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Contribution of electronic entropy to the order-disorder transition of Cu3Au
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Cu3Au experiences a phase transition at 662 K from an ordered low-temperature phase to a disordered solid
solution. While significant work has been devoted to characterizing the enthalpy of this transition, the apportion-
ment of the entropy has remained out of reach. Current estimates of the vibrational and configurational entropy
for the transition are larger than the total entropy of the transition experimentally measured by calorimetry, while
calculations of the electronic entropy via ab initio methods have remained difficult. This work calculates an
electronic entropy difference of −6.29 J/mol K based on a recent formalism that links experimentally measured
electronic transport data and equilibrium thermodynamic properties. The application of this formalism brings
some estimates of the vibrational and configurational entropy in line with the calorimetrically measured total
entropy.
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I. INTRODUCTION

The Cu-Au system exhibits order-disorder transitions that
involve the loss of short- and long-range order in low-
temperature intermetallic compounds Cu3Au and CuAu.
With increasing temperature, these compounds undergo an
order-disorder phase transition, forming a Cu-Au solid so-
lution before melting. An example of a plausible phase
diagram for this system is presented in Fig. 1. Although
the nature of the phase boundaries remains in dispute, par-
ticularly for CuAu3, Fig. 1, computed from a database
optimized to mimic phase transition boundaries [1], shows
the significant off-stoichiometry of the intermetallic com-
pounds and the congruent nature of the order-disorder
transition.

The ordered compound Cu3Au exhibits a first-order phase
transition from an L12 structure with Cu occupying the face
center to a disordered fcc structure at a critical temperature
Tc = 662 K. The enthalpy of this transition, �HT, was re-
ported by Hultgren to be 4431 J/mol (with mol, in this case,
in terms of Cu3Au formula units), corresponding to a total
entropy of transition, �ST, of 6.7 J/mol K [2].

The order-disorder transition in CuAu occurs in two stages.
The first transition occurs near 658 K between CuAu(I) and
CuAu(II) [3]. CuAu(I) has the L10 structure (P4/mmm),
which forms a superlattice of five repeating unit cells upon
transition to CuAu(II) [4,5]. The nature of the I → II phase
transition is disputed and is not depicted in Fig. 1. While a
structural view of this transition through transmission elec-
tron microscopy (TEM) suggests that this is a second-order
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phase transition, calorimetric and electronic transport mea-
surements strongly suggest that the transition is first order
[6,7]. Structural disordering of the superlattice CuAu(II) to
CuAu(D) occurs at 695 K, where D marks the disordered
phase. Careful calorimetric studies propose �HT values and
critical temperatures of 651.3 J/mol(CuAu) (Tc = 670 K) and
2448 J/mol(CuAu) (Tc = 695 K) for the I → II and II → D
transitions [8]. Estimates of the entropy of the transition vary
from 0.84 to 0.97 J/mol(CuAu) K for I → II, and from 3.5
to 5.0 J/mol(CuAu) K for II → D. Use of the word mol
here refers to the relevant formula unit of the intermetallic
compound, rather than the mol of solution.

There has been some confusion in the literature over the in-
clusion of changes in the integral thermodynamic properties at
the onset of disordering or at the onset of the first-order phase
transition. Hultgren notes that Cu3Au exhibits some form of
disordering with an associated change in the heat capacity
before exhibiting the identified phase transition [2]. This has
contributed to the confusion in the literature over whether the
transition is first or second order, or even whether elements
of both occur. While some researchers have attempted to
quantify a total entropy of disorder by integrating changes
in the heat capacity together with the �HT, this approach
may obscure the relative significance of the difference in the
configurational, vibrational, and electronic degrees of free-
dom at the phase transition [9]. Additionally, according to the
Landau-Lifshitz criterion, a second-order phase transition is
forbidden thermodynamically because the star of the wave
vectors for the L12 ordered phase is the 100 type, and can
sum to a 〈111〉 vector, which is a reciprocal lattice vector
of the parent fcc phase. This article will therefore focus on
quantifying the contribution of the electronic entropy to the
measured �ST associated with the first-order transition.

