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The phrase “scale-free network” has become controversial in recent years, as network scientists debate what
it means for a finite degree sequence to fit a power-law distribution. In practical terms, however, most network
scientists use the phrase to indicate that a network has hubs, and so it would be useful to be able to talk about
such networks without reference to power laws at all. This paper presents the Cooke-Nieboer index (CNI), a
nonasymptotic measure of the heavy-tailedness of a network’s empirical degree distribution which does not
presume a power-law form. The CNI is easy to calculate and is able to distinguish between synthetic networks
with power-law, exponential, and symmetric degree distributions. It serves as a complementary measure to the
traditional tail-index estimators and reflects certain properties in real-life networks better than the estimators do.
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I. MOTIVATION

A phase change in network science research occurred at
the end of the last century, with the discovery that the re-
lationships in many real-life systems have properties which
can not be captured by Erdős-Rényi random graphs [1]. One
important such property is the existence of hubs [2]: nodes
with large degrees, much larger than an Erdős-Rényi graph
of the same size and average degree would possess. Hub-
dominant networks are everywhere [3], from the structure of
the Internet, to metabolic networks, to friendships and follow-
ers both online and in real life, and in many other examples.
Hub-dominated networks are usually referred to as “scale-free
networks” in the literature, which implies that their degree
distribution P(x) corresponds in some way to a power law:

P(x) ∼ x−α−1, α > 0. (1)

The meaning of “∼” in the equation above is very flexible,
however, and as Broido and Clauset [4] point out, there are
a variety of opinions about what “scale-free” really means.
Some authors [2–5] require that the degree distribution of a
“scale-free” network, or at least a portion of that distribution,
must follow a strict power law. Others are more lenient, re-
quiring that the degree distribution be regularly-varying [6] or
heavy-tailed, that the distribution be “well-approximated” by
a power law [5], or even that the distribution “looks linear”
on a log-log plot (as discussed in Ref. [7]). Some use the
term “scale-free” to describe aspects of a network which are
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unrelated to its degree distribution, such as the self-similarity
of its subgraphs [8,9].

The recent debate [4,10,11] over this term could be dis-
missed as merely a semantic one, but there are a few problems
with the widespread use of the term “scale-free.” First, real-
world networks are always finite: their degree sequences end,
their variance is finite, and by definition (see Eq. (2) be-
low; also Ref. [12]) they cannot be heavy-tailed, let alone
scale-free. Researchers work around this by imagining that
real-world networks are subsamples of some underlying in-
finite distribution [6] or generated via some well-defined
process which would create a power-law distribution in the
infinite-size limit [11]. This assumes, however, that some such
distribution or process exists.

Second, sometimes the distinction between true power-law
and mere heavy-tailed networks is important: for example, the
proof [13] that certain scale-free networks have no epidemic
threshold depends on the infinite variance of a power-law
degree distribution with α � 2; hub-dominated networks with
finite variance may not share this property.

A third problem with this approach is that it encourages
researchers to use power-law measures to characterize hub-
dominant networks. One common way to characterize the
“scale-freeness” of a network is to fit a portion of the degree
sequence (usually the “tail” where the degrees are highest) to
a power law [Eq. (1)]; the fit parameter α is often known as the
tail index of the network [4,14–17]. But if the finite network
has only a few high-degree nodes, this asymptotic measure
becomes sensitive to the properties of a very small portion of
the network.

When we get caught up in the details of power-law fits
and statistical tests, we overlook the fact that when most
network scientists describe a network as “scale-free,” they are
referring to the existence of hubs. The presence of hubs in a
network gives them distinctive properties: networks with hubs
have shorter path lengths [5], allow for the efficient spread of
information (or viruses) [13], and are robust against random
failures [18] but more susceptible to targeted attacks [19].
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Therefore it may be useful to think about the existence of hubs
in a different, noninferential way.

