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Learning quantum Hamiltonians from single-qubit measurements
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In the Hamiltonian-based quantum dynamics, to estimate Hamiltonians from the measured data is a vital topic.
In this work, we propose a recurrent neural network to learn the target Hamiltonians from the temporal records of
single-qubit measurements, which does not require the ground states and only measures single-qubit observables.
It is applicable on both time-independent and time-dependent Hamiltonians and can simultaneously capture the
magnitude and sign of Hamiltonian parameters. Taking the Hamiltonians with the nearest-neighbor interactions
as numerical examples, we trained our recurrent neural networks to learn different types of Hamiltonians with
high accuracy. The study also shows that our method has good robustness against the measurement noise and
decoherence effect. Therefore, it has widespread applications in estimating the parameters of quantum devices
and characterizing the Hamiltonian-based quantum dynamics.
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I. INTRODUCTION

Developing the methods for estimating Hamiltonians has
two important motivations. First, Hamiltonians fully govern
the dynamics of quantum systems, which determines whether
the control operations are highly accurate on these quantum
devices. For instance, quantum circuits are generally realized
through the control pulse techniques [1], which are before-
hand designed and optimized according to the estimated
Hamiltonians. Second, as a branch of quantum process tomog-
raphy [2], estimating Hamiltonians provides an alternative
approach to characterize the performed quantum simulations.
Third, estimating Hamiltonians can be also used to find the
simplified models, which capture the physics of more complex
quantum systems. It has potential applications in accelerat-
ing quantum simulations and gaining physical insight into
the low-energy physics of a system. So far, some methods
have been developed to achieve this purpose, including the
self-learning Monte Carlo method to speed up simulations
[3–7] and renormalization group-inspired machine-learning
approach based on the partition function to optimize the ef-
fective models [8]. Therefore, estimating Hamiltonians is a
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central problem in the quantum platforms [9], quantum con-
trol [10,11], and quantum simulations [12].

In principle, Hamiltonians can be estimated by quantum
state and process tomography by considering the Hamil-
tonians are the generators of the dynamical processes
[2,13,14]. However, this approach requires exponential phys-
ical resources, although many-body Hamiltonians have the
polynomial number of unknown parameters because of the
physical constraints. So far, various methodologies have been
studied for this purpose. For instance, some methods using
Fourier transform or fitting on the temporal records of mea-
surement of some observables also are proposed to estimate
Hamiltonians with few qubits [15–17]. Zhang and Sarvoar
[18,19] proposed an approach for estimating Hamiltonians
based on the limited measurements by the eigensystem re-
alization algorithm (ERA). This method was experimentally
demonstrated on nuclear magnetic resonance quantum proces-
sor [20]. Akira Sone et al. further studied the identifiability
problem of Hamiltonians and the necessary experimental
resources in ERA method [21,22]. Many-body local Hamil-
tonians can be uniquely estimated by a single eigenstate of
Hamiltonians, which also inspires the subsequent research
[23–27]. Recently, a quantum quench method was proposed
to reconstruct a generic many-body local Hamiltonian [28],
which uses pairs of generic initial and final states connected
by the time evolution of Hamiltonians.

Machine learning has obtained great successes in solv-
ing the problems in quantum physics [29–40] such as the
identification of quantum phase transitions [29–31], the
classification of quantum topological phases and quantum
entanglement [32–35], quantum state measurement and to-
mography [36–38]. Recently, machine learning also started
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FIG. 1. Circuit diagram of our neural networks on learning the parameters of Hamiltonians from the temporal records of single-qubit
measurements. We first perform the dynamical evolution e−iHt from the initial state |ψ0〉 (bottom left Bloch sphere). At each moment sτ , we
measure the expectation values of single-qubit Pauli operators (middle Bloch sphere), and they are collected as a vector O(sτ ) fed into the
sth LSTM cell. Lastly, the combination of FC and LSTM neural networks for time-dependent parameters in Hamiltonians (path A) or an FC
neural network for time-independent parameters in Hamiltonians (path B) follows LSTM cells.

to bring developments in estimating Hamiltonians. Reference
[27] presents the deep neural network to recover 2-local
Hamiltonians from merely 2-local measurements of ground
states. Reference [41] proposes that convolutional neural net-
works can also be used to predict the physical parameters of
Hamiltonians from the ground states. However, these methods
usually require the assumption of the ground states.

