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Correlations of stripe phase in one-dimensional spin-orbit coupled Bose gas
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We investigate the effects of interaction for the stripe phase of a homogeneous one-dimensional Bose gas with
laser-induced Raman spin-orbit coupling (SOC) and Zeeman splitting, for a wide range of densities. In order
to account for quantum fluctuations, important in one dimension for low densities close to the Tonks-Girardeau
limit, we use a variational method based on the hypernetted-chain Euler-Lagrange optimization of a Jastrow-
Feenberg ansatz for the many-body wave function. For strong coupling we observe significant deviations from
mean-field results not only quantitatively but also qualitatively. The main interest of this paper lies in the interplay
and competition between interaction-induced pair correlations and the SOC-induced density oscillations of the
stripe phase. We explain the increase in wave number of this density oscillation with increasing interaction due
to an effective attraction between particles in the many-body system.
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I. INTRODUCTION

Spin-orbit coupling (SOC) can connect the spin of a par-
ticle not just with its orbital angular momentum, but also its
linear momentum. This latter case has been demonstrated by
Rashba and Dresselhaus during the course of the last century
[1,2]. However, experimental studies of such systems have
been limited to the narrow range of coupling strengths in
solids. In ultracold quantum gases the type of SOC as well
as its strength can be engineered by external fields in the
laboratory. The illumination of an ultracold Bose gas with
Raman lasers couples the hyperfine states of the atoms of the
gas. This results, for example, in a system with equal Rashba-
and Dresselhaus-SOC and thus breaks rotational symmetry
[3–6]. In addition a Zeeman term is added, which mixes the
spin components. Although, such a one-dimensional SOC will
be the primary concern of this work, we want to point out
that numerous other schemes of SOC have been theoretically
proposed or experimentally realized like pure Rashba cou-
pling [7,8] in 2D with a Dirac point or isotropic SOC in
three dimensions [9]. Most SOC systems possess a degenerate
ground state, which gives rise to a rich phase diagram already
in the noninteracting case. The effect of interactions has been
extensively studied within mean-field [10–15] as well as quan-
tum Monte Carlo (QMC) approaches [16–20]. Additionally,
the Hubbard model for lattice systems has been modified
to include SOC [21]. In particular for Raman SOC with
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Zeeman splitting the single-particle dispersion depending on
the strength of the Zeeman splitting possesses either one
minimum at the center of the dispersion or two minima, which
are displaced symmetrically. Therefore, particles can populate
each of the available minima (single-minimum and polarized
phase) or be in a superposition of two minima (stripe phase),
which gives rise to a density modulation [22–26]. We stress
that this lattice-like density oscillation is a self-organized
stripe phase, not imposed by an optical lattice. In addition
it was proven experimentally that the stripe phase possesses
supersolid properties [26,27]. The phase transitions of a SOC
system were even investigated at finite temperature [23,28]
and dynamically [29]. Alternative schemes using external po-
tentials have been proposed, which facilitate the detection of
the stripes in the experiment [22,27,30]. In this work we focus
on the stripe phase in a spin-unpolarized system (i.e., equal
population of internal pseudospin states labeled | ↑〉 and | ↓〉).
In spite of mean-field approaches providing valuable insight
in the behavior of a Bose gas with SOC, those approaches
significantly lack the ability to describe strongly correlated
systems. This shortcoming becomes especially apparent in
one-dimensional systems, where correlations are known to
play an even more significant role than in higher dimensions
and are stronger for lower densities [31]. In this paper we
use the hypernetted-chain Euler-Lagrange (HNC-EL) method
[32,33], which has been shown to account for correlations also
in 1D [34,35]. We use an approximation of the inhomoge-
neous HNC-EL method [36,37], derived for periodic systems
in Ref. [38].