Therefore we here present a new measure: the Cooke-
Nieboer index (CNI), which attempts to quantify the presence
of hubs in a network. This measure, adapted from the “obesity
index” in Ref. [14], does not presume that the distribution
is scale-free, nor is the measure asymptotic: it is applied to
the entire degree sequence and not just to its tail. In this
paper we will define the CNI and investigate its behavior
for several standard mathematical distributions and synthetic
networks, classifying them into “high,” “low,” and “negative”
CNI categories. We will also apply our measure to real-world
networks, comparing the CNI with the alternate classification
schemes found in Refs. [4,6]. We will give several examples
where the CNI may give a more accurate representation than
the tail index of the underlying network.

II. DEFINITION

A. The obesity index

In the probability literature [12], the probability density
function (PDF) f (x) of a distribution is said to be heavy-tailed
if ∫ ∞

−∞
eλx f (x) dx = ∞ for all λ > 0. (2)

This implies that the PDF decays more slowly than any
exponential. Most heavy-tailed distributions of interest fall
into a subcategory known as the subexponential distributions,
defined as follows [20]: if X1, . . . , Xn are independent and
identically distributed (i.i.d.) random variables chosen from
a subexponential distribution, then

lim
x→∞

P(X1 + · · · + Xn > x)

P(max(X1, . . . , Xn) > x)
= 1, for all n � 1. (3)

In other words, the sum of the random variables is likely
to be large if and only if their maximum is likely to be large.
This is the principle of a single big jump [12]. (For example,
if the cost of cleaning up from natural disasters follows a
subexponential distribution, then the total cost of cleanup in
any given year is going to be roughly equal to the total cost of
the largest disaster that year.) Power-law and regular-varying
distributions [6] are examples of subexponential distributions.

To characterize the “subexponentiality” of a distribution
X , Cooke and Nieboer [14] suggest a measure known as the
obesity index.

Definition. Select a quadruple (i.e. a set of four numbers) of
i.i.d. random values from the distribution X , and label them in
ascending order, so that X1 � X2 � X3 � X4. Then the obesity
index is the probability

Ob(X ) ≡ P(X1 + X4 > X2 + X3). (4)

If the distribution is symmetric, then the quantities X4 + X1

and X2 + X3 are equally likely to be larger, and so the distri-
bution’s obesity index is one-half [14]. For a subexponential
distribution, on the other hand, Eq. (3) becomes

lim
x→∞

P(X1 + X2 + X3 + X4 > x)

P(X4 > x)
= 1, (5)

which means that X4 has a high probability of being larger
than the sum of the other three variables, in which case X1 +
X4 will normally be greater than X2 + X3, and the probability
in Eq. (4) will be much greater than one-half.

The obesity index is a probability, and so ranges from zero
to one. Like skewness and kurtosis, it is independent of offset
and positive scaling of the distribution: i.e.,

Ob(aX + b) = Ob(X ), a ∈ R+, b ∈ R. (6)

Multiplying the distribution by a negative number reverses the
inequality in Eq. (4), however, so that

Ob(b − aX ) = 1 − Ob(X ), a ∈ R+, b ∈ R. (7)

B. The Cooke-Nieboer index

The obesity index is specifically designed for continuous
distributions, and so needs to be modified before we can apply
it to sequences of integers. We here propose a variation of the
Obesity Index, which we call the Cooke-Nieboer index �(X ).
For a given distribution X , we define the CNI in the following
way.

Definition. Let X1, . . . , X4 be four i.i.d. random numbers
chosen from a particular distribution X . We define the Cooke-
Nieboer index of the distribution to be

�(X ) ≡ E

{
sgn

(
1

2
(max Xi + min Xi ) − 1

4

∑
i

Xi

)}
, (8)

where E{·} signifies the expectation value and sgn(x) is the
signum function

sgn(x) =
⎧⎨
⎩

1, x > 0
0, x = 0
−1, x < 0

. (9)

For later convenience, we define

�(X ) ≡ 1
2 (max Xi + min Xi ) − 〈Xi〉 (10)

so that �(X ) = E{sgn(�(X ))}.
The Cooke-Nieboer index differs from the obesity index

in three ways: (i) it properly handles discrete distributions by
accounting for the finite probability that X1 + X4 = X2 + X3;
(ii) it is rescaled so that it ranges from −1 to 1, so that for
symmetric distributions, � = 0; and (iii) it avoids the term
“obesity”, which may cause confusion in applications of net-
work science to health issues. For a continuous distribution X ,
the two measures are simply related:

�(X ) = 2 Ob(X ) − 1. (11)

One may interpret Eq. (10) in the following manner: the
first term 1

2 (max Xi + min Xi ) is the halfway point between
the largest and smallest values, and could be thought of as the
“geometric center” of the quadruple (Fig. 1), while the second
term 〈Xi〉 is of course the mean. When one of the values is
much larger than the others, as is common for heavy-tailed
distributions, it will pull the geometric center to the right of
the mean, and so �(X ) will be positive. (This makes the CNI
a type of skewness measure for the distribution.) A negative
CNI would occur, conversely, when there are many more large
values in the distribution and only a few small ones.
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FIG. 1. Three examples of quadruples and their corresponding
values of � as calculated by Eq. (10). The “geometric center” is the
halfway point between the minimum and maximum values, and �

measures whether the geometric center is to the right (� > 0) or the
left (� < 0) of the mean. Notice that � = 0 for the distribution that
is symmetric about its geometric center.

An integral expression for the CNI can be derived from
a similar integral in Ref. [14], but for most cases cannot
be expressed in closed form. Instead, one may find the CNI
of a continuous distribution by calculating � multiple times
until reaching some desired standard error σx̄, using code
such as that found in Fig. 2. Figure 3 shows that the CNI
calculated this way is normally distributed, with a standard

FIG. 2. Sample PYTHON code for calculating the CNI, given a list
degrees of degrees of the network. The number 20 in the penulti-
mate line is arbitrary and meant to prevent the code from stopping
too soon. The code is written for demonstration purposes and is not
particularly efficient; a more sophisticated version can be found in
Appendix.

FIG. 3. The CNI of three different probability distributions—a
uniform distribution between 0 and 1, an exponential distribution
with λ = 1, and a Pareto distribution with α = 1—was calculated
one thousand times using a Monte Carlo algorithm such as Fig. 2,
each time until reaching a standard error of σx̄ = 0.01. The figure
shows the histogram of how the calculated � differs from the mean
〈�〉 for that particular probability distribution. All three curves are
localized and single-peaked with a standard deviation of 0.01, as
expected.

deviation equal to σx̄. The number of steps T required to reach
a desired standard error is proportional to σ−2

x̄ (see Eq. (A2)
of Appendix), with a coefficient depending on the type of
distribution (Fig. 4).

III. DISTRIBUTION REGIMES

A. Bernoulli distribution

To understand how the CNI works, it is useful to consider
the generalized Bernoulli distribution

X =
{

a with probability p
b > a with probability 1 − p

. (12)

When we choose a quadruple from this distribution, and
0 � s � 4 of the values are a, it is simple to show that �

[Eq. (10)] is equal to zero if s is even, � < 0 if s = 1, and

FIG. 4. For the same three distributions as in Fig. 3, this shows
the number of steps T required to reach a particular standard error σx̄ ,
where a step is a single calculation of � [Eq. (10)]. All three curves
closely obey the relationship σx̄ ∝ 1/

√
T after ten million steps.
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FIG. 5. The CNI of the Bernoulli distribution [Eq. (13)] as a
function of p. The small boxes show the relative proportions of the
two values (X = a in black, X = b > a in orange). The polynomial
reaches extreme values of ± 2

√
3

9 at p = 1
2 ±

√
3

6 .

� > 0 if s = 3. Thus we can calculate the CNI of this distri-
bution precisely:

�(p) =
4∑

s=0

(
4

s

)
ps(1 − p)4−s sgn(�)

= 4p3(1 − p) − 4p(1 − p)3

= 4p(1 − p)(2p − 1). (13)

Note that the result does not depend on the values a or b.
Figure 5 shows a graph of the polynomial in Eq. (13).

Where the distribution is symmetric, at p = 0, 0.5, and 1, the
CNI is zero; this follows from our discussion in Sec. II. When
p > 0.5, there are more smaller values than larger values,
and the CNI is positive; the CNI is negative when there are
more larger values. The maximum CNI for a Bernoulli dis-
tribution is � = 2

√
3

9 ≈ 0.385 at p = 1
2 +

√
3

6 ≈ 0.79, which
corresponds roughly to one large value out of every five.