In this work, we propose a machine-learning method, re-
current neural network (RNN), to learn Hamiltonians from
single-qubit Pauli measurements on each qubit. The initial
state does not require the ground states of target Hamiltoni-
ans and only single-qubit Pauli observables are measured at
a discrete-time forming the temporal records of single-qubit
measurements, which are fed into RNN. The intuition of this
method is that if the Hamiltonians are identifiable under the
temporal records of single-qubit measurements, then there
exists the underlying rule from single-qubit measurements to
the target Hamiltonians, which can be learned directly from
single-qubit measurements via data-driven machine learning,
although this rule may have complicated or even unknown
functional forms.

II. MACHINE-LEARNING FRAMEWORK

Our machine-learning method is illustrated in Fig. 1. A N-
qubit system starts from the initial state |�0〉 = ∏N

i=1 ⊗|ψ i
0〉

and undergoes a dynamical process governed by the unknown
Hamiltonian,

H =
M∑

m=1

amBm, (1)

where Bm is the tensor product of Pauli matrices I, σx, σy,

and σz, and am is the parameter of Hamiltonians. For single-
qubit Pauli operator P ∈ SP = {σ (i)

k |k = x, y, z, 1 � i � N},
its expectation value is P(t ) = 〈�0|P(t )|�0〉 with P(t ) =
eiHt Pe−iHt . Here, P(t ) = ∑

n=0
intn

n! Pn. P0 = P and Pn =∑M
m=1 am[Bm, Pn−1]. It shows that the temporal records of

single-qubit measurements are polynomial equations of un-
known parameters am’s in Hamiltonians, and the coefficients

of the equations are the expectation values of commute op-
erators between single-qubit observables P and Hamiltonian
terms Bi at the initial state |�0〉 (see Appendix A for de-
tails). If these coefficients are not zeros, the parameters will
participate in the dynamics of single-qubit observables and
it is possible to learn the Hamiltonian from the temporal
records of the expectation values of P. In this situation, we say
that the dynamics of single-qubit observables have nontrivial
initial values. Here, we set |ψ i

0〉 = Rz(π/4)Ry(π/4)|0〉, which
can be prepared from the state |0〉 using rotation operations
Rz(π/4) and Ry(π/4). It is worth emphasizing that not all the
Hamiltonians can be estimated via this approach, but most
common of Hamiltonians are identifiable under single-qubit
measurements and the initial state |�0〉. More discussions can
be found in Sec. V.

During the dynamical evolution e−iHt , the expectation
values of single-qubit operators σ (i)

x,y,z are measured at a
discrete-time by time interval τ . Total sample points is de-
noted by S and then total sample time is T = Sτ . The temporal
records of single-qubit measurements are collected as a vector,

I = {O(i)
k (sτ )|O(i)

k (sτ ) = Tr
(
ρ(sτ ) · σ

(i)
k

)
,

1 � s � S, k = x, y, z, 1 � i � N}.
(2)

ρ(sτ ) is the density matrix of the system at the moment sτ .
The parameters of Hamiltonians are collected as a vector
H = {am|1 � m � M}. Then we train a neural network frame-
work consisting of long short-term memory (LSTM) and fully
connected (FC) neural networks with generated training data
{I, H}. In this training, the measured data O(sτ ) = {O(i)

k (sτ )}
at moment sτ is fed into the sth LSTM cell. It is worth
emphasizing that the structures for exporting H are differ-
ent for time-dependent and time-independent Hamiltonians.
For time-dependent parameters in Hamiltonians, fS is im-
ported to a composite neural network including LSTM and FC
neural networks (path A). For time-independent parameters
in Hamiltonians, an FC neural network directly follows the
LSTM cells. Here, if we only use one LSTM for learning
the input and an FC neural network for generating the output
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for time-dependent Hamiltonians, the time correlation in the
output would be lost and the prediction accuracy will be low.

