-
binding calculations for a typical 3D TI with a single Dirac
node at the � point, that when the impurity resonance state
is energetically close to the Dirac node, such hybridization
results in the splitting of the original Dirac node at � and in the
appearance of additional nodes at other high-symmetry points
in the Brillouin zone.

We also show, using a slave boson approach, how a Dirac
conduction band hybridizing with a strongly interacting local-
ized band via a Kondo coupling J also leads to this physics,
with a strongly renormalized chemical potential for the local
orbitals, provided that J is sufficiently large (on the order of
the conduction electron bandwidth).

II. MODEL

Our theoretical modeling is based on the sp3 Slater-Koster
tight-binding (TB) model for a Bi2Se3 3D TI, with parame-
ters fitted to ab initio calculations obtained with the WIEN2K

package [14,15]. The TB model for pristine Bi2Se3 includes
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FIG. 1. Impurity-engineered flat bands in a 3D TI. (a) A supercell of a five-QL thin film of a Bi2Se3 3D TI with an impurity atom
substituting Bi in the topmost Bi atomic layer. The size of the surface supercell is 3 × 3, corresponding to 11% surface doping. The impurity
potential is U = 6 eV. The calculated atomic-layer resolved spectral function A(k, ω) (b) on the top surface containing the impurity and (c) on
the bottom (undoped) surface. The black arrow in (b) shows the position of the impurity band. White arrows in (b) indicate the modified surface
Dirac points. Thin dashed lines show the position of the Dirac point in the undoped film (U = 0).

s and p orbitals and Slater-Koster hopping elements between
atoms in the same atomic layer and between atoms in first-
and second-nearest-neighbor layers. The spin-orbit interaction
is incorporated in the intra-atomic matrix elements. We use
the tight-binding parametrization of Ref. [14], obtained for
Bi2Se3 by fitting to bulk ab initio calculations.

For surface calculations with impurity doping on the (111)
surface, we consider a slab consisting of five quintuple layers
(QLs) and a 3 × 3 surface supercell [15] (unless stated other-
wise). An impurity substitutes an atom in the topmost Bi layer
and is described by a local on-site potential [4–6]. A pointlike
impurity potential U acts as a uniform shift to the on-site en-
ergy of the impurity atom. The impurity potential introduces
localized impurity states that can affect electronic states in
the vicinity of the Dirac node [5]. Microscopic tight-binding
model calculations are accompanied by low-energy contin-
uum model calculations for a TI surface state hybridized with
a doubly degenerate impurity band.

III. RESULTS

A. Tight-binding calculation for 3D TI

The results of a representative TB calculation with U =
6 eV are shown in Fig. 1. The supercell structure with a sub-
stitutional impurity near the top surface is shown in Fig. 1(a).
The spectral function corresponding to atomic layers along the
growth direction of the TI slab is calculated by averaging the
atom-resolved spectral function over the atoms in a specific
layer. The spectral functions of the top and bottom surfaces
are shown in Figs. 1(b) and 1(c), respectively. The presence
of surface impurities leads to impurity resonance states that
appear as nearly flat bands in the spectral function of the
doped surface [Fig. 1(b)], while the undoped surface exhibits
unperturbed Dirac states.

Figure 2 shows the calculated band structures and the den-
sity of states (DOS) for a range of impurity potentials U . For
U = 0, the Dirac states of the top and bottom surfaces of the
slab are degenerate. With increasing U , a nearly dispersion-
less band emerges in the valence band, and the degeneracy
between the top and bottom Dirac states is lifted. The Dirac
node of the undoped surface remains pinned at the position of
the Dirac node of the pristine system, while the Dirac node
of the doped surface is shifted in energy. With increasing
the impurity potential further, the impurity band crosses the
Dirac node of the top surface and shifts further up in energy.
For large U , the impurity band merges with the conduction
band, and the degeneracy of the top and bottom Dirac states is
restored.

The impurity states also appear as peaks in the DOS, as
shown in the right panels in Fig. 2. Their position is controlled
by the nonmagnetic impurity potential U and coincides with
the position of the flat impurity band.

When the impurity resonance state falls in the vicinity
of the node, which corresponds to U = 6 eV in this model
[Fig. 2(c)], the Dirac spectrum is drastically modified. The
Dirac node of the doped surface is split into two nodes, dis-
placed vertically in energy, and the surface states hybridize
with the flat impurity band. Figure 3 shows the spatial distri-
bution of the wave functions of the three nodes at �, which are
marked as εi in Fig. 2(c) and correspond to the Dirac nodes
of the bottom surface and the split nodes of the top surface.
The two new nodes at � are predominantly localized at the
top surface. However, they are not pure surface states and are
hybridized with the impurity band localized on the impurity
site.