B. Classification

In the previous section, we saw an example of the differ-
ence between distributions with positive and negative CNI,
with the symmetric distributions (� = 0) forming a boundary
between the two regimes. We can further divide the positive
regime into two classes using the exponential distribution
P(x) = λe−λx as a second boundary. It is shown in Ref. [14]
that the exponential distribution has an obesity index of 3/4
regardless of λ, and thus it has a � = 1/2. Using the expo-
nential distribution and the symmetric distribution values as
boundaries, we propose to divide all distributions into one of
three regimes.

(1) High-CNI distributions, with � > 0.5. These are net-
works with a larger CNI than the exponential distribution. An
important example are the power-law or Pareto distributions,
whose CNIs (as shown in Fig. 6) range from � = 1 for α = 0
to � → 0.5 as α → ∞.

(2) Low-CNI distributions, with 0 � � � 0.5. This regime
includes the symmetric distributions, the Gumbel distribution
[14] exp(−e−x ) (with � ≈ 0.25), and the Poisson distribution
(as will be seen in Fig. 7).

FIG. 6. The CNI of a power-law distribution 1/xα+1 as a func-
tion of its tail index α. The CNI was calculated by selecting 1000
quadruples taken from the distribution; this process was repeated
for 50 different sets of samples for each value of α. The standard
deviation of these measurements are smaller than the height of the
dots shown. The grey area highlights the region where most “scale-
free” networks are found [4,21], between α = 1 and α = 2: Ref. [14]
calculates the CNI at these values as 2π 2 − 19 = 0.739 (for α = 2)
and 1185 − 120π 2 = 0.647 (for α = 3). There is no known closed
form for this curve but it is close to the expression 1

2 + 1
2 (1 + α)−10/9,

which is shown as a dashed line.

(3) Negative-CNI distributions, with � < 0. These are
distributions which have many large values and fewer small
values: distributions that are heavier on the right than on the
left. We will see that many dense planar networks fall into this
category.

IV. NETWORKS

The Cooke-Nieboer index can be extended to describe fi-
nite networks in a natural way. For an undirected, unweighted

FIG. 7. The CNI � of Erdos-Renyi networks G(n, p) of n =
1000 nodes with varying average degree 〈k〉 = np. One hundred
different networks were generated for each value of 〈k〉, and their
CNIs were calculated to a standard error of 0.001. The thick central
line shows the mean value of �; the two lines on either side show one
standard deviation away from the mean. The shaded region shows the
range of all values. Larger values of n (not shown) result in a similar
trajectory but a smaller shaded region.
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network G with degree sequence {k1, k2, . . . , kN }, we de-
fine �(G) to be the CNI of its degree sequence; that is,
�(G) = E{sgn(�)}, where

� = 1
2 (max k′

i + min k′
i ) − 〈k′

i〉, (14)

and k′
i are a set of four samples chosen from the degree

sequence. For weighted networks, one can replace the degree
ki with the total weight of the edges connected to the node;
note that there is no need for this to be an integer. We can
also use the CNI to examine the distributions of other prop-
erties of networks, like the eigenvector or the betweenness
distributions [3].

We can calculate the CNI by considering every combina-
tion of four elements of the degree sequence, allowing for
duplicate selections to simplify the calculation:

� = 1

N4

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

sgn(�(ki, k j, kk, kl )) (15)

If the ki are all integers less than or equal to some value M,
and if pa is the fraction of nodes with degree a, then we can
write this in the more computationally efficient form

� =
M∑

a=0

M∑
b=0

M∑
c=0

M∑
d=0

pa pb pc pd sgn(�(a, b, c, d )), (16)

which runs in O(M4) time as compared to O(N4) time.
The measure is not generally additive: the CNI of the union

of two graphs G and H has no (known) simple relationship
with �(G) and �(H ), except when the networks are the
same, in which case �(G ∪ G) = �(G) (due to the scaling
independence Eq. (6) of the obesity index). From Eq. (7), it
can be shown that the CNI of the complement Ḡ of a graph G
(that is, a graph where two nodes are linked in Ḡ if and only
if they are not linked in G) is

�(Ḡ) = −�(G). (17)

Networks with symmetric degree distributions, such as com-
plete graphs and cycle graphs, have � = 0.

