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Controlling quantum systems with modulated electron beams
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Coherent control of quantum transitions—indispensable in quantum technology—generally relies on the
interaction of quantum systems with electromagnetic radiation. Here, we theoretically demonstrate that the
nonradiative electromagnetic near field of a temporally modulated free-space electron beam can be utilized
for coherent control of quantum systems. We show that such manipulation can be performed with only classical
control over the electron beam itself and is readily realizable with current technology. This approach may provide
a pathway toward spectrally selective quantum control with nanoscale spatial resolution, harnessing the small de
Broglie wavelength of electrons.
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I. INTRODUCTION

Coherent manipulation of quantum systems with precisely
controlled electromagnetic fields, such as laser or microwave
pulses, is a ubiquitous tool of quantum science from the
search for new physics [1,2] to quantum information pro-
cessing [3,4]. Here, we demonstrate that the electromagnetic
near field of a temporally modulated electron beam provides
an alternative route to coherent manipulation of quantum
systems. Electromagnetically addressable transitions can be
driven by the oscillating electromagnetic field surrounding
the modulated beam. Due to the small de Broglie wave-
length of the electron beam [5], this mechanism of interaction
potentially allows for addressing individual quantum sys-
tems with nanoscale resolution, similarly to the incoherent
electron-based spectroscopy methods relying on the same
electromagnetic interaction [6–10].

The interaction of a temporally modulated electron beam
with a quantum system is reminiscent of an rf amplifier type
known as the klystron [11], wherein the electron beam’s
velocity is modulated by a periodic seed field, resulting in
a current modulation downstream of the interaction region.
The kinetic energy of the modulated electron beam is then
converted into electromagnetic excitation of an rf cavity
[Fig. 1(a)]. Here, we propose a quantum counterpart of the
klystron, where the kinetic energy of a modulated electron
beam is converted into the coherent excitation of a quantum
system or an ensemble of such systems, as shown in Fig. 1(b).
We restrict our considerations to magnetic dipole transitions.

*dennis.raetzel@physik.hu-berlin.de
†philipp.haslinger@tuwien.ac.at

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Electric dipole transitions and higher multipole transitions can
be treated in a similar manner.

While it has been suggested [12,13] that quantum systems
can coherently interact with a stream of electrons with a
temporally shaped wave function [14–17], we theoretically

FIG. 1. (a) Schematic view of the conventional klystron: an elec-
tron beam is velocity modulated by the electric field of a microwave
(MW) cavity, the buncher cavity at angular frequency ω0. Through
the drift space, the velocity modulation causes a current modulation,
which induces amplified microwaves at the catcher cavity. The am-
plified MW radiation is used, for example, to drive atomic transitions
coherently and with high fidelity. (b) Schematic view of the quantum
klystron: the electromagnetic near field of the current-modulated
electron beam at the position of the catcher cavity is used directly to
drive transitions of quantum systems without the detour of generating
electromagnetic radiation. w is the electron beam waist, λ0 is the
modulation wavelength, which is much larger than the single electron
wave function width �z, and d is the distance from the quantum
system to the beam center.
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demonstrate that electron-mediated manipulation of quantum
systems can be achieved when the longitudinal extent of the
individual electron wave packets is much shorter than the
wavelength of modulation. Such classical modulation of the
electron beam current density is readily achievable in the
microwave (MW) frequency range, as it is an integral part of
widely used electronic technologies from microwave heaters
to radars.

II. BACKACTION AND THE SEMICLASSICAL REGIME

A necessary condition for coherent driving of a quantum
system is that no information about its state is transferred
to the environment. In particular, electron scattering due to
quantum backaction causes entanglement between the elec-
tron and the quantum system, which disrupts coherent driving.
Given the overlap � between an incoming electron state and
its scattered state, the probability to find the electron scat-
tered into a state that is orthogonal to the incoming state is
(1 − |�|2)Pe↔g, where Pe↔g (excited state e and ground state
g, see Fig. 2) is the probability of the transition of the quantum
system induced by a single electron. The transition rate for
coherent transitions, the Rabi frequency, is ∼|�|√Pe↔gIω0/e,
where Iω0 is the resonant Fourier component of the modulated
beam current (see Appendix A 6) and e is the elementary
charge. Thus, even a small overlap is sufficient to preserve
coherent driving, in principle, as long as |�| � √

Pe↔g, while
an overlap approaching unity is desirable to maximize the
driving rate.

We calculate the overlap integral using a QED model of
the interaction of a single electron with a two-level quantum
system via its magnetic transition dipole moment (relevant
to our two examples), see Appendix A. We consider a sit-
uation where the quantum system’s dimensions are much
smaller than both its distance to the electrons in the beam
and the modulation wave length λ0. We describe the electron
field as a Dirac field and consider an initial spin-unpolarized
Gaussian matter-wave packet of transverse width �r⊥ with
a propagation axis offset by |r0,⊥| (impact parameter). We
numerically evaluate the spin-averaged overlap between an
incoming electron state and its scattered state given that a
transition occurred.

The results of the simulation are shown in Fig. 2. For
instance, for distances |r0,⊥| � 6�r⊥, the overlap is 98% or
larger. In the examples below, we have |r0,⊥| � 6�r⊥, and
therefore the overlap factor is close to unity and quantum
backaction on the electrons can be neglected. We note that the
quantum system’s transition energy transferred to the electron
leads to a momentum shift δp ∼ h̄ω0/v = 2π h̄/λ0, where
h̄ is the reduced Planck’s constant, v is the velocity of the
electrons, and ω0 is the angular transition frequency. For the
scattered state overlap to be close to one, this momentum shift
must be negligible in comparison to the electron wave packet’s
longitudinal momentum spread �pz = h̄/(2�z0). We assume
an initial longitudinal wave packet width �z0 of the order of
100 nm (which is about the size of the coherence length of
typical sources [5,18]) and consider MW transition frequen-
cies corresponding to modulation wavelengths (see Fig. 1) of
λ0 � 1 mm. Accordingly, δp � �pz, which is consistent with
the large overlap in Fig. 2.
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FIG. 2. Transition induced by a single electron. Left axis: The
numerically calculated transition probability (open blue diamonds)
and the semiclassical result (blue line) shown in Appendix A 1, both
as functions of the impact parameter. The numerical result agrees
with the analytical result by 1% or less for distances larger than
10�r⊥. Right axis: Overlap of the initial and scattered electron
states as a function of the distance between the electron and the
quantum system (red dots). For distances � 6�r⊥, the overlap can
be considered to be one for the purpose of this paper. The drop in
overlap between these states corresponds to the regime where the
wave function of the passing electron significantly overlaps with
that of the quantum system at the point of closest approach, where
we can no longer apply the picture of driving with the near field
of an electron beam. The plots were obtained with �r⊥ = 5 nm,
�z0 = 100 nm, ω0/2π = 2.87 GHz and an initial kinetic energy of
the electron of 2 keV (details about the model can be found in
Appendix A).

The QED transition probability Pe↔g is compared with the
transition probability induced by the magnetic field of a classi-
cal electron (see Appendix A) in Fig. 2. The two probabilities
converge for distances �4�r⊥. In the following, we consider
parameter regimes where this condition is satisfied, which
allows us to use the classical description of the electrons’
magnetic field. At the same time, electrons from conventional
sources can be assumed to be uncorrelated [19], which allows
us to treat the beam as an ensemble of classical Poisson
distributed pointlike charged particles.

III. EXAMPLE APPLICATIONS

To illustrate the practical feasibility of quantum klystrons,
we consider two example applications of this approach.

In the following, we consider an ensemble of electrons
with a transverse Gaussian distribution. The electrons are
longitudinally velocity modulated which, through propaga-
tion, leads to bunching further along the beam. This situation
corresponds, for example, to that created in a klystron (see
Fig. 1). The base frequency of the current modulation is tuned
on resonance with the transition of the quantum system.

In addition to negligible backaction, coherent driving re-
quires dephasing due to noise in the magnetic field of the beam
to be limited. The spectral linewidth δω of klystrons is mainly
limited by technical noise [20]; as a conservative estimate, we
consider δω0/ω0 = 10−7.

A. Driving hyperfine transitions of alkali atoms

As the first example, we consider driving ground-state hy-
perfine transitions in alkali atoms. Alkali atoms, for example
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FIG. 3. (a) Numerical simulation of the magnetic field strength By of a current-modulated electron beam with an initial Poissonian
distribution of electrons in time and a Gaussian distribution of electrons in the transverse dimensions as could be created in a klystron (see
Appendix C) with bunching parameter rb ≈ 0.5. The waist radius is w = 50 μm and the distance to the center of the beam is d = 250 μm.
The plots show the cases of currents of 200 nA (blue plot and right axis, corresponding to about ∼5 000 electrons per period) and 100 μA
(black plot purple and left axis, corresponding to ∼2 500 000 electrons per period). The electrons possess a kinetic energy of 18 keV and the
base frequency of the modulated electron beam is 254 MHz. It can be seen that the relative strength of shot noise is decreased significantly for
the 100 μA beam in comparison to the weaker 200 nA beam. (b) Fourier limited linewidth: Discrete Fourier transform (DFT) of the magnetic
field strength By with the same parameters as in (a); 200 nA (blue plot) and 100 μA (black plot) evaluated for 103 periods. It can be seen that
a decrease in current leads to a decrease in the signal-to-noise ratio but does not affect the linewidth of the modulation.

Li, K, and Rb, are especially well suited for a demonstration
of the quantum klystron. This is due to the hydrogenlike level
structure with two stable and easily detectable ground-state
hyperfine levels separated by a transition in the MW range.
We consider the transition F =1, mF =0 ↔ F =2, mF =0 of
optically trapped 41K atoms as a specific example, where F
is the total angular momentum and mF denotes the Zeeman
sublevels. This transition has a frequency of ∼254 MHz and is
therefore easily accessible with low-frequency MW electron-
ics. 41K atoms can be optically cooled and trapped, and could
be controlled on the sub-μm scale using similar techniques as
used, for example, for 40K in Ref. [21] or for 87Rb in Ref. [22].

The results of a numerical simulation of the electron
beam’s magnetic field for this example are shown in Fig. 3
(see Appendix D). The effect of shot noise (analyzed in detail
in Appendixes E and F) appears as a homogeneous noise floor
in the Fourier transform and does not modify the linewidth of
coherent oscillations of the magnetic field [see Fig. 3(b)].

We consider an electron beam waist of w = 50 μm, ki-
netic energy of 18 keV, and an average current I0 = 100 μA.
We consider a bunching parameter rb = 0.5 experimentally
attainable at a drift distance of ∼1m such that �z ∼ 7 μm �
λ0 ∼ 0.3 m in the interaction region. This value of rb corre-
sponds to a resonant current modulation at the base frequency
ω0/2π of amplitude Iω0 = 2I0J1(rb) ∼ 50 μA (where J1 is the
Bessel function of the first kind), and we assume d = 250 μm
between the atom and the beam center. In the case under
consideration, δω/ω0 = 10−7 leads to a beam modulation
spectral line width of about 25 Hz. The change of the internal
state of the atom will be accompanied by a recoil equivalent
in absolute value to the momentum transfer to the electron.
We obtain a conservative upper bound for the Lamb Dicke
parameter of �4 × 10−4 for a trap frequency of ∼300 kHz (as
realized, e.g., in Ref. [21]) which implies that the recoil is
negligible (see Appendix A 7).

In this example, the fluctuations (e.g., shot noise, modula-
tion phase noise) of the modulated current are small relative
to the mean (see Fig. 3). The effect of the mean field can be
calculated using the rotating wave approximation. In this case,
the evolution equations for the quantum system become the

optical Bloch equations with constant coefficient matrix (see
Appendix H) and Rabi frequency � ≈ gSμBBy,ω0/2h̄, where
gS is the electron’s gyromagnetic ratio, μB is the Bohr mag-
neton, and By,ω0 is the amplitude of the Fourier component of
the electron beam’s magnetic field at the transition frequency
(see Ref. [23] and Appendix I). Since the distance between
the electron beam and the quantum system is larger than 2w,
the magnetic field of the electron beam at the position of the
quantum system is approximately that of an infinitesimally
thin beam, which implies � ≈ reIω0/(d e) = √Pe↔gIω0/e (see
Appendix I), where re = μ0e2/(4πme) is the classical elec-
tron radius, μ0 is the vacuum permeability and me is the
electron mass.

The finite spectral linewidth δω of the driving electromag-
netic field, represented by phase fluctuations, results in an
increase of the decoherence rate by b = δω/2 (see Appendix
H). Furthermore, the shot noise of the electron beam is a
source of amplitude noise of the driving field, which leads
to a dephasing rate Pe↔gI0/e, where I0 is the average current.
However, this rate is much smaller than the Rabi frequency
� provided that d � 2reI0/Iω0 (see Appendix K). Since re ∼
10−15 m, this condition is always fulfilled in practice.

A plot of the hyperfine state response due to a resonantly
modulated electron beam based on numerical evaluation of
the optical Bloch equations (see Appendix L) can be found in
Fig. 4(a). Several Rabi oscillations of the hyperfine states are
clearly visible, showing that coherent driving with an electron
beam is indeed possible. The largest contributor to the decay
of coherence is the beam modulation spectral linewidth; for
an analysis of other effects such as incoherent scattering (both
elastic and due to other transitions) and beam electron velocity
spread, see the Appendix.

B. Addressing NV− centers in nanodiamond

In the second example, we consider negatively charged ni-
trogen vacancy (NV−) centers in nanodiamonds, which could
be embedded, for example, in a freestanding nanostructure
[24]. We focus on the transition between the 3A2 ground-state
magnetic sublevels ms = 0 and ms = 1, which are split by
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FIG. 4. (a) The time evolution of the inversion ρee − ρgg, where
ρee and ρgg are the diagonal components of the quantum system’s
density matrix (g for ground state, e for excited state), for the
transition F =1, mF =0 ↔ F =2, mF =0 for 41K at a distance d =
250 μm from the center of an electron beam of waist w=50 μm, cur-
rent 100 μA, bunching parameter rb =0.5, Ekin = 18 keV, FWHM
linewidth of the electron beam modulation δω0/2π = 25 Hz and

1 = 2
2 � δω0. (b) The time evolution of the inversion for the
transition ms =0 ↔ ms =1 in the 3A2 state of an NV− center at
a distance of d =70 nm from a beam of waist w=10 nm, current
50 nA, Ekin = 2 keV (average distance between electrons ∼100 μm)
and bunching parameter rb ≈ 0.5. We set 1/
1 =T1 =6 ms, 1/
2 =
T2 =3 ms and the FWHM linewidth of the electron beam modulation
δω0/2π = 300 Hz.

∼2.87 GHz. The ms = −1 sublevel is well separated from the
ms = 1 sublevel by at least ∼4 MHz such that the transition
ms =0 ↔ ms =1 can be individually addressed and easily op-
tically detected [25]. This transition exhibits a coherence time
T2 of up to 600 ms [26].

To achieve a sufficiently narrowly focused beam, the elec-
tron source could, for example, be a field emission electron
gun with a slightly modulated acceleration voltage. We con-
sider a modulated electron beam current generating a beam
waist of w = 10 nm at 2 keV, a beam current of 50 nA (∼100
electrons per modulation period) directed at a distance of
d = 70 nm next to the NV− center. These electron beam
parameters can be achieved in a standard scanning electron
microscope. We assume a bunching parameter rb = 0.5 that
would be experimentally attainable at a drift distance of
∼3 cm such that �z ∼ 400 nm � λ0 ∼ 9 mm. In this situa-
tion, the magnetic near field of the electron beam consists of
distinct spikes due to the well-separated electrons. Therefore,
we cannot use the mean magnetic field in the optical Bloch
equations. Instead, we simulate the effect of the electron beam

on the state of the quantum system on the single electron
level. Electrons are randomly generated, their kinetic energy
is modulated, and their propagation over the drift distance l is
calculated to obtain the modulated current. For consecutively
passing groups of electrons, the optical Bloch equations with
time-dependent coefficients are solved iteratively. Details can
be found in Appendix M.

