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Direct experimental test of commutation relation via imaginary weak value
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The canonical commutation relation is the hallmark of quantum theory, and Heisenberg’s uncertainty relation
is a direct consequence of it. Although various formulations of uncertainty relations have been tested in
experiments a direct test of the commutation relation has hitherto not been performed. The reason for this is
that whereas in quantum mechanics, observables are usually represented by Hermitian operators, the product of
two noncommuting observables as occurring in the commutator relation is, in general, non-Hermitian. Here, we
present a theoretical scheme for a direct test of the commutation relation and report its experimental realization.
More precisely, we provide an experimental verification of the canonical commutation relation between two
qubit observables based on a measurement scheme widely known as “weak measurement.” In our neutron
interferometric setup, we perform the measurement of a single anomalous weak value of a relevant path-qubit
observable where the coupled spin-energy degree of freedom serves as an ancilla.
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I. INTRODUCTION

In his epoch-making paper “Quantum-mechanical rein-
terpretation of kinematic and mechanical relations” in July
1925, Heisenberg [1] put forward his breakthrough idea by
introducing an entirely new representation of the position vari-
able in terms of a set of transition amplitudes corresponding
to atomic radiation. This led him to propose an unfamiliar
rule of multiplication of two amplitudes in order to obtain
correct intensities. It was immediately identified as matrix
multiplication by Born. In the same year by introducing a
mathematically elegant language of matrices, Born and Jordan
[2] systematically formalized Heisenberg’s “matrix mechan-
ics” and provided the world a one-line epitaph,

p̂q̂ − q̂ p̂ = ih̄1, (1)

where p̂ and q̂ are the matrix forms of position and momentum
variables in classical mechanics. Equation (1) is now widely
known as the canonical commutation relation. The very next
year, Schrödinger [3] surprisingly put forward an alternative
theory, coined as “wave mechanics” in which the core element
is the wave-function �. In terms of interpretation and spirit,
the wave mechanics greatly differs from the matrix mechanics
but produces equivalent quantum statistics.

Two years after his first breakthrough work, in another
seminal paper [4], Heisenberg proposed his famous un-
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certainty relation δp δq ∼ h which he regarded as a direct
mathematical consequence of the canonical commutation rule
in Eq. (1). Here δp and δq are a sort of uncertainties in
momentum and position measurements, respectively. Later,
building upon Kennard’s [5] idea of interpreting the un-
certainties as standard deviation, Robertson [6] generalized
Heisenberg’s preparation uncertainty relation for any two ar-
bitrary observables Â and B̂ so that �Â �B̂ � |〈[Â, B̂]〉|/2. In
recent times, the distinction between preparation and mea-
surement uncertainty relations has been made, and many
interesting new formulations have also been proposed [7–13].
Quite a few of them have experimentally been tested [14–18].
However, no clear consensus among physicists as to the ap-
propriate measure of measurement (in)accuracies has been
reached until date [9,10].

Although the uncertainty relations are regarded as direct
(or indirect) consequences of relevant commutation relations,
only very few attempts have been made to directly test the
commutation relations [19–23]. We attribute this to the fact
that the joint probability of two noncommuting observables
does not exist in quantum theory and the product of such
observables is, in general, non-Hermitian. Hence, a direct test
of commutation relation is nontrivial in experiment. In this
paper, we propose a theoretical scheme in which a single
anomalous weak value enables a direct test of the commu-
tation relation between qubit observables. Furthermore, we
report an experimental test using neutron interferometry.

The weak value of an observable arises in a novel condi-
tional measurement protocol [24], widely known as “weak
measurement.” Consider a system prepared in a state |ψi〉
(commonly known as preselected state) and an observable Â
to be measured on the system. If the measurement interaction
between the system and the apparatus is weak, the system
state remains grossly undisturbed. If a particular outcome
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|ψf〉 is selected after such a weak interaction by sequentially
performing a strong measurement (postselection), the final
pointer state yields the weak value, quantified by the formula
[24],

〈Â〉ψi,ψf
w = 〈ψf |Â|ψi〉

〈ψf |ψi〉 . (2)

Unlike the expectation value 〈Â〉, the weak value 〈Â〉ψi,ψf
w can

be beyond the range of eigenvalues and can even be complex.
The physical interpretation and implications of complex and
large weak values have been widely discussed in the literature
(see, for example, Ref. [25]).