A. Erdős-Rényi networks

Erdős-Rényi random networks G(n, p) primarily fall in the
“low-CNI regime” (Fig. 7), with the value of � depending
strongly on the average degree 〈k〉 = np of the network. Sim-
ulations suggest that the CNI remains nonnegative, but can be
zero up until a certain threshold. The CNI reaches a maximum
value when 〈k〉 ≈ 0.33, but the significance of this value is
unclear. Note that most of the interesting features of this graph
occur for the Erdős-Rényi graphs without a giant component;
when 〈k〉 � 1, the CNI decreases monotonically as the aver-
age degree increases, approaching zero. The behavior of the
CNI for a network where many of the nodes with degree zero
may be unreliable and is something that needs further study.

B. Barabási-Albert networks

Figure 8(a) shows that Barabási-Albert networks [2] are
high-CNI networks, as expected, with a � close to the value
measured in Fig. 6 for a power-law degree distribution with

FIG. 8. (a) The CNI for Barabási-Albert networks of 100 000
nodes, as a function of the minimum degree m. The black dots mark
the mean value over 100 sampled networks, the error bars show the
standard deviation, and the grey dots mark all values. Note the un-
usual value at m = 1. The dashed line shows the CNI of a power-law
distribution k−3 (0.647, as mentioned in Fig. 6). (b) The partial sum
of Eq. (19) for three values of m. Note the clear distinction once again
between m = 1 and m = 2.

α = 2. Notice, however, that the CNI depends on the parame-
ter m, which specifies the minimum degree of the network:
in particular, the CNI of the m = 1 network is noticeably
lower than those with higher minimum degrees. This differ-
ence seems to contradict the traditional understanding [2] that
the infinite-network degree distribution should be P(k) ∝ 1

k3 ,
independent of the minimum degree m. This might be a
finite-size effect, as Barabási-Albert networks are known to
converge slowly to their infinite state [22]. To test that theory,
we considered the degree distribution P(k) of this network in
the thermodynamic limit [23], which is

lim
N→∞

P(k) = 2m(m + 1)

k(k + 1)(k + 2)
, k � m (18)

Combining this with Eq. (16) allows us to write an expression
for the CNI which we can numerically estimate:

� = lim
N→∞

N∑
a=m

N∑
b=m

N∑
c=m

N∑
d=m

sgn(�(a, b, c, d ))

×
∏

s∈{a,b,c,d}

2m(m + 1)

s(s + 1)(s + 2)
. (19)

Figure 8(b) shows the partial sums of Eq. (19) as N
approaches infinity. It appears that the CNI for m = 1
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FIG. 9. The CNI of partial periodic lattices with m nearest
neighbors, as a function of edge probability p. If at least half of
the edges are kept, then the CNI is negative. These correspond
to one-dimensional (m = 2), two-dimensional (m = 4), and four-
dimensional (m = 8) Cartesian lattices.

approaches a smaller value than for the larger values of m
(although it is always possible that it is growing very slowly).
Regardless, there is something significantly different about the
m = 1 case which is being captured by the CNI, likely due to
the fact that the CNI is nonasymptotic in nature and depends
on more than just the k−3 tail. Whether this difference plays a
significant role in any applications is worthy of further study.

C. Partial periodic lattices

Another synthetic network which is interesting to us (as we
will see in Sec. V A) is what we call a partial periodic lattice
(PPL), in which each node in a lattice with periodic boundary
conditions is connected to each of its m nearest neighbors with
probability p. For example, a PPL on a square lattice would
have m = 4. The CNI of a PPL can be written in closed form
as a 4m − 1 degree polynomial, given by the expression

�lattice(p) =
m∑

i=0

m∑
j=0

m∑
k=0

m∑
l=0

sgn(�(i, j, k, l ))

×
∏

s∈{i, j,k,l}

(
m

s

)
ps(1 − p)m−s. (20)

Figure 9 shows this polynomial �lattice(p) for a few values
of m; this looks very similar to the result of the Bernoulli
distribution in Fig. 5. We get a negative-CNI result when
nodes are connected to more than half of their neighbors.