A simulation of the expected system evolution is presented
in Fig. 4(b). Several Rabi oscillations are clearly visible for
this example, damped due to the combined effect of the spec-
tral line width of the beam modulation (as a conservative
upper bound, we chose δω0 ∼ 10−7ω0 as before leading to
a damping rate δω0/2 ∼ 1 kHz; see Appendix M) and the
intrinsic decay rates 
2 = 1/T2 ∼ 0.3 kHz and 
1 = 1/T1 ∼
0.2 kHz. Other effects can largely be ignored; the various con-
tributions of these are again discussed in Appendix M. Even
though this case is outside of the regime of small fluctuations
of the magnetic field, we do not find any notable additional
decay due to electron shot noise.

IV. POTENTIAL PATHWAY TO NANO-SCALE
RESOLUTION

The spatial resolution of coherent control utilizing elec-
tromagnetic radiation is generally limited by diffraction to
centimeters for MWs, and to hundreds of nanometers for
optical frequencies. The need to selectively address individ-
ual quantum systems beyond the diffraction limit has been
partially met by strategies such as utilizing subwavelength
antennas [27,28], tunable resonance frequencies [29,30], or
coupling strengths [31], and utilizing multiphoton transitions
at a shorter wavelength [32]. The quantum klystron may
provide an alternative pathway toward spectrally selective
quantum control with nanoscale spatial resolution as we will
argue in the following.

While a temporally modulated beam produces an electro-
magnetic field that scales as d−1 with distance, a stronger
localization of the field in the vicinity of the beam can be
achieved by employing oscillations of the beam position to
generate a driving signal. Then the oscillating near field of a
moving beam at the first harmonic and the second harmonic
(twice the modulation frequency) scale effectively as d−2 and
d−3, respectively.

Based on this faster decrease of the field, for example, at
a distance of d = 15 nm to a one-dimensional array of NV
centers, adjacent NV centers with a distance of ∼30 nm could
be individually controlled, in principle [the spatial depen-
dence of the Rabi frequency shows peaks of width ∼40 nm
(FWHM), plots can be found in Appendix M]. A full Rabi
flop may be performed on an NV center without incurring
significant decoherence by employing low-energetic electron
beams (e.g., 200 eV, see Appendix M).

Based on the picometer beam widths achievable in scan-
ning electron microscopy [33], the quantum klystron scheme
allows for the creation of spatially structured oscillating elec-
tromagnetic near fields in two dimensions on the atomic
scale (by choosing an electron impact parameter d of sev-
eral Ångström) which, in principle, could be employed for
coherent control of systems that are sufficiently robust against
electric field noise such as nuclear spins [29].
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V. CONCLUSIONS

In summary, our results show that the electromagnetic near
field of a classically modulated electron beam can be used to
coherently drive quantum systems and potentially provide a
pathway to nanoscale resolution.

The quantum klystron could be combined with a scanning
electron microscope [34] to perform coherent spectroscopic
investigations by directing a modulated electron beam next to
a sample to selectively drive a quantum transition of interest.
This can be realized in a setup similar to aloof electron energy
loss spectroscopy (EELS) [7,35], where the electron beam is
directed at a distance of tens of nanometer from the sample to
reduce radiation damage.

In the MW frequency range, the excitation levels at ev-
ery beam position could be readout by an optical channel
[36] or MW sensors [29]. This is particularly interesting, as
the MW range is inaccessible to the incoherent conventional
methods, where the spectral resolution is determined by the
energy spread of a monochromated electron beam [7,8]. For
electric dipole transitions in the far infrared frequency range,
the readout of the sample’s excitation could also be performed
with an additional monochromated electron beam applying
the aloof EELS method. The coherent control provided by the
quantum klystron would potentially enable increased spectral
resolution by employing the method of Ramsey spectroscopy
[37], which is widely used in spectroscopic applications from
NMR [29] to timekeeping [38].

An appealing feature of the general approach to electron
spectroscopy described above is that the coherence-preserving
scattering investigated in this paper leads to a coherent addi-
tion of excitation levels from individual electrons [39]. This
results in a quadratic dependence of the excitation level on the
number of electrons close to ρee − ρgg = ±1 (demonstrated,
e.g., in Fig. 4 by the quadratic decrease/increase of the tran-
sition probability with time). It also leads to an increase of
the transition rate per electron by orders of magnitude in com-
parison to incoherent scattering [40]. This scheme could be,
for example, utilized to investigate specimens with reduced
electron dose.

Finally, we note that the electron-based control of quantum
systems can be extended to electric and magnetic multipole
transitions. Such transitions are driven by the corresponding
spatial derivatives of the electric and magnetic fields. Due
to the strong dependence on the beam’s near field on d , at
nanometer-scale distances from the beam, the multipole tran-
sition rates are enhanced by orders of magnitude compared to
addressing the same transitions by free-space electromagnetic
fields. This property can be used to study, e.g., quadrupole vi-
brational transitions in homonuclear diatomic molecules [41]
or to directly address the quadrupole transitions serving as the
basis of optical clocks [38].
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APPENDIX A: TRANSITION PROBABILITIES,
BACKACTION, AND DECOHERENCE

If the change of state of the electron due to backaction is in
principle detectable, decoherence occurs in the reduced state
of the quantum system. Here, we analyze this effect.

1. Transition probability due to a classical electron

The transition probability of the excited quantum system
due to the magnetic field of a passing pointlike classical
electron can be calculated with the interaction Hamiltonian
Hint = −μ̂ · �B. We obtain the out state to first order:

|out〉qs ≈
(
I + i

h̄

∫ ∞

−∞
dt μ̂ · �B

)
|e〉. (A1)

For an electron moving with a velocity v parallel to the z axis
with a displacement of �r⊥ = (x, y), whose trajectory pierces
the z = 0 plane at time t j , the magnetic field is (Eq. 11.152 of
Ref. [43], translated and rotated)

�Bj (0, t ) =
⎡
⎣ y

−x
0

⎤
⎦ μ0eγ v

4π (r2
⊥ + γ 2v2(t − t j )2)3/2

, (A2)

where r⊥ = |�r⊥| is the minimal distance between the single
electron and the quantum system (impact parameter) and
γ = (1 − v2/c2)−1/2 is the Lorentz factor. For the transition
probability, we find

Pe→g = 1

h̄2

∣∣∣∣〈g|
∫ ∞

−∞
dt μ̂ · �B|e〉

∣∣∣∣
2

=
(

μ0e
∣∣yμx

ge − xμy
ge

∣∣ω
2π h̄ r⊥γ v

K1

(
ω r⊥
γ v

))2

, (A3)

where μx
ge and μ

y
ge are the components of the transition dipole

moment. For the plot in Fig. 2 of the main text, we consider
x = 0, y = r⊥, and the magnetic dipole moment oriented in
the x direction. The same results are obtained for the inverse
process g → e, implying that Pg→e = Pe→g for the purposes of
this paper.

2. QED model for backaction

We consider the transition from the excited to the ground
state first and obtain the opposite case by the replacement
ω0 → −ω0. We assume that the quantum system’s dimen-
sions are much smaller than its distance to the center of
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the electron beam d and the modulation wave length λ0 =
2πv/ω0, where v is the average velocity of the electrons and
ω0 is the radian frequency of both the modulation and the
transition of the quantum system. Thus, we can consider the
quantum system as pointlike. Furthermore, we consider an
initial Gaussian matter-wave packet of longitudinal size much
smaller than λ0, such that the beam modulation is not on the
level of the single electron wave function but corresponds to
correlations between electrons. The transversal width of the
Gaussian matter-wave packet is bound from above by the focal
width of the beam as �r⊥ < w/2.

We describe the electron field as a Dirac field normalized
with the charge

Q(ψ,ψ ′) =
∫

d3r ψ†ψ ′ =: 〈ψ,ψ ′〉, (A4)

such that Q(ψp,s, ψp′,s′ ) = (2π h̄)3δ(3)( �p − �p ′)δss′ . Further-
more, we define the momentum eigenstates as

ψp,s(�r) =
⎛
⎝

√
h̄ωp+mc2

2h̄ωp
χs

�σ · �pc√
2h̄ωp(h̄ωp+mc2 )

χs

⎞
⎠ei �p·�r/h̄, (A5)

where ωp = c
√

| �p|2 + m2c2/h̄, �σ = (σ1, σ2, σ3) is the vector
of Pauli matrices and χs are the two-spinors χ+ = (1, 0) and
χ− = (0, 1). We restrict our considerations to the particle
solutions of positive energy. In the following, we will also
use the momentum eigenstates in the bra-ket notation | �p, s〉
that are defined such that ψp,s(�r) = 〈�r| �p, s〉 and 〈 �p, s| �p′, s′〉 =
(2π h̄)3δ(3)( �p − �p ′)δss′ .

We assume that the electromagnetic field stays in the vac-
uum throughout the process (no spontaneous emission) and
that the quantum system is initially in the excited state |e〉. For
the electrons, we consider an initial state that is unpolarized,

ρel,in =
∫

d3 p

(2π h̄)3

d3 p′

(2π h̄)3
φin( �p)∗φin( �p ′)

1

2

∑
s

| �p, s〉〈 �p ′, s|,
(A6)

where φin( �p) is the polarization-independent single electron
wave function in the momentum representation. For explicit
calculations, we will use the z axis as the spin quantization
direction later. However, we note that the initial state is inde-
pendent of the choice of spin basis.

We consider an initial wave function φin( �p) in the interac-
tion region at �r = 0 that factorizes into a transversal Gaussian
wave packet with width �p⊥ and a longitudinal Gaussian
wave packet with width �pz, that is,

φin( �p) = φin,z(pz )φin,⊥( �p⊥)e−iωp(ltot/v−t0 ), (A7)

where ltot/v is the time for the propagation of the wave
packet from the source and we decomposed �p = �pz + �p⊥,
where �pz and �p⊥ are parallel and perpendicular to the z axis,
respectively. For the longitudinal direction, we consider the
Gaussian wave packet

φin,z(pz ) =
(

(2π )1/2h̄

�pz

)1/2

e
− (pz−pz,0 )2

4�p2
z eipzltot/h̄, (A8)

where the phase eipzltot/h̄ incorporates the propagation from the
source at z = −ltot to the interaction region. We assume that

the initial transversal state of the electron in real space is a
Gaussian wave packet displaced by �r0,⊥, that is,

ψe
in,⊥(�r⊥, t ) = ψ̃e

in,⊥(�r⊥ − �r0,⊥, t ), (A9)

and ψ̃e
in,⊥ reaches its minimal extension at t0 at the position

of the quantum system at z = 0. In momentum space, the
displacement leads to a factor e−i �p⊥·�r0,⊥/h̄. The transversal
momentum spread is small enough to consider the transversal
dispersion nonrelativistically. In particular, the energy can be
approximated as

ωp = c

h̄

√
| �p|2 + m2c2 ≈ c

h̄

√
p2

z + m2c2 + c| �p⊥|2
2h̄
√

p2
z + m2c2

,

(A10)

which implies the following form of the transversal wave
function in momentum space:

φin,⊥( �p⊥) =
√

2π h̄

�p⊥
e−i �p⊥·�r0,⊥/h̄e

− |�p⊥|2
4�p2⊥ e

i c| �p⊥|2

2h̄
√

p2
z +m2c2

ltot
v

, (A11)

where the last factor has been added to cancel the transversal
dispersion terms induced by the time evolution at t = t0. The
full in-state can be written as

ρin = 1

2

∑
s

(|e〉 ⊗ |ins〉el )(〈e| ⊗ el〈ins|), (A12)

where the state vectors |ins〉el are defined as

|ins〉el =
∫

d3 p

(2π h̄)3
φin( �p)| �p, s〉. (A13)

To lowest order, after the electron and quantum system
interact, the full state will be

ρout = 1

2

∑
s

|outs〉〈outs|, (A14)

where [44]

|outs〉 = √1 − Pe→g(s)|e〉 ⊗ |ins〉el

+√Pe→g(s) |g〉 ⊗ |scatts〉el. (A15)

Pe→g(s) is the probability for the transition from the excited to
the ground state for a fixed initial electron spin s defined as

Pe→g(s) =
∑

s′

∫
d3 p′

(2π h̄)3

d3 p

(2π h̄)3

d3 p′′

(2π h̄)3
φ∗

in( �p)

×S∗( �p, s; �p ′, s′)φin( �p ′′)S ( �p ′′, s; �p ′, s′), (A16)

where S ( �p, s; �p ′, s′) = 〈g, �p ′, s′, vac|Ŝ(2)|e, �p, s, vac〉 is the
scattering matrix element for the transition from momentum
�p and spin s to �p ′ and s′ in second-order perturbation theory.
Furthermore, we define the normalized scattered state of the
electron

|scatts〉el =
∑

s′

∫
d3 p′

(2π h̄)3
φscatt,s( �p ′, s′)| �p ′, s′〉, (A17)

where

φscatt,s( �p ′, s′) = (Pe→g(s))−1/2
∫

d3 p

(2π h̄)3
φin( �p)S ( �p, s, �p ′, s′).