II. METHODOLOGY

For a boson with mass m we start with the single-particle
Hamiltonian, which apart from the kinetic term contains a
Raman SOC term that couples the linear momentum and
the spin by the constant α and a Zeeman term, which acts
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only on the spin with the strength � given by the Raman
coupling strength. Following the notation of Ref. [12], the
single-particle Hamiltonian is

Ĥ1 = p̂2
x

2m
+ α p̂xσ̂z + �σ̂x . (1)

For the calculations we use the units kL = 2π/λ, EL =
h̄2k2

L/2m, α = 2EL/h̄kL, where λ is the wave length of the
Raman laser used in the experimental realization of SOC.
In our calculations we operate at interparticle distances rs =
5, 10/kL somewhat larger than 3D experiments [27] (λ =
1064 nm → kL = 0.0059 nm−1 and rs = 1/ρ

1/3
3D = 1.11/kL)

and similar to QMC simulations [20] (rs = 6.46/kL). The
many-particle Hamiltonian of an N-particle system with SOC
and interaction v is given by

Ĥ =
N∑

i=1

Ĥi +
∑
i< j

v(|xi − x j |) , (2)

with Ĥi from Eq. (1). In this work we assume a
spin-independent interaction modelled by v(x) =
V0 exp[−(x/(bkL))2], from which the scattering length as

can be calculated [39]. For comparing with mean-field results
the coupling strength in 1D gc = −4EL/(ask2

L) [40]. We make
a variational Jastrow-Feenberg ansatz for the ground state,
containing two-body correlations u(xi, x j ), which account
for quantum fluctuations, and one-body functions ψ (xi, si )
[36,38,41,42]

	(x1, s1, . . . , xN , sN ) =
∏
i< j

exp

[
u(xi, x j )

2

] N∏
i=1

ψ (xi, si ).

(3)

Here s ∈ [0, 2π ] is the continuous spin coordinate [43]. Only
ψ depends on the spin, while we consider no explicit spin-
dependence for the correlations u(xi, x j ); they only indirectly
depend on the spin via the minimization of the energy,
which contains the SOC terms, see below. A generalization
to spin-dependent interactions would require spin-dependent
correlations, which we currently work on. On the other hand,
if we omitted u(xi, x j ) completely, we would revert to the
mean-field approximation.

According to Ritz’ variational principle we obtain the op-
timal ground state by solving the Euler-Lagrange equations
δe/δg(x, x′) = 0 where the energy per particle e = 1

N
〈	|Ĥ |	〉
〈	|	〉

is given by

e = h̄2

8mN

∫
dx ρ(x)|∇ ln ρ(x)|2

+ 1

2N

∫
dx
∫

dx′ ρ(x)ρ(x′)g(x, x′)vJF(x, x′) + ε0, (4)

with the Jackson-Feenberg interaction

vJF(x, x′) = v(|x − x′|)

− h̄2

8m

[
1

ρ(x)
∇ρ(x)∇ + 1

ρ(x′)
∇′ρ(x′)∇′

]
u(x, x′), (5)

the energy of the noninteracting system ε0 and the
spin-averaged single-particle density ρ(x). g(x, x′) is the

pair-distribution function defined as

g(x1, x2) = (2π )−N N (N − 1)

〈	|	〉ρ(x1)ρ(x2)

∫
dx3ds1 . . . dxN dsN |	|2.

(6)

Closure is provided by the HNC/0 relation between g(x, x′)
and u(x, x′) [44], where we omit the so-called elementary
diagrams. The single-particle functions ψ (x, s) [and thus the
density ρ(x)] can also be obtained by optimization of the
energy. However, here we choose an approximate approach
[38]. Based on the stripe phase density of the noninteracting
system (see Appendix), we account for interactions introduc-
ing two variational parameters (q, A), which scale the wave
number and amplitude of the stripe oscillation and are used
to minimize the energy. Hence we make the ansatz for the
density

ρ(x; q, A) = ρ0[1 + A cos (2qx)] , (7)

with mean density ρ0. Note that the density in the absence
of interaction also possesses this functional form. With this
ansatz for the density the energy of the noninteracting system
becomes

ε0(q, A)

EL
=
( q

kL

)2
− A

�

EL
− 2

q

kL

√
1 − A2 . (8)

III. ENERGY, DENSITY OSCILLATION,
SPIN POLARIZATION

In panel (a) of Fig. 1 we compare the energy obtained
with the HNC-EL/0 method with the mean-field expression
eMF/EL = −�2/(4FE2