This feature was noticed in previous theoretical work on
3D TIs, which used the scattering matrix approach with and
without disorder to study impurity resonances [7,16]. In con-
trast to our tight-binding calculations, this approach does not
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FIG. 2. The calculated band structures and DOS for several values of U (U = 0–9 eV). Black arrows show the position of the impurity
band. Thin dashed lines show the position of the Dirac point in the undoped film (U = 0).

rely on the use of a supercell. The splitting of the Dirac node
due to coherent impurity scattering and the appearance of dis-
persionless band at zero energy was shown in graphene in the
presence of vacancies [17]. A similar effect was found in ab
initio calculations of TI/normal semiconductor heterostruc-
tures, where a semiconductor valence band hybridizes with
TI surface states [18]. This result was qualitatively explained
by an effective model based on the low-energy surface state
Hamiltonian hybridized with a trivial band from a proxi-
mal semiconductor layer. More generally, the possibility of
reshaping the topologically protected surface states with lo-
calized impurity resonances was demonstrated in [19] using
numerical simulations and scanning tunneling microscopy.

Although the splitting of the Dirac nodes in the presence of
disorder was noticed in previous work [7,16], it has not been

studied in the context of topology and impurity-controlled
nodal structure of DMs. To further illustrate the details of this
effect, we show in Fig. 4 the calculated band structures for
U = 6 eV and for different surface impurity concentrations.
As one can see from Fig. 4(a), the Dirac node of the top
surface is split vertically into two nodes (red arrows) and is
hybridized with the impurity band, while the bottom surface
states remain unaffected by doping. The splitting between the
two nodes at � decreases with increasing the doping concen-
tration.

An additional doubly degenerate state appears at the Bril-
louin zone corner (M points) and is marked by a blue arrow
in Fig. 4. Here we consider nonmagnetic doping; hence,
time-reversal symmetry guarantees Kramers degeneracy at the
time-reversal-invariant momenta � and M. The surface of a

033001-3



PERTSOVA, JOHNSON, AROVAS, AND BALATSKY PHYSICAL REVIEW RESEARCH 3, 033001 (2021)

FIG. 3. The absolute value of the wave function of the three
doubly degenerate states ε j ( j = 1, 2, 3) at �, marked in Fig. 2(c),
as a function of atomic position along the slab. Atomic index i = 1
(N ) corresponds to bottom (top) surface. States ε1 and ε2 are the two
Dirac nodes of the top surface, split from the original node by the
impurity resonance. The impurity potential is U = 6 eV.

Bi2Se3 3D TI is a triangular lattice. Due to the symmetry
of the corresponding hexagonal Brillouin zone [see the inset
in Fig. 4(a)], there are three nonequivalent M points, each
hosting a doubly degenerate state.

The splitting and generation of new nodes lead to a natu-
ral question of whether the topology of the surface states is
somehow affected by nonmagnetic impurities. As confirmed
by the calculations, the nodes remain gapless; however, their
number and position change. We verified that the topological
properties are preserved in the presence of nonmagnetic dop-
ing despite the modified nodal structure. The Dirac states in
a 3D TI are characterized by spin-momentum locking in the
vicinity of the node. We define the helicity h as the eigenvalue
of the helicity operator σ · k̂, where k̂ = k/|k|. This can be
visualized as the direction of rotation of the spin of an energy
eigenstate as the momentum changes clockwise from +ky to
−ky. We found numerically that the helicity of the doped
surface, calculated by summing the helicities of the nodes at �

and M, is the same as the helicity of the pristine surface. Thus,
the peculiar splitting of the surface state node by impurity
resonance necessitates the appearance of new nodes at the
Brillouin zone corners to preserve the topology.

B. Analytical model of a Dirac spectrum hybridized with an
impurity band

We will illustrate the splitting of the Dirac node by hy-
bridization with an impurity band by using an effective

low-energy model. We consider the following Hamiltonian:

H =
(

HTI V
V † Eimp

)
, (1)

where

HTI =
( −μTI vF (kx − iky)

vF (kx + iky) −μTI

)
(2)

is the Hamiltonian of a 3D TI surface (or graphene) and vF is
the Fermi velocity. Here V = γ Î is the coupling matrix, γ is
the coupling strength, and Î is a 2 × 2 identity matrix. Eimp =
εimp(k)Î is the impurity band Hamiltonian, where εimp(k) is

the impurity band dispersion. We consider εimp(k) = ak2 −
μimp; the case a �= 0 corresponds to a quadratic band, while
a = 0 gives a flat band. The resulting band structures are
shown in Fig. 5.