(A18)
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The driving process can only be coherent if the reduced density matrix of the quantum system (with the partial trace taken over
the electron Hilbert space) is close to that of a pure state. We find

�qs = Trel[ρout] = 1

2

∑
s

∑
s′

∫
d3 p

(2π h̄)3
〈 �p, s′|outs〉〈outs| �p, s′〉 (A19)

and

〈 �p, s′|outs〉 = δss′φin( �p)|e〉 + φscatt,s( �p, s′)|g〉. (A20)

Therefore,

�qs = 1

2

∑
s

(
(1 − Pe→g(s))|e〉〈e| + √

1 − Pe→g(s)
√

Pe→g(s)
∫

d3 p

(2π h̄)3
φin( �p)∗φscatt,s( �p, s) |e〉〈g| + c.c. + Pe→g(s)|g〉〈g|

)

≈
(

1 − 1
2

∑
s Pe→g(s) 1

2

∑
s

√
Pe→g(s)〈ins|scatts〉

1
2

∑
s

√
Pe→g(s)〈ins|scatts〉∗ 1

2

∑
s Pe→g(s)

)
(A21)

to second order in
√

Pe→g(s). We will find later that 2|Pe→g(+1/2) − Pe→g(−1/2)|/|Pe→g(+1/2) + Pe→g(−1/2)| is at most
of the order of 10−9 in the case that we consider here. So, in the following, we assume that Pe→g(+1/2) = Pe→g(−1/2) =
Pe→g. Furthermore, we find that Pe→g = Pg→e. Since

√
Pe→g � Pe→g, the change of the reduced density matrix in Eq. (A21) is

dominated by the off-diagonal terms. Therefore, for coherent driving to be possible, in principle, we need∣∣∣∣∣12
∑

s

〈ins|scatts〉
∣∣∣∣∣� √

Pe→g. (A22)

3. The scattering matrix element

For the S matrix, we have (see Chap. VIII of Ref. [45] or 104 of Ref. [46] for details)

Ŝ = T exp

(
− i

h̄c

∫
d4x ĴμÂμ

)
, (A23)

where T denotes time ordering, Ĵμ contains all of the currents of charged particles, and Âμ is the electromagnetic four-potential
operator. The lowest order interaction term for our process occurs at second order, for which we find

Ŝ(2) = − 1

2(h̄c)2

∫
d4x

∫
d4x′ T (Ĵμ(x)Ĵν (x′))T (Âμ(x)Âν (x′)). (A24)

For the process under consideration, the electromagnetic field stays in the vacuum state and we use

〈vac|T (Âμ(x)Âν (x′))|vac〉 = iDF
μν (x − x′), (A25)

where DF
μν (x − x′) is the Feynman propagator of the electromagnetic field. We are considering a regime where the quantum

system only changes its internal state and the free electrons remain free, that is, we are neglecting any violent effects such as
ionization. Then, the charged current operator can be split into the current operator of the free electron and that of the quantum
system as

Ĵμ(x) = [Ĵel(x)]μ + [Ĵqs(x)]μ, (A26)

and we obtain

S ( �p, s; �p ′, s′) = 〈g, �p ′, s′, vac|Ŝ(2)|e, �p, s, vac〉 = − i

(h̄c)2

∫
d4x d4x′ [Jel

p,s→p′,s′ (x)
]μ

DF
μν (x − x′)

[
Jqs

e→g(x′)
]ν

, (A27)

where Jel
p,s→p′,s′ (x) is the transition current of the free electron and Jqs

e→g(x′) is the transition current of the quantum system. We
consider the Feynman propagator in a specific gauge where only the spatial components do not vanish:

DF
i j (x − x′) = −μ0 h̄3c lim

ε→0+

∫
d4q

(2π h̄)4
ei �q·(�r−�r′ )/h̄e−iq0c(t−t ′ )/h̄ 1

q2
0 − |�q|2 + iε

(
δi j − qiq j

q2
0

)
(A28)

(the real space version of the expressions given in Ref. [47] Eq. (A.7b) and Ref. [45], §76). Therefore, we can restrict our
considerations to the spatial components of the transition currents. We describe the free electron as a charged spin-1/2 field with
the current (using �α = γ 0(γ 1, γ 2, γ 3) and γ μ the Dirac matrices)

�Jel
p,s→p′,s′ = −ec ψ

†
p′,s′ �α ψp,s = − ec2

2h̄
√

ωpωp′
e−i( �p ′− �p)·�r/h̄ei(ωp′ −ωp)t ((κp′,p �p+κp,p′ �p ′)δss′+i(κp′,p �p − κp,p′ �p ′) × χ

†
s′ �σχs), (A29)
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where

κp′,p =
√

h̄ωp′ + mc2

h̄ωp + mc2
= (κp,p′ )−1. (A30)

We remark that the quantization volume is omitted throughout the calculations, so �Jel
p→p′ has the dimensions of a current instead

of a current density.
To describe the schemes proposed in this paper, we restrict our considerations to magnetic dipole transitions of the quantum

system (we also consider the effect of electric dipole transitions in Appendix B). Furthermore, we assume that the quantum
system is much heavier than the electrons (e.g., me/m 41K ∼ 10−5 for our first example and much smaller for the NV center in
diamond) such that we can ignore the momentum recoil on the quantum system for this calculation. In this case, the spatial
wave function of the quantum system is always unchanged to a good approximation. Then, the transition current of the quantum
system can be approximated as that of a pointlike magnetic dipole (see p. 79 of Ref. [48])

�Jqs
e→g(x) = −e−iω0t �μ × ∇δ(3)(�r), (A31)

where �μ is the magnetic transition dipole moment. Partial integration and execution of the Fourier transforms leads to

S ( �p, s; �p ′, s′) = − eμ0c2

2h̄
√

ωpωp′
lim

ε→0+

1

(h̄ω0/c)2 − | �p ′ − �p|2 + iε
(ε jkl (κp′,p p j + κp,p′ p′

j )μk (p′
l − pl ) δss′

+ i(δmkδnl − δmlδnk )(κp′,p pm − κp,p′ p′
m)μk (p′

l − pl )χ
†
s′σnχs) 2πδ(ωp′ − ωp − ω0). (A32)

Since ωp/ω0 = c
√

| �p|2 + m2c2/h̄ω0 � 1010 � 1, energy conservation implies

κp′,p =
√

h̄ωp′ + mc2

h̄ωp′ − h̄ω0 + mc2
≈ 1 + h̄ω0

2(h̄ωp′ + mc2)
≈ 1, (A33)

and κp,p′ ≈ 1, which leads to

S ( �p, s; �p ′, s′) ≈ − eμ0c2

2h̄
√

ωpωp′
(ε jkl (p′

j + p j )μk (p′
l − pl ) δss′ − i(δmkδnl − δmlδnk )(p′

m − pm)μk (p′
l − pl )χ

†
s′σnχs)

× 1

(h̄ω0/c)2 − | �p ′ − �p|2 2πδ(ωp′ − ωp − ω0), (A34)

where the limit has been taken trivially since h̄ω0/c �= | �p ′ − �p| due to the energy conservation condition ωp′ − ωp − ω0.

4. The scattered state

For the scattered state, we find

φ̄scatt,s( �p ′, s′) :=
∫

d3 p

(2π h̄)3
φin( �p)S ( �p, s; �p ′, s′)

= eμ0c2

2h̄

∑
s

∫
d3 p

(2π h̄)3
φin( �p)

1√
ωpωp′

1

(h̄ω0/c)2 − | �p ′ − �p|2 2πδ(ωp′ − ωp − ω0)

× (2ε jkl p′
jμk pl δss′ + i((p′

m − pm)μm(p′
l − pl )σ

l
ss′ − | �p ′ − �p|2μlσ

l
ss′ )). (A35)

where σ l
ss′ = χ

†
s′σ

lχs. Note that we have defined φ̄scatt,s( �p, s) as the unnormalized scattered wave function for notational
convenience, i.e., φ̄scatt,s( �p, s) = √Pe→gφscatt,s( �p, s). We define

pz,sol( �p⊥, �p ′) =
(

h̄2

c2
(ωp′ − ω0)2 − m2c2 − | �p⊥|2

)1/2

. (A36)

Energy conservation implies pz = pz,sol( �p⊥, �p ′) and we obtain

δ(ωp′ − ωp − ω0) =
∣∣∣∣∂ωp

∂ pz

∣∣∣∣
−1

δ(pz − pz,sol(�q⊥, �p ′)) = h̄2

c2

ωp′ − ω0

pz,sol( �p⊥, �p ′)
δ(pz − pz,sol(�q⊥, �p ′)), (A37)
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and for the scattered state

φ̄scatt,s( �p ′, s′) = eμ0

2

√
ωp′ − ω0

ωp′
e−i(ωp′ −ω0 )(ltot/v−t0 )

∫
d2 p⊥

(2π h̄)2
φin,z(pz,sol( �p⊥, �p ′)) φin,⊥( �p⊥)

1

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

×
(

2εzklμk

(
p′

⊥,l − p⊥,l
p′

z

pz,sol( �p⊥, �p ′)

)
δss′ + i

(p′
z − pz,sol( �p⊥, �p ′))2 + | �p ′

⊥ − �p⊥|2
pz,sol( �p⊥, �p ′)

μlσ
l
ss′

− i
1

pz,sol( �p⊥, �p ′)
((p′

z − pz,sol( �p⊥, �p ′))μz + (p′
⊥,m − p⊥,m)μm)

× ((p′
z − pz,sol( �p⊥, �p ′))σ z

ss′ + (p′
⊥,l − p⊥,l )σ

l
ss′
))

, (A38)

where

a( �p⊥, �p ′)2 = (p′
z − pz,sol( �p⊥, �p ′))2 − (h̄ω0/c)2. (A39)

We assume that the magnetic dipole moment �μ of the transition under consideration is pointing into the x direction. If we take
into account that we have chosen the spin-quantization direction along the z axis, for the spin-preserving case, we find

φ̄scatt,s( �p ′, s) = eμ0

2
| �μ|
√

ωp′ − ω0

ωp′
e−i(ωp′−ω0 )(ltot/v−t0 )

∫
d2 p⊥

(2π h̄)2

φin,z(pz,sol( �p⊥, �p ′)) φin,⊥( �p⊥)

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

×
(

2

(
p′

⊥,y − p⊥,y
p′

z

pz,sol( �p⊥, �p ′)

)
+ (−1)s−1/2i(p′

⊥,x − p⊥,x )

(
1 − p′

z

pz,sol( �p⊥, �p ′)

))
, (A40)

and for the spin-flip transition,

φ̄scatt,s( �p ′,−s) = eμ0

2
| �μ|
√

ωp′ − ω0

ωp′
e−i(ωp′ −ω0 )(ltot/v−t0 )

∫
d2 p⊥

(2π h̄)2

φin,z(pz,sol( �p⊥, �p ′)) φin,⊥( �p⊥)

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

× i
1

pz,sol( �p⊥, �p ′)
((p′

z − pz,sol( �p⊥, �p ′))2 + (p′
⊥,y − p⊥,y)((p′

⊥,y − p⊥,y) − (−1)s−1/2i(p′
⊥,x − p⊥,x ))).

(A41)

In terms of the unnormalized scattered wave functions, the transition probability is

Pe→g(s) =
∑

s′

∫
d3 p′

(2π h̄)3
|φ̄scatt,s( �p ′, s′)|2. (A42)

Taking Pe→g(+1/2) = Pe→g(−1/2) = Pe→g for granted, the spin-averaged overlap becomes

1

2

∑
s

〈ins|scatts〉 =
∫

d3 p

(2π h̄)3
φin( �p)∗

1

2

∑
s

φscatt,s( �p, s)

= 1√
Pe↔g

∫
d3 p

(2π h̄)3
φin( �p)∗

1

2

∑
s

φ̄scatt,s( �p, s)

= eμ0| �μ|√
Pe↔g

eiω0(ltot/v−t0 )
∫

d3 p′

(2π h̄)3
φin,z(p′

z )∗ φin,⊥( �p ′
⊥)∗

×
√

ωp′ − ω0

ωp′

∫
d2 p⊥

(2π h̄)2
φin,z(pz,sol( �p⊥, �p ′)) φin,⊥( �p⊥)

(
p′

⊥,y − p⊥,y
p′

z

pz,sol ( �p⊥, �p ′ )

)
a( �p⊥, �p ′)2 + | �p ′

⊥ − �p⊥|2 , (A43)

where the spin term has canceled out.

5. Numerical treatment

We consider a Gaussian envelope for the input wave function φin given in Eqs. (A11) and (A8). We rewrite the above
equations in terms of dimensionless quantities �π ′

⊥ = �p ′
⊥/(2�p⊥), �π⊥ = �p⊥/(2�p⊥), π ′

z = p′
z/(2�pz ), πz,0 = pz,0/(2�pz ), and
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�ρ0,⊥ = �r0,⊥2�p⊥/h̄ = �r0,⊥/�r⊥ so

φ̄scatt,s( �π ′, s) = F
√

�π ′ − �0

�π ′
e−i(�p′ −�0 )(τ−τ0 )

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

eiπz,sol ( �π⊥,�π ′ )l̃

× e−i �π⊥·�ρ0,⊥e−�π2
⊥e

iξ 2 | �π⊥|2

2
√

πz,sol ( �π⊥ ,�π ′ )2+M2
τ 1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

×
(

2

(
π ′

⊥,y − π⊥,y
π ′

z

πz,sol( �π⊥, �π ′)

)
+ (−1)s−1/2i(π ′

⊥,x − π⊥,x )

(
1 − π ′

z

πz,sol( �π⊥, �π ′)

))
, (A44)

and

φ̄scatt,s( �π ′,−s) = F
√

�π ′ − �0

�π ′
e−i(�p′ −�0 )(τ−τ0 )

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

eiπz,sol ( �π⊥,�π ′ )l̃ e−i �π⊥·�ρ0,⊥e−�π2
⊥e

iξ 2 | �π⊥|2

2
√

πz,sol ( �π⊥ ,�π ′ )2+M2
τ

× 1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

i

ξπz,sol( �π⊥, �π ′)
((π ′

z − πz,sol( �π⊥, �π ′))2 + ξ 2(π ′
⊥,y − π⊥,y)

× ((π ′
⊥,y − π⊥,y) − (−1)s−1/2i(π ′

⊥,x − π⊥,x ))), (A45)

where

ā( �π⊥, �π ′)2 = 1

ξ 2

(
(π ′

z − π̃z,sol( �π⊥, �π ′))2 − �2
0

)
, (A46)

πz,sol( �π⊥, �π ′) = ((�π ′ − �0)2 − M2 − ξ 2 �π2
⊥)1/2, (A47)

�π ′ =
√

π ′2
z + ξ 2 �π ′2

⊥ + M2, (A48)

�0 = h̄ω0
2c�pz

, M = mc
2�pz

, ξ = �p⊥/�pz, l̃ = 2�pzltot/h̄ = ltot/�z0, τ = 2�pzcltot/(h̄v), τ0 = 2�pzct0/h̄, and

F = eμ0| �μ|
(2π h̄)2

(
(2π )1/2h̄

�pz

)1/2√
2π h̄ = eμ0| �μ|

(2π )5/4(h̄�pz )1/2
. (A49)

As above, the transversal dispersion can be treated perturbatively. In particular, we have

πz,sol( �π⊥, �π ′) ≈ ((�π ′ − �0)2 − M2)1/2 − 1
2ξ 2 �π2

⊥((�π ′ − �0)2 − M2)−1/2 (A50)

to first order in ξ 2 �π2
⊥/π2

z,0 = �p2
⊥/p2

0 and

τ

l̃
= c

v
= γ M

πz,0
=
(
M2 + π2

z,0

)1/2

πz,0
≈ �π(

�2
π − M2

)1/2 = �π ′ − �0

((�π ′ − �0)2 − M2)1/2
and (A51)

ξ 2 �π2
⊥√

πz,sol( �π⊥, �π ′)2 + M2
= ξ 2 �π2

⊥
�π ′ − �0

(A52)

to zeroth order and first order in ξ 2 �π2
⊥/π2

z,0, respectively. Then, to first order in ξ 2 �π2
⊥/π2

z,0, we find for the sum of the dispersion
phases

πz,sol( �π⊥, �π ′)l̃ + ξ 2 �π2
⊥

2
√

πz,sol( �π⊥, �π ′)2 + M2
τ ≈ ((�π ′ − �0)2 − M2)1/2 l̃, (A53)

which is independent of �π2
⊥ and can be pulled out of the integral. Then, the transversal dispersion of the wave packet over the

drift distance is canceled by the phases we introduced when we defined the initial state just for this purpose since we consider
the electron beam to be focused in the interaction region. The final dispersion phase cancels in the probability integral. It only
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appears in the overlap integral. We define the dispersion free scattered state functions

φ̃scatt,s( �π ′, s) = F
√

�π ′ − �0

�π ′

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥

1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

×
(

2

(
π ′

⊥,y − π⊥,y
π ′

z

πz,sol( �π⊥, �π ′)

)
+ (−1)s−1/2i(π ′

⊥,x − π⊥,x )

(
1 − π ′

z

πz,sol( �π⊥, �π ′)

))
, (A54)

and

φ̃scatt,s( �π ′,−s) = F
√

�π ′ − �0

�π ′

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥

1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

i

ξπz,sol( �π⊥, �π ′)

× ((π ′
z − πz,sol( �π⊥, �π ′))2 + ξ 2(π ′

⊥,y − π⊥,y)((π ′
⊥,y − π⊥,y) − (−1)s−1/2i(π ′

⊥,x − π⊥,x ))). (A55)

Then, the probability is obtained as

Pe→g(s) = F̄2
∑

s′

∫
d3π ′|φ̃scatt,s( �π ′, s′)/F |2, (A56)

where

F̄ = 2�p⊥(2�pz )1/2

(2π h̄)3/2

eμ0| �μ|
(2π )5/4(h̄�pz )1/2

= eμ0| �μ|
h̄�r⊥π1/2(2π )9/4

. (A57)

Using the semiclassical transition probability found in Eq. (A3) above implies

F̄2

Pe→g(s)
=
(

r0,⊥
�r⊥

)2 1

4π3(2π )1/2
. (A58)

Performing the same approximations as above for the initial state, we find

φin( �π ′) =
√

2π h̄

�p⊥

(
(2π )1/2h̄

�pz

)1/2

e−(π ′
z−πz,0 )2

eiπ ′
z l̃ e−i �π⊥·�ρ0,⊥e−�π2

⊥e
iξ 2 | �π⊥|2√

π ′ 2
z +M2

τ

e−i�p′ (τ−τ0 )

≈
√

2π h̄

�p⊥

(
(2π )1/2h̄

�pz

)1/2

e−(π ′
z−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥ei(�2

π ′ −M2 )1/2
l̃ e−i�p′ (τ−τ0 ). (A59)

Then, the spin-averaged overlap is

1

2

∑
s

〈ins|scatts〉 = ei�0(τ−τ0 ) 1

2

∑
s′

∫
d3π ′ φin( �π ′)∗φ̄scatt,s′′ ( �π ′, s′).