The objective function for one training sample is the mean
square error (MSE) between Hpred and Htrue as follows:

L0 = 1

M

M∑

m=1

(Htrue
m − Hpred

m )2. (3)

In our training networks, the input is the dynamics of single-
qubit measurements I, the output is the target Hamiltonian
H, and the optimization variables are the parameters of neu-
ral networks (weights W and bias b). We generate a lot of
training samples and use Adam optimization algorithm to
minimize L(W, b) = ∑Mt

i=1 Li
0(W, b) with the number of train-

ing samples Mt . Adam is one of the-state-of-the-art stochastic
gradient descent algorithm (SGD), which provides the ana-
lytical gradient in the minimization [42]. This algorithm uses
momentum to suppress the oscillation, and by analyzing the
gradient of the parameters, adaptively adjusts the learning
rate to accelerate the convergence. Therefore, the convergence
of this algorithm is faster than that of the traditional SGD
algorithm in dealing with nonconvex optimization problems,
and the solutions of Adam are also better than traditional
SGD. After the training, we can predict the unknown Hamil-
tonian parameters H from single-qubit measurements I. Here,
the definition of the cosine proximity function is adopted to
estimate the accuracy of the prediction Hpred by

F (Hpred, H) = (Hpred · H)

(||Hpred|| · ||H||) . (4)

More details about our NN can be found in Appendices B
and C. Next, to demonstrate the feasibility of our machine-
learning method, we consider a special class of Hamiltonians
with the prior physical knowledge of the system and train
neural networks to learn them.

III. EXAMPLES FOR LEARNING HAMILTONIANS

As the demonstrations of applications, we first train RNN
framework for estimating time-independent Hamiltonians.
First one is the Ising Hamiltonian HN

XY with the nearest-
neighbor XY interactions placed in a static magnetic field
around z axis as follows:

HN
XY =

N∑

i=1

a(i)
z σ (i)

z +
N−1∑

j=1

J ( j)(σ ( j)
x σ ( j+1)

x + σ ( j)
y σ ( j+1)

y ). (5)

Second one is the more general Ising Hamiltonian HN
XYZ with

the anisotropic interactions in three directions,

HN
XYZ =

N∑

i=1

a(i)
z σ (i)

z +
N−1∑

i=1

(J (i)
x σ (i)

x σ (i+1)
x +

J (i)
y σ (i)

y σ (i+1)
y + J (i)

z σ (i)
z σ (i+1)

z ).

(6)

a(i)
z and J ( j)

x,y,z are the parameter of magnetic field on jth qubit
and the coupling values between the nearest-neighbor qubits,
respectively. Suppose a(i)

z ∈ [−J0, J0] and J ( j)
x,y,z ∈ [−J0, J0]. J0

is a global factor, which is set to 1 in our training. In the train-
ing, the expectation values of single-qubit observables σ (i)

x,y,z

are measured at a discrete-time separated by τ = 0.02π/J0 as
the input data. The reason for choosing such a time interval
can be found in the following section. For Eq. (5), we choose
N = 7, S = 25, and generate 100 000 training data {I, H} for
training the neural networks. For Eq. (6), we choose N = 6
and S = 75; and 200 000 training data {I, H} are generated
for training the neural networks. After finishing the training of
RNN on the training data, our RNN has the ability to estimate
the unknown Hamiltonians from single-qubit measurements
with high accuracy. Five thousand test data are generated to
compute the similarity Ftest between the actual parameters
Htrue and the predicted outcome Hpred. The averaged similari-
ties on the whole test data are over 0.99 for H7

XY and 0.98 for
H6

XYZ. Figure 2(a) gives our results, including Ltest, Ltest, and
Ftest as a function of epochs, and the comparison between the
actual value J (1)

test and the prediction J (1)
pred for 100 randomly test

data at the beginning and end.
Most of the existing methods are designed for the time-

independent Hamiltonians and they are not directly applicable
to time-dependent Hamiltonians. Our proposed RNN method
presented in the above can also be used to learn time-
dependent Hamiltonians. As a numerical demonstration, we
consider a 3-qubit Hamiltonian H3

XY(t ),

H3
XY(t ) =

3∑

i=1

a(i)
z (t )σ (i)

z +
2∑

j=1

J ( j)(σ ( j)
x σ ( j+1)

x + σ ( j)
y σ ( j+1)

y ).