L ) − 1 + (gcρ0)/(4EL), with F = 1 +
(gcρ0)/(4EL) [12]. Being an improved variational ansatz com-
pared to mean-field, HNC-EL/0 gives a lower energy, in
accordance with Ritz’ principle. The shift in energy is very
small for weak interactions, but becomes huge for strong
interactions (up to 50% for ρ0 = 0.2kL and gc = 9.28EL/kL),
where the inclusion of correlations proves to be crucial. For
ρ0 = 0.2kL and gc = 9.28EL/kL the system is already close to
the Tonks-Girardeau limit (gc → ∞) of impenetrable bosons
[45], and e − Emin [inset in panel (a) of Fig. 1] is reaching val-
ues on the order of the Tonks-Girardeau energy eTG ≈ 0.13EL

(no SOC included) [46,47]. Here Emin/EL = −1 − �2/(4E2
L )

is the minimum of the eigenenergy of Eq. (1). The exact
energy for Tonks-Girardeau with SOC is not known, but could
be obtained with Monte Carlo simulations.

A comparison of mean-field energies [12] of the stripe
phase, single-minimum phase, and separated phase for a Bose
gas with spin-independent interaction predicts that it is en-
ergetically favorable that the spins separate into polarized
domains for �/EL < 2; the stripe phase is not favored for
any value of �. Our HNC-EL calculations, which account for
quantum fluctuations in the variational ansatz, indicate that the
stripe phase is metastable nonetheless, at least in 1D, see il-
lustration in Fig. 4 in the Appendix. It is energetically favored
compared to the single-minimum phase except for large �,
as also described in the Appendix (Fig. 6). The energy com-
parison with the separated phase would require spin-sensitive
correlations u in the ansatz (3), which we plan to account for
in future work. Such an extension of our approach will allow
to draw a full phase diagram of the ground state.
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FIG. 1. Energy per particle e/EL (a), wave number q/kL (b), and
transverse spin polarization 〈σ̂x〉 (c) as a function of � for different
gc and ρ0 = 0.2kL. The symbols are the HNC-EL/0 results, Eqs. (8),
(7), and (9) and the lines depict the corresponding mean-field results.
(a) For low gc there is only a slight difference between the energies
of the two methods, whereas for larger gc the deviation increases.
The inset shows the difference of the HNC-EL/0 energy to the
energy of the free system. (b) Especially, for high � the mean-field
approximation deviates strongly from the HNC-EL/0 result for q/kL.
The inset shows an example of the density ρ(x); the wave number
grows and the amplitude falls with growing gc. (c) The inset shows
the difference of the HNC-EL/0 result for 〈σ̂x〉 to the free results.
Especially for high �, HNC-EL/0 predicts a smaller 〈σ̂x〉, which
means that the polarization is suppressed.

Interactions affect the single-particle dispersion and there-
fore alter the wave number q/kL of the density oscillation,
as shown in panel (b) of Fig. 1. For low values of � the
wave number follows the result for the noninteracting system
(dotted line), because the influence of SOC is small, as we will
see in the discussion of the pair-distribution function at low �.
For large � one notices a significant shift of the wave number
to higher values compared to the noninteracting solution. This

means that although without interaction the density oscillation
would vanish in the limit � → 2EL, the interaction preserves
the oscillation. The value of � at which this increase in wave
number starts to occur is lower for high interaction strength.
The mean-field result qMF/kL = √

1 − (�/(2FEL)) [12] also
predicts an increased wave number due to interaction, how-
ever, for strong interaction the wave number is overestimated.
Also, qMF/kL tends to be steeper as function of � than the
HNC-EL/0 result. The origin of the increase of q/kL with
interaction strength will become clear in the discussion of
the pair-distribution function g(x, x′) below. The density ρ(x)
[inset in panel (b) of Fig. 1] shows that with increasing gc the
amplitude of the density oscillation decays.

The transverse spin polarization per particle 〈σ̂x〉 is −1
for the single-minimum phase but has a smaller magnitude
in the stripe phase. In the mean-field approach it is given
as 〈σ̂x〉MF = −�/(ELF ) [12]. In HNC-EL/0 we evaluate the
expression (see the Appendix for a derivation)

〈σ̂x〉 = −A . (9)

While 〈σ̂x〉MF has a purely linear dependence on �, this is not
true for large � according to the HNC-EL/0 results, as can be
seen in panel (c) of Fig. 1 and its inset. In this regime quantum
fluctuations add non-linear contributions to the polarization,
which prove once more that a mean-field approach is no
longer applicable.