V. REAL-LIFE NETWORKS

A. Comparison with Broido-Clauset

We now compare our classification scheme for hub-
dominant networks to two others proposed in the literature.
We begin with the recent paper by Broido and Clauset [4],
which considers a set of 927 real-life networks drawn from
the ICON database [24]. In that paper they classified each
network by how strongly it met the hypothesis that its degree
distribution is best fit by a power law. To do so, they used each
nonsimple network in their set (i.e., those that are directed,
weighted, multipartite, or multiplanar) to generate a collection
of unweighted, undirected simple graphs, according to criteria

FIG. 10. The distribution of mean CNI for the networks of each
strength classification in Ref. [4]. Unlike in that paper, we ex-
clude from the “superweak” category those networks that satisfy the
“weakest” condition.

described in Ref. [4]; the strength of a network depends on
how many of its simple graphs fit the power-law criterion.
In the following analysis, we relied on the data provided
by Ref. [25].

For each network we define �̄ to be the median CNI of that
network’s collection of simple graphs. Figure 10 shows the
distribution of this quantity. The average median CNI for all
networks is 〈�̄〉 = 0.32 with a standard deviation of 0.27, but
the distribution is bimodal, with peaks around the boundaries
of our three classifications (i.e., � = 0 and � = 0.5). The
negative-CNI peak is made up mostly of planar graphs, specif-
ically United States road networks [26] and fungal growth
networks [27]: their negative CNI is reminiscent of the partial
periodic lattices considered in Section IV C, where nodes are
connected to most of their nearest neighbors. Excluding these
two outlying groups, the average CNI is 〈�̄〉 = 0.49 ± 0.15,
on the boundary between the high- and low-CNI regimes.

Figure 10 also breaks the distribution down into the
strength classifications used in [4], and shows that the two
classification schemes are at best only weakly correlated.
Most of the strongest fits to the power-law model do have
high CNI (though some dip below 0.5, most significantly
the protein-protein interaction network in Mus musculus [28]
with � = 0.39). However, 30% of networks in the “weak”
category and below are also high-CNI. Overall, 31% of our
chosen networks lie in the high-CNI regime; another 24%
are close, in the 0.4 � � < 0.5 range (suggesting a possible
“mid-CNI” regime). Scale-free networks might be rare, as
their title suggests, but high-CNI networks are not.

A common way to classify the dominance of hubs in a
network is with its tail index α, found by fitting the tail of the
degree distribution to a power-law x−α−1. Figure 11 shows
the CNI of each of our simple graphs versus its tail index
as calculated in Ref. [4]. The two values have a moderate
negative correlation as one might expect, with a Pearson cor-
relation coefficient of r = −0.38. The border between high
and low-CNI, according to the fit, occurs at α = 2.3, close to
the upper range α = 2 often cited [4,21] for those networks
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FIG. 11. The tail index of each simple graph versus its CNI,
with linear regression line (� = −0.04α + 0.59) showing a moder-
ate negative correlation (r = −0.38). The line crosses the boundary
between high and low-CNI regimes at α = 2.3. Three classes of
networks are represented with colored open circles: fungal growth
networks (red) and US road networks (green) are planar graphs with
negative CNI, while the affiliation networks between board directors
in Norwegian public limited companies, shown in blue, are further
discussed in Fig. 12.

which are “scale-free.” However, there are times when the
CNI and the tail index differ in surprising ways. For example,
the fungal networks and road networks in Fig. 11 are both
spatial networks and have similar CNI values even though
their tail indices vary greatly. As a more concrete example,
consider the set of affiliation networks between board direc-
tors on Norwegian public limited companies[29], determined
monthly from 2006 through 2009. These networks have a tail
index which varies between 1 and 5.5 [see Fig. 12(b)], but
their CNI is a fairly constant � = 0.656 ± 0.007 through-
out. Do the networks vary significantly or not? If we look
at the degree distributions [Fig. 12(a)] from two particular
months (May 2006 and August 2006) with very different tail
indices (α = 5.0 and 1.2, respectively), we see that the two
histograms are quite similar, suggesting that the CNI may be
a more accurate representation of their heavy-tailed nature.

