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Relativistic hydrodynamics is a powerful tool to simulate the evolution of the quark-gluon plasma in relativis-
tic heavy-ion collisions. Using 10 000 initial and final profiles generated from (2+1)-dimensional relativistic
hydrodynamics VISH2+1 with Monte Carlo Glauber (MC-Glauber) initial conditions, we train a deep neural
network based on the stacked U-net, and use it to predict the final profiles associated with various initial
conditions, including MC-Glauber, MC Kharzeev-Levin-Nardi (MC-KLN), a multiphase transport (AMPT)
model, and the reduced thickness event-by-event nuclear topology (TRENTo) model. A comparison with the
VISH2+1 results shows that the network predictions can nicely capture the magnitude and inhomogeneous
structures of the final profiles, and creditably describe the related eccentricity distributions P(εn) (n = 2, 3, 4).
These results indicate that a deep learning technique can capture the main features of the nonlinear evolution
of hydrodynamics, showing its potential to largely accelerate the event-by-event simulations of relativistic
hydrodynamics.
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I. INTRODUCTION

In recent years deep learning [1–3] has achieved great
success in both daily life and in sciences. In particular,
deep learning methods have been implemented in various
research areas in physics, including the search for gravi-
tational lenses [4,5], identifying and classifying the phases
of the Ising model [6–9], solving the quantum many-body
problem [10,11], etc. In high-energy physics, it has been
applied to the search for Higgs and exotic particles [12,13],
the classification of jet structures [14–16], etc. In the field
of relativistic heavy-ion collisions, machine learning and
deep neural networks have been employed to attack the
problems of identifying the equation of state (EOS) of hot
QCD matter [17], jet-flavor classification in heavy-ion col-
lisions [18], distinguishing between spinodal and Maxwell
first-order phase transitions [19], detecting nuclear shape de-
formations [20], Bayesian extraction of transport properties
of the hot QCD matter [21–24], the phase diagram of two-
dimensional complex scalar field theory [25], and principal
component analyses of collective flow [26–32].

In this paper, we will apply deep learning to relativistic
hydrodynamics, which is a useful tool to simulate the macro-
scopic evolution of relativistic systems in high-energy nuclear
physics and astrophysics [33]. Relativistic hydrodynamics
solves the transport equations of the energy momentum ten-
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sor and charge currents based on the conservation laws.
In relativistic heavy-ion collisions, it has nicely described
and predicted various flow data of the quark-gluon plasma
(QGP), which played an important role in the discovery of
the strongly coupled QGP and its nearly perfect fluid nature
[21–24,34–46]. However, traditional hydrodynamic simula-
tions are time consuming. For example, the calculation of
various flow harmonics requires ∼1000 event-by-event hy-
drodynamic simulations, which takes ∼500 and ∼10 000 cpu
hours for the typical (2+1)-dimensional (2+1D) and (3+1)-
dimensional (3+1D) simulations, respectively [38–40,47].
Basically, relativistic hydrodynamics translates the initial con-
ditions into final profiles through solving a set of nonlinear
differential equations. In this work, we will explore whether
the deep neural network could capture the main features of
the nonlinear evolution of 2+1D hydrodynamics, and the pos-
sibilities to accelerate the related event-by-event simulations.
Close to this work are Bayesian emulators [24,48], which are
powerful in constraining the equation of states and transport
coefficients, yet are not designed to predict the whole profiles
of the energy density and flow velocity.

It is worthwhile to mention that the interdisciplinary
contributions of this work are twofold: From the physics per-
spective, we speed up hydrodynamic simulations time with
a deep neural network, while still capturing the details for
the final profiles of the expanding QGP. On the other hand,
from the machine learning angle, we highlight the expressive
power of the stacked U-net model, as well as its ability to
approximate the partial differential equation (PDE) in this
particular task of relativistic hydrodynamics.

The paper is organized as follows: In Sec. II, we introduce
the relativistic hydrodynamics and network design. In Sec. III,
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FIG. 1. An illustration of the encoder-decoder network, stacked U-net, which consists of the input convolutional layers and the output
deconvolutional layers and four residual U-net blocks. The right figure shows the U-net structure, and the depth of the hidden layer is written
on the top of them.

we show the results obtained from the network, followed by
discussions and conclusions in Sec. IV.