The local orientation of the spin, the spin structure, has
been investigated in previous studies of up to four, impene-
trable (gc → ∞) bosons or fermions in a 1D trap [48,49]. The
spin structure is calculated via the expectation values of the
operators σ̂ζ (x) =∑N

i σ̂ζ ,iδ(x − xi ) with ζ = x, y, z. With our
ansatz (3) 〈σ̂z(x)〉 vanishes and the spin structure must follow
the density structure, with

〈σ̂x(x)〉 = −ρ0[A + cos (2qx)], (10)

〈σ̂y(x)〉 = −ρ0

√
1 − A2 sin (2qx) . (11)

These HNC-EL/0 results for a large gc = 9.28EL/kL are de-
picted alongside mean-field results deduced from Ref. [12] in
Fig. 2. Our results deviate from mean-field predictions, which
is even more significant for a high value of � = 1.9EL [panel
(b) in Fig. 2]. The component 〈σ̂x(x)〉 is in phase with the
density while 〈σ̂y(x)〉 is shifted by π/2. This is qualitatively
the same result found for two bosons in Ref. [49] (see Fig. 4
therein). This phase shift results in an oscillating movement of
the spin vector (arrows in Fig. 2). For � = 1.9EL the Zeeman
effect dominates and the spin points mostly in the negative
x direction.

IV. PAIR-DISTRIBUTION FUNCTION

We have seen from the comparisons between our HNC-
EL/0 results and the mean-field results that quantum
fluctuations have a significant influence on energy, density
modulation and polarization of a 1D Bose gas with SOC.
In order to understand the physical origin of these effects,
we investigate the pair-distribution function g(x, x′) (6). An
ultracold Bose gas in the stripe phase is characterized by two
length scales, which are the average inter-particle distance
1/ρ0 and the period of the density oscillation π/q. The ratio
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FIG. 2. Components of the spin structure 〈σ̂y(x)〉 (blue) and
〈σ̂x(x)〉 (orange) and orientation of the spin vector (〈σ̂x(x)〉, 〈σ̂y(x)〉)
(arrows below) within the first period of the density oscillation for
ρ0 = 0.2kL, gc = 9.28EL/kL as well as � = 1EL (a) and � = 1.9EL

(b). The dashed lines are the corresponding mean-field results.

between the two values is an indicator for the interplay of
interaction and SOC. In Figs. 3 (a) and 3(b) we show g(x, x′)
for two cases at a mean density of ρ0 = 0.2kL: a 1D Bose gas
where the interaction dominates (a) and a 1D Bose gas where
SOC dominates (b).

In the first case, � = 0.5EL is small and gc = 9.28EL/kL is
large, therefore g(x, x′) is close to g�=0(x, x′) [dotted dashed
line in Fig. 3(a)], apart from small oscillations (note that for
� = 0, the system is homogeneous). The formation of these
oscillations can be understood as periodically changing corre-
lations (i.e., more or less repulsion) between two particles for
certain distances.

The second case, where SOC dominates, is realized when
the interparticle distance and the period of the oscillation are
on the same scale (i.e., 1/ρ0 ∼ π/q and the effects of SOC
and interaction overlap and enhance each other) or if the
period is larger. Now all maxima are occupied with approx-
imately one particle. This regime is reached for either large
Zeeman splittings, weak interactions, or high densities. The
case of large � = 1.9EL is shown in Fig. 3(b). Here g(x, x′)
possesses strong oscillations with the same period as the den-
sity oscillation—for the small � value of panel (a), this effect
was only visible as the small oscillations in g(x, x′) about
the � = 0 result. Now SOC has a strong influence on the
correlations, and g(x, x′) deviates significantly from the ho-
mogeneous � = 0 result. Also, since each density maximum
is approximately occupied by one particle, the enhancement
of g(x, x′) is maximal if the distance between two particles is
a multiple of the period.