Under the integral, the remaining relative phase between in-state and scattered state can be approximated as

(
((�π ′ − �0)2 − M2)1/2 − (�2

π ′ − M2
)1/2)

l̃ ≈ −�0
�π ′(

�2
π ′ − M2

)1/2 l̃ = − �π ′(
�2

π ′ − M2
)1/2 2π

ltot

λ0
. (A60)

Then, we define the undispersed wave packet

φ̃in( �π ′, s) =
√

2π h̄

�p⊥

(
(2π )1/2h̄

�pz

)1/2

e−(π ′
z−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥ ,

and calculate the spin-averaged overlap as

1

2

∑
s

〈ins|scatts〉 =
(∫

d3π |φ̃in( �π )|2
)−1/2

(∑
s′

∫
d3π ′|φ̃scatt,s( �π ′, s′)|2

)−1/2

× ei�0(τ−τ0 ) 1

2

∑
s′′

∫
d3π ′′ φ̃in( �π ′′)∗φ̃scatt,s′′ ( �π ′′, s′′)e

−i�0
�

π ′
(�2

π ′ −M2 )1/2 l̃
. (A61)

For the numerical evaluation, we set τ0 = 0.
Due to the Gaussian shape of the initial state, the momentum distribution can be restricted to the intervals given by −n �

πz − πz,0 � n and −n � | �π⊥| � n. We chose n = 5, which implies that contributions smaller than e−25 are neglected. The
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FIG. 5. Upper left plot: The transition probability for initial spin +1/2 plotted for different distances between the quantum system and the
beam line. Upper right plot: The relative difference between the transition probabilities for the initial spin states. This plot shows fluctuations
that are due to numerical noise. We can conclude that the relative difference is at most of the order of 10−9 and potentially even lower. Therefore,
probabilities can be considered as equal for the purposes of this paper. Lower left plot: The quotient of the numerically calculated transition
probability and the semiclassical result above in Eq. (A3). The numerical result agrees with the analytical result by 1% or less for distances
larger than 10�r⊥. Lower right plot: The overlap of the initial electron state and the final electron state. For distances � 6�r⊥, the overlap can
be considered to be one for the purposes of this paper. The plots were obtained for �r⊥ = 5 nm, �z0 = 100 nm, ω0 = 2π × 2.87 × 109 rad/s,
an initial kinetic energy of the electron of 2 keV and a total propagation distance from the electron source ltot = 1 m. For �r0,⊥ we considered
(0, r0,⊥), that is, the quantum system and the center of the electron wave packet lie in the y-z plane.

corresponding initial range of significant electron energies is

−n
πz,0

�πz,0

� �π − �πz,0 �
2nπz,0 + n2(1 + ξ 2)

2�πz,0

, (A62)

where �πz,0 =
√

π2
z,0 + M2 and we used the fact that πz,0 � ξn. Due to energy conservation, it follows that the integration of

the final wave function can be restricted to

|π ′
z | � πz,0 + �πz,0�0

πz,0
+ n + n2(1 + ξ 2)

2πz,0
, (A63)

| �π ′
⊥| � ξ−1

∣∣π2
z,0 + 2�πz,0�0 − π ′2

z + 2nπz,0 + n2(1 + ξ 2)
∣∣1/2

, (A64)

and if π2
z,0 + 2�πz,0�0 − π ′2

z − 2nπz,0 > 0,

| �π ′
⊥| � ξ−1

∣∣π2
z,0 + 2�πz,0�0 − π ′2

z − 2nπz,0

∣∣1/2
, (A65)

where we have taken into account that �0 � �πz,0 . Plots of the results are given in Fig. 5 for the parameters used for the second
explicit example presented in this paper; an NV center in diamond driven by an electron beam on the nanoscale. Similar plots
are obtained for the parameters considered for the first example. We unsurprisingly find no visible effect of the initial spin on the
transition probability. Furthermore, for distances of about 10�r⊥, the numerical result for the transition probability approaches
the result of the semiclassical calculation found in Eq. (A3), a result which can be assumed to continue for even larger distances.
The condition on the overlap of in-state and out-state in Eq. (A22) is fulfilled for all distances in the plot. This behavior can also
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be expected to continue for larger distances. Our numerical result shows that, for τ0 = 0, the overlap is purely imaginary (the
real part cannot be distinguished from numerical noise).

For the transition from the ground to the excited state, we must perform the replacement ω0 → −ω0 in all equations above.
Performing the numerical analysis as before leads to the conclusion that∣∣∣∣∣12

∑
s

〈ins|scatts〉e→g

∣∣∣∣∣ ≈
∣∣∣∣∣12
∑

s

〈ins|scatts〉g→e

∣∣∣∣∣, (A66)

where we defined |scatts〉e→g as the scattered state of the electron after inducing a transition from the ground state to the
excited state and analogously |scatts〉g→e. Furthermore, we obtain that the overlap is imaginary for τ0 = 0 and positive as for the
transition e → g. This implies

1

2

∑
s

〈ins|scatts〉e→g ≈ −
(

1

2

∑
s

〈ins|scatts〉g→e

)∗
. (A67)

6. General initial state

In this section, we investigate the effect on the quantum system starting from a general separable pure state

|in〉 = (α|e〉 + β|g〉) ⊗ |in〉el. (A68)

From our results above, we conclude that the spin of the electron can be neglected and that Pe→g = Pe←g and we will write P for
both in the following. After the scattering, the state becomes

|out〉 = α[
√

1 − P|e〉 ⊗ |in〉el +
√

P|g〉 ⊗ |scatt〉el,e→g] + β[
√

1 − P|g〉 ⊗ |in〉el +
√

P|e〉 ⊗ |scatt〉el,g→e]. (A69)

Taking into account Eq. (A67) with spin-independent overlaps and defining i�1 = el〈in|scatt〉el,e→g = − el〈in|scatt〉∗el,g→e and
�2 = el,e→g〈scatt|scatt〉el,g→e, we find for the reduced density matrix

�qs = (1 − P)

(|α|2 αβ∗

α∗β |β|2
)

+ i
√

P

(−�1αβ∗ + �∗
1α

∗β −�∗
1|α|2 + �∗

1|β|2
�1|α|2 − �1|β|2 �1αβ∗ − �∗

1α
∗β

)
+ P

( |β|2 �2α
∗β

�∗
2αβ∗ |α|2

)
. (A70)

The change of the reduced density matrix due to the scattering event can be written in terms of the vector of components of the
density matrix (in the corotating frame as we started in the interaction picture) (ρ̃eg, ρ̃ge, ρ̃ee, ρ̃gg) = (αβ∗, α∗β, |α|2, |β|2) as

�

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ =

⎡
⎢⎢⎣

−P P�2 −i�∗
1

√
P i�∗

1

√
P

P�∗
2 −P i�1

√
P −i�1

√
P

−i�1

√
P i�∗

1

√
P −P P

i�1

√
P −i�∗

1

√
P P −P

⎤
⎥⎥⎦
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦. (A71)

There are two extremal situations; when the electron state is either unchanged to a good approximation (|�1| = |�2| = 1,
corresponding to the case we obtain here) or so strongly affected so as to be in an almost orthogonal state (|�1| = |�2| = 0), so
the reduced state of the quantum system remains approximately in a pure state (coherence preserving scattering) or becomes a
mixed state (decohering scattering), respectively.

If the electron state changes substantially, that is, �1 � √
P, we obtain the case of incoherent scattering

�

⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦ =

⎡
⎢⎣

−P 0 0 0
0 −P 0 0
0 0 −P P
0 0 P −P

⎤
⎥⎦
⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦, (A72)

where the quantum system is driven by a stochastic force into a steady state of vanishing inversion ρee − ρgg = 0 and vanishing
off-diagonal components which is a maximally mixed state.

When the state change of the electron is negligible up to a phase, we find

�

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ =

⎡
⎢⎢⎣

−P Pe−2iφ −ie−iφ
√

P ie−iφ
√

P
Pe2iφ −P ieiφ

√
P −ieiφ

√
P

−ieiφ
√

P ie−iφ
√

P −P P
ieiφ

√
P −ie−iφ

√
P P −P

⎤
⎥⎥⎦
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦, (A73)

where we have defined el〈in|scatt〉el,e→g = − el〈in|scatt〉∗el,g→e = ieiφ and, therefore, �2 = el,e→g〈scatt|scatt〉el,g→e = e−2iφ . Note
that the phase φ encodes the arrival time of the center of the wave packet, that is, φ = ω0t . Considering consecutive interactions
with single electrons with arrival times that are equivalent modulo 2π/ω0, we obtain oscillating dynamics, Rabi oscillations, of
the quantum system’s state inversion ρee − ρgg.
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The appearance of Rabi oscillations can also be seen analytically by an approximate continuum treatment: considering
consecutive interactions with single electrons of a current I (t ) with fixed temporal distance between electrons �t and taking
the limit �ρqs/�t → dρqs/dt while keeping

√
P/�t finite, Eq. (A71) leads to

d

dt

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ = i

|�1|
√

PI (t )

e

⎡
⎢⎢⎣

0 0 −e−iω0t e−iω0t

0 0 eiω0t −eiω0t

−eiω0t e−iω0t 0 0
eiω0t −e−iω0t 0 0

⎤
⎥⎥⎦
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦, (A74)

where we assumed �1 = |�1|eiω0t . This is equivalent to the optical Bloch equations without damping (see Appendix H). The
rotating wave approximation reveals a Rabi frequency that depends on the overlap as � = √

P|el〈in|scatt〉el,e→g|Iω0/e, where Iω0

is the resonant Fourier component of the electron current.
From the vanishing diagonal blocks in the continuum limit Eq. (A74), we also conclude that the terms in the diagonal blocks

in Eq. (A71) can be associated with the discreteness of the beam electrons.
Using the parameterization of the complex parameters of the initial state

α = cos ϕ, β = eiρ sin ϕ, (A75)

the change of inversion for the two extremal cases is

�(ρ̃ee − ρ̃gg) =
{−2P cos (2ϕ) − 2

√
P sin (2ϕ) sin ρ |out〉el → |in〉el

−2P cos (2ϕ) |out〉el � |in〉el,
(A76)

which shows that the inversion change due to coherence preserving scattering reaches its maximum of 2
√

P at ϕ = π/4, where
ρ̃ee − ρ̃gg = 0, while the inversion change due to decohering scattering has maximums of 2P when ϕ reaches multiples of
π/2, where ρ̃ee − ρ̃gg = ±1. In particular, the maximal effect of coherence-preserving scattering on the quantum system’s state
inversion is larger by a factor 1/

√
P than the maximal effect of decohering scattering, which is usually several order of magnitude

(11 orders of magnitude in our first example).

7. Recoil of the quantum system

The change of the internal state of the quantum system will be accompanied by a recoil equivalent in absolute value to the
momentum transfer to the electron. We can give a bound on the momentum transfer to the electron based on the numerical overlap
between the electron in-state and the scattered state. For the overlap to be close to one, the transversal momentum change has
to be much smaller than the transversal momentum spread of the initial wave packet. From our simulations, we find an overlap
of more than 0.99 even for a wave packet width of �r⊥ = 50 μm, leading to a bound on the transversal momentum transfer
to the quantum system δp⊥ � 2 × 10−30 kg m/s. For trapped atoms with a trap frequency ∼300 kHz, this is much smaller than
the momentum difference between the motional ground and excited state of the potassium atoms. Explicitly, the Lamb Dicke
parameter is δp⊥/

√
2mh̄ωtrap � 4 × 10−4. Hence, for a setup as described in Ref. [21], we can conclude that the atoms will stay

in the motional ground state during the interaction time.

APPENDIX B: OTHER INELASTIC SCATTERING PROCESSES

We can estimate the total electron scattering probability using the total scattering cross section (comprising ionization,
elastic and inelastic scattering [49]). For potassium atoms exposed to an 18 keV electron beam, we find σtot ≈ 1.5 · 10−17cm2,
extrapolated from Ref. [50]. The current density j of a Gaussian beam at 5w would theoretically lead to a negligible scattering
rate σtot j/e, where e is the elementary charge. Therefore, all short-range interactions can be neglected.

To reduce unwanted effects due to electrons scattering on the diamond structure of an NV center [51] to a negligible level, the
electron beam intensity at the position of the NV center should be reduced by a factor of 10−6 compared to its maximum. At this
intensity, the number of electrons scattering within a radius of 1 nm around the NV center per period of the Rabi oscillation is
less than one. This can be achieved for a Gaussian beam at a distance of five waists or more, which is fulfilled for the parameters
considered here.

1. Electric dipole transitions

In addition to the transitions we consider, there are electric dipole transitions that can lead to an effective loss of the quantum
system. Since these processes are incoherent, the probability for these transitions can be estimated using the transition probability
for a single scattering event. Nearly all electrons in the beam are further away from the quantum system than the transversal width
of their wave packets. Therefore, we model the interaction of the electron with the quantum system as that of a pointlike charged
particle, as above. For electric dipole transitions, we start from the interaction Hamiltonian Hint = −d̂ · �E to obtain the atomic
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out state to first order,

|out〉qs ≈
(
I + i

h̄

∫ ∞

−∞
dt d̂ (t ) · �E (t )

)
|e〉, (B1)

in the interaction picture. For the transition probability, we find

Pd
g→o = 1

h̄2

∣∣∣∣〈g|
∫ ∞

−∞
dt d̂ (t ) · �E (t )|e〉

∣∣∣∣
2

= 1

h̄2

∣∣∣∣
∫ ∞

−∞
dt e−iωt �dgo · �E (t )

∣∣∣∣
2

(B2)

for a transition from the ground state |g〉 to an “other” state |o〉. The electric field of the electron moving parallel to the z axis in
the y-z plane is

Ey(0, t ) = eγ r⊥
4πε0(r2

⊥ + γ 2v2(t − t j )2)3/2
, (B3)

Ez(0, t ) = eγ v(t − t j )

4πε0(r2
⊥ + γ 2v2(t − t j )2)3/2

, (B4)

where γ is the Lorentz factor. Then,∫ ∞

−∞
dt e−iωt �dgo · �E (t ) = eω

2πε0γ v2
e−iωt j

(
dy

goK1

(
ωr⊥
γ v

)
− i

dz
go

γ
K0

(
ωr⊥
γ v

))
(B5)

is the Fourier transform of the electric field due to a single pointlike electron. For the transition probability, we find

Pd
g→o =

(
eω

2π h̄ ε0γ v2

)2
((

dy
goK1

(
ωr⊥
γ v

))2

+
(

dz
go

γ
K0

(
ωr⊥
γ v

))2
)

=
(

λe

2πr⊥

2c

v

)2
((

dy
go

ea0

ωr⊥
γ v

K1

(
ωr⊥
γ v

))2

+
(

dz
go

γ ea0

ωr⊥
γ v

K0

(
ωr⊥
γ v

))2
)

, (B6)

where λe is the electron Compton wavelength and a0 is the Bohr radius. For the parameters used in example 1 to generate
Fig. 4(a), we obtain r⊥/(γ v) ∼ 10−12. Therefore, electric dipole transitions of potassium atoms are exponentially suppressed
and can be neglected. The transition energy of the electric dipole transition from the NV− center 3A2 ground state to the next
excited state (the zero phonon line) has the transition energy 1.945 eV. This leads to exponential suppression and Pd

g−>o ∼ 10−13

for the parameters used to generate the results presented in Fig. 4(b). These parameters correspond to ∼108 electrons passing
the quantum system per Rabi cycle, leading to a total electric transition probability per Rabi cycle on the order of Pd

g−>o ∼ 10−5,
which can be neglected.