While experimental thermodynamic campaigns have led
to improved identification of the CuAu and Cu3Au phase
boundaries and the enthalpic contribution to thermodynamic
equilibria, the modeling and partitioning of the entropy have,
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FIG. 1. This phase diagram was computed with the Fact-
Sage 7.3 phase diagram module using the SGTE-Bins database
[1]. The diagram illustrates the order-disorder transitions of three
low-temperature intermetallic compounds to a high-temperature dis-
ordered solid solution. Many features of this phase diagram are in
dispute, in particular the behavior of CuAu3. This diagram is for
illustrative purposes only.

so far, remained out of reach [3]. Significant study has been
devoted to Cu3Au in particular, which, therefore, will be
the focus of this paper. Limited electronic transport data
are available for the CuAu compound, so analysis of this
compound is relegated to the Appendix. Due to the dispute
over the congruence of its phase transition, CuAu3 will be
excluded from the analysis altogether. The total entropy dif-
ference of an order-disorder phase transition is given by the
equation

�ST = �Svib + �Sconfig + �Smag + �Selec, (1)

where �Svib is the difference in the vibrational entropy upon
disordering, �Sconfig is the configurational entropy difference,
�Smag is the magnetic entropy difference, and �Selec is the
electronic entropy difference. We hypothesize that electronic
entropy plays a significant role in the order-disorder transi-
tion and that its difference is negative upon transition to the
disordered state. The neglect of this has made prior estimates
of the vibrational and configurational entropies irreconcilable
with the overall entropy reported for the transition.

Resistivity measurements initially made by Bowen in 1954
demonstrated that there was a concomitant change in long-
range order and the elastic constants of partially disordered
samples of Cu3Au wire as they were heated and allowed to
order [10]. This work suggested that vibrational and configu-
rational entropy were somehow linked and contributed to the
thermodynamics of the order-disorder transition in Cu3Au.
Numerous studies have attempted to support this hypothesis
through the measurement and calculation of the vibrational
entropy difference at the phase transition [11–18]. Estimates
of the �Svib of Cu3Au have ranged from 0 to 4.7 J/mol K (or
close to zero and slightly negative in the case of Bogdanoff
et al.), with most being less than 2.7 J/mol K and much closer
to zero [13].

The complementary entropy necessary to describe the total
phase transition is frequently ascribed to the configurational

entropy increase upon disordering. This assumption may be
misleading, as prior estimates of the configurational entropy
also exhibit a relatively large range. We will briefly explore
this idea.

Assuming that the compound Cu3Au just below the
order-disorder transition temperature is perfectly ordered, its
configurational entropy Sconfig

ordered would be zero. If one assumes
that the atomic configurations of the disordered state are
themselves completely random, then the difference in configu-
rational entropy associated with the phase transition would be
given by the classic expression for the configurational entropy
of a fully random solution,

�Sconfig = Sconfig
disordered = −R(xCu ln xCu + xAu ln xAu), (2)

where xCu and xAu are the mole fraction of Cu and Au,
respectively. Calculation with Eq. (2) for Cu3Au yields
18.7 J/mol(Cu3Au) K [note that the factor of 4 difference
from Eq. (2) is to account for the mol of formula unit here].
This is already much larger than the measured transition en-
tropy of Cu3Au (6.7 J/mol K). There are two possibilities
to account for this and satisfy Eq. (1): the electronic and
vibrational contributions to the entropy are negative, or the
effective difference in configurational entropy is much smaller
than the upper-bound estimate provided by Eq. (2).

We can answer the second possibility for the discrepancy
in the entropy directly; the assumptions necessary to derive
Eq. (2) are known to be untrue near the phase transition in
this system. There is some degree of disordering in the low-
temperature phase (here, the compound) as it approaches the
phase transition, as well as some degree of short-range order-
ing in the high-temperature phase after the transition. This has
been experimentally supported through the measurement of
Cowley order parameters, which describe the degree of lattice
site randomness in crystalline solids [19–21]. We therefore
reconsider Eq. (2) as

�Sconfig = Sconfig
disordered − Sconfig

ordered, (3)

where Sconfig
disordered is the configurational entropy of the high-

temperature disordered state with some degree of short-range
ordering, and Sconfig

ordered is the entropy of the low-temperature
ordered state with some degree of disorder. Whereas Eq. (2)
represents the upper-bound estimate of the total difference
in configurational entropy for an order-disorder transition,
proper evaluation of the terms in Eq. (3) should decrease
�Sconfig as there is likely considerably greater than zero con-
figurational entropy in ordered Cu3Au and a degree of order
in the solid solution near the phase transition, both of which
would lower the calculated configurational entropy of the
transition.