Even more interesting is the situation at a lower mean
density ρ0 = 0.1kL, but also lower coupling strength gc =
0.98EL/kL. Here ρ(x) is almost zero in its minima and the os-
cillations in g(x, x′) become step-like, starting at x′ = π/(2q)
for all x [panel (c) of Fig. 3]. g(x, x′) varies little near density
maxima, but sharply increases at density minima. This behav-
ior might seem strange at first, but one has to keep in mind
that SOC causes oscillations, which turn a weakly correlated
system into a strongly correlated one, similarly to optical
lattices: Particles want to occupy different density maxima,
in order to minimize their interaction. This is reflected by
g(x, x′) being very small if two particles would be found in
the same maximum. However, if they are located in differ-
ent maxima, the exact position there matters little, because
interactions are weak between neighboring density maxima.
We observe here the gradual transition to a lattice Hamil-
tonian. Note that, despite the weakness of the interaction in
Fig. 3(c), a mean-field description is not valid, at least for low
density.

With increasing interaction the step-like behavior of
g(x, x′) becomes less pronounced, because the interaction sup-
presses the effects of SOC, see Fig. 3(b). In the Appendix
in Fig. 9 we show g(x, x′) for � = 1.9EL, ρ0 = 0.2kL as in
Fig. 3(b) but for a lower coupling strength of gc = 0.98EL/kL,
which represents an intermediate situation between the results
of the panels (b) and (c) of Fig. 3.

With the optimized pair-distribution function we are able
to understand the wave number shift from Fig. 1(c). Recall
that for large Zeeman splitting �, one observes an increase
of the wave number of the density oscillation with increas-
ing interaction strength. In order to understand the reason
for this increase we show the effective interaction between
two particles, Veff (x, x′) = v(|x − x′|) + wI(x, x′) in Fig. 3(d)
for the parameters used in Fig. 3(b), where wI(x, x′) is the
induced interaction mediated by exchange of elementary ex-
citations [50]. Unlike the bare interaction v(|x − x′|), the
effective interaction is partially attractive and possesses a
distinct minimum for a distance between x and x′, which is
much smaller than the distance between maxima of the den-
sity oscillation and is deepest for high gc. The wave number
that is actually observed with interaction is a compromise
between the attraction from the effective interaction and the
wave number of the SOC-induced stripe phase without inter-
action. Note that qualitatively this effect is already present
in mean-field calculations, which however do not give an
explanation.

V. CONCLUSIONS

In summary, quantum fluctuations, accounted for by pair
correlations in the many-body wave function, lead to sig-
nificant corrections with respect to mean-field results for all
properties of a spin-orbit coupled 1D Bose gas. The stronger
the interaction between the particles, the more our HNC-EL/0
results for energy, density oscillation wave number, and po-
larization differ from the corresponding mean-field results,
because for strong interactions or low density a 1D Bose gas
enters the Tonks-Girardeau regime. In particular the lower
value of the energy per particle is comparable to the energy
of a non-SOC Bose gas in the Tonks-Girardeu limit of infinite
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FIG. 3. Pair-distribution function g(x, x′) [(a),(b),(c)] and Veff (x, x′) (d) as a function of x for different x′ for Zeeman splitting � = 0.5EL,
density ρ0 = 0.2kL and coupling strength gc = 9.28EL/kL (a), � = 1.9EL, ρ0 = 0.2kL and gc = 9.28EL/kL (b), and � = 1.9EL, ρ0 = 0.1kL

and gc = 0.98EL/kL (c). The solid blue line is for x′ = 0 (beginning of the unit cell), the orange line is x′ = π/(2q) (center of the unit cell),
and the green line is x′ = π/q (end of the unit cell), the grey lines are values of x′ in between. The single-particle density is the dashed red
line with its periodicity marked by the black vertical lines. The red vertical line marks the mean distance between the particles. (a) For small
� and large gc, g(x, x′) deviates only slightly from the � = 0 result (blue dotted dashed line) because the interaction dominates. (b) For high
�, a significant deviation from the result without Zeeman splitting is visible, the influence of SOC on the correlations is growing. (c) For large
� and small gc, the correlations are dominated by SOC and g(x, x′) looks very different from the case of � = 0. The particles are strongly
localized in their unit cells, which leads to a steep increase of g(x, x′) when two particles are found in different unit cells. (d) The effective
interaction possesses a pronounced minimum within the first unit cell.