Here, we take a(i)
z (t ) being a random combination of W

Fourier series as an example. Actually, our method also works
for other types of time-dependent Hamiltonians. a(i)

z (t ) =
1

W

∑W
w=1 Fwcos(νwt + φw ) and Ji ∈ [−J0, J0] is static in

time. Fw ∈ [−J0, J0], νw ∈ [−J0, J0], and φw ∈ [0, 2π ] are
the amplitude, frequency, and phase of wth series, re-
spectively. In this case, we set W = 10. The used neural
network is presented in Fig. 1. The expectation values of
single-qubit observables also are measured at a discrete
time separated by τ = 0.02π/J0, and they are collected
as a vector I = {O(i)

k (sτ )|O(i)
k (sτ ) = Tr(ρ(sτ ) · σ

(i)
k ), 1 � s �

300, k = x, y, z, and 1 � i � 3}. The parameters of H3
XY(t )

are collected as a vector H = {a(i)
z (sτ ), J ( j)|1 � s � 300, 1 �

i � 3, 1 � j � 2}. Our training data also consists of 100 000
training data {I, H}. After training RNN to convergence on
these training data, it can be used to learn the temporal behav-
ior of a(i)

z (t ) from only the measurements I. Figure 3 presents
the temporal behavior of the predicted values (solid lines) and
its comparison with the actual values (dotted lines) for time-
dependent parameters a(i)

z (t ). It shows that a good agreement
between the predicted and real results has been achieved.

IV. ROBUSTNESS OF PROTOCOL

It is known that learning from local observables may not
yield good Hamiltonian models. For instance, the temporal
records of single-qubit measurements inevitably are influ-
enced by the statistical and environmental noises, and may
these noises deviate the predicted values of RNN from the
ideal ones. This may have undesired implications for the
quantum control applications. For this purpose, we further
numerically study the robustness of our RNN framework in
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FIG. 2. Trained results for 7-qubit Ising Hamiltonian H7
XY (a) and 6-qubit Ising Hamiltonian H6

XYZ (b). The top right corners of panels
respectively present their qubit configurations. The orange and cyan lines show the objective functions Ltrain and Ltest as a function of epochs.
The similarity Ftest between the predicted Hpred and the true Htrue in the test data is also presented with the increase of epochs (middle
subfigures). At the beginning and end of the training, we randomly choose 100 samples and plot the comparison between the predicted
and actual values for the parameters J (1) (left and right subfigures).

learning Hamiltonians under the Gaussian noise and decoher-
ence effect by considering the Hamiltonian H3

XY in Eq. (5).
First, we train RNN frameworks by feeding 100 000 noise-

less training data {I, H} with the sampling points S = 25 and
S = 50, respectively, and then use them (RNN_0noise_25 and
RNN_0noise_50) to learning Hamiltonians from the noisy
test data. Figure 4(a) presents the predicted accuracy as a
function of the noise level ε. RNN_0noise_50 has a better
performance than RNN_0noise_25, but both their predicted
accuracy decrease with the increasing of ε. ε is the standard
deviation of the Gaussian noise. When ε = 0.1, the accuracy
of RNN_0noise_25 decreases to 0.98. To further improve
the robustness of our RNN frameworks under the noise, we
change to train RNN frameworks by feeding noisy training
data under a Gaussian noise with ε = 0.1. Similarly, we use
these models to test the noisy data. The average values of

FIG. 3. The temporal curves of the actual parameters (dotted
lines) and the values learned by RNN (solid lines) for time-dependent
parameters a(i)

z (t ). The predictions of time-independent parame-
ters are J (1)

pred = 0.0464 (J (1)
true = 0.0326) and J (2)

pred = −0.0345 (J (2)
true =

−0.0181).

prediction accuracy as a function of ε also are presented in
Fig. 4(a), which shows a good performance with the similarity
of over 0.99 and the predicted accuracy improves to 0.995
from the previous 0.98 when ε = 0.1. The above simulations
show that training RNN frameworks with the noisy data will
greatly enhance the predicted accuracy and the more sample
points will bring better robustness against the noise.