A flurry of theoretical [25–32] and experimental works
[33–44] on weak measurement have been reported in the
past two decades. An anomalous weak value is proven to be
beneficial in many practical applications, such as identifying
the tiny spin Hall effect [35], detecting very small beam de-
flections [37] and improving precision in metrology [43,44].
Besides, it provided new insights into conceptual foundations
of quantum theory [27,29–32], and experiments have been
performed to demonstrate for observing quantum trajectories
for photons [38] and realizing counterintuitive quantum para-
doxes [36,42,45].

In a fundamental experiment by Lundeen et al. [39], a
direct measurement of the quantum wave-function �(x) was
performed by using weak measurements. Postselecting the
system in momentum state |p〉, the measured weak value of
position �x = |x〉〈x| becomes proportional to �(x). Along
the same vein, we formulate an interesting scheme in this
article so that a single (anomalous) weak value enables a direct
experimental test of the canonical commutation relation be-
tween two observables in a qubit system. We experimentally
performed the measurement of the weak value of a path-
qubit observable in our neutron interferometer setup where
the spin/energy degree of freedom serves as a pointer. The
experimental results are in good agreement with our theo-
retical prediction and, hence, provide a genuine experimental
verification of the canonical commutation relation.

II. THEORY

Without loss of generality, consider two noncommuting
qubit observables, say Â and B̂ satisfying 〈ψ |[Â, B̂]|ψ〉 �= 0
for all |ψ〉. Since the product ÂB̂ may not be Hermitian in
general, the traditional von Neumann quantum measurement
scheme cannot be carried out, but the weak measurement
suffices for our purpose. Non-Hermitian observables may be
measured [46] using weak measurements. But our scheme
here is direct and fundamentally different as follows. If �+

A =
|+A〉〈+A| and �+

B = |+B〉〈+B| are positive-eigenvalue projec-
tors of Â and B̂, respectively, then by writing Â = 2�+

A − 1
and B̂ = 2�+

B − 1, one has

〈ψ |[Â, B̂]|ψ〉 = 4〈ψ |�+
A �+

B |ψ〉 − 4〈ψ |�+
B �+

A |ψ〉
= −4|〈+B|ψ〉|2(〈�+

A 〉ψ,+B
w − 〈�+

A 〉ψ,+B∗
w

)
= −8i|〈+B|ψ〉|2Im

(〈�+
A 〉ψ,+B

w

)
, (3)

where 〈�+
A 〉ψ,+B

w is the weak value of the projector �+
A

for a postselected state |+B〉 and preselected state |ψ〉 and
|〈+B|ψ〉|2 is the probability of successful postselection.

If Â = σ̂z and B̂ = σ̂x, the commutation relation is

〈ψ |(σ̂zσ̂x − σ̂xσ̂z )|ψ〉 = 2i〈ψ |σ̂y|ψ〉. (4)

By writing σ̂x = 2�+
x − 1, σ̂y = 2�+

y − 1, and σ̂z =
2�+

z − 1 where �+
x = |+x〉〈+x|, �+

y = |+y〉〈+y|, and
�+

z = |+z〉〈+z| are the projectors with positive eigenvalue
corresponding to the observables σ̂x, σ̂y, and σ̂z, respectively,
from Eq. (4) it follows:

4|〈+x|ψ〉|2Im
(〈�+

z 〉ψ,+x
w

) = −2|〈+y|ψ〉|2 + 1, (5)

where 〈�+
z 〉ψ,+x

w = 〈+x|�+
z |ψ〉/〈+x|ψ〉 is the weak value of

�+
z given the pre- and postselected states |ψ〉 and |+x〉, re-

spectively. Thus, the imaginary part of a single weak value
〈�+

z 〉ψ,+x
w is amenable to test the left-hand side of the com-

mutation relation in Eq. (4). For determining the quantity on
the right-hand side one requires to separately measure the
postselected probability |〈+y|ψ〉|2.