repulsion. We predict that the stripe phase is metastable in a
1D Bose gas even for spin-independent interactions and we
hope that our findings spark interest in experimental prepara-
tion and the investigation of the stability of such systems. In
this context it should be mentioned that in combination with a
trap they can indeed support a striped ground state [51–53].
Via the pair-distribution g(x, x′) we are able to explain the
interaction-induced wave number shift of the density oscil-
lation with respect to the noninteracting wave number, which
we can attribute to the induced attraction between bosons me-
diated by elementary excitations. Our results for g(x, x′) show
that a SOC Bose gas in 1D is a rich and interesting model sys-
tem because of the concurrence of and competition between
two quantum fluctuations effects: The lattice imposed by SOC
can turn the Bose gas into a strongly correlated system even
for weak interaction; strong interaction or low density drives
the Bose gas to the Tonks-Girardeau limit, again rendering the
system strongly correlated.

For future work we will perform full optimization of the
single-particle density [36,54] as well as the approximate in-
clusion of triplet correlations in the trial wave function (3) and
elementary diagrams in the HNC relation [55], and investigate
excitations beyond the mean-field level [3,6,56–58] using the

correlated basis function method [32,59–61]. Finally, an ex-
tension to spin-dependent correlations in the ansatz (3) would
allow for an investigation of the complete phase diagram for
spin-dependent interactions.

ACKNOWLEDGMENTS

We acknowledge support from the Austrian Agency for
International Cooperation in Education and Research, OeAD
(Project No. HR 07/2018) and fruitful discussions with
Eckhard Krotscheck, Jiawei Wang, Ferran Mazzanti, An-
drii Gudyma, and Leandra Vranješ Markić. Supported by
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APPENDIX

1. Ansatz for the single-particle density

We perform a spin rotation on the Hamiltonian (1) and
obtain

ˆ̃H1 = p̂2
x

2m
+ α p̂xσ̂y + �σ̂z . (A1)
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Its eigenenergies and eigenfunctions are

E± = h̄2k2

2m
±
√

α2h̄2k2 + �2 (A2)

ψ̃±(x, s) = exp(ıkx)√
L

×

⎡
⎢⎢⎣
⎛
⎜⎜⎝ı

(−� ∓
√

α2h̄2k2 + �2)

αh̄k︸ ︷︷ ︸
:=β±(k)

⎞
⎟⎟⎠eıs + e−ıs

⎤
⎥⎥⎦ ,

(A3)

with normalization length L. The minimum of the dispersion
relation is obtained as

qmin

kL
= ±1

2

√
4 −
(

�

EL

)2

,
Emin

EL
= −1 − �2

4E2
L

. (A4)

The single-particle wave function in a superposition of the two
states in the minima of the dispersion relation is

ψ̃ (x, s) =
√

2

L(β2 + 1)

× [−β sin (|qmin|x)eıs + cos (|qmin|x)e−ıs] , (A5)

with β := β−(qmin) = (2 − �/EL)/
√

4 − (�/EL)2 and
where x is the spatial coordinate and s is the spin coordinate
[43]. We construct the single-particle density as

ρ(x) = 1

2π

∫ 2π

0
ds |ψ (x, s)|2 = 1

2π

∫ 2π

0
ds |ψ̃ (x, s)|2 .

(A6)

The evaluation of this expression leads to

ρ(x) = 2ρ0

β2 + 1

[
1 + sin2

(
|qmin|x

)(
β2 − 1

)]
, (A7)

with mean density ρ0. To account for the interaction of the
particles in the system we allow a displacement of the wave
number in the minimum of the dispersion and replace qmin →
q := ωqmin. This replacement also leads to an altered β. Here
we allow for further freedom of the ansatz and write

β(γ ) =
√√√√1 − 2�/EL

�/EL +
√

(�/EL)2 − γ 2
(
(�/EL)2 − 4

) ,

(A8)

where we introduced a second variational parameter γ instead
of ω. Note that we could have chosen amplitude A and wave
number q of the oscillation as variational parameters from the
very beginning. However, the line of argumentation presented
here gives a justification for the functional form of the ansatz,
which is motivated by the noninteracting single-particle result
and not just a guess. In addition, ω and γ are of the same order
of magnitude.