Second, the total time for measuring the temporal records
may reach or even exceed the coherence time of the experi-
mental devices. Hence, the collected temporal records contain
the decoherence effect, leading to a decrease in the predicted
accuracy. For this purpose, we also numerically study the
performance of our RNN frameworks under the decoherence
effect. Similarly, we respectively use the noiseless and de-
coherence data (τ = 0.02π/J0, S = 10, and Sτ = 3π/J0) to
train two models (RNN_0noise_150 and RNN_T2noise_150)
and then use them to learn Hamiltonians from the decoher-
ence test data. Figure 4(b) shows that the prediction accuracy
will have a significant improvement with the average value
of over 0.99, when using RNN_T2noise_150 to process the

FIG. 4. The numerically simulated results for the robust-
ness. (a) The predicted accuracy of the trained RNN mod-
els (RNN_0noise_25, RNN_10noise_50, RNN_0noise_25, and
RNN_10noise_50) under the influence of Gaussian noise. (b) The
predicted accuracy of trained RNN models (RNN_T2noise_150 and
RNN_0noise_150) under the influence of decoherence effect. The
cyan shadow is that the sampling time is longer than coherence time.
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FIG. 5. Numerical simulations in the discussion. (a) The
achieved accuracy with the different sampling intervals τ ′ and fixed
sampling points S = 25. (b) The achieved accuracy under the differ-
ent number of qubits N and sampling points S. The simulations are
performed for the Hamiltonian H3

XY. The cyan line is drew for the
points with the accuracy of over 0.99.

decoherence test data. Therefore, the learned models via our
method are at least accurate under the measurement error
caused by the statistical and environmental noises. More de-
tails about simulations can be found in Appendix D.

V. DISCUSSIONS

We first analyze the sampling setting in our machine-
learning method. (1) The sampling interval τ should be
traded-off, accounting for the coherence time. On the one
hand, the total sampling time may exceed the coherence time
of qubits if τ is too large, leading to the decrease of the
prediction accuracy. On the other hand, the temporal records
of single-qubit measurements may be hard to distinguish if
τ is too small, also leading to the decrease of the prediction
accuracy. As shown in Fig. 5(a), we train the neural networks
with different sampling interval τ ′ and fixed S = 25. The
result shows that the RNN model cannot be trained to a high
accuracy if τ ′ is too small. (2) The number of total sampling
points is 3NS, where factor 3 is the number of elements σ (i)

x,y,z,
N is the number of qubits, and S is the number of sample
points. In Fig. 5(b), we train the neural networks under dif-
ferent N and S for the Hamiltonian H3

XY. It is shown that S
has a gentle increase with the size of the system for this type
of Hamiltonians. It may be understood from the following
aspect. As long as this Hamiltonian is identifiable under the
chosen initial states and single-qubit observables, it is possible
to learn the Hamiltonians from their temporal records with
finite sampling points. For instance, many-body Hamiltonians
have polynomial parameters. The polynomial sampling points
may be enough to estimate the parameters for many-body
Hamiltonians via machine-learning method.

In our machine-learning method, the nontrivial initial
states are not unique. We choose the product state |�0〉 =
Rx(π/4)Ry(π/4)|0〉⊗n as the initial state considering that
the product states are easy to prepare in the experiments.
Some entangled states can be also used as the initial
states, for instance, we adopt the entangled state |�0〉 =
Rx(π/4)Ry(π/4) |000〉+|111〉√

2
as the initial state and a 3-qubit

Hamiltonian H3
XY as the model to test our method. The trained

results are shown in the Fig. 6. It shows that the predicted val-
ues also match with the test values very well and Ftest = 0.998.

FIG. 6. Trained results for 3-qubit Hamiltonians H3
XY starting

from the initial state |�0〉 = Rx (π/4)Ry(π/4) |000〉+|111〉√
2

.

For many Hamiltonians that could reproduce the same
local dynamics, our method does not learn the right Hamilto-
nians from only single-qubit measurements. Fortunately, most
of the interested Hamiltonian models in quantum simulations,
including but not limit to the examples studied in this paper,
usually have one-to-one mapping because of the physical con-
straints. To extend the applications of our method, we attempt
to learn the systems without any local magnetic orders, the
Kitaev model on the honeycomb lattice, which is the interest-
ing model in quantum spin liquid [43,44]. The corresponding
Hamiltonian can be written as

H6
Kit = J (1)(σ (1)

z σ (2)
z + σ (4)

z σ (5)
z ) + J (2)(σ (2)

y σ (3)
y + σ (5)

y σ (6)
y )

+ J (3)(σ (3)
x σ (4)

x + σ (1)
x σ (6)

x ). (7)