The eigenvalues of the Hamiltonian in Eq. (1) can be found
from the following equation:

[E2 − εimp(k) E − γ 2]2 = [E − εimp(k)]2 (vFk)2. (3)

The pair of doubly degenerate states at � is given by the
solution at kx = ky = 0,

E1,2 = − 1
2μimp ± 1

2

√
μ2

imp + 4γ 2. (4)

For μimp � γ (γ �= 0), we have E1 = 0 and E2 = μimp.

C. Hybridization via Kondo coupling

For completeness we also analyze the case of correlated
impurity bands. While the presence of flat bands due to im-
purities is natural, a question can be asked about the stability
of our results in the presence of correlations. To address this,
we now consider an interacting model of a Kondo lattice.
We use an analysis based on a localized, [SU(2) × SU(N )]-
degenerate f band of electrons coupled to a conduction
electron band with Dirac cones. The Hamiltonian is

H =
∑

k,m
σ,σ ′

hσσ ′ (k) c†
kmσ

ckmσ ′ + ε0

∑
R,m,σ

f †
Rmσ fRmσ

− J

Nf

∑
R

∑
m,m′
σ,σ ′

: c†
Rmσ fRmσ f †

Rm′σ ′ cRm′σ ′ :, (5)

where σ is an SU(2) index which could label different sub-
lattices in a graphene or flux phase [20] structure. The index
m ∈ {1, . . . , Nf} labels the flavor, and we are interested in the
limit Nf → ∞. The f electrons are presumed to be strongly
interacting, satisfying the constraint

∑
m,σ f †

Rmσ fRmσ = qNf ,
where q is the fixed filling fraction of the flavor orbitals in
each unit cell, which is conserved by H . This constraint is
enforced by Lagrange multipliers λR at each site. Invoking the
well-established mean field treatment [21], the quartic term
is decoupled via a Hubbard-Stratonovich transformation with
complex local fields VR, and the Kondo term becomes

HK =
∑

R

Nf |VR|2
J

+
∑

R,m,σ

(
VR c†

Rmσ fRmσ + V ∗
R f †

Rmσ cRmσ

)
.

(6)
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FIG. 4. The calculated band structures with U = 6 eV for decreasing concentration of surface impurities: (a) n = 11% (3 × 3 supercell),
(b) n = 5.5% (6 × 6 supercell), and (c) n = 4% (8 × 8 supercell). The inset in (a) shows the surface Brillouin zone.

Assuming a mean field solution where λR = λ and VR = V are
spatially uniform, the mean field Hamiltonian becomes

HMF = NNf

( |V |2
J

− qλ

)
+

∑
k,m
σ,σ ′

(
c†

kmσ
f †
kmσ

)

×
(

hσσ ′ (k) V δσσ ′
V ∗ δσσ ′ (ε0 + λ) δσσ ′

)(
ckmσ ′

fkmσ ′

)
. (7)

At this point, we can work in the diagonal basis of hσσ ′ (k),
whose eigenvalues Eα (k) are upper and lower bands which
touch at certain k values where there are Dirac cones.
We also define ε ≡ ε0 + λ, which is the renormalized f -
level energy. For simplicity of calculation, we adopt a
model of the c-electron density of states g(E ), with g(E ) =
2 |E |W −2 
(W − |E |). At T = 0, the dimensionless free
energy per site per flavor, in units of the c-electron half band-
width W , is

ϕ = W −1 E
(|V |2, ε) + 2

W 3

E∗∫
−W

dE |E | ξ−(E ), (8)

where

E
(|V |2, ε) = |V |2

J
− q(ε − ε0) (9)

is the nonfermionic contribution to the energy,

ξ±(E ) = 1
2 (E + ε) ± 1

2

√
(E − ε)2 + 4 |V |2 (10)

are the energies of the hybridized c- f bands (upper and
lower), and E∗ is defined by ξ−(E∗) = 0, where we position
our Fermi level.