2. Full QED calculation for electric dipole transitions

The derivation of the scattering matrix elements and the scattered state in full QED works along the same lines as for magnetic
dipole transitions above. We assume that the transition of the quantum system is due to a state change of an electron of the
quantum system. Then, the transition current can be expressed as

�Jqs
e→g(x) = − ieh̄

2m
e−iω j t (ψe∇ψ∗

g − ψ∗
g ∇ψe). (B7)

Partial integration and execution of the Fourier transforms leads to

S ( �p, �p ′) = − eh̄

2m

eμ0c2

2
√

ωpωp′
((κp′,p pi + κp,p′ p′i )χ†

s′χs + iεimn(κp′,p pm − κp,p′ p′
m)χ†

s′σnχs)

× 2πδ(ωp′ − ωp − ωeg) lim
ε→0+

1

(h̄ωeg/c)2 − | �p ′ − �p|2 + iε

(
δi j − (p′

i − pi )(p′
j − p j )

(h̄ωeg/c)2

)

×
∫

d3r′ e−i( �p ′− �p)�r ′/h̄(ψe∇ψ∗
g − ψ∗

g ∇ψe) j (�r ′). (B8)

We assume that the quantum system is strongly localized in comparison to the distance between the electron and the quantum
system and we neglect recoil on the quantum system. Furthermore, we assume that the transition of the quantum systems is
between different energy states of an electron of the quantum system and that the Hamiltonian defining the electronic level
structure of the quantum system contains the momentum operator −ih̄∇ only in the kinetic term −h̄2∇2/2m. For example, the
Hamiltonian modeling the electronic structure of NV centers is of this form [52]. Then, we find

(Ee − Eg)
∫

d3r′ ψ∗
g �r ψe =

∫
d3r′ ψ∗

g [�̂r, Ĥ ]ψe = h̄2

m

∫
d3r′ ψ∗

g ∇ψe, (B9)
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such that ∫
d3r′ ψ∗

g ∇ψe = mωeg

h̄

∫
d3r′ ψ∗

g �r ψe = mωeg

h̄e
�Deg. (B10)

We employ the dipole approximation as∫
d3r′ e−i( �p ′− �p)·�r ′/h̄(ψe∇ψ∗

g − ψ∗
g ∇ψe) ≈

∫
d3r′ (ψe∇ψ∗

g − ψ∗
g ∇ψe) = −2mωeg

eh̄
�Deg. (B11)

We obtain the scattering matrix element

S ( �p, �p ′) = − eμ0c2

2
√

ωpωp′
((κp′,p pi + κp,p′ p′i )χ†

s′χs + iεimn(κp′,p pm − κp,p′ p′
m)χ†

s′σnχs)2πδ(ωp′ − ωp − ωeg)

× lim
ε→0+

1

(h̄ωeg/c)2 − | �p ′ − �p|2 + iε

(
−ωegDeg,i + c2

h̄2ωeg
( �p ′ − �p)i ( �p ′ − �p) · �Deg

)
. (B12)

Since ωp/ωeg = c
√

| �p|2 + m2c2/h̄ωeg � 1010 � 1, energy conservation implies

κp′,p =
√

h̄ωp′ + mc2

h̄ωp′ − h̄ωeg + mc2
≈ 1 + h̄ωeg

2(h̄ωp′ + mc2)
≈ 1, (B13)

and likewise for κp,p′ , which leads to

S ( �p, �p ′) ≈ −eμ0c2

2ωp′
((−ωeg( �p ′ + �p) + 2ωp′ ( �p ′ − �p)) · �Deg χ

†
s′χs

+ iωegε
imnDeg,i(p′

m − pm)χ†
s′σnχs) 2πδ(ωp′ − ωp − ωeg) lim

ε→0+

1

(h̄ωeg/c)2 − | �p ′ − �p|2 + iε
. (B14)

We used the energy conservation condition ωp′ − ωp − ωeg, that ωp � ωeg and mc2 � h̄ωeg, and

| �p ′|2 − | �p|2 ≈ 2ωp′ωeg
h̄2

c2
. (B15)

With the z direction as the quantization direction, we obtain the unnormalized scattered state without a spin flip

φ̄scatt,s( �p ′, s) ≈ −eμ0 h̄

2

∫
d2 p⊥

(2π h̄)2
φin(pz,sol( �p⊥, �p ′), �p⊥)

1

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

1

pz,sol( �p⊥, �p ′)

× (((−ωeg(p′
z + pz,sol( �p⊥, �p ′)) + 2ωp′ (p′

z − pz,sol( �p⊥, �p ′)))Dz
eg

+ (−ωeg( �p ′
⊥ + �p⊥) + 2ωp′ ( �p ′

⊥ − �p⊥)) · �Deg,⊥) + (−1)s−1/2iωegε
imzDeg,i( �p ′

⊥ − �p⊥)m), (B16)

and the scattered state with a spin flip

φ̄scatt,s( �p ′,−s) ≈ i
eμ0 h̄ωeg

2

∫
d2 p⊥

(2π h̄)2
φin(pz,sol( �p⊥, �p ′), �p⊥)

1

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

1

pz,sol( �p⊥, �p ′)

× (εzinDeg,i(p′
z − pz,sol( �p⊥, �p ′)) − εimnDeg,i( �p ′

⊥ − �p⊥)m)
(
δx

n + i(−1)s−1/2δy
n

)
= i

eμ0 h̄ωeg

2

∫
d2 p⊥

(2π h̄)2
φin(pz,sol( �p⊥, �p ′), �p⊥)

1

a( �p⊥, �p ′)2 + | �p ′
⊥ − �p⊥|2

1

pz,sol( �p⊥, �p ′)

× (−(Deg,y − i(−1)s−1/2Deg,x )(p′
z − pz,sol( �p⊥, �p ′)) + Deg,z((p′

y − py) − i(−1)s−1/2(p′
x − px ))). (B17)

3. Numerical treatment

We again use the Gaussian envelopes given in Eqs. (A11) and (A8). We rewrite the above equations in terms of the
dimensionless quantities �π ′

⊥ = �p ′
⊥/(2�p⊥), �π⊥ = �p⊥/(2�p⊥), π ′

z = p′
z/(2�pz ), and �ρ0,⊥ = �r0,⊥2�p⊥/h̄ = �r0,⊥/�r⊥. As

noted in the numerical treatment of magnetic dipole transitions, the dispersion phase does not enter into the probabilities to
first order in | �p⊥|2/p2

z,0. Since we are only interested in the probabilities here, we only consider the dispersion free scattered
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wave functions

φ̃scatt,s( �π ′, s) = −FD

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥

1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

× 1

πz,sol( �π⊥, �π ′)
((ξ−1(−�eg(π ′

z + πz,sol( �π⊥, �π ′)) + 2�π ′ (π ′
z − πz,sol( �π⊥, �π ′)))Dz

eg

+ (−�eg( �π ′
⊥ + �π⊥) + 2�π ′ ( �π ′

⊥ − �π⊥)) · �Deg,⊥) + (−1)s−1/2i�egε
jmzDeg, j ( �π ′

⊥ − �π⊥)m) (B18)

and

φ̃scatt,s( �π ′,−s) = FD

∫
d2π⊥ e−(πz,sol ( �π⊥,�π ′ )−πz,0 )2

e−i �π⊥·�ρ0,⊥e−�π2
⊥

1

ā( �π⊥, �π ′)2 + |�π ′
⊥ − �π⊥|2

× i
�eg

πz,sol( �π⊥, �π ′)
(−ξ−1(Deg,y − i(−1)s−1/2Deg,x )(π ′

z − πz,sol( �π⊥, �π ′))

+Deg,z((π ′
y − πy) − i(−1)s−1/2(π ′

x − πx ))), (B19)

where

FD = eμ0c| �D|
(2π h̄)2

(
(2π )1/2h̄

�pz

)1/2√
2π h̄, (B20)

and �eg = h̄ωeg

2c�pz
and �Deg = �Deg/| �D|. The probability is obtained as

Pe→g(s) = F̄2
D
∑

s′

∫
d3π ′|φ̃scatt,s( �π ′, s′)/FD|2, (B21)

where

F̄D = 2�p⊥(2�pz )1/2

(2π h̄)3/2

eμ0c| �D|
(2π )5/4(h̄�pz )1/2

= eμ0c| �D|
h̄�r⊥π1/2(2π )9/4

. (B22)

The numerical results can be found in Fig. 6.

APPENDIX C: ELECTRON BEAM OF A KLYSTRON

In the following, we will give some details on the current-
modulated electron beam in a klystron based on the article
[54] by Webster. The electron beam modulation of a klystron
is achieved by modulating the kinetic energy or, effectively,
the velocity of electrons in the buncher. This can be done, for
example, with a MW field in a resonator (the buncher cavity)
that leads to an electric field in the beam propagation direction
[55]. Under the assumption of monochromatic oscillations of
the kinetic energy modulation in the buncher and approximat-
ing the buncher as infinitesimally short, for the velocity of an
electron passing the buncher at time t1, we can approximate

v = v0 + v1 sin(ω0t1). (C1)

When the amplitude of the kinetic energy modulation δEkin

is small in comparison to the average kinetic energy, we have
v1 ≈ δEkin/(γ 3mev0). The arrival time of the electron at the
target (e.g., an atom) is

t2 = t1 + l

v0 + v1 sin(ω0t1)
≈ t1 + l

v0
− lv1

v2
0

sin(ω0t1),

(C2)
where l is the distance to the buncher. Charge conservation
can be written as I (t1, z1)dt1 = I (t2, z2)dt2 and leads to

I2 = I1

1 − rb cos(ω0t1)
= I0

1 − rb cos(ω0t1)
, (C3)

where I0 is the unmodulated stationary current and

rb = lω0v1/v
2
0 (C4)

is the bunching parameter.
Writing the distance to the buncher as a coordinate l = z −

z0, where z0 is the position of the buncher, we obtain

I (z, t ) = I0

1 − rb(z) cos θ (z, t )
, (C5)

where θ (t ) is the solution of the equation

θ (z, t ) − rb(z) sin θ (z, t ) = ω0

(
t − (z − z0)

v0

)
. (C6)

It has been shown that the current in Eq. (C5) can be expressed
as a Fourier series with the coefficients [54]

I (z, t ) =
[

I0 +
∞∑

n=1

Inω0 (z) cos

(
nω0

(
t − (z − z0)

v0

))]
,

(C7)
where Inω0 (z) = 2I0Jn(n rb(z)) and Jn are the Bessel functions
of the first kind. The Fourier coefficients as a function of the
bunching parameter are plotted in Fig. 7. The beam current as
a function of the distance from the buncher cavity is plotted in
Fig. 8.
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FIG. 6. The transition probability for an electric dipole transition
for an electric dipole moment oriented in the x direction (green),
y direction (blue), and z direction (orange). The dots are generated
from the full QED result, neglecting the spin terms [i.e., Eq. (B18)
without the last term]. The solid lines are generated from the semi-
classical result in Eq. (B6). The plots were obtained for �r⊥ = 5 nm,
r⊥,0 = 70 nm, �z0 = 100 nm, | �Deg| = 2.27ea0 (corresponding to the
electric dipole moment of the 3A2 to 3E transition (zero phonon line
or ZPL) of a NV− center at 1.945 eV [53]) and an initial kinetic
energy of the electron of 2 keV. For �r0,⊥, we considered (0, r0,⊥), that
is, the quantum system and the center of the electron wave packet lie
in the y-z plane. We find that the two results agree up to the plateau
beyond PHz frequencies, which is due to the numerical noise floor
of our algorithm. We note the strong suppression of the scattering
probability for angular frequencies above 1015 rad/s.

1. The effect of the electron velocity distribution

The finite width of the electron velocity distribution affects
the beam modulation because the bunching of the beam de-
pends on the initial velocity. We consider a kinetic energy
distribution with a width �Ekin of about 1 eV. Approximately,
we have �Ekin = γ 3mv0�v0. This leads to a distribution
in the bunching parameter �rb = 2lω0v1�Ekin/(γ 3mv4

0 ) and
�rb/rb = 2�Ekin/(γ 3mv2

0 ). This ratio decreases for increas-
ing kinetic energies. For Ekin = 18 keV, we have v0/c ∼ 1/4
and we can find �rb/rb = �Ekin/Ekin ∼ 10−4. We find a mi-
nor correction to the bunching parameters which implies a
minor correction to the amplitudes of the Fourier components
corresponding to the distinct lines in the modulation spectrum.

It is also important to note that this effect will not broaden
the spectral linewidth of the modulated near field affecting the
quantum system.

APPENDIX D: SINGLE PARTICLE BEAM SIMULATION

To analyze systematic effects due to shot noise, we model
the electron beam as a collection of single electrons generated
in a homogeneous Poisson process. Electrons are generated
after waiting times that are exponentially distributed [56],
with the mean given by the inverse of the rate σ of electron
creation at the cathode. We simulate the beam of a Klystron by
modulating the kinetic energy of the particles and propagating
them over a drift distance l to obtain the current modulation.
The modulation of the kinetic energy is sinusoidal: Ekin(t ) =
Ekin,0 + δEkin sin(ω0t ).

We wrote a numerical algorithm using Python that gen-
erates a set of electron positions representing the beam. For
an electron moving at �r⊥ = (x, y) parallel to the z axis and
arriving at z = 0 at time t j , the only nonvanishing component
of the magnetic field strength at the origin becomes (take Eq.
11.152 from [43] and shift and rotate)

�Bj (0, t ) = μ0eγ v

4π

⎡
⎣ y

−x
0

⎤
⎦ 1

(r2
⊥ + γ 2v2(t − t j )2)3/2

, (D1)

where γ = (1 − v2/c2)−1/2 is the Lorentz factor and r⊥ =
|�r⊥|. These contributions to the total magnetic field strength
are summed for all electron positions. We simulated the beam
over a length of L ∼ 100d centered at z = 0 to limit the
numerical effort. This approximation is well justified as elec-
trons in the beam significantly affect the quantum system only
in an interaction region on the length scale of several d/γ

centered at z = 0. For larger z, the effect on the quantum
system decays as |z|−3. The electrons have an initial kinetic
energy of 18 keV.