II. MODELS

A. Relativistic hydrodynamics

In this paper, we focus on relativistic ideal hydrodynamics
with zero viscosity and charge densities, which solves the
transport equations of the energy momentum tensor T μν :

∂μT μν = 0, (1)

where T μν = (e + p)uμuν − pgμν , e is the energy density, p is
the pressure, and uμ is the four-velocity with uμuμ = 1. With
an assumption of longitudinal boost invariance, we solve the
2+1D hydrodynamic equations with an ideal EOS p = e

3 , us-
ing the code VISH2+1 [47,49] [50]. The initial energy density
profiles can be generated by some initial condition models,
such as the Monte Carlo Glauber (MC-Glauber) [51,52],
MC Kharzeev-Levin-Nardi (MC-KLN) [52–54], a multiphase
transport (AMPT) [55–57], and the reduced thickness event-
by-event nuclear topology (TRENTo) [58] with zero initial
transverse flow velocity. We run VISH2+1 with three selected
fixed evolution times τ − τ0 = 2.0, 4.0, and 6.0 fm/c (τ0 =
0.6 fm/c) to obtain the energy momentum tensor T ττ (τ, x, y),
T τx(τ, x, y), and T τy(τ, x, y) profiles at these times. For
numerical accuracy, the time step and grid sizes of the sim-
ulations are set to dτ = 0.04 fm/c and dx = dy = 0.1 fm,
within a fixed transverse area of 13 fm × 13 fm that have
been used to describe the typical QGP expansion in relativistic
heavy-ion collisions.

B. Network design

For deep learning, the initial and final energy momen-
tum tensor T ττ , T τx, T τy profiles from hydrodynamics are
treated as initial and final image sets with 261 × 261 pixels. In
practice, we first run the event-by-event hydrodynamic simu-
lations to obtain 10 000 initial and final image sets, then use
them to train the deep neural network, which aims at achieving
nice predictions of the final energy density and flow velocity
profiles for other input initial conditions.

The related network we adopted in this work is the stacked
U-net (sU-net) [59], which is a variation of the traditional
encoder-decoder network that could enhance gradient flow
in the deeper part of the network during back propagation.
Figure 1 presents an intuitional view of the network structure.
It consists of four serially connected U-net blocks with resid-
ual connections between them. Each U-net block has three
convolution layers and three deconvolution layers. In each
U-net block, the outputs of the first two convolution layers are
also fed into the last two deconvolution layers respectively by
concatenating the feature maps along the channel dimension.
The activation function for all layers except for the output
one is Leaky ReLU f (x) = max {x, 0.03x}, while that for the
output layer is softplus f (x) = ln (1 + ex ) for T ττ mapping
and f (x) = x for T τx and T τy mapping. To make the network
focus more on local patterns, we set the kernel size of all con-
volution and deconvolution layers to 3 × 3. The loss function
of the network is normalized mean absolute error (MAE) loss
Loss = |y1−y0|

|y0| , where y1 is the output of the network and y0

is the ground truth. We use the standard minibatch stochastic
gradient descent algorithm for optimization. The batch size
for training is 16 and the learning rate exponentially decays
from 10−3 to 10−5. Each weight is randomly initialized from
the uniform distribution on [−0.001, 0.001] and each bias
is set to zero. Our code is built with TENSORFLOW and the
training process runs for about 1 day on a machine with a
single NVIDIA Tesla P40 graphics processing unit (GPU),
using 10 000 “initial” and “final” profiles from VISH2+1 hy-
drodynamic simulations.

