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The variational quantum eigensolver (VQE) is an algorithm to find eigenenergies and eigenstates of systems
in quantum chemistry and quantum many-body physics. The VQE is one of the most promising applications of
near-term quantum devices to investigate such systems. Here we propose an extension of the VQE to calculate
the nonadiabatic couplings of molecules in quantum chemical systems and Berry’s phase in quantum many-body
systems. Both quantities play an important role in understanding the properties of a system beyond the naive
adiabatic picture, e.g., nonadiabatic dynamics and topological phase of matter. We provide quantum circuits
and classical postprocessings to calculate the nonadiabatic couplings and Berry’s phase. Specifically, we show
that the evaluation of the nonadiabatic couplings reduces to that of expectation values of observables while that
of Berry’s phase also requires one additional Hadamard test. Furthermore, we simulate the photodissociation
dynamics of a lithium fluoride molecule using the nonadiabatic couplings evaluated on a real quantum device.
Our proposal widens the applicability of the VQE and the possibility of near-term quantum devices to study
molecules and quantum many-body systems.
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I. INTRODUCTION

Quantum computers currently available or likely to be
available in the near future are attracting growing attention.
They are referred to as noisy intermediate-scale quantum
(NISQ) devices [1], comprising tens or hundreds of qubits
without quantum error correction. While it remains unclear
whether they have “quantum advantage” over classical com-
puters, the fact that they work explicitly based on the principle
of quantum mechanics motivates research on finding ap-
plications and developing quantum algorithms for practical
problems that are classically intractable [2–14]. In particular,
investigating quantum many-body systems with the varia-
tional quantum eigensolver (VQE) [15] is believed to be one
of the most promising applications for NISQ devices.

The VQE is an algorithm to obtain eigenenergies and
eigenstates of a given quantum Hamiltonian. In the VQE,
quantum and classical computations are separated appropri-
ately, and interactive quantum-classical hybrid architecture
eases the difficulty of implementing the algorithm in the NISQ
devices [15–20]. The VQE, which was originally proposed for
finding the eigenenergy of the ground state, has been extended
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to find the excited energies and states [18,21–26], nonequilib-
rium steady states [27,28], derivatives of eigenenergies with
respect to external parameters of the system [29–31], and the
Green’s function [32].

This study aims to add another recipe to the catalog of
the VQE-based algorithms for quantum systems. We propose
a method to calculate the nonadiabatic couplings (NACs)
[33,34] of molecules in quantum chemistry and Berry’s phase
[35–37] of quantum many-body systems by utilizing the re-
sults of the VQE. Both quantities are related to the variation of
slow degrees of freedom of the system and play crucial roles
in the study of quantum chemistry, condensed matter physics,
optics, and nuclear physics [36–42].

The NACs in quantum chemistry are defined as cou-
plings between two different electronic states under the
Born-Oppenheimer approximation [43], which are induced
nonadiabatically by motions of nuclei (vibrations). They are
fundamental in the nonadiabatic molecular dynamics simula-
tions to study various interesting dynamical phenomena such
as photochemical reactions around the conical intersection
and electron transfers [38–41]. On the other hand, Berry’s
phase is defined as a phase acquired by an eigenstate when
external parameters of a system are varied adiabatically along
a closed path in the parameter space. It reflects intrinsic
information about a system such as topological properties
of materials. For example, several symmetry-protected topo-
logical phases are characterized by Berry’s phase [44–47].
Berry’s phase has become increasingly influential in many
fields of modern physics, including condensed matter physics
and high-energy physics [36,37,42].

Mathematically, the NACs and Berry’s phase are related to
derivatives of eigenstates with respect to external parameters
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of a system. In this study, in order to evaluate the NACs
and Berry’s phase based on the VQE, we develop analytical
formulas and explicit quantum circuits to calculate the inner
products related to the derivatives of the eigenstates. A naive
way of calculating the NACs based on the VQE requires the
Hadamard test [48] with a lot of controlled operations In
contrast, our proposed methods for the NACs are based on the
measurements of expectation values of observables, which is
tractable on NISQ devices, and do not require the Hadamard
test. As for Berry’s phase, there is a previous study [49] to
calculate it by simulating adiabatic dynamics and performing
the Hadamard test at each time step. That method cannot
avoid the undesired time- and energy-dependent dynamical
phase contribution in addition to Berry’s phase. Our proposed
method for Berry’s phase can remove dynamical phase con-
tribution by utilizing the definition of Berry’s phase, although
it still requires the Hadamard test at most once. Finally, as
a demonstration of our methods, we present the simulation
of photodissociation dynamics of a lithium fluoride molecule
with the value of the nonadiabatic couplings evaluated on
the real quantum device, IBM Q Experience [50], by our
proposed methods. Our results enlarge the possible scopes
of the VQE algorithm and the NISQ devices for simulating
various quantum systems.

The rest of the paper is organized as follows. We briefly
review the definition of the NACs and Berry’s phase in Sec. II.
The VQE algorithm is also reviewed in Sec. III. Our main
results are presented in Secs. IV and V, where we describe the
ways to calculate the NACs and Berry’s phase based on the
VQE. The results of the experiment of estimating the nona-
diabatic coupling using IBM Q hardware and the simulation
of photodissociation dynamics with our methods are shown in
Sec. VI. The discussion about the cost analysis for running our
algorithms on quantum devices is provided in Sec. VII. We
conclude our study in Sec. VIII. Appendixes provide details
of the experiments, mathematical proofs of the cost analysis,
and further numerical demonstrations of our algorithms.

II. REVIEW OF THE NONADIABATIC COUPLINGS
AND BERRY’S PHASE

In this section, we review definitions of the NACs [33,34]
and Berry’s phase [35].

Let us consider a quantum system which has external
parameters �R = (R1, . . . , RNx ) ∈ RNx . These parameters �R
characterize the system, e.g., coordinates of nuclei in the
case of quantum chemistry and electromagnetic field applied
to a system in the case of conducting metals. We call �R
“system parameters” that represent the Hamiltonian of the
system which depends on �R by H ( �R). The eigenvalues and
eigenstates of H ( �R) are denoted by {Ei( �R)}i and {|χi( �R)〉}i.
We assume that {Ei( �R)}i and {|χi( �R)〉}i depend on �R smoothly
and that there is no degeneracy in the eigenspectrum unless
explicitly stated in the text. When there is a degeneracy in the
spectrum, the NACs are not well defined among degenerate
eigenstates. Berry’s phase is generalized to non-Abelian one,
i.e., SU(N) matrix for N-degenerate ground states [42], and
the components of the matrix can be determined in a similar
way for Abelian Berry’s phase for the nondegenerate ground
state studied in this paper.

A. Nonadiabatic couplings

Here let us consider a molecular system and H ( �R) as the
electronic Hamiltonian. Definitions of the first-order NAC
(1-NAC) dI

kl and the second-order NAC (2-NAC) DI
kl are as

follows,

dI
kl ( �R) = 〈χk ( �R)

∣∣∣∣ ∂

∂RI

∣∣∣∣χl ( �R)〉 , (1)

DI
kl ( �R) = −〈χk ( �R)

∣∣∣∣ ∂2

∂R2
I

∣∣∣∣χl ( �R)〉 , (2)

where k and l are different indices for eigenlevels and I =
1, . . . , Nx denotes the index for the system parameters. The
Hellman-Feynman theorem [51,52] gives a simpler expression
of the 1-NAC as

dI
kl = −〈χk ( �R)| ∂H

∂RI
|χl ( �R)〉

Ek ( �R) − El ( �R)
, (3)

which means that the 1-NAC becomes large when two eigen-
states are close to degenerate (Ek ∼ El ). We take advantage of
this expression when calculating the 1-NAC in Sec. IV. The
1-NAC lies in the heart of various nonadiabatic molecular dy-
namics algorithms such as the Tully’s fewest switches method
[38,39] and ab initio multiple spawning [53,54].

Equation (2) in the case of k = l is related to the diagonal
Born-Oppenheimer correction (DBOC) defined as

EDBOC(k) = DI
kk ( �R)

= −
∑

m
α=x, y, z

1

2Mm
〈χk ( �R)| ∂2

∂R2
mα

|χk ( �R)〉 , (4)

where k is the eigenlevel to be considered, Mm is the mass
of the nucleus m, and Rmα

is α coordinate (α = x, y, z) of the
nucleus m. It is argued that this correction sometimes brings
out crucial differences in stability and dynamics of molecules
[55–58].

In addition, we comment on the gauge invariance of the
NACs. Overall phase factors of eigenstates are arbitrary in
general, so there is a U (1)M degree of freedom in the defi-
nition of the NACs,

|χk ( �R)〉 → ei�k ( �R) |χk ( �R)〉 , (5)

where k = 0, . . . , M − 1, M is the number of eigenlevels to
be considered, and �k ( �R) ∈ R is an arbitrary smooth function
of �R. The 1-NAC [Eq. (1)] and the 2-NAC [Eq. (2)] are not
invariant under the transformation (5). This dependence must
be resolved in each algorithm utilizing the value of the NACs.
For example, see Refs. [59–61]. We note that real-valued
eigenfunctions are usually considered in quantum chemistry,
but complex eigenfunctions may be obtained in the VQE in
general.