As shown in Fig. 7, the similarity between the predicted
values and the test values remains high Ftest = 0.999, which
means our method has potential applications on the Hamil-
tonian model without any local magnetic orders. For this
Hamiltonian model without any local magnetic terms, our
method also works well. It can be understood in the following.
Although we only measure the single-qubit measurements, the
Hamiltonian parameters will also participate in the dynamics

FIG. 7. Trained results for the 6-qubit Kitaev model on the
honeycomb lattice H6

Kit. The predicted and actual values for the
parameters J (1) of 100 test samples are compared.
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FIG. 8. Trained results for 4-qubit integrable Hamiltonians H4
int (a) and the nonintegrable Hamiltonians H4

nint (b). The objective function
Ltrain and the similarity Ftest are shown. The comparison between the predicted and actual values for the parameters a(1)

x is also presented by
testing 100 samples.

of single-qubit measurements even without local terms due to
the coupling between qubits.

Last, we discuss the differences when applying our method
to the integrable and nonintegrable Hamiltonians [45]. In
the simulation, the considered integrable and nonintegrable
Hamiltonians are written as

H4
int =

4∑

i=1

a(i)
x σ (i)

x +
3∑

j=1

J ( j)σ ( j)
z σ ( j+1)

z , (8)

H4
nint =

4∑

i=1

a(i)
x σ (i)

x +
3∑

j=1

J ( j)
1 σ ( j)

z σ ( j+1)
z +

2∑

j=1

J ( j)
2 σ ( j)

z σ ( j+2)
z .

(9)

The trained results are shown in Fig. 8, including the loss
functions Ltrain and learning accuracy Ftest as a function of
epochs. From these results, there are no big differences in the
aspect of the convergence speed and the learning accuracy,
when applying our method to the integrable and nonintegrable
Hamiltonians.

VI. CONCLUSIONS

We conclude that a composite neural network can be
trained to learn the Hamiltonians from single-qubit mea-
surements, and numerical simulations of up to 7 qubits
have demonstrated its feasibility on time-independent and
time-dependent Hamiltonians. Compared with the existing
methods, this neural network method does not need to pre-
pare the eigenstates of target Hamiltonians and it can learn
all the information of Hamiltonians including the magni-
tude and sign of the parameters. Once the neural network
is successfully trained, it can be directly used to learn
the unknown Hamiltonians from the measured data without
any post-processing. It is a “once for all” advantage. Be-
sides, single-qubit measurements are easy-to-implemented in
current quantum platforms [13,46–49], such as using the dis-
persive readout on superconducting qubits and the ensemble
measurements on nuclear magnetic resonance. Single-qubit
measurements also have the lower readout errors than mul-
tiqubit measurements [50,51]. The high accuracy can be
achieved even under the potential experimental noises, includ-

ing Gaussian noise and decoherence effect. It will bring some
potential applications in performing the tasks of Hamiltonians
identification in the experiments. Our method also has possi-
ble extensions in the future, such as learning the environment
information around the system and simulating the dynamics
of closed and open systems.
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APPENDIX A: DYNAMICS OF SINGLE-QUBIT
MEASUREMENTS

We consider that a quantum system with N qubits starts
from an initial state |�0〉, undergoes a dynamical process
governed by the unknown Hamiltonian H. H is parameterized
as

H =
M∑

m=1

amPm, (A1)

where Pm is the tensor product of Pauli matrices I, σx, σy,

and σz, and am is the parameter of Hamiltonians. If we mea-
sure single-qubit Pauli observable P ∈ {σ (i)

x,y,z}, its expectation
value is

P(t ) = 〈�0|P(t )|�0〉, P(t ) = eiHt Pe−iHt . (A2)
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According to

eiλGAe−iλG = A + iλ[G, A] + i2λ2

2!
[G, [G, A]] + ...

+ inλn

n!
[G, [G, ...[G, A]]...] + ...,

(A3)

we get

P(t ) = P +
∑

n=1

int n

n!

M∑

i1=1

M∑

i2=1

...