III. EXPERIMENT

To determine the weak value, an established neutron inter-
ferometric setup [47–50], depicted in Fig. 1(a), is applied. The
system is prepared (preselected) and postselected in the path
states,

|ψi(χ )〉 = 1√
2

(|I〉 + e−iχ |II〉)

|ψf〉 ≡ |+x〉 = 1√
2

(|I〉 + |II〉), (6)

where |I〉 and |II〉 denotes the path eigenstates of the
Pauli path observable given by σz = |I〉〈I| − |II〉〈II|. The
imaginary part of the weak value of the path projector
�1 is expressed as Im(〈�1〉ψi,+x

w ) = sin χ/(2 + 2 cos χ ) and
the probability of successful postselection |〈+x|ψi(χ )〉|2 =
4 cos2(χ/2) with |+x〉 = (|I〉 + |II〉)/

√
2. The quantity on

the right-hand side of Eq. (5) is determined by the post-
selected probability as −2|〈+y|ψi(χ )〉|2 + 1 = sin χ with
|+y〉 = (|I〉 + i |II〉)/

√
2.

The experiment was performed at the S18 interferometer
beam line at the research reactor of the Institute Laue-
Langevin in Grenoble, France. A monochromatic neutron
beam with a wavelength of λ = 0.192 nm passes through
a magnetic prism, which produces two divergent polarized
beams with spin states |↑z〉 and |↓z〉, respectively. For our
purpose, only the beam with spin state |↑z〉 is adjusted to fulfill
the Bragg condition of the down-stream silicon perfect crystal
interferometer of triple Laue geometry. The other beam is
transmitted in the forward direction and absorbed by a slab of
cadmium to reduce the background noise in the detectors. The
first crystal plate splits the beam into two paths |I〉 and |II〉.
After passing through the first beam splitter, a phase shifter
is inserted into the interferometer to tune the relative phase χ

between path I and path II and prepare the preselected path
state |ψi(χ )〉. A RF spin manipulator is placed along path |I〉
to implement the weak measurement by small manipulation
of the spin degree of freedom. Both beams are recombined at
the third interferometer plate.

Of the two outgoing beams of the interferometer, only
the neutrons in the O beam are selected for analysis
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(a)

(b)

(c)

(d)

FIG. 1. Illustration of the experimental setup and procedure for the weak measurement of the path state. (a) Neutron interferometric setup:
Polarized monochromatic neutrons enter the interferometer and are split into paths |I〉 and |II〉 at the first interferometer plate. Preselection
is achieved by adjusting the phase-shifter plate and selecting a corresponding relative phase χ between the two paths. In path I , the neutron
beam passes through a resonance frequency (RF) spin flipper, operating at frequency ω = 60 kHz and is marked by a tiny energy kick of
h̄ω. After postselection of the path state via projection in forward direction at the third interferometer plate, the spin direction is analyzed
through the combined action of a direct-current (DC) spin flipper and the supermirror in the O beam. The neutron counts are registered in
a 3He countertube. (b) A typical time-resolved intensity signal of the measurement campaign for the phase-shift χ = π/3. (c) Collected
time-resolved (normalized) intensity signals for varying phase-shifter position χ . (d) Phase ϕ and amplitude A of the weak value measurement
extracted from the time-resolved intensity signals.

corresponding to the postselected path state |ψ f 〉 = |+x〉. The
transmitted O beam passes through a DC spin rotator and a
polarizing CoTi multilayer array (henceforth referred to as
a supermirror) to perform spin analysis in the O beam. The
refracted H beam is used as a reference. The intensities in both
outgoing beams are measured using 3He counting tubes with
a high detection efficiency (over 97%). The detector for the
O beam has a diameter of 6 mm and is placed directly at the
outgoing window of the supermirror. For the used wavelength
a time resolution of 3 μs is achieved.