B. Berry’s phase

Berry’s phase [35] is defined for a closed loop C in the
parameter space RNx as

�C = −i
∫
C

d �R · 〈χk ( �R)| d

d �R |χk ( �R)〉 , (6)
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where
∫
C . . . is the line integral along the closed loop C and

|χk ( �R)〉 is the kth eigenstate of the Hamiltonian H ( �R). If
one prepares the kth eigenstate of the system |χk ( �R0)〉 at
some system parameters �R0 and adiabatically varies them
in time along C, the final state will obtain the phase e−i�C

in addition to the dynamical phase. We note that Berry’s
phase is always real by definition because the normalization
condition 〈χk ( �R)|χk ( �R)〉 = 1 leads to d

d �R (〈χk ( �R)|χk ( �R)〉) =
2Re(〈χk ( �R)| d

d �R |χk ( �R)〉) = �0.
Finally, we point out the gauge invariance of Berry’s phase.

The eigenstates have U (1) gauge freedom stemming from
arbitrariness of overall phases for them. Under U (1) gauge
transformation [Eq. (5)], Berry’s phase is invariant only up
to an integer multiple of 2π . Since Berry’s phase appears as
e−i�C , this arbitrariness does not affect the physics, and we
can consider Berry’s phase as an observable property of the
system [36,37,42].

III. REVIEW OF VARIATIONAL QUANTUM
EIGENSOLVER

In this section, we review the VQE algorithm [15] to obtain
a ground state and excited states of a given Hamiltonian. We
also describe how to compute analytical derivatives of optimal
circuit parameters of the VQE with respect to system param-
eters of the Hamiltonian. Methods described in this section
are repeatedly used in Secs. IV and V to calculate the 1- and
2-NACs and Berry’s phase.

Again, let us consider an n-qubit quantum system whose
Hamiltonian is H ( �R). In the VQE, we introduce an ansatz
quantum circuit U (�θ ) and the ansatz state |ϕ0(�θ )〉 in the form
of

|ϕ0(�θ )〉 = U (�θ ) |ψ0〉 , (7)

where |ϕ0〉 is a reference state and �θ = (θ1, . . . , θNθ
) ∈ RNθ is

a vector of circuit parameters contained in the ansatz circuit.
We assume U (�θ ) to be a product of unitary matrices each with
one parameter,

U (�θ ) = UN (θN ) · · ·U2(θ2)U1(θ1). (8)

We also assume each unitary Ua(θa) consists of nonparametric
quantum gates and parametric gates in the form of eigaPaθa gen-
erated by a Pauli product Pa ∈ {I, X,Y, Z}⊗n with a coefficient
ga ∈ R (a = 1, . . . , Nθ ). Note that many ansatzes proposed in
previous studies fall into this category [15,17,23,62–66]. We
will represent Uj (θ j ) . . .Ui(θi ) as Ui: j for simplicity.

A. Variational quantum eigensolver for ground state
and excited states

The original VQE algorithm finds a ground state of a given
Hamiltonian based on the variational principle of quantum
mechanics. In the VQE, one optimizes the circuit parameters
�θ variationally by classical computers so that the expectation
value

E0(�θ, �R) = 〈ϕ0(�θ )|H ( �R)|ϕ0(�θ )〉 (9)

is minimized with respect to �θ . When the ansatz circuit has
sufficient capability to express the ground state of H ( �R) and

the circuit parameters �θ converge to optimal ones �θ∗, we can
expect the optimal state |ϕ0(�θ∗)〉 will be a good approximation
to the ground state. Since tasks of evaluation and optimization
of quantum circuits are distributed to quantum and classical
computers, it is easier to implement the algorithm on the near-
quantum devices [15–20].

After the proposal of the original VQE algorithm, there
are a variety of extensions of the VQE to find excited states
of a given Hamiltonian [18,21–26]. As we will see in Secs.
IV and V, one has to compute (approximate) eigenenergies
and transition amplitudes of several Pauli operators between
obtained eigenstates to calculate the NACs. From this view-
point, the most appropriate methods to calculate them are
the subspace-search VQE (SSVQE) [22] algorithm and its
cousin algorithm, the multistate contracted VQE (MCVQE)
algorithm [23]. Here we briefly describe the SSVQE just for
completeness, but formulas for the MCVQE are quite similar.

To obtain approximate eigenenergies and eigenstates up
to i = 0, . . . , M − 1, the SSVQE algorithm uses M easy-
to-prepare orthonormal states {|ψi〉}M−1

i=0 (e.g., computational
basis) as reference states. For our algorithms to work, the
reference states also have to be chosen so that we can read-
ily prepare the superpositions of them on quantum devices.
The SSVQE proceeds so as to minimize the following cost
function,

L �R(�θ ) =
M−1∑
i=0

wi 〈ψi|U †(�θ )H ( �R)U (�θ ) |ψi〉 , (10)

where {wi}M−1
i=0 are positive and real weights which satisfy

w0 > w1 > · · · > wM−1 > 0. When the cost function con-
verges to the minimum at �θ∗( �R), it follows that

|ϕi( �R)〉 = U (�θ∗( �R)) |ψi〉 , (11)

Ẽi( �R) = 〈ϕi( �R)|H ( �R)|ϕi( �R)〉 , (12)

are good approximations of the eigenstates and eigenenergies,
respectively.

One of the most distinctive features of the SSVQE and the
MCVQE algorithms is that one can readily compute transition
amplitudes 〈ϕk ( �R)|A|ϕl ( �R)〉 of any observable A between the
(approximate) eigenstates obtained. Although evaluation of
the transition amplitude between two quantum states requires
the Hadamard test in general, which contains a lot of extra
and costly controlled gates [67], the SSVQE and the MCVQE
circumvent the difficulty by preparing superposition of two
eigenstates. It is possible to evaluate the transition amplitude
by low-cost quantum circuits without extra controlled gates as

Re(〈ϕk ( �R)|A|ϕl ( �R)〉)

= 1
2 (〈ϕ+

k,l ( �R)|A|ϕ+
k,l ( �R)〉 − 〈ϕ−

k,l ( �R)|A|ϕ−
k,l ( �R)〉),

Im(〈ϕk ( �R)|A|ϕl (R)〉)

= − 1
2

( 〈
ϕi+

k,l ( �R)
∣∣A∣∣ϕi+

k,l ( �R)
〉 − 〈

ϕi−
k,l ( �R)

∣∣A∣∣ϕi−
k,l ( �R)

〉 )
,

(13)

where |ϕ±
k,l ( �R)〉=U (�θ∗( �R))(|ψk〉 ± |ψl〉)/

√
2 and |ϕi±

k,l ( �R)〉 =
U (�θ∗( �R))(|ψk〉 ± i |ψl〉)/

√
2. Since each term of the right-

hand sides of the equation is an expectation value of the

023244-3



TAMIYA, KOH, AND NAKAGAWA PHYSICAL REVIEW RESEARCH 3, 023244 (2021)

observable, the evaluation of the transition amplitude is
tractable on near-term quantum devices.

B. Derivatives of optimal parameters

To calculate the NACs with the result of the VQE on near-
term quantum devices, we also need derivatives of the optimal
circuit parameters �θ∗( �R) with respect to the system parameters
�R. These derivatives are given by solving equations [29]

Nθ∑
b=1

∂2E0(�θ∗( �R), �R)
∂θa∂θb

∂θ∗
b ( �R)

∂RI
= −∂2E0(�θ∗( �R), �R)

∂θa∂RI
, (14)

Nθ∑
b=1

∂2E0(�θ∗( �R), �R)
∂θa∂θb

∂2θ∗
b ( �R)

∂RI∂RJ
= −γ (IJ )

a , (15)

where

γ (IJ )
c =

∑
a,b

∂3E0(�θ∗( �R), �R)
∂θc∂θa∂θb

∂θ∗
a

∂RI

∂θ∗
b

∂RJ

+ 2
∑

a

∂3E0(�θ∗( �R), �R)
∂θc∂θa∂RJ

∂θ∗
a

∂RI
+ ∂3E0(�θ∗( �R), �R)

∂θc∂RI∂RJ
,

(16)

simultaneously for a = 1, . . . , Nθ (with I, J = 1, . . . , Nx

fixed). Now we use notations as follows:

∂2E0(�θ∗( �R), �R)
∂θa∂RI

:= ∂2E0(�θ, �R)

∂θa∂RI

∣∣∣∣�θ=�θ∗( �R), �R= �R
. (17)

These formulas [Eqs. (14) and (15)] can be derived by tak-

ing the derivative of ∂E0(�θ∗( �R), �R)
∂θa

= 0 with respect to �R. For
detailed derivation, see Appendix A in Ref. [29]. The quan-

tities appearing in Eqs. (14) and (15), such as ∂2E0 (�θ∗( �R), �R)
∂θa∂θb

and ∂2E0(θ∗( �R), �R)
∂θa∂RI

, can be evaluated quantum circuits on quan-
tum devices using the method shown in Ref. [29]. Therefore,
one can solve Eqs. (14) and (15) on classical computers
and obtain the derivatives of the optimal circuit parameters

{ ∂θ∗
a ( �R)
∂RI

,
∂θ∗

a ( �R)
∂RI ∂RJ

}Nθ

a=1.