We have noticed that, although one trained sU-net can
make nice predictions for a shorter hydrodynamic evolution, it
fails to accurately predict the final profiles of longer evolution
times (τ − τ0 > 4.0 fm/c) from the initial profiles at τ0. Con-
sidering that the evolving QGP system is highly nonlinear and
tends to smear out its initial structures during a longer evolu-
tion, we divide the whole evolution time τ − τ0 into n parts
with an equal time interval �τ : τ − τn−1 · · · τ2 − τ1, τ1 − τ0.
For each evolution part, we train an individual sU-net using
the corresponding initial and final profiles from hydrodynam-
ics. To predict the final profiles at τ from initial profiles at
τ0, we first use the trained sU-net-1 to predict the profiles at
time τ1 and then use them as the initial conditions for sU-net-2
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FIG. 2. Energy density and flow velocity profiles at τ − τ0 = 2.0, 4.0, and 6.0 fm/c, calculated from VISH2+1 and predicted by the network
for six test cases with initial profiles generated from MC-Glauber, MC-KLN, AMPT, and TRENTo.

to predict the profiles at time τ2 and so on. In this way, the
combined sU-net series (i = 1 . . . n) mimic the hydrodynamic
evolution with a much larger time step �τ that cannot be
managed by a traditional hydrodynamic algorithm (in more
detail, for the following evolution with τ − τ0 = 6.0 fm/c, we
set n = 3 with �τ = 2.0 fm/c). Note that sU-net-1, sU-net-2,
and sU-net-3 are not identical since the initial and final pro-
files are generated by VISH2+1, which implements the 2+1D
hydrodynamic equations explicitly depended on τ [49,60].

III. RESULTS

As explained in the above text, we first use 10 000 initial
and final image sets from VISH2+1 with MC-Glauber initial
conditions to train the combined stacked U-net, and then use
the trained network to predict the final profiles from the initial
profiles generated from MC-Glauber, MC-KLN, AMPT, and
TRENTo as tests. Figure 2 presents a comparison between the
results from VISH2+1 hydrodynamic evolution and the pre-
dictions from the network at τ − τ0 = 2.0, 4.0, and 6.0 fm/c
for six selected test cases. It shows that a well-designed and
trained network could nicely predict the final states, which
captures the structures of the contour plots for both the fi-

nal energy density and flow velocity. It is impressive that,
although the network is trained with the initial and final im-
age sets associated with the MC-Glauber initial conditions, it
could still creditably predict the final profiles of other initial
conditions with different fluctuation patterns, as shown in
Figs. 2(b), 2(d) and 2(f).

To further evaluate the predictive power of the network, we
further calculate the eccentricity coefficients

εn =
∫

rdrdφ rne(r, φ)einφ

∫
rdrdφ rne(r, φ)

(n = 2, 3, 4) (2)

for the initial and final energy density e(r, φ) profiles, which
are quantities commonly used to evaluate the deformation and
inhomogeneity of the QGP fireball in relativistic heavy-ion
collisions [38–40,47]. These values of εn (n = 2, 3, 4) for
these six selected test cases are written in Figs. 2(a)–2(f).
From Fig. 2 and the calculated values of εn (n = 2, 3, 4),
we have also noticed that differences between the hydro-
dynamic results and the network predictions increase for a
longer evolution time since the combined sU-net series tend
to accumulate errors with more sU-net added.
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FIG. 3. Eccentricity distribution P(εn) (n = 2, 3, 4), at τ − τ0 = 2.0, 4.0, and 6.0 fm/c, calculated from VISH2+1 and predicted by the
network for 10 000 tested initial profiles generated from MC-Glauber, MC-KLN, AMPT, and TRENTo.

Figure 3 presents the eccentricity distributions P(εn) for
the energy density profiles at evolutions times τ − τ0 = 2.0,
4.0, and 6.0 fm/c, calculated from VISH2+1 and predicted
from the network for 10 000 tested initial profiles generated
from MC-Glauber, MC-KLN, AMPT, and TRENTo. For all
these tested cases, the final eccentricity distributions P(εn)
(n = 2, 3, 4) from the network almost overlap with the ones
from VISH2+1, which also obviously deviate from the initial
eccentricity distributions P0(εn). In Fig. 4, scatter plots show
event-by-event comparisons between true eccentricities of the
“final” profiles and predicted ones, and histograms of the
errors are plotted in the inset figure.