M∑

in=1

fi1i2...in ai1 ai2 ...ain . (A4)

Here, ain is the parameter of Hamiltonian in Eq. (A1) and the
coefficient fi1i2...in is

fi1i2...in = 〈�0|[Bi1 , [Bi2 , ...[Bin , P]]]|�0〉. (A5)

It means that, if fi1i2...in is not zero, the parameter ai1 ai2 ...ain
participates in the dynamics of single-qubit observables and
it is possible to learn the Hamiltonian from the temporal
records of the expectation values of P. For this purpose,
two key points are carefully made in our method. First, we
choose |�0〉 = ∏N

i=1 ⊗|ψ i
0〉 as the initial state, with |ψ i

0〉 =
Rz(π/4)Ry(π/4)|0〉. This state has nonzero projections on
x, y, and z directions, which will ensure fi1i2...in is not zero as
much as possible, and this state is easy-to-prepared in quan-
tum platforms. Second, we choose to measure the dynamics
of single-qubit Pauli observables. which is also easy-to-
implemented in the experiments compared with the multiqubit
measurements. Under such an initial state and single-qubit
measurements, not all the Hamiltonians can be learned, but
the most common of Hamiltonians can be estimated from the
dynamics of P(t ).

APPENDIX B: DETAILED FRAMEWORK OF RNN

As shown in Fig. 1 in the main text, in our NN framework,
we use long short-term memory (LSTM) network, which is a
type of RNN [52]. Compared with traditional feed-forward
neural networks, LSTM can learn the correlation in time
sequences, which has been widely applied on handwriting
recognition and speech recognition in the classical field [53],
and quantum control and quantum process tomography in the
quantum field [54,55]. So, LSTM is appropriate to estimate
the Hamiltonians from the temporal records of single-qubit
measurements. In this training, we define the input and output
layers, objective function, and similarity function as follows:

(i) The input and output layers: At the moment sτ , the
expectation values of single-qubit measurements are collected
as a vector

O(sτ ) = {O(i)
k (sτ )|k = x, y, z, 1 � i � N}. (B1)

It is firstly fed into the sth LSTM cell. I = {O(sτ )|1 � s �
S} and H = {am|1 � m � M} are respectively used as the
input and output layers of our NN framework. Hence, the
number of required LSTM cells equals the number of sam-
pling points S. The structures for exporting H are different
for time-dependent and time-independent Hamiltonians. For
time-dependent parameters in Hamiltonians, fS is imported to
a composite neural network including LSTM and FC neural
networks (path A). Repetitive LSTM cells decode the vector
fS and FC neural networks project the output of each cell

to a series of time-dependent Hamiltonian parameters. For
time-independent parameters in Hamiltonians, an FC neural
network directly follows the LSTM cells. Here, the FC neural
networks do not have hidden layers.

(ii) The objective function: Our neural network is trained
by minimizing the distance between the predicted outcome
Hpred and the true outcome Htrue. Here, we use the mean
square error (MSE) between Hpred and Htrue as the objective
function. It is

L = 1

M

M∑

m=1

(
Htrue

m − Hpred
m

)2
. (B2)

This definition can learn the magnitude and sign of the pa-
rameters, because L decreases to 0 only when Htrue

m and Hpred
m

are absolutely the same. In order to minimize the objective
function in this work, we use Adam optimization algorithm,
one of the state-of-the-art gradient descent algorithms, to train
the hidden parameters of the network.

(iii) The similarity function: In order to estimate the perfor-
mance of our trained NN, we need to compute the similarity
between the predicted and the real outcomes for the test data.
Here, we use the definition of the cosine proximity function
between two vectors. It is

F (Hpred, H) = (Hpred · H)

(||Hpred|| · ||H||) . (B3)

APPENDIX C: STRUCTURE OF LSTM CELL

The LSTM is a form of the recurrent neural network
designed to solve the long-term dependencies problem. An
LSTM consists of a chain of repeating neural network mod-
ules called LSTM cells. As shown in Fig. 9(a), the sth LSTM
cell imports O(sτ ), fs−1, and cs−1 and exports fs and cs for the
next LSTM cell. Here, O(sτ ) and fs−1 are firstly combined by
an FC neural network whose structure is shown in Fig. 9(b).
In our training, this layer includes 256 neurons. Then different
activation functions σ and tanh are used and finally different
operations ⊕ and ⊗ are implemented before exporting fs and
cs. Next, we introduce the detailed operations in the LSTM
cell.