IV. CALCULATING NONADIABATIC COUPLINGS WITH
VARIATIONAL QUANTUM EIGENSOLVER

In this section, we explain how to calculate the 1-NAC and
2-NAC with the VQE.

A. First-order nonadiabatic coupling

Evaluation of the 1-NAC based on the VQE is simple by
utilizing the formula (3). First, we perform the SSVQE or
the MCVQE and obtain approximate eigenstates |ϕi( �R)〉 and
eigenenergies Ẽi of H ( �R). Then we calculate the derivative
of the Hamiltonian, ∂H

∂RI
, on classical computers. Specifi-

cally, when we use the Hartree-Fock orbitals to construct
the second-quantized Hamiltonian, the derivative ∂H

∂RI
(more

precisely, the derivatives of the one- and two-electron integrals
in the molecular orbital basis) can be obtained by solving the
coupled perturbed Hartree-Fock (CPHF) equation [29–31].
The solution of the CPHF equation can be obtained using the
standard software for quantum chemistry.

Finally, evaluating the transition amplitude
〈ϕk ( �R)| ∂H

∂RI
|ϕl ( �R)〉 on quantum devices by using the method

of Eq. (13) and substituting it into Eq. (3) gives the value of
the 1-NAC.

B. Second-order nonadiabatic coupling

Next, we introduce an analytical evaluation method of
the 2-NAC on near-term quantum devices. After obtaining
approximate eigenstates {|ϕi( �R)〉}i by the SSVQE or the
MCVQE, putting them into Eq. (2) yields

〈ϕk ( �R)| ∂2

∂R2
I

|ϕl ( �R)〉

=
∑
a,b

∂θ∗
a

∂RI

∂θ∗
b

∂RI
〈ϕk|∂a∂bϕl〉 +

∑
c

∂2θ∗
c

∂R2
I

〈ϕk|∂cϕl〉 ,

(18)

where we denote ∂
∂θa

∂
∂θb

|ϕ j〉 and ∂
∂θc

|ϕ j〉 as |∂a∂bϕ j〉 and
|∂cϕ j〉, respectively. We note that plugging Eq. (18) when
k = l into Eq. (4) gives the formula of the DBOC based on
the VQE.

The derivatives of the optimal circuit parameters such as
∂θ∗

a
∂RI

and ∂2θ∗
c

∂R2
I

can be calculated by the method reviewed in
Sec. III. The terms 〈ϕk|∂a∂bϕl〉 and 〈ϕk|∂cϕl〉 can be evaluated
with the Hadamard test [48] in a naive way, but its implemen-
tation is costly for near-term quantum devices. Therefore, in
the following, we describe how to reduce the evaluation of
〈ϕk|∂a∂bϕl〉 and 〈ϕk|∂cϕl〉 to the measurements of the expecta-
tion value of observables, which is the standard process of the
near-term quantum algorithms.

1. Evaluation of 〈ϕk|∂a∂bϕl〉
To calculate 〈ϕk|∂a∂bϕl〉, let us first consider evaluating

〈�|U †(�θ )
∂

∂θa

∂

∂θb
U (�θ ) |�〉 (19)

with |�〉 being an arbitrary reference state. When
a = b, it follows that 〈�|U †(�θ ) ∂2

∂θ2
a
U (�θ ) |�〉 =

−g2
a 〈�|U †(�θ )U (�θ ) |�〉 = −g2

a. When a �= b, we assume
1 � b < a � Nθ without loss of generality. By using the
method in Ref. [67], the real and imaginary parts of Eq. (19)
are evaluated separately in the following way.

The real part is calculated with quantum circuits containing
projective measurements of the Pauli operator Pb denoted by
MPb ,

Re

(
〈�|U †(�θ )

∂

∂θa

∂

∂θb
U (�θ ) |�〉

)
= −gagb

(
p
(
MPb = 1

) 〈Pa〉MPb=1

− p
(
MPb = −1

) 〈Pa〉MPb =−1

)
, (20)

where

〈Pa〉MPb=±1

= 1

4

〈�|U †
1:b(I ± Pb)U †

b+1:aPaUb+1:a(I ± Pb)U1:b |�〉
p
(
MPb = ±1

) (21)
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FIG. 1. (a) Quantum circuit to evaluate Eq. (21) and (b) quantum
circuit to evaluate Eq. (24). These figures are based on Ref. [67].
MPb is a projective measurement of the Pauli operator Pb.

is the conditional expectation value of Pa when the projective
measurement of Pb yields ±1, and

p
(
MPb = ±1

) = ∣∣ 1
2 (I ± Pb)U1:b |�〉 ∣∣2

(22)

is the probability of getting the result ±1 for the projective
measurement of Pb. If Pb is a single Pauli operator or even if
Pb is a multiqubit Pauli operator, we expect that the projective
measurement of it can be performed in near-term quantum
devices [68]. The total circuit for evaluating Eq. (21) is shown
in Fig. 1(a).

On the other hand, the imaginary part of Eq. (19) can be
calculated as

Im

(
〈�|U †(�θ )

∂

∂θa

∂

∂θb
U (�θ ) |�〉

)
= gagb

2
(〈Pa〉+,b − 〈Pa〉−,b),

(23)

where

〈Pa〉±,b

= 〈�|U †
1:be∓iπPb/4U †

b+1:aPaUb+1:ae±iπPb/4U1:b |�〉 (24)

is the expectation value of Pa for the quantum state
Ub+1:ae±iπPb/4U1:b |�〉. The circuit for calculation is shown in
Fig. 1(b).

Then, to obtain 〈ϕk|∂a∂bϕl〉, we take advantage of the fol-
lowing equality,

2 〈ϕk|∂a∂bϕl〉 = 〈ϕ+
k,l |∂a∂bϕ

+
k,l〉 − 〈ϕ−

k,l |∂a∂bϕ
−
k,l〉

+1

i

(〈
ϕi+

k,l |∂a∂bϕ
i+
k,l

〉 − 〈
ϕi−

k,l |∂a∂bϕ
i−
k,l

〉)
, (25)

where |ϕ±
k,l〉 = U1:N (|ψk〉 ± |ψl〉)/

√
2 and |ϕi±

k,l〉 =
U1:N (|ψk〉 ± i |ψl〉)/

√
2. All terms in the right-hand side

of (25) can be evaluated by the method described above with
taking |�〉 appropriately, so the 〈ϕk|∂a∂bϕl〉 is also obtained.

2. Evaluation of 〈ϕk|∂cϕl〉
Next, we describe how to compute 〈ϕk|∂cϕl〉. It follows that

〈ϕk|∂cϕl〉 = 〈ψk|U †(�θ )
∂

∂θc
U (�θ ) |ψl〉

= igc 〈ψk|U †
1:cPcU1:c |ψl〉 . (26)

The term in the last line can be evaluated by the method of
Eq. (13) by substituting |ϕ±

k,l ( �R)〉 by U1:c
1√
2
(|ψk〉 ± |ψl〉) and

|ϕ±i
k,l ( �R)〉 with U1:c

1√
2
(|ψk〉 ± i |ψl〉).

3. Summary

In summary, calculation of the 2-NAC DI
kl proceeds as

follows:
(1) Perform the SSVQE or the MCVQE and obtain ap-

proximate eigenstates |ϕi( �R)〉 and eigenenergies Ẽi( �R) of
H ( �R).

(2) Calculate the derivative of the Hamiltonian ∂H
∂RI

on

classical computers and obtain ∂θ∗
a

∂RI
and ∂2θ∗

c

∂R2
I

in Eq. (18) by
solving Eqs. (14) and (15).

(3) For all a, b = 1, . . . , Nθ , evaluate Eq. (19) for |�〉 =
|ϕ±

k,l〉 , |ϕi±
k,l〉, by using Eqs. (20) and (23). Plugging them in

Eq. (25) yields the value of 〈ϕk|∂a∂bϕl〉.
(4) For all c = 1, . . . , Nθ , evaluate 〈ϕk|∂cϕl〉 according to

Eq. (26).
(5) Substituting all values obtained in previous steps into

Eq. (18) gives the 2-NAC.
The main contribution of this paper is that we reduce the

definition of the NACs [Eqs. (1) and (2)] to the formulas that
we can evaluate on quantum devices by the existing tech-
niques. Here we note that procedure 2 follows the techniques
in Ref. [29], procedure 3 partially uses those in Ref. [67], and
procedure 4 basically follows those in Ref. [22].