Previous work has attempted to address the degree of or-
dering of each phase through modeling and experimentation
[9,15]. These efforts have, so far, proven unable to provide
an accurate estimate of the source and apportionment of the
entropy at the first-order phase transition of Cu3Au. Addi-
tionally, evaluation of the electronic entropy in [15] uses a
formulation of the Sommerfeld model that is only valid at low
temperature. It is also not clear whether the use of density
functional theory (DFT) to calculate the electronic density
of states in a system that exhibits strong interaction among
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d-band electrons is even sufficiently accurate to calculate a
meaningful electronic entropy, particularly in a system that
also exhibits disorder [22]. We therefore propose to study
the order-disorder transition of Cu3Au using a formalism that
connects reversible thermodynamics to the measurable trans-
port properties of electrons. We will show that the electronic
entropy makes up a significant fraction of the phase transition
entropy in Cu3Au and provides a plausible means to reconcile
the computed values for the configurational and vibrational
entropy.

II. METHODS

The electronic entropy can be accessed from measurable
electronic transport properties. It has been demonstrated that
the partial molar entropy of a conduction electron can be
related to the Seebeck coefficient from [23,24],(

dS

dne

)
T,P,n j

= −αF, (4)

where α is the Seebeck coefficient and F is the Faraday con-
stant.

The integral form of this equation was derived in [25,26]
and resulted in the electronic state entropy,

Se = −neeαe, (5)

where e is the fundamental charge constant, and n is the
number of free charge carriers (here electrons). This is then
converted from a volumetric to a molar quantity via the molar
volume (Vm),

Se = −Vmneeαe. (6)

This formalism has already successfully demonstrated the
electronic contribution to the mixing entropy in liquid Te-Tl
alloys, as well as the electronic entropy for the metal-insulator
transition in VO2 [26,27]. Hall effect measurements were
used in both cases to calculate the conduction charge carrier
concentration and will therefore be used in this work. Success
in systems that are noncrystalline (liquid Te-Tl) or crystalline
with strong electron-electron interaction (VO2) increase our
confidence in the applicability of this formalism to the order-
disorder transition in the Cu-Au system.

Hall effect measurements for Cu3Au were conducted by
Elkholy et al. as a function of temperature [28]. Their
data are reproduced in Fig. 2. The approximate value of
the Hall coefficient is −0.97 × 10−13 V cm/A Oe just be-
low the phase transition temperature. The Hall coefficient
exhibits a discontinuity at the phase transition temperature
before assuming a constant value in the disordered state of
−6.75 × 10−13 V cm/A Oe. These characteristic values were
chosen because they represent the discontinuity in the exten-
sive properties associated with the first-order phase transition.
The sign of both values indicates that at the temperature of
the transition, charge transport is electron dominated. This
assumption was used to calculate the conduction electron
density via the equation

n = − 1

(RHe)
, (7)

FIG. 2. Variation of the Hall coefficient measurements of Cu3Au
as a function of temperature. A discontinuity is exhibited at the
order-disorder transition marked by the dashed line. Reproduced
from Ref. [28].

where RH is the Hall coefficient, e is the fundamental charge,
and n is the conduction electron density.

Seebeck coefficient data were also measured as a func-
tion of temperature by Airoldi et al. for Cu3Au and
exhibited a discontinuity at the phase transition [29]. This
data is replotted in Fig. 3. The computed conduction
electron densities and electronic entropies, Seebeck co-
efficient data, and molar volume data are presented in
Table I. Reliable molar volume data were unavailable for the
disordered state, and so only the molar volume of the ordered
state was used to convert between volumetric and molar quan-
tities. Because the lattice constant of quenched, disordered
samples of Cu3Au is within 1% of the ordered value, we
believe this assumption will not affect the conclusions drawn
in this paper [11].

The values of the Seebeck coefficient from Airoldi et al.
[29] were taken at the discontinuity in the measurement that
occurred at the transition temperature, again because this
represents the discontinuity in extensive quantities associated
with the first-order phase transition.

FIG. 3. Variation of the Seebeck coefficient as a function of tem-
perature for the Cu3Au compound. The discontinuity occurs at the
order-disorder transition temperature. Reproduced from Ref. [29].
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TABLE I. Electronic properties of the Cu3Au intermetallic compound in the ordered and disordered states.