A. Weak value extraction

Given the pre- and postselected path states |ψi(χ )〉 and
|+x〉, respectively, we performed the measurement of the
weak value 〈�1〉ψi,+x

w of the path projector �1 = |I〉〈I|. The
weak interaction is implemented by use of the RF spin ma-
nipulator in path |I〉. Its effect can be represented by a unitary

evolution as Uint = �1 ⊗ URF(t, α, ω, δ) + �2. Here, α is the
spin-rotation angle, ω is the frequency of the electromag-
netic RF field, and δ is an arbitrary phase of this RF field.
The parameter α is directly dependent on the magnetic-field
strength, and a sufficiently small value of it warrants the
required weak measurement criteria. In this experiment, α =
π/9 and ω = 60 kHz were taken. As explained in detail in
Appendix A, the weak value 〈�1〉ψi,+x

w can be extracted from
the time-dependent intensity at the O detector that is given by

I (t ) = 1
2 |〈+x|ψ〉|2[1 + α Im

(
eiωt 〈�1〉ψi,+x

w

)]
. (7)

By switching off the RF field, two postselected probabilities
|〈+x|ψ〉|2 and |〈+y|ψi(χ )〉|2 are measured. The former resem-
bles an empty interferogram whereas the latter corresponds to
an empty but by χadd = −π/2 shifted interferogram [51].
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FIG. 2. Experimental results of the real and imaginary parts of
weak value 〈�1〉ψi,+x

w are plotted versus χ . The solid dots denote the
least-squares fits to the data, and the error bars represent unit standard
deviation.

B. Experimental results

The weak value is, in general, a complex number and can
be expressed in polar form as 〈�1〉ψ,+x

w = Aeiϕ . The ampli-
tude A and phase ϕ are retrieved from a sinusoidal fit to the
time-dependent intensity (see Appendix B for details of data
analysis). The reference phase ϕref = 0 is obtained for the
particular case when pre- and postselected states coincide, i.e.,
χ = 0. In Fig. 2, we present the detailed analysis of the results
of the weak measurement of 〈�1〉ψi,+x

w . For comparison, the
experimental values of the real and the imaginary parts of
〈�1〉ψi,+x

w are separately plotted along with the theoretical
predictions 〈�1〉ψi,+x

w = (1 + e−iχ )−1. As can be seen from
the experimental results, the theoretical predictions are repro-
duced evidently.

Finally, the results of all three measurements, namely,
|〈+x|ψ〉|2, |〈+y|ψi(χ )〉|2, and Im(〈�1〉ψi,+x

w ) are combined in
Fig. 3 for the direct test of the commutation relation. The left-
and right-hand side related measurements of the commutation
relation [Eq. (5)] are shown by orange and green data points,
respectively. The result is in good agreement with the relevant
theoretical prediction (dotted blue), verifying the canonical
commutation relation as expressed in Eq. (5).

IV. DISCUSSION

The results above confirm the canonical commutation rela-
tion by weak measurement of the path-qubit observable in a
neutron interferometer. Accordingly, from the quantum foun-
dational perspective, our experiment, thus, provides a direct
test of one of the fundamental tenets of quantum theory. This
test is as fundamental as the direct measurement of a quantum
wave function by Lundeen et al. [39]. Heisenberg’s uncer-
tainty relation may be regarded as a direct consequence of the
canonical commutation relation and several formulations of it
have been tested experimentally [14,15,52–54].

FIG. 3. Experimental results of left-hand side (orange) and right-
hand side (green) of the commutation relation in Eq. (5) are plotted
as a function of phase-shift χ . The results are in excellent agreement
with the relevant theoretical prediction (dotted blue). The error bars
represent one standard deviation.

At this point we want to emphasize that our presented
scheme is fundamentally different compared to prior exper-
iments studying the commutation relation [19–21]. In these
experiments the noncommutativity of Pauli spin matrices in
terms of different sequences of rotations (on the same initial
state) was utilized. However, a direct test of the canoni-
cal commutation relation should unambiguously determine
the expectation value of the non-Hermitian product of two
noncommuting observables as it occurs in the commutation
relation. As presented here, the direct test of the commuta-
tion relation boils down to the experimental determination
of the imaginary part of a single weak value of a suitable
path observable. The weak value has provided a multitude
of practical and conceptual implications [25–44,46,55]. The
imaginary part of the weak value is less intuitive than its real
counterpart. The latter can be operationally interpreted as an
idealized conditioned average value of the concerned observ-
able in the zero measurement disturbance limit. On the other
hand, the imaginary part is associated with backaction on the
system due to the measurement itself [55]. This explanation
conceptually fits well with our test of the commutation rela-
tion through the imaginary part of the weak value. Finally, it
would be interesting to test the traditional position-momentum
uncertainty relation following the approach developed here.
The experimental method presented here could be expanded
to more path markers in the interferometer, and several path
weak values could be measured simultaneously. Applying
this procedure to a four-plate interferometer would even offer
more than two path markers [50].
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APPENDIX A: DETAILED ANALYSIS OF THE INTENSITY
FOR THE WEAK VALUE EXTRACTION