V. CALCULATING BERRY’S PHASE WITH VARIATIONAL
QUANTUM EIGENSOLVER

In this section, we describe a method for calculating
Berry’s phase with the VQE algorithm. From the results of the
VQE, while we can access the density operators of the eigen-
state ρk (�θ∗) = |ϕ0(�θ∗)〉 〈ϕ0(�θ∗)| determined by the optimized
circuit parameters �θ∗, we cannot access the information about
the phase of quantum state. Here we discuss how to calculate
Berry’s phase on quantum devices from the optimized circuit
parameters obtained by the VQE. In the following, without
loss of generality, we only consider the ground state as the
eigenstate. Let N0 denote the set of normalized states in a
complex Hilbert space H. We consider performing the VQE
from one point �R0 := �R(t0) of the closed loop C �R := { �R(t ) |
t ∈ [t0, t1], �R(t0) = �R(t1)} in the system-parameter space and
continue doing it along C �R, and then we obtain a smooth curve
C�θ∗ := {�θ∗( �R(t )) | t ∈ [t0, t1]} in the circuit-parameter space.
For simplicity, let �θ∗

s := �θ∗( �R(t0)) and �θ∗
t := �θ∗( �R(t1)) denote

the starting point and the end point of C�θ∗ , respectively. We
note that �θ∗

s �= �θ∗
t may occur; i.e., the curve C�θ∗ of the optimal

parameters does not necessarily form the closed loop in the
circuit-parameter space even when C �R is the closed loop in
the system-parameter space. This is because the VQE does
not care about the overall phase of the ground state, and for
most cases there is a redundancy in the ansatz |ϕ0(�θ )〉 such
that |ϕ0(�θ1)〉 = eiξ |ϕ0(�θ2)〉 , eiξ �= 1 for some �θ1 �= �θ2. Next,
we introduce the projective Hilbert space called Ray space.
Ray space R is defined as the equivalent class R := N0/ ∼
where the equivalence relation ∼ holds for two elements
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of N0 which differ only by a global phase. We also define
the projection map π : |ψ〉 ∈ N0 → ρ = |ψ〉 〈ψ | ∈ R. For a
given curve CN0 = {|ϕ0(�θ∗)〉} ⊂ N0, its projection to R is also
the curve Cρ := {ρ(�θ∗) | ρ = |ϕ0(�θ∗)〉 〈ϕ0(�θ∗)| , �θ∗ ∈ C�θ∗ } ⊂
R, and this curve Cρ in R is determined uniquely according
to the optimized circuit parameters �θ∗.

Then let us describe and formulate the way to calculate
Berry’s phase based on the results of the VQE. Suppose that a
curve Cρ = {ρ(�θ∗)} is given. Here, we consider a particular lift
CN0 = {|ϕ0(�θ∗)〉} of Cρ such that π (CN0 ) = Cρ where |ϕ0(�θ∗)〉
is fixed up to a phase. We assume that |ϕ0(�θ∗)〉 is smooth, i.e.,
|ϕ0(�θ∗)〉 is differentiable with respect to �θ∗. With this lift CN0 ,
Berry’s phase can be defined as [69]

�Cρ
:= − i

∫ �θ∗
t

�θ∗
s

d�θ∗ · 〈ϕ0(�θ∗)| ∂

∂�θ∗ |ϕ0(�θ∗)〉

+ arg(〈ϕ0(�θ∗
s )|ϕ0(�θ∗

t )〉).

(27)

We want to emphasize here that Berry’s phase is a functional
of the curve Cρ . Namely, for a given curve Cρ , though we
can construct a new curve C′

N0
which differs only by U (1)

phase degree of freedom from CN0 with a real smooth function
�(�θ∗),

CN0 → C′
N0

: |ϕ′
0(�θ∗)〉 = ei�(�θ∗ ) |ϕ0(�θ∗)〉 ,

π
(
CN0

) = π
(
C′
N0

)
,

(28)

the value of Berry’s phase �Cρ
calculated with the curve C ′

N0

is identical to that with CN0 .
As discussed above, by performing the VQE, we obtain

the curves C�θ∗ and Cρ . To calculate Berry’s phase based on
Eq. (27), we have to choose some fixed lift CN0 from Cρ . Due
to the arbitrariness of the lift, we can fix the phase freedom
globally and choose CN0 so that the freedom does not depend
on �θ∗. Therefore, given a ρ(�θ∗

s ), we first choose |ϕ0(�θ∗
s )〉

up to phase, and then form a lift CN0 = {|ϕ0(�θ∗)〉} uniquely
up to a phase degree of freedom in the starting point of the
curve |ϕ0(�θ∗

s )〉. By considering such lift, the terms appearing
in the Eq. (27) can be reduced to the quantities which can be
evaluated with quantum devices. In the following, we explain
how to evaluate the terms in the right-hand side of Eq. (27).

A. Evaluation of the first term

The first term of Eq. (27) is computed by discretization of
the closed loop C �R and numerical integration of the integrand.
We discretize the value of the system parameters �R on C �R
as �R0, . . . , �RK−1 appropriately and also define �RK = �R0. The
VQE algorithm is performed for all points { �Rp}K

p=0 and the

optimal circuit parameters are obtained as {�θ∗
p = �θ∗( �Rp)}K

p=0.

We define �θ∗
0 := �θ∗

s ( �R0) and �θ∗
K := �θ∗

t ( �R0) and stress again that
�θ∗

0 �= �θ∗
K may hold in general due to the redundancy of the

ansatz. Here because we choose the phase freedom of the lift
CN0 = {|ϕ0(�θ∗)〉}, which is independent of �θ∗, the integrand

FIG. 2. The Hadamard test to evaluate the phase difference
arg(〈ϕ(�θ∗

s )|ϕ(�θ∗
t )〉) in Eq. (27). The upper line represents an an-

cillary qubit which is measured, and the lower line represents the
system on which W (�θ∗

0 , �θ∗
K ) := U †(�θ∗

K )U (�θ∗
0 ) operates. The results

of the measurements for the ancillary qubit gives the value of
Re(〈ϕ(�θ∗

0 )|ϕ(�θ∗
K )〉) and Im(〈ϕ(�θ∗

0 )|ϕ(�θ∗
K )〉) for n = 0, 1.

of the first term can be written as

〈ϕ0(�θ∗)| ∂

∂θ∗
a

|ϕ0(�θ∗)〉 = 〈ψ0|U †(�θ∗)
∂

∂θ∗
a

U (�θ∗) |ψ0〉

= iga 〈ψ0|U ∗†
1:aPaU

∗
1:a |ψ0〉 ,

(29)

so it is evaluated by measuring the expectation value of Pa

for the state U ∗
1:a |ψ0〉, which can be evaluated on quantum

devices. Therefore, the integral is approximated by∫
C′

d�θ∗ · 〈ϕ0(�θ∗)| ∂

∂�θ∗ |ϕ0(�θ∗)〉

≈
K−1∑
p=0

(�θ∗
p+1 − �θ∗

p ) · 〈ϕ0(�θ∗)| ∂

∂�θ∗ |ϕ0(�θ∗)〉
∣∣∣∣�θ∗=�θ∗

p

. (30)

B. Evaluation of the second term

The second term in Eq. (27), arg(〈ϕ0(�θ∗
s )|ϕ0(�θ∗

t )〉), is eval-
uated by the difference of the overall phase of two wave
functions |ϕ0(θ∗

0 )〉 and |ϕ0(θ∗
K )〉. This can be performed by es-

timating arg(〈ϕ0(θ∗
0 )|ϕ0(θ∗

K )〉) = arg(〈ψ0|U †(�θ∗
0 )U (�θ∗

K )|ψ0〉)
with the Hadamard test [48] depicted in Fig. 2. It requires
one ancillary qubit and the controlled-U (�θ ) gates, which are
costly for near-term quantum devices. We finally mention that
if we construct the lift CN0 of Cρ so that the phase degree of
freedom depends on �θ∗, by taking both terms in Eq. (27) into
account, Eq. (27) can be reduced to the quantities which can
be evaluated on quantum devices as discussed above [70].

C. Comparison with previous studies

We here compare previous work on calculating Berry’s
phase on quantum devices with our method. In Ref. [49],
Berry’s phase is calculated by simulating adiabatic dynamics
of the system UC = T e−i

∫ T
0 dsH (s), where T is the time-ordered

product and H (s) is a time-dependent Hamiltonian, which
varies along the closed loop C in sufficiently long time T . UC
is implemented on quantum computers by the Suzuki-Trotter
decomposition, and the Hadamard test like Fig. 2 is performed
to detect the phase difference between the initial ground state
|χ ( �R0)〉 and the time-evolved state UC |χ ( �R0)〉. The phase
difference between |χ ( �R0)〉 and UC |χ ( �R0)〉 contains the dy-
namical phase and Berry’s phase, but the former phase can
be neglected by combining the forward- and backward-time
evolutions by assuming the Hamiltonian of the system has
time-reversal symmetry. Compared with this strategy, our
proposal for calculating Berry’s phase based on the VQE
has two features. First, we do not have to assume the time-
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reversal symmetry in the system to remove the contribution
from the dynamical phase like in the previous study because
we directly calculate Berry’s phase based on the defini-
tion in Eq. (6). Our method can apply to general quantum
systems. Second, the causes of errors are quite different.
More concretely, while the errors in the previous methods
arise from the Trotterization of the time evolution operator,
the errors in our method mainly come from two sources: One
is the approximation error of the eigenstates obtained by the
VQE, and the other is the numerical error of integration in
Eq. (30). These errors can be reduced by deepening the ansatz
circuits and taking more discretized points on C, respectively.
We comment that further research is needed to conclude the
difference in the performance between our method and these
previous methods.