The initial transversal position of electrons is modeled as
a normal distribution, where the variance σ = w/2 is given
by the waist radius w of the beam. To restrict the beam to a
finite radius �r⊥,0 and to avoid numerical singularities, the
transversal distribution is generated from a uniform distribu-
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FIG. 7. Left plot: Fourier coefficients of the modulated current for frequencies nω0 as a function of the bunching parameter rb. Right plot:
Time-dependent current for different bunching parameters.
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FIG. 8. Spatial change of the electron beam modulation for
v1/v0 = 1/40 at t = 0 plotted as a function of the distance from the
buncher cavity in units of the modulation wavelength λ0 = 2πv0/ω0.
The spatial range plotted corresponds to the interval rb = 0 to rb =
0.5.

tion by mapping values of y between 0 and 1 with the function

r⊥(y) = 2−1/2w
√

ln((1 − y(1 − exp(−2�r2
⊥,0/w2))−1) to a

radius and generating the azimuthal distribution with another
uniform distribution.

Furthermore, we note that the magnetic field of each elec-
tron effectively acts on a length scale |v(t − t j )| ∼ r⊥/γ as
can be seen from Eq. (D1). Therefore, the beam divergence,
specified by the divergence angle θ , can be neglected if the
change of beam width is on the length scale of the interaction
region θr⊥/γ � w. Later, we will consider d = 5w, and the

above condition is fulfilled for almost all electrons in the beam
if θ � γ /5. For a strongly focused Gaussian electron beam, θ
is given by the wave properties of electrons as θ = λdB/(πw),
where the de Broglie wavelength is λdB = 2π h̄/(γ mev). We
obtain a condition for the waist w � 10h̄/(meγ

2v). The right-
hand side decreases monotonously with increasing v and,
therefore, with increasing kinetic energy. For a velocity c/4
(corresponding to 18 keV), the right-hand side becomes ap-
proximately 40h̄/(mec) ∼ 10−11 m, and the condition on w
will be always fulfilled in the context of our proposal. For
a wide beam with a given transversal kinetic energy spread
of about �Ekin or less, we obtain the corresponding transver-
sal velocity spread of �v ≈ √

2�Ekin/me and the divergence
angle θ = �v/v. For v = c/4 and �Ekin ∼ 1 eV, we find
θ ∼ 10−2 � 1/5 which falls within standard parameters for
electron microscopes [5,8], and the above condition is ful-
filled. The results are shown in Fig. 9. To generate the data
for the plots, the simulation was run for 103 periods of the
modulation.

APPENDIX E: THE SINGLE ELECTRON FOURIER
TRANSFORM AND THE MAGNETIC FIELD SPECTRUM

The Fourier transform of the magnetic field due to the
electron beam can also be calculated directly from the Fourier
transform of a single electron’s magnetic field. The minimal
distance (impact parameter) between the electrons and the
origin is r⊥ := (x2 + y2)1/2. At time t and position �r = 0, the
magnetic field caused by an electron moving with velocity v j

and arriving at z = 0 at time t j is

By
j (�r = 0, t ) = eμ0γ jv j

4π

r⊥(
r2
⊥ + γ 2

j v
2
j (t j − t )2

)3/2 . (E1)
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FIG. 9. Numerical simulation of the magnetic field strength By due to an electron beam at a distance d = 5w = 250 μm to its center, where
w = 50 μm is the beam waist radius (left plots), and the corresponding DFT (middle and right plots) for a beam with 200 nA (upper plots)
and 100 μA (lower plots). The beam current is modulated with a base frequency of ν = ω/2π = 254 MHz by varying the electron velocity
(as, e.g., in a Klystron). The higher harmonics can be seen in the middle plot. The bunching parameter rb is approximately 0.5 (l = 1m and
δEkin/Ekin = 1/20), which implies that the Fourier component corresponding to the modulation at base frequency has an amplitude of 50% of
the average current.
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The temporal Fourier transform of the magnetic field of a
single electron is

Ft
[
By

j (�r = 0, t )
]

= eμ0γ jv j

4π

1√
2π

∫ ∞

−∞
dt eiωt r⊥(

r2
⊥ + γ 2

j v
2
j (t j − t )2

)3/2

= eμ0ω

4πγ jv j

√
2

π
K1

(
r⊥

ω

γ jv j

)
eiωt j . (E2)

We note that the Fourier transform of the single electron de-
cays exponentially for r⊥ω/(γ jv j ) � 1 due to the properties
of the Bessel function. For angular frequencies ω such that
r⊥ω/γ jv j � 1, we can approximate K1(x) as 1/x and find

Ft
[
By

j (�r = 0, t )
] ≈ eμ0

2π r⊥

1√
2π

eiωt j . (E3)

This means that the magnetic field of a single electron ap-
pears like a delta peak when seen on timescales much larger
than r⊥/(γ jv j ). In particular, we can conclude that the mag-
netic field is directly proportional to the current for these
timescales.

The single electron Fourier transform can be used to ob-
tain the discrete Fourier transform of the total magnetic field
directly from our numerical model above. A plot is given in
Fig. 10.

To derive the expectation value of the Fourier transform of
the magnetic field due to the total beam, we use the probability
for an electron to pass the z = 0 plane at t = t j , given as
P (t ). We assume that the beam has a duration T and that
P (t ) is normalized on the interval [−T/2, T/2] and vanishes
outside of it. Furthermore, we assume that the probability has
a Fourier spectrum with distinct lines evenly spaced by ω0.
We restrict our considerations to a one-dimensional model for
the beam and set r⊥ = d . We write the Fourier decomposition
as

P (t ) = 1

T

(
a0 +

∞∑
n=−∞

aneinω0t

)
�[− 1

2 , 1
2 ](t ), (E4)

where �[− 1
2 , 1

2 ] is the characteristic function for the inter-

val [− 1
2 , 1

2 ] which takes the value one in the interval and

FIG. 10. Spectrum (temporal Fourier transform) of the magnetic
field strength By due to a current modulated electron beam with 20 fA
current and uniformly distributed electron positions in the longitu-
dinal direction (z direction) for 109 periods of the base frequency
254 MHz (corresponding to a total number of electrons ∼500 000).
The average distance from the beamline is 5w, where w = 1 nm is
the beam waist. The electrons have a kinetic energy of 18 keV.

vanishes outside of it. In particular, P (t ) is periodic with a
base frequency of ω0/2π . Using the Poissonian distribution
of the electron number in the interval pN = N̄N e−N̄/N!, where
N̄ = E [N] is the expected value [57], we find

E [Ft [B
y(�r = 0, t )]]

= eμ0

2π

1√
2π

e−N̄
∞∑

N=1

N̄N

N!

∫ N∏
j=1

(dt j P (t j ))

×
∑

k

ω

γkvk
K1

(
d

ω

γkvk

)
eiωtk , (E5)

where the integrals are taken over the whole sum at the end of
the equation. For small bunching parameters rb < 1, electrons
do not overtake each other and there is a one to one correspon-
dence of the arrival time of an electron and its velocity, which
implies vk = v(tk ) and γk = γ (tk ). The temporally periodic
modulation of the electron velocity means that v(tk ) and γ (tk )
must be periodic as well. The period is given by the base
frequency ω0/2π . We find

E [Ft [B
y(�r = 0, t )]] = eμ0

2π

1√
2π

e−N̄
∞∑

N=1

N̄N

(N − 1)!

∫ T/2

−T/2
dt P (t )

ω

γ (t )v(t )
K1

(
d

ω

γ (t )v(t )

)
eiωt

= eμ0

2π

N̄√
2π

∫ T/2

−T/2
dt P (t )

ω

γ (t )v(t )
K1

(
d

ω

γ (t )v(t )

)
eiωt . (E6)

Due to the Bessel function K1 decaying exponentially for arguments larger than one and γ (t ) and v(t ) only varying slightly in
time, the spectrum of the beam will not contain frequencies much larger than γ0v0/d , where v0 and γ0 are the average quantities.
The integral in Eq. (E6) is the Fourier transform of a 2π/ω0-periodic function which implies that E [Ft [By(�r = 0, t )]] consists
of distinct Fourier-limited spikes at multiples of ω0. More precisely, there exist coefficients bn such that

E [Ft [B
y(�r = 0, t )]] = I0μ0

(2π )2

(
b0

sin(ωT/2)

ω
+

∞∑
n=−∞

bn
sin ((ω + nω0)T/2)

ω + nω0

)
, (E7)
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where I0 = eN̄/T is the average current. For T → ∞, we have

E [Ft [B
y(�r = 0, t )]]

T →∞−−−→ I0μ0

2π

(
b0 δ(ω) +

∞∑
n=−∞

bn δ(ω + nω0)

)
. (E8)

The coefficients can, in principle, be directly calculated from Eq. (E5). If d ω/(γ0v0) � 1, we can approximate the Bessel
function and find

E [Ft [B
y(�r = 0, t )]] = μ0I0

2πd

1√
2π

(
a0

sin(ωT/2)

ω
+

∞∑
n=−∞

an
sin ((ω + nω0)T/2)

ω + nω0

)
, (E9)

which is proportional to the spectrum of the probability function P (t ) that is given by the beam bunching. The average magnetic
field becomes

E [By(�r = 0, t )] = F−1
t [E [Ft [B

y(�r = 0, t )]]] = μ0I (t )

2πd
, (E10)

where I (t ) = I0TP (t ), which is the magnetic field of a slowly modulated one-dimensional current.

APPENDIX F: AUTOCOVARIANCE AND NOISE

In this section, we derive the covariance matrix of the magnetic field of a one-dimensional modulated beam

Cov(By(t ), By(t ′)) = E [By(t )B∗
y (t ′)] − E [By(t )]E [B∗

y (t ′)]

= 1

2π

∫
d ω

∫
d ω′e−iωt eiω′t ′

(E [Ft [By](ω)F∗[By](ω′)] − E [Ft [By](ω)]E [F∗[By](ω′)])

=:
1

2π

∫
d ω

∫
d ω′e−iωt eiω′t ′

Cov(Ft [By](ω),Ft [By](ω′)), (F1)

which contains all of the information about the noise spectrum of the Gaussian random process By. Again, we consider a beam of
N electrons with arrival times at the z = 0 plane that are randomly distributed over an interval T with the probability distribution
P (t ). We find

E [Ft [By](ω)F∗[By](ω′)] =
(

eμ0

2π

)2

e−N̄

[ ∞∑
N=2

N̄N

N!

∫ N∏
j=1

(dt j P (t j ))
∑
k �=k′

ei(ωtk−ω′tk′ ) ω

γkvk

ω′

γk′vk′

1

2π
K1

(
d

ω

γkvk

)
K1

(
d

ω′

γk′vk′

)

+
∞∑

N=1

N̄N

N!

∫ N∏
j=1

(dt j P (t j ))
∑

k

ei(ω−ω′ )tk ωω′

2π (γkvk )2
K1

(
d

ω

γkvk

)
K1

(
d

ω′

γkvk

)]
. (F2)

Again, for bunching parameters rb < 1, we can write

E [Ft [By](ω)F∗[By](ω′)] =
(

eμ0

2π

)2
[

N̄2
∫ T/2

−T/2
dt P (t )

∫ T/2

−T/2
dt ′ P (t ′)ei(ωt−ω′t ′ ) ω

γ (t )v(t )

ω′

γ (t ′)v(t ′)
1

2π
K1

(
d

ω

γ v

)
K1

(
d

ω′

γ ′v′

)

+ N̄
∫ T/2

−T/2
dt P (t )ei(ω−ω′ )t ωω′

2π (γ (t )v(t ))2
K1

(
d

ω

γ (t )v(t )

)
K1

(
d

ω′

γ (t )v(t )

)]
. (F3)

Subtracting the square of the expectation value of the spectrum, we obtain

Cov(Ft [By](ω),Ft [By](ω′)) =
(

eμ0

2π

)2

N̄
∫ T/2

−T/2
dt P (t )ei(ω−ω′ )t ωω′

2π (γ (t )v(t ))2
K1

(
d

ω

γ (t )v(t )

)
K1

(
d

ω′

γ (t )v(t )

)
. (F4)

This implies that the variance of the spectrum (for T � 1/ω0) is

VarBy (ω) = Cov(By(ω), By(ω)) =
(

eμ0

2π

)2

N̄
∫ T/2

−T/2
dt P (t )

ω2

2π (γ (t )v(t ))2

(
K1

(
d

ω

γ (t )v(t )

))2

. (F5)
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In particular,

SByBy (ω) = 1

T
(E [Ft [By](ω)]2 + VarBy (ω)) (F6)

is the power spectral density. Our result shows that the average
spectrum is not changed by the fluctuation but that there is just
a noise floor that is homogeneous for frequencies ω � γ v/d
and falls off quickly for ω � γ v/d . For ω � γ v/d , we find

VarBy (ω) =
(

eμ0

2πd

)2 N̄

2π
. (F7)

Furthermore, from Eq. (F4), we obtain

Cov(Ft [By](ω),Ft [By](ω′))

=
(

eμ0

2πd

)2 N̄

2π

∫ T/2

−T/2
dt P (t )ei(ω−ω′ )t . (F8)

We can calculate the temporal auto covariance with the two-
point Fourier transform of Eq. (F4), with which we find

Cov(By(t ), By(t ′)) =
(

eμ0

2πd

)2 I (t )

e
δ(t − t ′)�[− 1

2 , 1
2 ]

(
t

T

)
.

(F9)

We find that we are dealing with delta-correlated noise. Intro-
ducing a frequency cutoff such that δ(t − t ′) → � f , we find

Var(By(t )) =
(

μ0

2πd

)2

eI (t )� f . (F10)

This implies Var(By(t ))/E [By(t )]2 = e� f /I (t ), which is the
signature of shot noise. Equating 1/� f with the timescale of
the interaction of electrons and quantum system d/γ v, we find
that the noise-to-signal ratio VarBy (t )/E [By(t )]2 is small if

γ ve

I (t )d
� 1. (F11)

The condition in Eq. (F11) must be fulfilled to obtain a con-
tinuous driving signal with small noise. The factor d/γ v can
be identified as the inverse autocorrelation time τc as it is the
inverse of the frequency scale on which the autocovariance
in Eq. (F4) decays. Thus, the condition in Eq. (F11) simpli-
fies to Iminτc/e � 1, where Imin is the minimal value of the
modulated current. This implies that a continuous signal with
small noise is ensured if there are many electrons passing the
quantum system per autocorrelation time. Assuming a kinetic
energy of 18 keV and a minimal current of Imin = 20 μA, we
obtain a required distance of the quantum system to the center
of the beamline of d � 600 nm. Note that this condition is
not a general limit of the mechanism we propose but only of
the applicability of the approximation of a continuous driving
signal with small noise. If the condition is not fulfilled, then a
different model must to be chosen. In the case of quantum
systems being driven by the magnetic field of single well-
separated electrons, we simulate the time evolution of the state
of the quantum system for each electron separately; details can
be found below in Appendix M.