The mean field solution is obtained by extremizing ϕ with
respect to the parameters |V | and ε. We defer the description
of the complete solution to a future publication and describe
here some limiting results. Writing ε ≡ xW , |V | ≡ √

r ε, we
obtain a solution to the mean field equations only when J >

Jc = 1
2W . Defining ζ ≡ 1 − W

2J , in the limit where 0 < ζ � 1

we obtain the equations

x ln x−1 = ζ , r = q

2ζ x(ζ )
, (11)

where x(ζ ) is a solution of the first of these mean field equa-
tions. That a critical value of J on the order of the bandwidth
is necessary in order to obtain a solution is expected from the
work of Fradkin and others on magnetic impurities in Dirac
systems [22,23]. In the present context, we find then that for
J > Jc, strong interaction physics within a localized f band
nominally located below the Fermi level results in a renormal-
ization of the f -electron energy, pushing it up to just above the
chemical potential, where the f band can effectively hybridize
with the Dirac c band and yield the nearly flat bands discussed
previously. For an impurity band located at the Fermi level, the
degeneracy at the Dirac node can be further affected by local
interactions at the impurity site [24,25].

IV. DISCUSSION AND CONCLUSIONS

Although it can be problematic to achieve a regular lat-
tice of impurities on a TI surface, there is strong evidence
of impurity-induced states in typical doped TI samples [26].
Moreover, recent angle-resolved photoemission spectroscopy
studies suggested that overlapping of impurity resonances
with the Dirac node, a situation depicted in Fig. 1(b), could
be achieved in the experiment as the binding energy of the
node changes with increasing the film thickness [27]. It is also
possible to resolve, at least partially, the impurity bands by
adjusting the photon energy of the pulse. Another promising
platform that can be used to study impurity flat bands is
artificially grown impurity superlattices on graphene. Such
lattices can be realized by self-assembly of organic molecules
on graphene deposited on the substrate [28].

In Fig. 1(b), we considered a situation where material pa-
rameters are such that the flat bands occur exactly at the Dirac
point of the pristine material. Assuming that the chemical po-
tential is at the Dirac node, this is the most favorable situation
which allows access to flat bands. In the new generation of
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FIG. 5. The calculated bands of the effective low-energy model in Eq. (1) for μTI = 0 and (a) and (d) μimp = 0.5, (b) and (e) μimp = 0.0,
and (c) and (f) μimp = −0.5. The top panels are for a quadratic band with a = 0.2; the bottom panels are for a flat impurity band with a = 0.
The coupling strength is given by γ = 0.05. All parameters are in dimensionless units, and we set vF = 1.

3D TIs with composition (Bi,Sb)2B3 (B=Se,Te), the chemical
potential can be positioned within 10 meV of the Dirac point.
The location of the impurity resonances varies greatly with
the type of material and dopant [26]. Recent experiments
indicated that favorable conditions can be achieved for at least
some samples and dopants, e.g., for Cr in Bi2Se3 above the
magnetic ordering temperature [27].

However, in the majority of materials, the above conditions
will not be satisfied. Further complications arise from the
fact that impurity doping itself may change the position of
the Fermi level. For such situations, optical pumping can be
used to populate the flat bands. Superconducting or excitonic
pairing may occur between carriers residing in the flat bands
and will have a transient nature [29,30]. These ideas can be
generalized to pumping of flat or nearly flat bands, which do
not necessarily originate from impurity-induced states. One
fascinating system is a magnetic Weyl semimetal such as the
recently discovered Co3Sn2S2, in which the band connecting
the Weyl nodes is flattened due to correlations of 3d Co
electrons [31].

In summary, we showed that flat impurity bands arise
in impurity-doped Dirac materials. We demonstrated this
impurity-assisted band structure engineering for a spe-
cific case of a three-dimensional topological insulator with

nonmagnetic impurities on the surface. The impurity flat
bands hybridize with the Dirac states and modify their nodal
structure. Peculiar features, such as the splitting of the Dirac
nodes and generation of additional nodes, are predicted and
are explained by a low-energy effective model and topolog-
ical band theory. We argue that these features are not model
specific and are not the artifacts of the supercell approach and
are also present in disordered systems. To test the robustness
of these predictions in the presence of electron correlation
effects we applied the large-N SU(2) × SU(N ) hybridization
model to probe the mean field bands and Kondo effect. We
found that, while the bands are renormalized, the “extra”
Dirac nodes and flat bands persist in the interacting model
provided the coupling is sufficiently large. These results re-
inforce our predictions of flat bands engineered via impurity
bands and render them experimentally feasible. The predicted
impurity-engineered flat bands present a natural platform for
exploring interaction-induced phases, beyond the paradigm of
twisted bilayer graphene.
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