Finally, we introduce another method to calculate Berry’s
phase based on the VQE with a lot of Hadamard tests. Using
the formula

�C ≈ −i
K∑

i=0

Im(ln 〈ϕ0(�θ∗
i )|ϕ0(�θ∗

i+1)〉), (31)

with taking the principal branch of the complex logarithm,
−π � Im(z) < π for z ∈ C, is one of the candidates for
avoiding discretization error of the closed loop C and numeri-
cal instability [71]. The value of 〈ϕ0(�θ∗

i )|ϕ0(�θ∗
i+1)〉 is evaluated

by the Hadamard test in Fig. 2 by substituting �θ∗
0(K ) with

�θ∗
i(i+1).

D. Summary

Berry’s phase can be calculated based on the VQE as
follows:

(1) Discretize the closed loop C in the system-parameter
space as { �Rp}K

p=0 appropriately and perform the VQE for all
points.

(2) Calculate the first term of Eq. (27) by using Eqs. (29)
and (30).

(3) If necessary, evaluate the phase difference
arg(〈ϕ0(�θ∗

s )|ϕ0(�θ∗
t )〉) by the Hadamard test shown in Fig. 2.

(4) Substituting all values obtained in the previous steps
into Eq. (27) gives the Berry phase.

VI. EXPERIMENT ON A REAL QUANTUM DEVICE

In this section, we show an experimental result of our
algorithm for the 1-NAC on a real quantum device and the
nonadiabatic molecular dynamics (MD) simulation based on
the experimental values of the 1-NAC.

We consider a lithium fluoride (LiF) molecule with bond
length R and its electronic states under the Born-Oppenheimer
approximation. In this system, the potential energy curves,
or eigenenergies E as a function of R, of the two lowest
1�+ states are known to exhibit the avoided crossing [74–77],
and it plays a crucial role for nonadiabatic dynamics such as
photodissociation. Here we focus on this avoided crossing and
the resulting nonadiabaitc dynamics by modeling the system
with a simple two-state model. Specifically, the electronic
Hamiltonian of LiF at bond distance R is constructed by two
orbitals obtained by the state-average complete active space

FIG. 3. The ansatz circuit U (�θ ) for the SSVQE. Each RY =
exp(−iY θ/2) = ( cos θ/2 sin θ/2

− sin θ/2 cos θ/2

)
has a rotational angle θ as an

independent parameter, and d = 4 denotes the depth of the ansatz.
The rotation angles of RY gates are optimized during the SSVQE
in our experiments. We note that quantum states generated by this
circuit for real wave function |ψ〉 remain real for any choice of θ .

self-consistent field (CASSCF) method [78]. By consider-
ing symmetries in the system, one can obtain a two-qubit
Hamiltonian HLiF(R) from that electronic Hamiltonian. Fur-
ther details are described in Appendix A.

We run our algorithm to calculate the 1-NAC (Sec. IV) of
HLiF(R) at various bond length R in the IBM Q cloud quantum
device (ibmq_valencia) [50]. First, the SSVQE calculation
for HLiF(R) is performed on a classical simulator where the
exact and noiseless expectation values of observables are
obtained. The ansatz for the SSVQE, U (�θ ), is depicted in
Fig. 3 and we optimize the parameters �θ to minimize the
cost function (10). The initial states to which the ansatz
applied are |ψ0〉 = |00〉 , |ψ1〉 = |01〉 states. To calculate the
singlet (S = 0) states 1�+, we penalize the triplet (S = 1)
states by modifying the Hamiltonian in the cost function as
H ′ = HLiF(R) + βŜ2, where Ŝ2 is the spin squared operator
and β = 4.0 is a constant [79]. We obtain the (approximate)
eigenstates |ϕ0,1(�θ∗)〉 = U (�θ∗) |ψ0,1〉 and eigenenergies Ẽ0,1

for two 1�+ states in this way from the classical simula-
tor [Fig. 4(a) shows the potential energy curves]. Next, the
transition amplitude 〈ϕ0(�θ∗)| dHLiF (R)

dR |ϕ1(�θ∗)〉 is computed on
a quantum device by evaluating each term of the right-hand
sides of Eq. (13) with 8192 shots. Since the wave function is
real by definition of the ansatz U (�θ ), we consider only the real
part of Eq. (13). Finally, the 1-NAC is obtained by plugging
the estimate of 〈ϕ0(�θ∗)| dHLiF (R)

dR |ϕ1(�θ∗)〉 into the numerator
of Eq. (3) and that of Ẽ0 − Ẽ1 into the denominator. As we
mentioned in Sec. II, the 1-NAC is not gauge invariant. Even
when considering only real wave functions as in this case, the
1-NAC still has indefinite sign, but here the sign is determined
by considering the continuity of the 1-NAC with respect to the
nuclear coordinate �R. We comment that the way of calculating
the 1-NAC here is chosen to remove the effect of the noise and
errors in the real quantum device during the SSVQE and focus
on evaluating the transition amplitude.

The result of the 1-NAC is shown in Fig. 4(a). Because
of the noise in the real quantum device, the values of the
transition amplitude are smaller than the exact results but still
qualitatively consistent with them. This shrinking could be
resolved by, for example, using the error mitigation technique
[80,81] for near-term quantum devices.

In addition, we perform the trajectory surface hopping
(TSH) [82] molecular dynamics calculation using Tully’s
fewest switches algorithm [38] based on the obtained values
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FIG. 4. (a) Numerical results of the potential energy curves of the 11�+ state (upper triangles) and 21�+ state (lower triangles) of LiF
obtained by the SSVQE and experimental results of the 1-NAC d̃0,1 between the two states (circles) at the bond distance R in the range of 2
to 15 Bohr. The solid lines represent the spline interpolated curves computed by SciPy, a numerical library in PYTHON [72]. The dashed lines
show the exact numerical results of the 1-NAC d0,1 in a noiseless situation calculated with the Qiskit’s state-vector simulator [73]. The exact
potential energy curves calculated by the exact diagonalization are not presented in the figure since they coincide with the ones obtained by the
SSVQE (presented in the figure) by less than 10−10 a.u. for the whole range of R. (b) Potential energies of 11�+ and 21�+ states (upper panel)
of LiF and the transition probability P21�+→11�+ (lower panel) for one trajectory obtained by the TSH molecular dynamics simulation using
d̃0,1 values in panel (a). On this trajectory, the molecule hops from 21�+ state to 11�+ state at 17136.2 fs during bond shrinking motion and it
is dissociated into Li and F atoms. (c) Time evolution of the population of the 11�+ state and 21�+ state of LiF computed by 500 trajectories
of TSH simulation using the values of 1-NAC, d̃0,1 and d0,1, in panel (a).

of the potential energy curves and the 1-NAC [Fig. 4(a)]. We
assume a situation where a LiF molecule is excited by light
to the first electronic excited state. In the TSH simulation,
the nuclear energy gradient ∂Ẽ0,1

∂R and the 1-NAC at various
bond lengths R are requested by the TSH program code,
and we feed it with the values interpolated from the results
of the SSVQE and the 1-NAC experiment. The details of
the interpolation are described in Appendix B. We prepare
a set of 500 molecular geometries and nuclear velocities as
a harmonic-oscillator Wigner distribution for the vibrational
ground state at the equilibrium geometrical structure in the
electronic ground state 1 1�+. We run the trajectories from
the first electronic excited state 2 1�+ with a time step of
0.1 fs and find that the trajectories hop from 2 1�+ to 1 1�+
where the dissociation occurs as shown in Fig. 4(b). The
dynamics of the populations of the 1 1�+ state and 2 1�+
state is calculated based on the results of 500 trajectories
and shown in Fig. 4(c). Since the experimentally obtained
1-NAC values are smaller than the noiseless simulation ones
[Fig. 4(a)], the decay of the 2 1�+ population calculated by
using the experimental values of 1-NAC is slightly slower than
that is calculated by using the noiseless simulation values of
1-NAC. Nevertheless, the overall dynamics of the populations
is similar to each other and this indicates the possibility of
performing TSH in a quantum device in the near future.

The TSH simulation is conducted by the open-source li-
brary SHARC [83–85].

Although we consider the 1-NAC throughout this section,
we perform additional numerical demonstrations of our meth-
ods by simulating the quantum circuits to calculate the 1-NAC
and 2-NAC of the hydrogen molecules and Berry’s phase of a
two-site spin model in Appendix D.

VII. DISCUSSION

Our proposed methods presented in the previous sections
are based on the analytical derivative of the eigenstates ob-

tained by the SSVQE. This section compares our methods
with those using the numerical derivative of the eigenstates
by the finite difference method. The comparison will be
made from two points of view: (1) the number of distinct
Hamiltonians to perform the SSVQE to obtain the optimal
circuit-parameters �θ∗ and (2) the total number of measure-
ments required to evaluate the NACs and Berry’s phase after
performing the SSVQE. We ignore the cost of classical com-
putation throughout analyses in this section.