Tc (K) αdis (μV/K) αord (μV/K) Vm ( cm3

mol ) ndis
e (m−3) nord

e (m−3) Sdis
e (J/mol K) Sord

e (J/mol K)

662 1.4a −1.7 32 9.25 × 1028 6.46 × 1029 −0.68 5.6
[3] [29] [29] [31,32] [28] [28] This work This work

aThe absolute value of thermoelectric coefficients before 1977 was found to be in error by about 0.3 μV/K. These values have been corrected
using a new absolute Seebeck coefficient scale [30]. This has little effect on the conclusions drawn in this paper.

III. RESULTS

The results for the calculated electronic entropy of the
order-disorder transition in Cu3Au are presented in Table II
and compared to prior calculations of the vibrational and
configurational entropy.

It is found that the electronic entropy in Cu3Au could
bring prior estimates of the vibrational and configurational
entropies into reasonable agreement with the calorimetrically
determined transition entropy. The total entropy of the transi-
tion is 6.7 J/mol K. The range of values for �Svib + �Sconfig

is 9.9–14.6 J/mol K. Including the electronic entropy, this
range adjusts to 3.61–8.11 J/mol K, with the uncertainty com-
ing from different prior estimates of the vibrational entropy
difference.

If the electronic and configurational entropies cited are
taken to be correct, a value of ∼3.1 J/mol K for the vi-
brational entropy would render the total entropy consistent
with the calorimetrically measured value. This estimate of
the vibrational entropy falls within the bounds proposed
in the literature. Because the electronic entropy does not
presently account for the total transition entropy alone, dis-
cussion of its relation to other components of the entropy is
warranted.

IV. DISCUSSION

The configurational entropy was calculated via mea-
sured long-range and short-range order parameters using
formalisms developed by Fowler and Guggenheim, Crow-
ley, and Takagi [20,21,33]. While various degrees of order
across the phase transition decrease the configurational en-
tropy of the transition from the upper-bound estimate in
Eq. (1), the configurational entropy value cited in Table II is
still significantly larger than the total phase transition entropy
without considering the addition of any vibrational entropy
differences.

Crombie et al. highlights that the nonconfigurational
entropy must be negative to remain self-consistent with calori-
metric measurements [19]. While there has been disagreement
over the relative importance of the vibrational entropy, es-
timates have remained largely positive. Heuristically, this
strongly suggests that the electronic entropy of the transition

must be negative. Evaluation of the presented formalism for
the transport electronic entropy, when considered in conjunc-
tion with the range of configurational and vibrational entropy
terms, brings the total transition entropy in line with the calori-
metric value.

While this broad agreement is reassuring, we recognize
that there has been some dispute over the possibility that
the electronic entropy formalism in Eq. (5) can (and, in
this case, does) produce a negative state electronic entropy.
This is a problem in metals that exhibit negative Hall co-
efficients (which indicates electron transport) with positive
Seebeck coefficients, which typically would indicate hole
conduction.

We have identified two possibilities to explain this ap-
parent discrepancy: the state electronic entropy in disordered
Cu3Au is indeed negative or the observed Hall effect and See-
beck coefficient are not indicative of the electron (and hole)
concentrations and resulting entropies. While both remain a
possibility, we shall demonstrate that the first scenario is still
consistent with band theory and will examine the implications
of the second scenario.

Here, a negative electronic entropy in the disordered state
was found by assuming that the disordered alloy exhibited
electron dominated transport. We shall present an argument
found in work by Rockwood that demonstrates that the partial
molar entropy of an electron may indeed be negative and can
be self-consistent with band theory [34]. After Eq. (4) was
initially defined, the state electronic entropy was calculated
from the partial molar electronic entropy S̄e, given in Eq. (5)
from work by Rinzler and Allanore [25,26]. Whereas solution
theory is often applied to systems with changing composition,
the formalism in this paper assumes that one can describe a
phase as itself a solution of atoms and electrons. Naturally,
there should be a counterpart to S̄e associated with the atoms
which would include the core electrons and the atomic nuclei.
This term would include vibrational and configurational com-
ponents of the entropy as well as any other degrees of freedom
associated with the core electrons. We will call it S̄atom.

The equation for the total entropy of the phase would then
be given by

STotal = neS̄e + natomS̄atom. (8)

TABLE II. Electronic entropies of the transition for Cu3Au. Here, mol is in terms of the mol of compound Cu3Au.