Given the preselected path state denoted as |ψi(χ )〉 =
1√
2
(|I〉 + e−iχ |II〉) and postselected path state |ψf〉 =

1√
2
(|I〉 + |II〉) to determine the weak value [26,49] of path

observable �1, an interaction of the RF spin manipulator in
path |I〉 is employed which can be represented by the unitary
dynamics, denoted as Uint = �1 ⊗ URF(t, α, ω, δ) + �2. The
spin manipulation [50] leads to an energy shift by the amount
�E = ±h̄ω in the spin-flipped parts and can be written as a
unitary operator,

URF(t, α, ω, δ) =
(

cos
(

α
2

)
i sin

(
α
2

)
e+i(ωt+δ)

i sin
(

α
2

)
e−i(ωt+δ) cos

(
α
2

)
)

,

(A1)
where α, ω, and δ are the spin-rotation angle, the frequency
of the electromagnetic RF field and an arbitrary phase of this
RF field. The energy-shifted contributions appear due to the
off-diagonal terms. The parameter α is related to magnetic-
field strength and for a small value of α (A1) becomes

lim
α→0

URF = 1 − i
α

2

(
0 e+i(ωt+δ)

e−i(ωt+δ) 0

)
. (A2)

The total path-spin state of the in ↑z-direction polarized neu-
trons after the first plate of the interferometer is

|�〉 = |ψi(χ )〉 ⊗ |↑z〉 . (A3)

Spin-related states and projectors are indicated by the ↑ sym-
bol. After the interaction with the spin modulator in path I , the
state evolves to |� ′〉 = Uint |�〉 and is subsequently projected
onto the postselected path state |ψf〉 at the third crystal plate,

|� ′〉 → |� ′′〉 = �fUint |�〉 , (A4)

where �f = |ψf〉 〈ψf |. Now, for our purpose, the spin analysis
is performed for |↑x〉 which is implemented by the action of
the DC coil and the supermirror. The joint (un-normalized)
path-spin state is projected onto P↑x = |↑x〉 〈↑x|,

|� ′′′〉 = P↑x �fUint |�〉 . (A5)

Using (A2) we get the approximation in the limit for small α

[neglecting contributions on the order of O(α2) or higher],

|� ′′′〉 ≈ 1√
2

|ψf〉 ⊗ |↑x〉 〈ψf |
[
1 − i

α

2
(�1ei(ωt+δ) )

]
|ψi(χ )〉 .

(A6)
Further rearrangement provides

|� ′′′〉 = 1√
2

(|ψf〉 ⊗ |↑x〉)〈ψf |ψi(χ )〉

×
[
1 − i

α

2

(〈�1〉ψi,ψf
w ei(ωt+δ)

)]
. (A7)

The time-dependent intensity Iideal(t ) = |� ′′′|2 in the ideal
scenario can then be written as

Iideal(t ) = 1
2 |〈ψf |ψi(χ )〉|2[1 + α Im

(〈�1〉ψi,ψf
w ei(ωt+δ))],

(A8)
which is dependent on χ . With |ψf〉 ≡ |+x〉 the weak value
of the projector onto path I , given by 〈�1〉ψi,+x

w = (1 +
e−iχ )−1, can be extracted from the intensity analysis. By

switching off the RF spin modulator (α = 0), the signal for
postselected probabilities |〈+x|ψi(χ )〉|2 = (1 + cos χ )/2 and
|〈+y|ψi(χ )〉|2 = (1 − sin χ )/2 in Eq. (5) can be measured.
For the latter, in practice this is performed by applying an
additional phase shift of χadd = −π/2 to the readings from
the measurement of the empty interferogram [51].