We recall that Nθ and Nx are the dimensions of the circuit
parameters and system parameters, respectively. The number
of qubits in the system is denoted as n and the number of
Pauli terms in the Hamiltonian as NH . For quantum chemistry
problems, NH is typically O(n4) [2,3], but several methods for
reducing NH are proposed [86,87]. The detailed derivations
of the formulas in this section [Eqs. (32), (34), and (37)] are
presented in Appendix C.

A. Cost of 1-NAC

Let us consider our proposed method to calculate the
1-NAC dI

kl with fixed k, l and all I = 1, . . . , Nx at some
fixed system parameters �R. The evaluation of the 1-NAC
is performed by calculating the denominator and numerator
in Eq. (3). Both can be obtained by applying a single op-
timized ansatz circuit U (�θ∗( �R)) resulting from the SSVQE
to several initial states and measuring appropriate observ-
ables, so the number of distinct Hamiltonians to perform
the SSVQE is just one. Meanwhile, the number of mea-
surements to calculate the 1-NAC is estimated as follows.
When we write the Hamiltonian as H ( �R) = ∑NH

i=1 hi( �R)Pi,
where Pi is Pauli operator and hi( �R) is a real coefficient, the
values of 〈ϕk(l )|H ( �R)|ϕk(l )〉 = ∑NH

i=1 hi( �R) 〈ϕk(l )|Pi|ϕk(l )〉 and
〈ϕk|∂H ( �R)/∂RI |ϕl〉 = ∑NH

i=1 ∂hi( �R)/∂RI 〈ϕk|Pi|ϕl〉 are neces-
sary to compute the 1-NAC. The term 〈ϕk(l )|Pi|ϕk(l )〉 is
evaluated as the expectation value of Pi, and similarly the
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term 〈ϕk|Pi|ϕl〉 (i = 1, . . . , NH ) is evaluated as a sum of four
expectation values in the right-hand sides of Eq. (13). By
taking into account errors in evaluating those expectations
values, the number of measurements to estimate the 1-NAC
within the error ε is given by

N1−NAC
total

= O

[
NH

ε2|�Ek,l |4
(

|�Ek,l |
∥∥∥∥ ∂H

∂RI∗

∥∥∥∥ + ‖H‖|AI∗ |
)2]

,
(32)

where AI (�Ek,l ) is the numerator (denominator) of
Eq. (3), ‖H‖ = ∑

i |hi|, ‖∂H/∂RI‖ = ∑
i |∂hi/∂RI |, and

I∗ = argmaxI (|�Ek,l |‖ ∂H
∂RI

‖ + ‖H‖|AI |). It scales with the
number of the Pauli terms in the Hamiltonian but does not
depend on the number of circuit parameters Nθ by virtue
of Eq. (3). The dependence on I , or the system parameters,
is also absent because it is absorbed into the classical
computation of the coefficient ∂hi( �R)/∂RI [29].

To compare with our method, one can consider a method
to evaluate the 1-NAC based on numerical differentiation of
the eigenstates obtained by the SSVQE. In such an approach,
the 1-NAC can be evaluated by the following formula,

dI
k,l ≈ τk,l ( �R, �R + h�eI ) − τk,l ( �R, �R − h�eI )

2h
, (33)

where τk,l ( �R, �R ± h�eI ) = 〈ϕk (�θ∗( �R))|ϕl (�θ∗( �R ± h�eI ))〉, h is a
positive number, and �eI is the unit vector in the Ith direction.
For simplicity, we will represent τk,l ( �R, �R ± h�eI ) as τ±,I

k,l .
When evaluating each term of Eq. (33), we

assume that τ±,I
k,l is estimated from the overlap

|〈ψk|U †(�θ∗( �R))U (�θ∗( �R ± h�eI ))|ψl〉|2, which can be easily
evaluated from measurements on near-term quantum devices
if |ψk〉 , |ψl〉 are computational basis states [25]. We then
obtain the value of τ±,I

k,l by taking the square root of the
overlaps with a positive sign (real value) [6]. This treatment
can be justified when we solve problems in quantum
chemistry, where wave functions are often real, and we
adopt an ansatz which produces a real wave function. This
approach to evaluate Eq. (33) avoids the costly Hadamard
test and is considered to be feasible on near-term quantum
devices. We note that our methods are always applicable
without the assumption above.

To evaluate the 1-NAC with Eq. (33), we need optimal
parameters �θ∗( �R), �θ∗( �R ± h�eI ) for all I , so the number of
distinct Hamiltonians to perform the SSVQE in the finite
difference method is 2Nx + 1 = O(Nx ). By considering the
error in estimating the overlaps, the number of measurements
to estimate the 1-NAC with the precision of ε in the finite
difference method is at least

N ′1−NAC
total = O

(
Nx/T 2

k,lε
2), (34)

where Tk,l = minσ=±,I τσ,I
k,l and we assume the condi-

tion M3 � O(ε), where M3 = maxI maxs∈[−h,h] |τ (I,3)
k,l (s)| and

τ
(I,3)
k,l (s) = d3

ds3 τk,l ( �R, �R + s�eI ). Both our method (32) and the
finite difference method (34) scale with ε−2, so the prefactors
determine the efficiency of them. When Nx, or the number of
system parameters (nuclei of the molecule), becomes large,
the finite difference method will suffer from a large number

of the SSVQE runs and the measurements compared with our
method.

B. Cost of 2-NAC

To calculate the 2-NAC DI
kl with fixed k, l and all I =

1, . . . , Nx at �R with our method, we require one optimized cir-
cuit parameter θ∗( �R), so the number of distinct Hamiltonians
to perform the SSVQE is again one. Let us consider the num-

ber of measurements. We need the derivatives { ∂θ∗
a

∂RI
,

∂2θ∗
a

∂R2
I
}Nx

I=1

which are obtained as the solutions of Eqs. (14) and (15).
The coefficients of these equations are determined within
error ε by performing O(N3

θ NH/ε2) measurements. Since
the error propagation from the coefficients to the solutions

{ ∂θ∗
a

∂RI
,

∂2θ∗
a

∂R2
I
}Nx

I=1 is very complicated, we here let the error of
the solutions be ε (see Ref. [29] for similar discussion).
The value of 〈ϕk|∂a∂bϕl〉 (a, b = 1, . . . , Nθ ) in Eq. (25) is
obtained by measuring O(N2

θ /ε2) times within error ε. Sim-
ilarly, 〈ϕk|∂cϕl〉 (c = 1, . . . , Nθ ) in Eq. (26) is calculated by
O(Nθ /ε

2) measurements. Therefore, the total number of mea-
surements to evaluate the 2-NAC by our method is roughly
given by

N2−NAC
total = O

(
N3

θ NH/ε2
)
, (35)

where the meaning of ε has to be cared for. It does not depend
on the number of system parameters Nx.

The finite difference method is based on the following
formula:

DI
k,l ≈ τk,l ( �R, �R + h�eI ) + τk,l ( �R, �R − h�eI )

h2
, (36)

where we used τk,l ( �R, �R) = 0. Similar to the case of the 1-
NAC, the number of distinct Hamiltonians to perform the
SSVQE is O(Nx ). To bound the error of the 2-NAC by ε, the
finite difference method requires at least

N ′2−NAC
total = O

(
N2

x /T 2
k,lε

2) (37)

measurements under the condition M4 � O(ε), where M4 =
maxI maxs∈[−h,h] |τ (I,4)

k,l (s)| and τ
(I,4)
k,l (s) = d4

ds4 τk,l ( �R, �R + s�eI ).
The number of measurements in our method (35) does not
depends on Nx while the finite difference method (37) does,
as with the 1-NAC.

C. Cost of Berry’s phase

For calculating Berry’s phase, the closed path C is dis-
cretized into K points. The integrand [Eq. (27)] is evaluated
at all K points and numerically integrated both in our method
and the finite difference method. We therefore compare our
method with the finite difference method only in terms of the
cost to obtain the integrand at all the discretized points.

In our method, the integrand at each discretized point can
be evaluated by Eq. (29). The total number of distinct Hamil-
tonians to perform the VQE is K + 1 = O(K ). If we bound
the error in estimating each integrand by ε, the total number
of measurements is given by

NBerry
total = O(KNθ /ε

2). (38)
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In the finite difference, the integrand can be evaluated with
the finite difference method by the following formula,

〈ϕ0( �Rk )|ϕ0( �Rk + h�vk )〉 − 〈ϕ0( �Rk )|ϕ0( �Rk − h�vk )〉
2h

, (39)

where �vk ∝ �Rk+1 − �Rk is the unit vector along the closed
loop C. The minimal number of measurements to obtain all
integrands within error ε can be derived in a similar way for
the 1-NAC, and the result is

N ′Berry
total = O

(
K/T 2

0,0ε
2
)
, (40)

under the condition M ′
3 � O(ε) where M ′

3= maxk maxs∈[−h,h]

|τ (k,3)
0,0 (s)| and τ

(k,3)
0,0 (s) = d3

ds3 τ0,0( �R, �R + s�vk ).