Tc (K) �ST (J/mol K) �Selec (J/mol K) �Svib (J/mol K) �Sconfig (J/mol K)

662 6.7 −6.29 null–4.7 9.9
[3] [2] This work [11–18] [19]
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We do not suggest that the total entropy of a phase given
by Eq. (8) may be negative, but assert that the partial mo-
lar entropy of metallic phases may. And, indeed, there are
examples of negative partial molar properties for metallic
systems [35].

We turn our attention towards band theory. The Sommer-
feld model offers a useful point of comparison between the
presented thermodynamic formalism of the electronic entropy
and band theory. Consider the electronic heat capacity in the
Sommerfeld model for a metal as [36]

Cv,electronic = π2

3
k2

bT g(ε) = K1T g(ε), (9)

where K1 is just a constant. Integration of this equation from
zero Kelvin by temperature to get the total electronic entropy
gives

Selectronic = K1T g(ε). (10)

Here it is assumed that the temperature range is such that
Cv ∼ Cp (where Cp is the constant pressure heat capacity) and
that the electron density of states does not change signifi-
cantly with temperature itself.1 The partial molar entropy of
an electron would thus be the partial derivative of the integral
property [as in Eq. (10)] and this should then be equal to
Eq. (4) via

S̄electronic = −αF =
(

∂S

∂ne

)
T,P,n j

=
[
∂K1T g(ε)

∂ne

]
. (11)

Applying the chain rule to the right-hand side of Eq. (11),
we have

S̄electronic = −K1T

[
∂g(ε)

∂ε

](
∂ε

∂ne

)
, (12)

where we take the definition of the electronic density of states
to be

g(ε) := ∂ne

∂ε
. (13)

Therefore,

S̄electronic = K1T

g(ε)

[
∂g(ε)

∂ε

]
. (14)

Equation (14) suggests that the density of states of dis-
ordered Cu3Au at the transition temperature would have a
negative slope with energy. We want to be clear, however, that
consistency with band theory may neither be necessary nor
desirable. The conversion of density functional theory (DFT)
calculated band structures from a k-point grid to a density of
states requires an energy broadening scheme to interpolate be-
tween the different k points. These schemes are often chosen

1A bold and often incorrect assumption.

qualitatively to avoid smearing out important features of the
band structure while also avoiding the introduction of spurious
noise into g(ε).

There are several other concerns that we have when using
g(ε) as a thermodynamic descriptor. Most calculations do not
modulate the density of states as a function of temperature, but
rather leave that to the Fermi-Dirac distribution. Computing
the electronic entropy from g(ε) in this manner would only
meaningfully include the configurational entropy of electronic
ground states. There is evidence in the literature that this is not
true [37].

Because the Kohn-Sham states themselves are not the
strict electronic states of the system and DFT has great dif-
ficulty with correctly calculating excited states, let alone for
disordered systems, one can readily see how these types
of calculations may fall short of the necessary precision to
demonstrate the importance of the electronic entropy as a
function of temperature. Therefore, we posit that the incom-
plete description of electron thermodynamics provided by
g(ε) may explain the consistent underestimation of the con-
tribution of the electronic entropy in real materials vis-à-vis
the transport property method implemented in this paper.
Whereas we believe our method quantitatively captures all
the possible excited states not captured by the density of
states (DOS) produced via energy minimization techniques,
particularly at finite temperature [25,27].

We acknowledge that there is still the possibility that
the Hall effect and Seebeck measurements in the disordered
state may obscure some of the electronic entropy. A positive
Seebeck coefficient is indicative of hole conduction and is
self-consistent with a commensurate reduction in the Hall
coefficient. In a simple two-band model wherein one of those
bands is hole dominated, the overall Seebeck coefficient is
weighted by the conductivity of their respective bands and is
given by the equation

α = σnαn + σpαp

σn + σp
. (15)

Equation (15) would imply that in such a model, the ef-
fective hole conduction would be greater than the electron
contribution to the conductivity. If, in the typical case, the
sign of the Seebeck coefficients differs between the two bands,
Eq. (5) would require revision as

Se = −nneαn + npeαp. (16)

This may result in an increase in the electronic entropy
estimate for the disordered state. However, we believe it is still
unlikely that it changes the conclusions of this paper. First,
we expect a breakdown in Bloch’s theorem in the disordered
state, and a decrease in the effective free carrier concentration,
which is what is experimentally observed by an increase in the
magnitude of the Hall coefficient upon disordering (Fig. 2).