APPENDIX G: THE AVERAGED MAGNETIC FIELD SEEN
BY THE QUANTUM SYSTEM

In the following Appendix, we assume that the distance of
the quantum system to the center of beam d is much smaller

than the wavelength of the beam modulation λ0 = 2πv/ω0

and that the waist w of the beam is much smaller than d . Based
on the magnetic field due to a single electron in Eq. (D1),
the magnetic field induced by an infinitesimal segment of a
one-dimensional beam can be written as

E [d �Bj (0, t )] = μ0γ I (z, t )dz′

4π

⎡
⎣ y

−x
0

⎤
⎦ 1

(r2
⊥ + γ 2z2)3/2

. (G1)

Then, for the whole beam, we write

E [ �Bj (0, t )] =
∫

E [d �Bj (0, t )]

=
∫ ∞

−∞
dz

μ0I (z, t )

4πγ 2

⎡
⎣ y

−x
0

⎤
⎦ 1

(r2
⊥/γ 2 + z2)3/2

. (G2)

The integrand is localized to a region of length r⊥/γ . If I (z, t )
does not change significantly on this length scale, we can
approximate

E [ �Bj (0, t )] →
∫ ∞

−∞
dz

μ0I (z, t )

4πγ 2

⎡
⎣ y

−x
0

⎤
⎦2γ 2

r2
⊥

δ(z)

= μ0I (0, t )

2πr2
⊥

⎡
⎣ y

−x
0

⎤
⎦. (G3)

For the current of the specific case of the Klystron beam, we
have the Fourier decomposition

I (z, t ) =
[

I0 +
∞∑

n=1

Inω0 (z) cos

(
nω0

(
t − (z − z0)

v0

))]
,

(G4)
where Inω0 (z) = 2I0Jn(n rb(z)) was defined above. Restrict-
ing our considerations to the Fourier component at the base
frequency ω0/2π , from the condition that I (z, t ) does not
change significantly on the length scale r⊥/γ , we obtain the
conditions r⊥ � γ λ0 = 2πγ v0/ω0 and

r⊥/γ � J1(rb(z))

dJ1(rb(z))/dz
= J1(rb(z))

J ′
1(rb(z))drb(z)/dz

. (G5)

For the bunching parameter rb(z) � 1, we have
J1(rb)/J ′

1(rb) ∼ rb and the second condition becomes
r⊥ � γ l .

Therefore, we consider a nondivergent beam with a Gaus-
sian profile je(�r, t ) = ẑ2I (t ) exp(−2|�r⊥ − �r⊥,0|2/w2)/(πw2).
je(�r) is normalized such that I (t ) is the average current ob-
tained by integrating the charge density over the x-y plane,
and �r⊥,0 is the position of the beam’s center, i.e., |�r⊥,0| = d .
The parameter w is the waist radius of the beam such that the
beam has a 1/e2-diameter of 2w. Under the conditions above,
we obtain

E [ �B(t )] = μ0I (t )

π2w2

∫
d2r⊥

⎡
⎣ y

−x
0

⎤
⎦e− 2|�r⊥−�r⊥,0 |2

w2

r2
⊥

. (G6)

Equation (G6) gives the general result for distances to the
beam d � λ. If additionally d > 2w holds, one can easily
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verify that the magnetic field strength of a Gaussian beam can
be well approximated by that of an infinitely thin beam:

E [ �B(t )] = μ0I (t )

2πd2

⎡
⎣ y

−x
0

⎤
⎦. (G7)

A plot demonstrating this is shown in Fig. 11.

APPENDIX H: THE OPTICAL BLOCH EQUATIONS

To derive the description of the quantum system, we start
from the interaction Hamiltonian in the Coulomb gauge

Ĥint = −�μ · �B, (H1)

where �B(t ) = (Bx(t ), By(t ), Bz(t )) and �μ = �μL + �μS + �μI ,
where �μL = −μBgL �L/h̄, �μS = −μBgS �S/h̄ and �μI =
μN gI �I/h̄. μB = eh̄/(2me) is the Bohr magneton,
gL = 1 − me/mn ≈ 1 is the orbital gyromagnetic ratio,
gS ≈ 2 is the spin gyromagnetic ratio, μN = eh̄/(2mp) is the
nuclear magneton, and gI is the total nuclear gyromagnetic
ratio.

The quantum system is considered as a two-level sys-
tem with the free Hamiltonian H0 = h̄ω0σz/2. For the time
evolution of the density matrix ρ, we consider the Lindblad

FIG. 11. The time-averaged magnetic field strength due to an
electron beam with an averaged current of 20 μA as a function of
the distance x in units of the waist w from the beam’s center (y = 0)
for a Gaussian (blue) and an infinitely thin (orange) electron beam.

equation

∂tρ = 1

ih̄
[Ĥ0 + Ĥint, ρ] + 


(
L̂ρL̂† − 1

2
L̂†L̂ρ − 1

2
ρL̂†L̂

)
,

(H2)

with the Lindblad operator L̂ = |g〉〈e| representing the spon-
taneous emission into the radiation field corresponding to the
natural linewidth of the transition. We obtain

⎛
⎜⎜⎝ih̄

d

dt
−

⎡
⎢⎢⎣

h̄ω0 − ih̄ 

2 0 −T ∗

ge T ∗
ge

0 −h̄ω0 − ih̄ 

2 Tge −Tge

−Tge T ∗
ge −ih̄
 0

Tge −T ∗
ge ih̄
 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦ = 0, (H3)

where Tge = 〈g|Hint|e〉 is the time-dependent transition moment from the excited to the ground state. With the transformation
ρ̃eg = ρegeiω0t , ρ̃ge = ρgee−iω0t , ρ̃ee = ρee, and ρ̃gg = ρgg, we find⎛

⎜⎜⎝ih̄
d

dt
−

⎡
⎢⎢⎣

−ih̄ 

2 0 −T ∗

geeiω0t T ∗
geeiω0t

0 −ih̄ 

2 Tgee−iω0t −Tgee−iω0t

−Tgee−iω0t T ∗
geeiω0t −ih̄
 0

Tgee−iω0t −T ∗
geeiω0t ih̄
 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ = 0. (H4)

This equation corresponds to the case that the coherence time is given as T2 = 2T1 = 2/
, which can be seen by the term 
/2
appearing in the components of the matrix operator governing the decay of the off-diagonal elements of the density matrix. The
generalization to general T2 becomes (see Sec. 4 of Ref. [58] and set γa = 
1, γb = 0, and γph = 
2 − 
1/2 and taking into
account that the upper level decays into the lower level leading to Eq. (4.31))⎛

⎜⎜⎝ih̄
d

dt
−

⎡
⎢⎢⎣

−ih̄
2 0 −T ∗
geeiω0t T ∗

geeiω0t

0 −ih̄
2 Tgee−iω0t −Tgee−iω0t

−Tgee−iω0t T ∗
geeiω0t −ih̄
1 0

Tgee−iω0t −T ∗
geeiω0t ih̄
1 0

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ = 0, (H5)

where 
 j = 1/Tj and j ∈ {1, 2}. With Bi(t ) =∑n Bi,nω0 cos(nω0t + φM ), we can consider on-resonance driving and use the
rotating wave approximation to find⎛

⎜⎝ d

dt
−

⎡
⎢⎣

−
2 0 −i�/2 i�/2
0 −
2 i�/2 −i�

−i�/2 i�/2 −
1 0
i�/2 −i�/2 
1 0

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ = 0, (H6)
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where we define the Rabi frequency as

� = −〈e| �μ|g〉 · �Bω0/h̄, (H7)

where �Bω0 = (Bx,ω0 ,By,ω0 ,Bz,ω0 ).
The finite spectral linewidth of the electromagnetic near field created by the electron beam will influence the evolution of

the quantum system. For the interaction of atoms with laser light, this has been investigated in Refs. [59–63]. For the case
of a modulated current with small fluctuations relative to the mean (e.g., shot noise, modulation phase noise), the result can
immediately be applied due to the equivalence of the interaction Hamiltonian. With the resonance condition, the rotating wave
approximation leads to the modified optical Bloch equations

0 =

⎛
⎜⎝ d

dt
−

⎡
⎢⎣

−
2 − b 0 −i�/2 i�/2
0 −
2 − b i�/2 −i�/2

−i�/2 i�/2 −
1 0
i�/2 −i�/2 
1 0

⎤
⎥⎦
⎞
⎟⎠
⎡
⎢⎢⎢⎣

ρ̃1
eg

ρ̃−1
ge

ρ̃0
ee

ρ̃0
gg

⎤
⎥⎥⎥⎦ (H8)

for ρ̃k
i j (t ) := 〈ρ̃i j (t ) exp(ikφ(t ))〉ph, which are the components of the quantum system’s density matrix averaged over the phase

noise φ(t ), representing the finite spectral linewidth. The decoherence rate b in Eq. (H8) is related to the full width at half
maximum (FWHM) linewidth δω of the modulation as b = δω/2 as we will show in the following.

1. FWHM linewidth and coherence length

In Ref. [59], the inverse coherence length b is defined via 〈exp(iφ(t )) exp(−iφ(t ′))〉 = exp(−b|t − t ′|). The magnetic field is
given by its Fourier transform as

B(t ) =
∫

d ω

2π
eiωt B̂(ω). (H9)

Therefore, the cross correlation becomes

E [B∗(t )B(t + τ )] =
∫ ∞

−∞
dt B∗(t )B(t + τ ) =

∫ ∞

−∞
dt
∫

d ω

2π
e−iωt B̂(ω)∗

∫
d ω′

2π
eiω′(t+τ )B̂(ω′) =

∫
d ω

2π
eiωτ |B̂(ω)|2. (H10)

If a Lorentzian line shape is given, and

|B̂(ω)|2 ∝ (δω/2)2

(ω0 − ω)2 + (δω/2)2
, (H11)

where δω is the FHWM linewidth in rad/s, we find

E [B∗(t )B(t + τ )] ∝ e− δω
2 τ eiω0τ . (H12)

This implies that the inverse coherence length is b = δω/2.

APPENDIX I: TRANSITION MATRIX ELEMENTS FOR 41K

For potassium-41, we have gS ≈ 2 and gI ≈ −0.000078. Therefore, we will only consider the coupling of the external
magnetic field to the electron spin in the following Appendix. For a hyperfine transition, we can simplify Tge as

Tge = μBgS〈e|�S|g〉 · �B/h̄. (I1)

For the case that the magnetic field has only one nonzero component, e.g., the By component, we can write

Tge = μBgS〈e|Sy|g〉By/h̄. (I2)

Using the y direction as the quantization direction and taking into account that, for the F = 2 hyperfine state and mF = 0 Zeeman
sublevel,

|F = 2, mF = 0〉 =
√

1

2

∣∣∣∣32 ,
1

2

〉∣∣∣∣12 ,−1

2

〉
+
√

1

2

∣∣∣∣32 ,−1

2

〉∣∣∣∣12 ,
1

2

〉
, (I3)

and for the F = 1 and mF = 0,

|F = 1, mF = 0〉 =
√

1

2

∣∣∣∣32 ,
1

2

〉∣∣∣∣12 ,−1

2

〉
−
√

1

2

∣∣∣∣32 ,−1

2

〉∣∣∣∣12 ,
1

2

〉
, (I4)
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we obtain

Tge = μBBy

h̄
〈F = 2, mF = 0|gLLy + gSSy|F = 1, mF = 0〉

= μBgSBy

h̄
〈F = 2, mF = 0|Sy

(√
1

2

∣∣∣∣32 ,
1

2

〉∣∣∣∣12 ,−1

2

〉
−
√

1

2

∣∣∣∣32 ,−1

2

〉∣∣∣∣12 ,
1

2

〉)
= −μBgSBy

2
, (I5)

and T̃ge/h̄ = −e−iω0t gSμBBy/(2h̄) ≈ −e−iω0t eBy/(2me), where e is the unit charge and me is the electron mass. For the Rabi
frequency, we thus find

� ≈ gSμBBy

2h̄
≈ eBy

2me
. (I6)

For the case of d > 2w, the magnetic field can be approximated as that of an infinitely thin beam, and with Eqs. (C7), (G7), and
(A3), we obtain

� ≈ √Pe↔g
Iω0

e
, (I7)

where
√

Pe↔g = re/d and re = μ0e2/(4πme) is the classical electron radius.

APPENDIX J: TRANSITION MATRIX ELEMENTS FOR NV− CENTERS

The transition between the 3A2 ground-state magnetic sublevels ms = 0 and ms = ±1 is a mutual polarization of two half-
filled molecular orbitals. However, the spin triplet ms = 0 and ms = ±1 can be described as an effective single spin-1 system
with the coupling to an external magnetic field [25,64]:

Hint = gSμB �S · �B/h̄. (J1)

We consider the x direction as the quantization direction. The spin operator �S = (Sx, Sy, Sz ) acts on the fine-structure sublevels
such that Sx|ms〉 = h̄ms|ms〉, and for S± = Sy ± iSz we have

S±|ms〉 = h̄
√

2 − ms(ms ± 1)|ms ± 1〉. (J2)

We consider the magnetic field oriented in the y direction. Then,

Tge = gSμBBy

2h̄
〈±1|(S+ + S−)|0〉 = gSμBBy√

2
(J3)

and T̃ge = e−iω0t gSμBBy/
√

2.

APPENDIX K: THE OPTICAL BLOCH EQUATIONS WITH SHOT NOISE

We start with the optical Bloch equations before the rotating frame transformation and neglecting damping:

d

dt

⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦ = −i

⎡
⎢⎣

ω0 0 −Tge/h̄ Tge/h̄
0 −ω0 Tge/h̄ −Tge/h̄

−Tge/h̄ Tge/h̄ 0 0
Tge/h̄ −Tge/h̄ 0 0

⎤
⎥⎦
⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦. (K1)

For the sake of simplicity, we assume real transition matrix elements, that is, Tge/h̄ = T ∗
ge/h̄ (phases can be absorbed into the

components of the density matrix). We restrict our considerations to the case of d > 2w such that the magnetic field affecting
the quantum system can be approximated as that of a one-dimensional beam as given in Eq. (G7) and we assume y = 0 and
x = −d . Furthermore, we consider the situation where d/γ v is much smaller than all timescales under consideration, such that
we can approximate the average field as Eq. (E10) and its covariance as Eq. (F10). Here, we only consider the example of the
potassium atoms as this corresponds to small fluctuations around the mean. Then, from Eq. (I5), we have Tge/h̄ = −eBy/(2me)
and E [Tge]/h̄ = −eμ0I (t )/(4πmer⊥) = −reI (t )/(er⊥).