VIII. CONCLUSION

In this paper, we have proposed methods to calculate the
NACs and Berry’s phase based on the VQE. We utilize the
SSVQE and the MCVQE algorithms, which enable us to
evaluate transition amplitudes of observables between approx-
imate eigenstates. We explicitly present quantum circuits and
classical postprocessings to evaluate the NACs and Berry’s
phase in the framework of the VQE. For the 1-NAC, the
calculations are simplified by taking advantage of the formula
(3). The 2-NAC is obtained by combining the projective mea-
surements and the expectation-value measurements of Pauli
operators. The evaluation of Berry’s phase is also carried out
by the measurements of expectation values of Pauli operators
with numerical integration of the definition of Berry’s phase
in addition to performing the Hadamard test once. We note
that our method for calculating Berry’s phase is applicable
for molecular systems which have the conical intersection
[88]. To show the potential feasibility of our method for the
1-NAC on a near-term quantum device, we evaluate the value
of the 1-NAC of a lithium fluoride molecule on the IBM Q
processor. Based on those results, we perform the nonadia-
batic molecular dynamics simulation of photodissociation of
a lithium fluoride. The methods given in the present paper
contribute to enlarging the usage of the VQE and accelerate
further developments to investigate quantum chemistry and
quantum many-body problems on near-term quantum devices.

We lastly comment on the effect of the barren plateau
problem [89–93] on our methods. The barren plateau prob-
lem states that the gradients of the expectation values of
observables with respect to ansatz circuit parameters vanish
exponentially with the increase of the number of qubits when
the ansatz has enough expressibility. When the barren plateau
occurs, it is difficult to obtain the optimal circuit parameters
�θ∗ because the gradients become too small to optimize the
parameters. Our proposed methods in this paper discuss the
procedures after the optimal circuit parameters have been
obtained (i.e., the VQE has successfully converged). Although
our methods do not work when we cannot obtain �θ∗, several
techniques [94–98] to avoid or ameliorate the barren plateau
for the VQE and other variational quantum algorithms have
been proposed.
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APPENDIX A: HAMILTONIAN FOR LiF

The model Hamiltonian of a LiF molecule at a bond length
R under the Born-Oppenheimer approximation, HLiF(R), is
constructed by the following steps: (1) The state-average
CASSCF method with the active space of (six orbitals, six
electrons) is carried out by adopting the aug-ccppvdz basis
set. The state average is taken for two lowest 1�+ states.
(2) We pick two lowest σ, σ ∗ molecular orbitals from the
six optimized orbitals of CASSCF and construct a fermionic
Hamiltonian by using them. (3) The parity mapping method
[99,100] is employed to map the fermionic Hamiltonian to
the qubit Hamiltonian; the number of qubits required is four
at this point. Two qubits among the four are frozen from
the symmetry constraints for the number of electrons and the
number of total z components of the spin [101], which finally
results in the two-qubit Hamiltonian. The construction of the
Hamiltonian is processed by PySCF [102] and OpenFermion
[103].

APPENDIX B: INTERPOLATION OF THE RESULTS
TO PERFORM TSH

As described in Sec. VI, we interpolate the values of the
(approximate) eigenenergies Ẽ0, Ẽ1 and the 1-NAC d̃0,1 eval-
uated at the finite number of points and supply them to the
programming code for the TSH molecular dynamics simula-
tion. Sixty-six points in the range of 2 to 15 Å are used for
evaluation, and we perform the cubic spline interpolation for
them implemented in Scipy, a numerical library in PYTHON

[72].

APPENDIX C: COST ANALYSIS OF OUR ALGORITHMS

1. Cost of our algorithm for 1-NAC

To estimate the number of measurements to evaluate the
1-NAC with our method, let us consider the error in es-
timating expectation values of the Hamiltonian H ( �R) and
∂H ( �R)

∂R . We write H ( �R) = ∑NH
i=1 hi( �R)Pi and ∂H ( �R)/∂RI =∑NH

i=1 ∂hi( �R)/∂RI Pi as the same in the main text. The Hoeffd-
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ing’s inequality [104] implies that an expectation value 〈Pi〉
can be estimated within the precision εP with high probability
1 − δ by measuring Pi for O(ln(1/δ)/ε2

P ) times. When we per-
form O(ln(1/δ)/ε2

P ) measurements for estimating each 〈Pi〉,
the total error in estimating the expectation value of H ( �R) is

| ˜〈H ( �R)〉 − 〈H ( �R)〉 | � εP

NH∑
i=1

|hi| = εP‖H‖, (C1)

where ·̃ · · is an estimated value of · · · and ‖H‖ = ∑NH
i=1 |hi|.

In the same way, the error of 〈 ∂H ( �R)
∂RI

〉 is given as∣∣∣∣∣∣
˜

〈
∂H ( �R)

∂RI

〉
−

〈
∂H ( �R)

∂RI

〉∣∣∣∣∣∣ � εP

∥∥∥∥ ∂H

∂RI

∥∥∥∥, (C2)

where ‖∂H/∂RI‖ = ∑NH
i=1 |∂hi/∂RI |.

By using Eqs. (C1) and (C2), we can derive the total num-
ber of measurements needed to estimate the 1-NAC within
error ε. Equation (3) is evaluated in our method as

dI
k,l = −〈ϕ+

k,l | ∂H ( �R)
∂RI

|ϕ+
k,l〉 − 〈ϕ−

k,l | ∂H ( �R)
∂RI

|ϕ−
k,l〉

2[〈ϕk| H ( �R) |ϕk〉 − 〈ϕl | H ( �R) |ϕl〉]
. (C3)

When we perform O(ln(1/δ)/ε2
P ) measurements to es-

timate the expectation value of each Pi appearing in

〈ϕ±
k,l | ∂H ( �R)

∂RI
|ϕ±

k,l〉 , 〈ϕk(l )|H ( �R)|ϕk(l )〉, the error propagation fol-
lows that the total error is given by∣∣d̃ I

k,l − dI
k,l

∣∣ � 2εP

|�Ek,l |2
(

|�Ek,l |
∥∥∥∥ ∂H

∂RI

∥∥∥∥ + ‖H‖|AI |
)

, (C4)

where AI ,�Ek,l are the numerator and denominator of
Eq. (C3), respectively. To upper bound the error of dI

k,l by ε,
it is enough to set

εP,I = ε|�Ek,l |2
2
(|�Ek,l |

∥∥ ∂H
∂RI

∥∥ + ‖H‖|AI |
) . (C5)

Recalling that the 1-NACs for all I = 1, . . . , Nx are obtained
by the same results of the measurements 〈Pi〉, we conclude that
the total number of measurements to estimate all the 1-NACs
within the error ε with probability 1 − δ is given by

N1−NAC
total

= O

[
NH ln(1/δ)

ε2|�Ek,l |4
(

|�Ek,l |
∥∥∥∥ ∂H

∂RI∗

∥∥∥∥ + ‖H‖|AI∗ |
)2]

, (C6)

where I∗ = argmaxI (|�Ek,l |‖ ∂H
∂RI

‖ + ‖H‖|AI |).

2. Cost of the finite difference method for 1-NAC

Let us discuss the number of measurements to
calculate the 1-NAC with the finite difference method
based on Eq. (33). Let s±,I

k,l denote the overlap

| 〈ψk|U †(�θ∗( �R))U (�θ∗( �R ± h�eI ))|ψl〉 |2 and we compute τ±,I
k,l

in Eq. (33) as τ±,I
k,l =

√
s±,I

k,l . By using Hoeffding’s inequality,

we know that O(ln(1/δ)/ε2
s ) projective measurements for the

state U †(�θ∗( �R))U (�θ∗( �R ± h�eI ) |ψl〉 onto the computational

FIG. 5. Ansatz quantum circuit for the VQE of the hydrogen
molecule [23]. Each �θ has six parameters, and RY (θ ) = e−i θ

2 Y . The
total number of parameters is 36.

basis state |ψk〉 is required to estimate s±,I
k,l within error εs

with probability 1 − δ.
When the error of the overlap s±,I

k,l is bounded by εs, or

|s̃±,I
k,l − s±,I

k,l | � εs, it follows that∣∣τ̃±,I
k,l − τ±,I

k,l

∣∣ � εs

2τ±,I
k,l

. (C7)

The error of the 1-NAC with the finite difference method is
then be expressed as∣∣∣∣∣dI

k,l − τ̃+,I
k,l − τ̃−,I

k,l

2h

∣∣∣∣∣ � h2

6
M (I )

3 + εs

2hτ I
k,l

, (C8)

where τ I
k,l = min{τ+,I

k,l , τ−,I
k,l }, M (I )

3 = maxs∈[−h,h] |τ (I,3)
k,l (s)|,

and τ
(I,3)
k,l (s) = d3

ds3 τk,l ( �R, �R + s�eI ). To upper bound the right-
hand side by ε, we have to choose εs as

εs = 2τ I
k,l

(
εh − h3

6
M (I )

3

)
. (C9)

Therefore, the total number of measurements needed to eval-
uate the 1-NAC for all I = 1, . . . , Nx within the precision ε

with the finite difference method is

N ′1−NAC
total = O

[
Nx ln(1/δ)