2. Calculation of the energy

We calculate the energy using coupling constant integra-
tion, which requires the energy of the noninteracting system
ε0(ω, A) and the potential energy U as a function of a coupling

constant c [here the interaction is scaled: v(x) → cv(x)]. In
order to calculate the potential energy per particle for a peri-
odic system we start with the well known expression for the
potential energy

U = 1

2

∫ ∞

−∞
dx
∫ ∞

−∞
dx′v(|x − x′|)ρ2(x, x′) , (A9)

where ρ2(x, x′) is the pair-density, which can be expressed
in terms of the density and the pair-distribution function
ρ2(x, x′) = ρ(x)ρ(x′)g(x, x′). In the stripe phase these func-
tions are periodic:

g(x + na, x′ + ma) = g(x, x′) (A10)

ρ(x + na) = ρ(x) , (A11)

where n, m ∈ Z and a is the length of a unit cell. Making use
of this periodicity one arrives at the expression

U

N
= 1

2ρ0a

∫ ∞

−∞
dx
∫ a

0
dx′v(|x − x′|)ρ(x)ρ(x′)g(x, x′) ,

(A12)

where a is the length of a unit cell. In order to obtain the total
energy one performs an integration over c:

e =
∫ 1

0
dc

U (c)

N
. (A13)

Note that this method requires multiple evaluations of g(x, x′)
and the corresponding potential energy. Alternatively, one
can directly calculate the energy functional [Eq. (4) in the
main text].

Figure 4 shows the energy as a function of the parameters
q and A in the density [see Eq. (4) in the main text] along with
the numerically calculated minimum (red dot). It is important
to note that no additional minima are present in this calcula-
tion, which was checked by calculating the energy on a grid
for a wide range of parameters A and q.

FIG. 4. Energy per particle as a function of q and A for � =
1.9EL, ρ0 = 0.2kL and gc = 0.98EL/kL. The red dot represents the
minimum of the energy surface and thus marks the final result of the
energy calculation.
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3. Calculation of 〈σ̂x〉
The transverse spin polarization is calculated as the expec-

tation value of σ̂x, which is given as

〈σ̂x〉 = 1

N

〈	|∑i σ̂x,i|	〉
〈	|	〉 , (A14)

where 	 is the variational wave function (3) in the main text.
The general definition of the spin-averaged single-particle
density is

ρ(x1) = N

(2π )N 〈	|	〉
∫ 2π

0
ds1 . . . dsN

×
∫

dx2 . . . dxN |	(x1, . . . , xN , s1, . . . , sN )|2, (A15)

Let us first observe the expectation value of σ̂z,i with respect
to the rotated single-particle wave function Eq. (A5) and the
spin. We can explicitly calculate that

1

2π

∫ 2π

0
dsiψ̃

∗(xi, si )σ̂z,iψ̃ (xi, si )

= β2 sin2(qxi ) − cos2(qxi )

β2 sin2(qxi ) + cos2(qxi )

1

2π

∫ 2π

0
dsi|ψ (xi, si )|2

(A16)

This result will prove to be very useful, because also in the
many particle expectation value σ̂x acts only on the single-
particle functions. With this result we can write

〈σ̂x〉 = 1

〈	|	〉
∫ ∞

−∞
dx1

β2 sin2(qx1) − cos2(qx1)

β2 sin2(qx1) + cos2(qx1

× 1

(2π )N

∫ 2π

0
ds1 . . . dsN

∫
dx2 . . . dxN |	|2 .