We also find that, with the well-trained network, the fi-
nal state profiles can be speedily generated from the initial
profiles. Compared with the 10–20 min calculation time with
a traditional CPU for a single-event hydrodynamic evolution,
the network takes several seconds to directly generate the final
profile for different types of initial profiles with the P40 GPU,
which shows the potential to accelerate the realistic event-by-
event hydrodynamic simulations in the near future. However,
given the fact that a 50–100× speedup of hydrodynamic sim-
ulations can be already achieved by switching from CPU to
GPU [61,62], we believe there is still much room to improve
our proof-of-concept first step in further studies.

IV. DISCUSSION AND CONCLUSION

Using 10 000 initial and final energy momentum tensor
profiles from VISH2+1 hydrodynamics with MC-Glauber ini-
tial conditions, we successfully trained a deep neural network
based on stacked U-net, and use it to predict the final pro-
files for different initial conditions, including MC-Glauber,
MC-KLN, AMPT, and TRENTo. A comparison with the
VISH2+1 results showed that the network predictions could
nicely capture the magnitude and inhomogeneous structures
of the final profiles, which also creditably describe the related
eccentricity distributions P(εn) (n = 2, 3, 4). These results in-

dicate that deep learning could capture the main feature of the
nonlinear evolution of hydrodynamics, which also shows the
potential of largely accelerating the realistic event-by-event
hydrodynamic simulations in relativistic heavy-ion collisions.

In order to outline the highlights, as well as point out
the limitations of this work, we further explain the following
characteristics that mark good works and provide guidelines
for future studies.

Universality. Deep learning might not learn the realistic
physics underlying the data set. By contrast, sometimes its
predictions are based on nonphysical features in the data set,
as has been pointed out in Ref. [63]. In this work, we exclude
such an undesirable possibility by training our deep model
on MC-Glauber initial conditions and test on results for other
initial models including MC-KLN, AMPT, and TRENTo.

Causality. Due to the speed of light as an upper bound
for all physical speeds, our neural network should satisfy
such causal relations, otherwise it will produce nonphysical
results. The joint use of convolutional layers and the stacked
structure elegantly handles this issue by allowing one pixel
to influence its neighborhoods only. Such causality in con-
volutional layers is known as the receptive field [64] in the
machine learning literature. More concretely, supposing our
convolutional neural network (CNN) has L layers with the ith
layer using convolutional filters of size (2ni + 1) × (2ni + 1),
then it is reasonable to match the size of the receptive field
Rr = (

∑
i ni )�x (�x is the grid length) with the size of the

light cone Rl = c(τ − τ0). If Rr < Rl , the expressivity of the
neural network is bottlenecked. If Rr < Rl , the neural network
is unnecessarily expressive, which might lead to a longer
training time.

Utility. One limitation of this work is the fixed time
output. Future works will consider more flexible architec-
tures (e.g., a physics-informed neural network in Ref. [65])
to obtain the energy-momentum tensor at the freeze-out
surface with a more realistic implementation in heavy-ion
collisions.
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FIG. 4. Event-by-event comparisons of eccentricities εn (n = 2, 3, 4) at τ − τ0 = 6.0 fm/c, calculated from VISH2+1 and predicted by
the network for 10 000 tested initial profiles generated from MC-Glauber, AMPT, MC-KLN, and TRENTo (with two sets of parameters
distinguished by *).

Interpretability. Another minor limitation of the stacked
U-net model lies in the lack of interpretability. In future works,
we will investigate the possibilities of encoding physics ex-
plicitly in the network design, as in Ref. [65]. Efforts on
gaining interpretability of deep learning in heavy-ion colli-
sions include Refs. [17,20].

In summary, our current investigations mainly focus on
mimicking (2+1)-dimensional hydrodynamic evolution with
a fixed evolution time, using the deep learning technique. On
the one hand, for a more realistic implementation to rela-
tivistic heavy-ion collisions, it is worthwhile to explore the
possibilities of mapping the initial profiles to the final profiles
on the freeze-out surface with a fixed energy density as well

as extending the related investigations to (3+1)-dimensional
simulations. On the other hand, it is also worthwhile to
develop computational tools that are more transparent for
scientific evaluations, where a possible way is to encode the
physical features (the functional form of the PDE, boundary
conditions, etc.) into the network architecture.
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