As shown in Fig. 9(a), the long-term memory of LSTM
is called cell state cs, which stores information learned by
flowing through the entire chain. To update the cell state,
the cell has two layers called “forget gate” and “input gate”
to remove or add information to the cell state. The cell also
has the ability to output the information from cell state called
“output gate”. Thus, these three gates control the cell state and
construct an LSTM cell. At the beginning, the cell uses forget
gate G to decide what past information to remove from the
cell. The input of current moment O(s) and the output of last
moment fs−1 go through the forget gate G as follows:

G = σ (Wg · [ fs−1, O(s)]T + bg), (C1)

where σ (x) = 1/(1 + e−x ) is the Sigmoid function. Then, it
uses input gate I to decide what new information to add to the
cell state as follows: I = σ (Wi · [ fs−1, O(t )]T + bi ). And O(s)
and fs−1 go through a tanh layer to create a candidate cell state
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FIG. 9. The schematic diagram for LSTM [(a), (b)]. The right plot presents the operation combining the input fs−1 and O(sτ ) (labeled by
red square) with one layer including 256 neurons.

E as follows:

E = tanh(We · [ fs−1, O(s)]T + be]). (C2)

The next step is to update the cell state by forget gate G and
input gate I as follows: cs = G × fs−1 + I × E . In the end,
it uses output gate to decide what information to select as
output and generate the output. The equations are given as:
D = σ (Wd · [ fs−1, O(s)]T + bd ) and fs = D × tanh(cs).

APPENDIX D: DETAILS ABOUT ROBUSTNESS
SIMULATIONS

Robustness simulations are performed for a 3-qubit system
with Ising Hamiltonian H3

XY. H3
XY is

H3
XY =

3∑

i=1

a(i)
z σ (i)

z +
2∑

j=1

J ( j)(σ ( j)
x σ ( j+1)

x + σ ( j)
y σ ( j+1)

y ).

(D1)
The unknown parameters in H3

XY form a vector H =
[a(1)

z , a(2)
z , a(3)

z , J (1), J (2)]T as the output of RNN. The expec-
tation values of single-qubit observables σ (i)

x,y,z are measured
at a discrete time separated by τ = 0.02π/J0, and they are
collected as the input data I of RNN.

Robustness simulations under Gaussian noise—In the main
text, we respectively train the neural networks using the noise-
less and Gaussian-noise (noise level ε = 0.1) data and then
use trained models (RNN_0noise_25, RNN_10noise_50,
RNN_0noise_25, and RNN_10noise_50) to learn Hamiltoni-
ans from the noisy test data. These noisy data is artificially
generated by adding the Gaussian noise in the measurement
data I, i.e., I′ = I + N (0, ε). Here, N (0, ε) is a Gaussian
distribution with the mean of 0 and the standard deviation
of ε. We change ε from 2% to 10% with the step 2% and

create 5000 noisy test data for each ε to test the performance
of different models. From the simulations, it can be roughly
concluded that learning Hamiltonians via RNN has robust
performance under the Gaussian noise.

Robustness simulations under decoherence effect—In the
main text, we also train the neural networks using the noise-
less and decoherence data (models RNN_0noise_150 and
RNN_t2noise_150). The training and test data with decoher-
ence effect are created according to the Kraus representation
of decoherence dynamics. The evolution of Hamiltonians is
divided into slices with the duration of each slice being δτ .
Supposing that the density matrix is ρ(t ) at the moment t ,
then density matrix at t + δτ is

ρ(t + δτ ) =
3∑

i=1

1∑

j=0

Ei
je

−iHδτ ρ(t )eiHδτ Ei†
j . (D2)

Here, Ei
j is the kraus operator of the ith qubit with,

Ei
0 =

√
λiI2, Ei

1 =
√

1 − λiσ
i
z (D3)

λi is a parameter with λi = (1 + e−δτ/T i
2 )/2. T i

2 is the de-
coherence time of i-th qubit. We change T i

2 from 1π/J0 to
6π/J0 with the segment 2π/J0. For each T i

2 , we create 5000
decoherence test data with the sample points of S = 150
(sample interval is 0.02π/J0 and corresponding sampling time
is 3π/J0). As shown in Fig. 4(b) in the main text, when
we feed these test data to the model RNN_0noise_150 to
predict the Hamiltonian parameters H, it is found that the
accuracy of predicted H rapidly falls with the decrease of
coherence time. However, the robustness against the decoher-
ence effect is significantly improved when using the model
RNN_T2noise_150.
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