B. Comparison with Voitalov et al.

In response to the assertion in Ref. [4] that scale-free
networks are rare, Voitalov et al. [6] argues that a fi-
nite distribution should be considered “power-law” if it is
regularly-varying, and that this more relaxed definition in-
cludes the degree sequences of many real-world networks.
In their paper, they examine 115 real-world networks from
[30], calculating their tail-indices using the Hill [16], Mo-
ments [31], and Kernel [32] estimators. They classified these
networks into four categories:

(1) not power laws: where one tail-index estimate was
nonpositive;

(2) hardly power laws: where all estimates are positive with
at least one estimate α � 4;

(3) other power laws: where all estimates are positive, no
estimates are α � 4, and at least one estimate is α � 2; and

(4) power laws with divergent second-moment: where all
estimates are 0 < α < 2.

FIG. 12. The top graph shows the degree distribution of the affil-
iation network between board directors on Norwegian public limited
companies [29] in May 2006 (A) and August 2006 (B). While having
similar degree distributions, their tail indices α as calculated in [4,25]
are very different (α = 5.0 and 2.2, respectively). The bottom graph
shows how the tail index and CNI of this network varies over time:
while the tail index fluctuates widely, the CNI remains relatively
stable.

In Fig. 13, we calculate the CNI for the same set of
networks as in Ref. [6]. The spread in the CNI for power-
law networks is smaller than for non-power-law networks.
The mean CNI also increases somewhat as networks become
“more power law” (i.e., from category 1 to category 4);

FIG. 13. Each dot represents one of the 115 networks studied in
Ref. [6], divided into the four categories mentioned in the text. The
horizontal line in each category shows the mean; the grey box, the
standard deviation from the mean.
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FIG. 14. The histogram (top) and cumulative histograms for the
two domains in the CountryDB bipartite network [30,33]. The coun-
tries domain, marked in triangles, is categorized as “not-scale-free”
by Ref. [6] but has a high CNI, while the entities domain, in circles,
is categorized as “scale-free with a divergent second moment,” but
has a low CNI.

however, just as in Sec. V A, there are a number of non-
power-law networks with high CNI, and a few “divergent”
power-law networks with low CNI. An example of both can
be found in the bipartite network relating entities and their
associated countries in DBpedia [33]. The degree sequence of
the entities is classified as scale-free with a divergent second
moment by Ref. [6], but has a CNI of 0.17, placing it in
the low-CNI category. Conversely, the degree sequence of the
countries in that network is classified as “not-scale-free” and
yet has a high CNI of 0.85. Clearly the CNI and the Voitalov
classification are measuring different things. Figure 14 shows
the histograms of both sequences, and while the divergent
sequence does seem to have a cleaner power-law tail, the high-
CNI sequence extends much farther and subjectively seems
more hub-dominant than the other.

VI. CONCLUSION

We have introduced the Cooke-Nieboer index as a new and
potentially useful method for characterizing hub-dominated
networks. The CNI classifies networks into one of three cat-
egories: high-CNI which includes the traditional “scale-free”
networks and other networks with heavy tails, low-CNI which
includes random and regular networks, and negative-CNI
which includes planar networks which are mostly connected.
While presented here in the context of simple graphs, it is

FIG. 15. A more efficient method of estimating the CNI, written
in PYTHON.

easily generalized to apply to weighted and directed networks.
We have shown in Sec. V that our measure is loosely cor-
related with various other classification schemes, but with
some significant differences, due to its nonasymptotic nature.
This even occurs with the Barabási-Albert model (Fig. 8),
where the CNI makes a distinction between the m = 1 and
m = 2 cases that the tail index would not. We believe the CNI
can serve a complementary role in classifying networks as
hub-dominated, and encourage its application in the study of
epidemics, network fragility, and other fields where the dis-
tinction between a power-law network and a hub-dominated
network may be important. We also hope that this paper may
help network researchers sidestep the controversy over “scale-
free networks,” when all they care about are hubs.
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APPENDIX