We can write Eq. (K1) as

u̇ = (B0 + αB1(t, ξ ))u, (K2)
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where u = (ρeg(t ), ρge(t ), ρee(t ), ρgg(t )) and

B0 = iω0

⎡
⎢⎣

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦, B1 = i

Tge

h̄α
M, and M =

⎡
⎢⎣

0 0 1 −1
0 0 −1 1
1 −1 0 0

−1 1 0 0

⎤
⎥⎦. (K3)

α is a parameter estimating the magnitude of fluctuations, which in our case implies

α ∼ Tge(t, ξ )/h̄ − E [Tge(t, ξ )]/h̄. (K4)

With Eq. (F10) and the frequency scale � f ∼ γ v/d , this equation implies

α ∼ e

2me

√
maxt [Var(By(t, ξ ))] ∼ e2μ0

4πmed

√
Imax

e

γ v

d
. (K5)

In the following, we will derive an ordinary linear differential equation for the expectation value of the vector of components of
the density matrix u given in Ref. [65]. To this end, we must assume that ατc � 1, where τc is the autocorrelation time of the
magnetic field. If this condition is fulfilled, then the ensemble average of u fulfills the integro-differential equation (see Sec. 12
of Ref. [65])

d

dt
E [u(t )] = (K0 + αK1(t ) + α2K2(t ))E [u(t )], (K6)

where K0 = B0,

K1(t ) = E [B1(t, ξ )] = i
E [Tge]

h̄α
M, (K7)

K2(t ) =
∫ t

0
dt ′ 〈〈B1(t, ξ )Y(t |t ′)B1(t ′, ξ )〉〉Y(t ′|t ), (K8)

where we consider times much larger than the correlation time τc and the matrix Y(t, t ′) is the time-evolution operator for the
differential equation

d

dt
E [u(t )] = (K0 + αK1(t ))E [u(t )] = (B0 + αE [B1(t, ξ )])E [u(t )]. (K9)

〈〈...〉〉 denotes the cumulant, and therefore

〈〈B1(t, ξ )Y(t |t ′)B1(t ′, ξ )〉〉 = E [B1(t, ξ )Y(t |t ′)B1(t ′, ξ )] − E [B1(t, ξ )]Y(t |t ′)E [B1(t ′, ξ )]

= − 1

(h̄α)2
(E [Tge(t )Tge(t ′)] − E [Tge(t )]E [Tge(t ′)])M · Y(t |t ′) · M

= − 1

(h̄α)2
Cov(Tge(t ), Tge(t ′))M · Y(t |t ′) · M. (K10)

On the timescale of ω0, the driving Tge can be assumed to be delta correlated. In particular, for 1/ω0 � τc, we can set
Cov(Tge(t ), Tge(t ′)) = h̄2aI (t )I−1

0 δ(t − t ′) based on Eq. (F9), where a = (e2μ0)2I0/((4πmed )2e) = PI0/e for the case of potas-
sium atoms. As Y(t |t ) = I, we obtain

〈〈B1(t, ξ )Y(t |t ′)B1(t ′, ξ )〉〉 = −aI (t )

α2I0
δ(t − t ′) M · M (K11)

and

α2K2(t ) = −aI (t )

I0

⎡
⎢⎣

1 −1 0 0
−1 1 0 0

0 0 1 −1
0 0 −1 1

⎤
⎥⎦. (K12)

Finally,

d

dt
E

⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

−iω0 − aI (t )
I0

aI (t )
I0

iE [Tge]/h̄ −iE [Tge]/h̄
aI (t )

I0
iω0 − aI (t )

I0
−iE [Tge]/h̄ iE [Tge]/h̄

iE [Tge]/h̄ −iE [Tge]/h̄ − aI (t )
I0

aI (t )
I0

−iE [Tge]/h̄ iE [Tge]/h̄ aI (t )
I0

− aI (t )
I0

⎤
⎥⎥⎥⎦E

⎡
⎢⎣

ρeg

ρge

ρee

ρgg

⎤
⎥⎦. (K13)
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Taking into account that I (t ) has a spectrum with distinct lines and a large spacing between spectral lines ω0, the transformation
to the rotating frame, the rotating wave approximation (RWA), and averaging the damping lead to

d

dt
E

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦ =

⎡
⎢⎣

−a aI2ω0/(2I0) −i�/2 i�/2
aI2ω0/(2I0) −a i�/2 −i�/2

−i�/2 i�/2 −a a
i�/2 −i�/2 a −a

⎤
⎥⎦E

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦

= 1

e

⎡
⎢⎢⎣

−PI0 PI2ω0/2 −i
√

PIω0/2 i
√

PIω0/2
PI2ω0/2 −PI0 i

√
PIω0/2 −i

√
PIω0/2

−i
√

PIω0/2 i
√

PIω0/2 −P P
i
√

PIω0/2 −i
√

PIω0/2 P −P

⎤
⎥⎥⎦E

⎡
⎢⎣

ρ̃eg

ρ̃ge

ρ̃ee

ρ̃gg

⎤
⎥⎦, (K14)

where the Rabi frequency � = reIω0/(ed ) as defined in
Eq. (I6), and Inω0 = 2I0Jn(nrb(z)) is the Fourier coefficient of
the modulation at the base frequency [see Eq. (C7)].

We find that shot noise leads to additional decoherence
terms and an additional damping term proportional to a in the
optical Bloch equations. If we want to ignore this damping,
then we have to fulfill the condition

2a =
(

re

d

)2 2I0

e
� � = re

d

Iω0

e
, (K15)

which leads to the general condition

d � 2reI0

Iω0

. (K16)

Since re ∼ 10−15 m, the above condition is always fulfilled in
the context of this paper.

For the method we used above to be applicable, we had to
assume that ατc � 1, where we identified τc ∼ d/(γ v). We
obtain

αcτc ∼ λeαFS

2π

√
Imax

e dγ v
, (K17)

from which we find the condition for the distance:

d �
(

λeαFS

2π

)2 Imax

eγ v
. (K18)

For a kinetic energy of 18 keV and an average current of
I0 = 100 μA, we find the right-hand side of this condition
to be on the order of 10−22 m. Therefore, this condition can
be fulfilled for the situation that we consider. Since a larger
current leads to a reduced noise-to-signal ratio of the magnetic
field, it seems counterintuitive that the minimal distance be-
tween beam line and quantum system grows with the current.
However, the above condition only applies to the method
presented in Ref. [65].

APPENDIX L: DRIVING GROUND-STATE HYPERFINE
TRANSITIONS IN ALKALI ATOMS

We assume that the atom is in the hyperfine ground state
F =1, mF =0 and is not spatially moving on the timescale
of the proposed experiment. Figure 12 plots the simulated
hyperfine state response while applying an intensity modu-
lated electron beam with a waist radius of w = 50 μm and
a current of I = 100 μA at a distance of d = 5w = 250 μm
(beam center to atom), which is modulated on resonance with

the hyperfine frequency and bunching parameter rb = 0.5 and
δEkin/Ekin = 1/20 corresponding to l ∼ 1 m. At a kinetic en-
ergy of 18 keV, a frequency of 254 MHz corresponds to λ0

of about 30 cm. We find that the wave packet is much smaller
than λ0 in the interaction region if the initial size of the wave
packet is much larger than h̄l/(2mevλ0) ∼ 10−12 m.

We evaluate the time evolution of the atomic state based
on the modified optical Bloch Eq. (H8) in MATHEMATICA

using NDSolve. Furthermore, the condition d � λ0 that we
introduced above is fulfilled and we can use Eq. (G6) for
the description of the expected field strength. Several Rabi
oscillations of the hyperfine states are clearly visible in the
plot. The source of the decay of coherence is technical noise
in the electron beam source, which we assumed to lead to a
spectral linewidth of the beam modulation of about 25 Hz. We
set b = δω/2 = π × 25 Hz. Furthermore, for the transition
under consideration, we have 
1 = 2
2 � b and we neglect

FIG. 12. The blue curve shows the time evolution of the inver-
sion ρee − ρgg. The center of the Gaussian electron beam of waist
radius w = 50 μm is at a distance of 5w from the atom. We consider
an average current I0 = 100 μA and bunching parameter rb = 0.5
corresponding to a resonant current modulation at the base fre-
quency ω0/2π of amplitude 2I0J1(rb) ∼ 50 μA. The resulting Rabi
frequency is � ≈ 2π × 540 Hz. The decay of coherence is due to
the assumed FWHM linewidth of the electron beam modulation of
25 Hz. We calculated (orange line) the ratio of atoms nrem whose
state is altered by incoherent scattering of single electrons assuming
a remaining current density of 0.1% of the peak value at the position
of the atoms as a conservative estimate. After 20 ms, less than 1%
of the atoms undergo an incoherent scattering interaction with the
electrons.
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1 and 
2 in the simulation. Systematic effects such as transi-
tion changes due to inelastic single electron atom interactions,
which could also change the electronic state of the atoms, hap-
pen on a much longer timescale (see Fig. 12, orange line). The
total scattering cross section (causing ionization, elastic, and
inelastic scattering) for potassium atoms exposed to an 18 keV
electron beam is σtot ≈ 1.50 × 10−17cm2, extrapolated from
Ref. [50].

We now estimate the Doppler shift experienced by atoms
in a normal cold atom experiment. If the velocity of the
atoms �va is small compared to the speed of the electron
beam modulation v, the observed frequency shift of a moving
atom compared to a nonmoving atom can be approximated by
� f = �va f0/ve. Potassium atoms at a temperature of 40 μK
move with a most probable velocity of 0.12 m/s and will
experience an intensity modulated electron beam (velocity of
the electron v = c/4 ) of frequency 254 MHz in the lab frame
with a detuning of around 0.02 Hz, which is negligible.

APPENDIX M: NV CENTERS IN NANODIAMONDS

In the following, we will consider nitrogen vacancy (NV)
centers in nanodiamonds as an example. In this situation,
the magnetic near field consists of distinct spikes due to the
well-separated electrons. Therefore, using the expected value
for the magnetic field in the optical Bloch equations would not
be appropriate and we simulate the effect of the magnetic field
of each electron separately. In particular, we will focus on the
transition between the 3A2 ground-state magnetic sublevels
ms = 0 and ms = 1 of the NV− charge state, which are split by
ω0 = 2.87 GHz [52]. The ms = −1 sublevel is well separated
from the ms = 1 sublevel by ∼4 MHz [25] such that the tran-
sition from ms = 0 to ms = 1 can be individually addressed.
We consider the z direction as the quantization direction,
with the magnetic field oriented in the x direction. Then,
we find for the transition matrix elements T0,1 = gSμBBx/

√
2

(see Appendix J). This transition exhibits coherence times
T2 from 600 μs [66] up to 600 ms ([26] using a dynamical
decoupling pulse sequence), which is the main decay channel
for the Rabi oscillations of the NV− center. We set T1 = 6 ms,
T2 = 3 ms here following [26]. As the electron beam source,
we consider a standard scanning electron microscope gen-
erating a beam waist of w = 10 nm, beam energy of 2 keV,
a probe current of 50 nA (corresponding to ∼100 electrons
per modulation period), and a bunching parameter rb ≈ 0.5
(l ∼ 30 cm and δEkin/Ekin = 1/20) directed next to an NV−

center at a distance of d = 7w = 70 nm, for example, embed-
ded in a freestanding nanostructure [24]. We assume that the
beam is modulated by velocity modulation and bunching with
a spectral modulation linewidth of 10−7ω0/(2π ) ∼ 300 Hz.
Note that, for the above parameters, the wave packet is much
smaller than λ0 in the interaction region if the initial size of the
wave packet is much larger than 2mevλ0/(h̄l ) ∼ 6 × 10−12 m.

The result of a simulation of the expected level response is
given in Fig. 13. To reduce unwanted systematic effects due
to electron scattering on the diamond structure [51], we need
to ensure that the electron beam intensity at the position of
the NV center is reduced by a factor of 10−6 compared to
its maximum. At this intensity, which is easily fulfilled for
a Gaussian beam at 5w, on average less than one electron

FIG. 13. Time evolution of the inversion for the transition ms =
0 → ms = 1 in the 3A2-state of a NV− center at a distance of
d = 70 nm from a beam of waist 10 nm, current 50 nA, kinetic
energy 2 keV, and bunching parameter rb = 0.5 (l = 30 mm, and
δEkin/Ekin = 1/20). We set T1 = 6 ms, T2 = 3 ms, and the FWHM
linewidth of the electron beam modulation b/π = 300 Hz.

scatters within a radius of 1 nm next to the NV center every
inverse Rabi frequency.

To produce the data for Fig. 13, electrons are generated
consecutively by a random process. We modulate the kinetic
energy of the particles and calculate the propagation over
the drift distance l to obtain the current modulation. The
modulation of kinetic energy is sinusoidal Ekin(t ) = Ekin,0 +
�Ekin sin(ω0t + φ(ξ, t )), where φ(ξ, t ) is a random process
incorporating the finite linewidth of the driving. In particular,
dφ(ξ, t )/dt = F (ξ, t ), where E [F (ξ, t ), F (ξ, t ′)] = 2bδ(t −
t ′) which implies that for each temporal interval [a, b], we
have

Var(φ(ξ, a) − φ(ξ, b)) = 2b|a − b|. (M1)

Based on this variance and a vanishing average, the phase
noise was implemented as a random Gaussian process.

An interaction region of length 5d/(γ v) was associated
with each electron. Then, the optical Bloch equations in the
rotating frame were solved consecutively for each interac-
tion of electrons with the NV− center over the interaction
period using the Python ODE solver solve_ivp. For electrons
with overlapping interaction regions (a rare case for these
parameters), the optical Bloch equations were solved together.
Between the interaction regions, the analytical solution for the
free time evolution was applied. Finally, the results of 12 runs
were averaged to obtain an average over different realizations
of phase noise.

Possible path to nanoscale resolution

Electric dipole transitions from the 3A2 ground state of
the NV− center have a transition energy �1.945 eV. To en-
sure a coherent evolution of the quantum system, we want
to keep the probability for such transitions during the time
needed for one Rabi transition suppressed. At the same
time, we want to approach the NV center as closely as
possible to maximize the spatial resolution. One option to
approach both requirements is to decrease the kinetic energy
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(a) (b) (c)

FIG. 14. (a) Electron beam (red arrow) close to a 1D arrangement of NV− centers (blue diamonds) which could be created from nm-
sized diamonds with single NV centers [70], e.g., deposited on a graphene sheet (black rectangle). (b) Rabi frequency per beam current
as a function of position along a the 1D arrangement of NV− centers for a temporally modulated beam with bunching parameter rb = 0.5
(blue curve) and two beams whose distance to the 1D arrangement varies with the resonance frequency, transversely to the 1D arrangement
as (x, y) = (d[3 + 2 cos(ω0t )], 0) (orange curve) and on a circle section as (x, y) = (d[1 + sin2(ω0t )/2], 2d sin(ω0t )) (green). The minimal
distance to the arrangement is d = 15 nm. We assumed w = 5 nm and a kinetic energy of 200 eV. (c) Probability for the electron beam not to
excite the NV− center at the electric dipole transition line of 1.945 eV during one Rabi flop for the three different beam configurations. The
effect was averaged over the Gaussian profile of the electron beam.

of the beam electrons while keeping the current constant (see
Appendix B for details). Assuming a kinetic energy of 200 eV
and a beam waist radius of w = 5 nm (corresponding to
∼6 nm beam diameter FWHM) [67,68], a distance of d =
15 nm to the NV − could be achievable. This value for the ki-
netic energy implies an average velocity of the beam electrons
of v ∼ 8.4 × 106 m/s which is more than one order below
the speed of light in diamond at optical frequencies (n ∼ 2.4
for the refractive index of diamond in the optical regime).
Due to the distance dependence of electron energy loss to the
diamond ∝K0(2ωr⊥/v) [10], we find that the energy trans-
fer to the diamond is strongly suppressed for all transition
frequencies near and above the fundamental absorption edge
of diamond (at ∼5 eV) for distances to the diamond surface
r⊥ � 5 nm [69].

Due to the nonrelativistic velocity of the electrons and
the negligibly small imaginary part for the dielectric function
of diamond in the optical regime [69], we approximate the
relation between the external electric field and the effective
matter-assisted electric field in the diamond by using the re-
lation for the case of a static charge in front of a dielectric
[43] E int = 2E ext/(n2 + 1) ∼ E ext/3 [71]. The probability for
an incoherent transition of the electric dipole moment will be
reduced accordingly by the factor [2/(n2 + 1)]2 in com-

parison to the probability for a transition with the same
electric dipole moment of a quantum system located in
vacuum.

We find that the probability to excite the energetically
lowest electric dipole transition at 1.945 eV during one Rabi
transition would be less than 2% for a position-modulated
beam [see Fig. 14(c)]. The transition probability decays ex-
ponentially with increasing transition energy in this regime
and higher energetic transitions would be even stronger sup-
pressed.

Then, the distance dependence of the Rabi frequency pro-
vides a pathway toward nanoscale spatial resolution as in
aloof EELS [35]. While a temporal modulation of the beam
leads to a decay as d−1, a much stronger decay can be
achieved by employing oscillations of the beam position to
generate a driving signal. Then the oscillating near field of
a moving beam at the first harmonic and the second har-
monic (twice the modulation frequency) scale effectively as
d−2 and d−3, respectively. At a distance of d = 15 nm to
a one-dimensional array of NV− centers [see Fig. 14(a)],
adjacent NV− centers with a distance of ∼30 nm could be
resolved, in principle [the spatial dependence of the Rabi
frequency shows peaks of width ∼40 nm (FWHM)], see
Fig. 14(b).
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