T 2
k,l

(
εh − h3

6 M3
)2

]
, (C10)

where T 2
k,l = minI τ I

k,l and M3 = maxI M (I )
3 . Moreover, to

clarify the dependence of ε, we take h such that εs attains the
maximum with respect to h and that N ′1−NAC

total takes the min-

imum. This is realized for h =
√

2ε
M3

and we obtain εs,max =
4
√

2
3 Tk,l M

− 1
2

3 ε
3
2 . Under the assumption that M3 � O(ε), we

have εs,max � 4
√

2
3 Tk,lε. In such case, it follows that

N ′1−NAC
total = O

(
Nx ln(1/δ)

T 2
k,lε

2

)
. (C11)

3. Cost of the finite difference method for 2-NAC

The same argument applies to the error of 2-NAC with the
finite difference method based on Eq. (36). When we have
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FIG. 6. (a) Numerical results of calculating the 1-NAC d02 and 2-NAC D02 between S0 state and S2 state of the hydrogen molecule in bond
lengths from 0.5 to 2.0 Å with the intervals of 0.1 Å. (b) Numerical results of calculating the DBOC of S0 state of the hydrogen molecule
from 0.5 to 2.0 Å with the intervals of 0.1 Å. (c) Numerical results of calculating potential energy curves by the VQE around the equilibrium
distance of the hydrogen molecule without the DBOC (solid line) and with the DBOC (dashed line) from 0.7320 to 0.7350 Å with the intervals
of 0.0001 Å. Including the DBOC shifts the equilibrium distance from 0.7349 to 0.7348 Å. The NACs of “Full-CI” are obtained by numerical
differentiation of the Full-CI results.

|τ̃±,I
k,l − τ±,I

k,l | � εs/(2τ±,I
k,l ), the error of Eq. (36) is given by∣∣∣∣∣DI

k,l − τ̃+
k,l + τ̃−

k,l

h2

∣∣∣∣∣ � h2

12
M (I )

4 + εs

h2τ I
k,l

, (C12)

where M (I )
4 = maxs∈[−h,h] |τ (I,4)

k,l (s)| and τ
(I,4)
k,l (s) =

d4

ds4 τk,l ( �R, �R + s�eI ). To suppress the error of the 2-NAC
within ε with the finite difference method, we have to take εs

as

εs = τ I
k,l

(
εh2 − h4

12
M (I )

4

)
(C13)

and obtain

N ′2−NAC
total = O

[
N2

x

T 2
k,l

(
εh2 − h4

12 M4
)2

]
, (C14)

where M4 = maxI M (I )
4 . Similar to the analysis for the 1-NAC,

when we take h =
√

3ε
M4

, we obtain εs,max = 9
8

ε2

M4
. If M4 �

O(ε), it follows εs,max � 9
8ε. Finally, we reach

N ′2−NAC
total = O

(
N2

x ln(1/δ)

T 2
k,lε

2

)
. (C15)

APPENDIX D: NUMERICAL SIMULATIONS
FOR NACS AND BERRY’S PHASE

In this section, we demonstrate our methods for calculat-
ing the NACs, the DBOC, and Berry’s phase by numerical
simulations. Regarding the NACs, we consider the different
electronic states of the hydrogen molecules. For the DBOC,
we also take the electronic state of the hydrogen molecules.
As for Berry’s phase, we take a simple two-site spin model
with a “twist” parameter where Berry’s phase is quantized.
In all the cases, numerical simulations of our method exhibit
almost perfect agreement with the exact results. In addition,
we can reproduce the shift of the equilibrium distance of the
hydrogen atom by adding the DBOC to the potential energy

curve obtained by the VQE [55]. These results further validate
our methods proposed in the main text.

1. NACs of the hydrogen molecule

In the numerical simulation of the NACs and the DBOC,
the electronic Hamiltonians of the hydrogen molecules are
prepared in bond lengths from 0.5 to 2.0 Å with the intervals
of 0.1 Å. Furthermore, we arrange the electronic Hamiltonian
around the equilibrium point from 0.7320 to 0.7350 Å fine
enough to see the shift of the equilibrium distance with the
intervals of 0.0001 Å. We perform the standard Hartree-Fock
calculation by employing STO-3G minimal basis set and
compute the fermionic second-quantized Hamiltonian [2,3]
with open-source libraries PySCF [102] and OpenFermion
[103]. The Hamiltonians are mapped to the sum of the Pauli
operators (qubit Hamiltonians) by the Jordan-Wigner trans-
formation [105].

The SSVQE algorithm for the qubit Hamiltonians is ex-
ecuted with an ansatz consisting of SO(4) gates [23] shown
in Fig. 5. This ansatz gives real-valued wave functions for
any parameters �θ . To obtain charge-neutral and spin-singlet
eigenstates, we add penalty terms containing the total particle
number operator N̂ and the total spin squared operator Ŝ2 to
the Hamiltonian whose expectation value is to be minimized
[79]. The cost function is

L′(�θ ) =
M−1∑
i=0

wi 〈ψi|U †(�θ )H ′U (�θ ) |ψi〉 ,

H ′ = H ( �R) + βSŜ2 + βN (N̂ − N0)2,

(D1)

where N0 = 2 is the number of electrons and βS = βN = 10
are the penalty coefficients. We choose M = 3 and obtain
the singlet ground state for i = 0 and another electronic
state for i = 2 which has a nonzero value of NACs between
the ground state (i.e., having the same symmetry as the
ground state). The reference states and the weights are taken
as |ψ0〉 = |0011〉 , |ψ1〉 = |0101〉 , |ψ2〉 = |0110〉 and w0 =
3,w1 = 2,w2 = 1. The circuit-parameters �θ are optimized
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FIG. 7. (a) Ansatz quantum circuit to find the ground state of
Eq. (D2). It contains four parameters (x0, x1, θ, φ) to be optimized.
(b) Definition of the particle-number-preserving gate A(θ, φ) [62].
We define R(θ, φ) as R(θ, φ) = RY (θ + π/2)RZ (φ + π ), where
RY (θ ) = eiθY/2 and RZ (φ) = eiφZ/2.

by the BFGS algorithm implemented in Scipy library [72].
All simulations are run by the high-speed quantum circuit
simulator Qulacs [106].

The results of the numerical calculation are shown in
Fig. 6. We calculate the 1-NAC d02 and 2-NAC D02 between
the ground state i = 0 (S0 state) and the excited state i = 2
(S2 state) as well as the DBOC of the ground state (S0 state).
The results are in agreement with the values computed by
numerical differentiation of the full configuration interac-
tion (Full-CI) results based on the definition of the NACs
[Eqs. (1) and (2) in the main text]. In addition, the result shown
in Fig. 6(c) exhibits the shift of the equilibrium distance
from 0.7349 to 0.7348 Å by considering the DBOC based on
Eq. (18) when k = l = 0. As mentioned in the main text, the
2-NAC also has indefinite sign, and thus here we determine
sign by considering the continuity of the 2-NAC with respect
to the nuclear coordinate.

2. Berry’s phase of twisted two-spin model

To demonstrate our method for Berry’s phase, we use a
two-site spin-1/2 model with a twist. The Hamiltonian is
defined as

H�(ρ) = − 1
2 (e−iρS+

0 S−
1 + eiρS−

0 S+
1 ) + �Sz

0Sz
1, (D2)

where S±
i = 1

2 (Xi ± Yi ), Sz
i = 1

2 Zi, and ρ is a twist angle. � is
the parameter determines type and strength of the interaction
between spins. The ground state for −1 < � of this model is

|χ0(ρ)〉 = 1√
2

(|01〉 + eiρ |10〉), (D3)

FIG. 8. Numerical results of Berry’s phase �C of the model (D2)
based on Eq. (27) for the path ρ = 0 → 2π (dots). The analytical
values of the model (D2) (dashed line). We note that the numerical
result when � = −1.0 is unstable because of the degeneracy of the
ground state.

while for � < −1 it is degenerate as

|χ0(ρ)〉 = |00〉 , |11〉 . (D4)

Since H (ρ = 0) = H (ρ = 2π ), we can consider Berry’s
phase �C associated to the closed path C from ρ = 0 to
ρ = 2π . From the exact expression of the ground state above,
the analytical values of �C can be calculated as �C = π for
−1 < � and �C = 0 for � < −1. Berry’s phase �C , in this
case, is called the local Z2 Berry’s phase and is known to
detect the topological nature of the ground state of quantum
many-body systems [45,46].

We perform the VQE for the model (D2) with the ansatz
depicted in Fig. 7. Again, the BFGS algorithm implemented in
Scipy library [72] is used and all quantum circuit simulations
are run by Qulacs in the noiseless case. We discretize the
path from ρ = 0 as ρ = 2π into 100 points uniformly and
run the VQE at each point. The first term of Eq. (27) is
calculated by the summation (30) and the phase difference
arg(〈ϕ(�θ∗

s )|ϕ(�θ∗
t )〉) in Eq. (27) is evaluated by the Hadamard

test in Fig. 2. The result is shown in Fig. 8. The value of
Berry’s phase �C exhibits the sharp transition reflecting the
change of the ground state. These results illustrate the validity
of our method to calculate Berry’s phase based on the VQE.
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