1. An efficient CNI algorithm

The code in Fig. 2 is simple, but computationally ineffi-
cient. One can improve the speed somewhat by implementing
a running standard error, such as with WELFORD’s online al-
gorithm [34]. However, one can do even better by exploiting
the fact that the thing we’re taking the average of—that is
sgn(�)—only takes one of three values. Suppose we take
T sets of quadruples from our distribution and calculate
xi = sgn �i for each one. If we define D ≡ ∑

i xi, then the
CNI is � = D/T . The variance of this measurement is σ 2 =
1
T

∑
i x2

i − 〈xi〉2. Because x2
i is either zero or one,

∑
i x2

i =
T − Z where Z is the number of times that �i = 0. Thus the
variance can be written

σ 2 = T − Z

T
−

(
D

T

)2

= 1 − ZT + D2

T 2
(A1)

and thus the squared standard error is

σ 2
x̄ = 1

T
σ 2 = 1

T
− ZT + D2

T 3
. (A2)
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FIG. 16. The CNI of the “trinoulli” distribution defined in
Eq. (A3), with j = 0 (that is, c = 2b − a). The CNI is the most pos-
itive when small values predominate (lower-right corner, p � q, r),
and most negative when large values predominate (top, r � p, q).
The black dot in the lower-right corner are those values where
� > 0.5. Figures for j = ±1 are similar, with slightly higher values
for CNI overall when c > 2b − a, and slightly lower values when
c < 2b − a.

This confirms the result seen in Fig. 4 that 1√
T

is an upper-
bound and a good approximation for σx̄, so long as Z and D
are both much smaller than T .

The code in Fig. 15 uses this insight to determine the
standard error, and calculates the CNI almost 3 times faster
than code using the WELFORD algorithm, and 75 times faster
than the code in Fig. 2.

2. Star networks and trinoulli distributions

Because the obesity index was originally designed for
continuous distributions, it is unsurprising that it may have
difficulty with distributions with few unique elements. For
example, a star graph, consisting of one hub and N nodes,
is a classical example of a hub-dominated network. How-
ever, as its degree sequences follows a Bernoulli distribution
with a = 1 and b = N , it cannot have a CNI larger than the
maximum value for a Bernoulli distribution, which according
to Sec. III A is � = 0.385, making it a low-CNI network.
Of course, as the histogram of this network consists of two
points, defining its tail-index is also problematic. Note that a
“tri-noulli distribution,” defined as

X =
⎧⎨
⎩

a with probability p
b > a with probability q
c > b with probability r = 1 − p − q

(A3)

has

FIG. 17. The generalized CNI using an S–tuple, for four different
distributions: the Pareto distributions with α = 1 and 2 (x−2 and
x−3, respectively), the exponential distribution e−λx , and a uniform
distribution of numbers between 0 and 1. The blue exponential curve
would mark the boundary between high and low CNI.

� = 4[p3(q + r) + q3(r − p) − (p + q)r3

+ 3pqr(p − r + jq)], (A4)

where j = sgn(c − 2b + a). This can (barely) reach the high-
CNI regime, as is shown in Fig 16.

3. Using other-sized tuples

Equation (8) specifies the use of a quadruple when calculat-
ing �, but Eq. (10) could be interpreted to refer to any S-tuple,
and the resulting modified CNI would be different. Figure 17
shows this modified CNI �S for several basic continuous
distributions. The value for a uniform distribution remains
zero throughout, but for others, �S increases monotonically as
the size S of the tuple increases, compressing the “high-CNI”
regime and expanding the “low-CNI” regime. We use S = 4
in this paper not only to maintain continuity with [14], but
because it gives the exponential distribution a CNI of 0.5, and
so divides the positive range of values evenly between the high
and low regimes. Note that, while the ordering of the example
distributions in Fig. 17 does not change with S, this is not true
in general. For example, the modified CNI of the Bernoulli
distribution [Eq. (13)] for an S-tuple is

�S (p) =
�S/2−1�∑

z=1

(
S

z

)
[pS−z(1 − p)z − pz(1 − p)S−z] (A5)

and one can show that, for example, �4(0.77) < �4(0.79) but
�7(0.77) > �7(0.79). This suggests it may be possible that
different values of S may result in different classifications for
certain networks, a possibility that may be worth further study.
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