(A17)

Using the definition of the single-particle density from
Eq. (A15) we can further simplify

〈σ̂x〉 = 1

N

∫ ∞

−∞
dx

β2 sin2(qx) − cos2(qx)

β2 sin2(qx) + cos2(qx)
ρ(x) . (A18)

Again we can exploit the periodicity of the system to reduce
the integral to a single unit cell and solve it explicitly. As the
final result we get

〈σ̂x〉 = β2 − 1

β2 + 1
= −A (A19)

4. Comparison between stripe and single-minimum phase

A Bose gas with spin-orbit coupling can form the stripe
phase, the single-minimum phase, and the polarized phase.
We are only able to compare the stripe phase and the
single-minimum phase, because we are working with a spin-
averaged approach [38] and spin-independent interaction. For
a full phase diagram and thus also the transition to the
polarized phase as in [20], we would need to employ a spin-
sensitive approach [62], which is beyond the scope of this
paper and left for future investigation. Whether the stripe
phase or the single-minimum phase is energetically lower is
determined by comparing HNC-EL/0 energies as a function
of � in both phases. The intersection of those two lines gives

FIG. 5. Energy per particle as a function of �. The data for the
energy of the single-minimum phase is interpolated linearly and the
data for the energy of the stripe phase is interpolated quadratically.

the value �crit . For low ρ0 this intersection becomes very
flat as seen in Fig. 5, which makes the determination of the
crossing point prone to errors.

Without interactions the stripe phase is energetically fa-
vored over the homogeneous single-minimum phase all the
way up to � = 2EL. With the inclusion of interactions, the
mean-field approach predicts that this first order phase tran-
sition occurs already below � = 2EL [12]. We check this
prediction with HNC-EL/0 and determine the point of the
transition by comparing the energy of the stripe phase with
the energy of the single-minimum phase phase. Both phases
are metastable, i.e., stable against infinitesimal density fluctu-
ations for all �, hence we have no problem getting converged
HNC-EL/0 results for both phases. With a mean-field ap-
proach the transition occurs at

�MF
crit

EL
= 2
(

1 + gcρ0

4EL

)
− 2
[(

1 + gcρ0

4EL

)gcρ0

4EL

]1/2
. (A20)

Figure 6 shows that �crit for HNC-EL/0 is higher than �MF
crit

especially in the strongly correlated regime of low density.
This reveals a stabilization of the stripe phase due to quantum
fluctuations, described by the pair correlations u(x, x′) in the

FIG. 6. Energy comparison of unpolarized spin-orbit coupled
1D Bose gas for gc = 0.98EL/kL . �crit marks the transition from
the stripe phase (green) to the single-minimum phase (blue) as a
function of density ρ0/kL . The blue line is the mean-field result [12].
HNC-EL/0 predicts a stabilization of the stripe phase due to quantum
fluctuations beyond the noninteracting limit of � = 2EL.
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FIG. 7. Pair-distribution function g(x, x′) (a) and Veff (x, x′) (b) as
a function of x for all x′, � = 0.5EL, ρ0 = 0.2kL, and gc =
9.28EL/kL.

FIG. 8. Pair-distribution function g(x, x′) (a) and Veff (x, x′) (b) as
a function of x for all x′, � = 1.9EL, ρ0 = 0.1kL, and gc =
0.98EL/kL.

FIG. 9. Pair-distribution function g(x, x′) (a) and Veff (x, x′) (b) as
a function of x for all x′, � = 1.9EL, ρ0 = 0.2kL, and gc =
0.98EL/kL.

FIG. 10. Pair-distribution function g(x, x′) in the first unit cell.
All plots are for ρ0 = 0.2kL except for panel (c). In the top plots
[(a),(b)] gc = 9.28EL/kL and in the bottom plots [(c),(d)] gc =
0.98EL/kL.
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Jastrow-Feenberg ansatz (3). A similar observation was made
with quantum Monte Carlo methods in 3D [20].

5. Pair-distribution functions

In Figs. 7, 8, and 9 pair-distribution functions g(x, x′) and
their effective interactions Veff (x, x′) are depicted for different
combinations of �, ρ0, and gc [g(x, x′) in Figs. 7 and 8 are
also shown in panels (a) and (c) of Fig. 3 in the main text, but
we show them again here for comparison with Veff (x, x′)]. In

all cases Veff (x, x′) has an attractive well for a distance smaller
than the period of the density oscillation; as explained in the
main text this causes the decrease of this period. Figure 9
shows g(x, x′) for an intermediate choice of �, ρ0, and gc that
lies between panels (b) and (c) of Fig. 3 in the main text, see
corresponding discussion.

Figure 10 shows all pair-distribution functions again as
contour plots, which might be a preferable representation for
some readers.
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