APPENDIX B: DATA ANALYSIS

In experiments, there inevitably occurs a loss of coherence
in the signal. Therefore, the intensity has to be corrected
by carefully taking into account the incoherent contributions.
The amount of this incoherence can be accounted for by the
contrast or fringe visibility parameter η ∈ [0, 1]. The intensity
then reads as

Ireal = ηIideal + (1 − η)Iinc, (B1)

where Iinc stands for its incoherent part. By considering an
empty interferometer, we quantify Iempty

ideal as

Iempty
ideal = |〈ψf |ψi〉|2 = | 〈I|I〉︸︷︷︸

�1

+ eiχ 〈II|II〉︸ ︷︷ ︸
�2

|2

= |�1|2 + |�2|2 + 2 Re(�∗
1 �2). (B2)

In an ideal scenario we expect full coherence of the inter-
ference term 2 Re(�∗

1 �2), i.e., η = 1. But, in real experiment,
partial coherence can be obtained so that in our experiment
Iempty
real is quantified as

Iempty
real = |�1|2 + |�2|2 + 2η Re(�∗

1 �2)

= η|�1 + �2|2 + (1 − η)[|�1|2 + |�2|2]. (B3)

Identifying the incoherent part as Iinc = |�1|2 + |�2|2, it is
straightforward to see that Eq. (B3) is equivalent to Eq. (B1).
The time-dependent intensity in our experiment can then be
written as

Ireal(t ) = η

2
|〈ψf |ψi(χ )〉|2[1 + α Im(〈�1〉wei(ωt+δ) )]

+ (1 − η)

⎛
⎜⎜⎝1

8
[1 − α sin(ωt + δ)]︸ ︷︷ ︸

|�1|2:=I1(t )

+ 1

8︸︷︷︸
|�2|2:=I2(t )

⎞
⎟⎟⎠,

(B4)

|�1|2 and |�2|2 are intensities for the isolated paths I and
II , respectively, which are measured separately to apply the
correction. An example of such a signal is shown in Fig. 1(b).
The visibility η is extracted from an interferogram of an
empty interferometer by fitting according to Eq. (B3). In our
measurements the average value of η is 0.79.

Now, the ideal intensity is the one that is the measured
intensity minus contributions from independent (decoherent)
intensities,

Iideal(t ) = 1

η
{Ireal(t ) − (1 − η)[I1(t ) + I2(t )]}. (B5)

Time-resolved signals have been recorded for several phase-
shifter settings in the range of 0 � χ � 2π . These have been
corrected according to Eq. (B5), fitted and normalized. The
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time-resolved signals are shown in Fig. 1(b) for χ = π/3 and
in Fig. 1(c) for all values of χ .

The weak value for the path projector is a complex number
and can generally be written in the polar form 〈�1〉ψi,+x

w =
Aeiϕ . So it follows from Eq. (A8) that its amplitude and
phase can be obtained from sine fits to the time-dependent
intensities,

Iideal(t ) = 1
2 |〈ψf |ψi(χ )〉|2[1 + αA sin(ϕ − ωt − δ)]. (B6)

Here δ is an arbitrary additional constant phase. The reduction
of the fringe visibility applies also to Eq. (B6). The retrieved
values for the amplitudes A have, therefore, to be corrected

with η, according to Aw = A/η to obtain the amplitudes of the
path projector weak values. At the phase-shifter setting χ =
0, the weak value 〈�1〉ψi,+x

w = (1 + e−iχ )−1 becomes real and
exactly 1/2. So the phase angle ϕ is equal to zero. This serves
as a reference in the measurement to retrieve the phase angle
ϕ for the other χ settings. A plot that collects the retrieved
amplitudes Aw and phases ϕ for the weak value of the path
projector 〈�1〉ψi,+x

w is shown in Fig. 1(d).
The errors in all plots are from propagation of the standard

deviations of the fit errors for the time-dependent intensity,
reference interferogram signals, and the systematic effects due
to uncertainties in the adjustment of the rotation angle α.
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