TABLE III. Electronic entropies of the transition for CuAu. Here, mol is in terms of the mol of the compound CuAu.

Transition Tc (K) �ST (J/mol K) �Selec (J/mol K) �Svib (J/mol K) �Sconfig (J/mol K)

CuAu(I)→ CuAu(II) 658 0.84–0.97 [2,8] −1.13
CuAu(II)→ CuAu(D) 683 3.5–5.0 [2,8] 0.96 3.0 [17] 9.9 [19]

023239-5



J. PARAS AND A. ALLANORE PHYSICAL REVIEW RESEARCH 3, 023239 (2021)

TABLE IV. Material transport property dated used for the calculation of the electronic entropy in CuAu.

Phase α (μV/K) Vm (cm3/mol) ne (m−3) Se (J/mol K)

CuAu(I) 0.56 [40] 17.355 [4] 1.82 × 1029 −0.28
CuAu(II) 4.37 1.2 × 1029 −1.42
CuAu(D) 1.94 8.49 × 1028 −0.45

There is also evidence to suggest that such sign discrepancies
between the Hall effect and Seebeck coefficient in metals
could be due to a nonconstant electron relaxation time, which
can lead to positive Seebeck coefficients in materials that are
dominated by electron conduction [38]. In which case, our
assumption surrounding conduction dominated by electrons
is correct.

Whereas in Cu3Au, the apparent impact of such a Seebeck-
Hall effect sign discrepancy on the magnitude of the electronic
entropy difference is likely small, in CuAu, the magnitude
of the computed electronic entropies is of a similar magni-
tude. This would prove problematic for the computation of
the electronic entropy in CuAu if our assumptions of carrier
dominance were to be incorrect. CuAu therefore represents
an ideal test case for future research to explore what, if
any, impact the Seebeck-Hall effect sign discrepancy has on
the entropy of metals and alloys. The definitive experiment
would involve measuring the αn and αp of CuAu, as well as
the electron and hole occupancy of the bands from which
these partial Seebeck coefficients arise. Comparison of the
resulting calculations for the electronic entropy with what has
been calorimetrically determined for the total phase transition
could determine whether such extensive characterization is
necessary to compute compound and solution thermodynamic
properties.

Ultimately, we are reassured that in ordered Cu3Au, the
Hall and Seebeck measurements both indicate electron trans-
port and that the electronic entropy is significantly larger
than in the disordered state. This increases the likelihood that
the electronic entropy of the transition is still negative even
if the assumptions surrounding the complexity of electronic
transport in the disordered state are incorrect.

V. CONCLUSION

The electronic state contribution to the order-disorder tran-
sition entropy in Cu3Au was evaluated and found to be
−6.29 J/mol K. The electronic entropy contributed signifi-
cantly to the phase transition total and provides a plausible

account for the total measured entropy of the transition in
conjunction with the vibrational and configurational entropy
differences. We propose a value of 3.1 J/mol K for the vibra-
tional entropy of the transition that would be self-consistent
with our calculations.
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APPENDIX

CuAu exhibits a sign discrepancy between its Hall effect
measurements and the Seebeck coefficient throughout the
temperature range of interest. Therefore, there is a stronger
possibility that the source of this discrepancy may manifest
in an electronic entropy equation akin to Eq. (16) and that
assumptions over single carrier dominance may result in er-
roneous estimates of the electronic entropy. Additionally, the
estimates of the vibrational entropy difference between the
ordered and disordered phases in CuAu are incomplete as
there is more than one phase transition before full disordering.
We therefore decline to draw stronger conclusions about this
material and instead include calculations of the electronic
entropy of CuAu based on the available literature data for
completeness. Hall effect data were used to calculate the
conduction electron density via Eq. (6) from data taken from
Sidorov [39].

The as-calculated electronic entropy represents a signifi-
cant fraction of the total phase transition entropy reported for
the two phase transitions of CuAu. The relevant values are
provided in Table III.

The data necessary to make these calculations are provided
in Table IV. We find that in all states, the electronic entropy
is negative. If the assumptions surrounding this electronic en-
tropy calculation in CuAu are correct, this suggests a negative
sloping electronic density of states with increasing energy in
all phases of CuAu.
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