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Pumping current in a non-Markovian N-state model
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A periodically modulated N-state model whose dynamics are governed by a time-convoluted generalized
master equation is theoretically analyzed. It is shown that this non-Markovian master equation can be converted
to a Markovian master equation having a larger transition matrix, which affords easier analysis. The behavior
of this model is investigated by focusing on the cycle-averaged pumping current. In the adiabatic limit, the
geometrical current is calculated analytically and compared with numerical results, which are available for a
wide range of modulation frequencies.
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I. INTRODUCTION

Master equations (MEs) are widely used in nonequilibrium
statistical mechanics to model the time evolution of a range of
classical and quantum-mechanical systems. The mathematical
foundation of MEs is the differential Chapman-Kolmogorov
equation of stochastic analysis [1], and in its basic form, it
only describes systems that carry no memory of their past; this
property is referred to as Markovianity. It is known, however,
that due to a number of physical reasons, real systems do
usually possess some degree of memory of their past evolution
and thus obey a non-Markovian ME (nMME). An archety-
pal example of this is the fluctuation-dissipation relation [2],
which shows that any time-nonlocal correlations in the en-
vironment necessarily lead to memory effects. Theoretically,
non-Markovianity has been attracting attention in classical
mechanics as a link between continuous-time random walks
and time-convoluted MEs [3,4]. In quantum physics, the
connection between the flow of information and the non-
Markovian processes, as well as quantum measurements
of Markovianity, have received considerable research effort
[5–7]. Furthermore, advancements in experimental techniques
have made it possible to directly measure non-Markovianity in
the context of classical [8] and quantum [9,10] systems.

Modulating control parameters such as rate constants, bath
temperatures, or gate voltages of a physical system out of
equilibrium can lead to net flow of a physical current, e.g.,
flow of product, heat flow, or electron current, even in the
absence of a net bias of the control parameters [11]. The ori-
gin of the pumping current is the Berry-Sinitsyn-Nemenman
(BSN) phase, which was originally discovered in the context
of quantum systems [12–14]. Geometrical current is generated
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when the modulation speed of the parameters is sufficiently
slow, i.e., in the adiabatic limit. The BSN phase has a sig-
nificant impact on quantum transport [15,16], and it also
leads to a path-dependent geometrical entropy [17,18]. The
effects of the BSN phase have been extensively studied in the
spin-boson model [19]. Over the recent years, the effects of
finite speed modulation, i.e., nonadiabatic effects, have also
been investigated for this model [20]. Furthermore, it has
been shown that the presence of the BSN phase engenders
non-Gaussianity of the system fluctuations, leading to a mod-
ified form of the fluctuation theorem for geometrical pumping
[21,22]. Moreover, a heat engine using Thouless pumping
[11] associated with the BSN curvature has been theoretically
designed [23].

The essential features of this geometrical effect have also
been shown to exist in classical systems, such as the Sinitsyn-
Nemenman (SN) model of reaction kinetics, in which some
parameters are cyclically modulated by an external agent
[13,14]. Recently, the adiabatic result has been extended to
the nonadiabatic regime also for this model [24]. It was found
that the pumping current reaches a peak after the adiabatic
regime in which the current linearly increases with the mod-
ulation frequency and eventually decays as the inverse of the
modulation frequency in the asymptotic limit. Finite modula-
tion speed means that the pumping current can no longer be
expressed using strictly geometrical quantities, but a formally
geometrical expression in terms of a line integral in parameter
space is still possible. Furthermore, the effect of nonadia-
baticity on the fluctuation theorem has been investigated in
the context of the SN model [25]. Motivated by the attention
these recent results have garnered, in the present paper a non-
Markovian generalization of the SN model is presented as a
natural extension of the aforementioned research, and its adi-
abatic and nonadiabatic behavior is investigated analytically
and numerically.

The structure of this paper is as follows: In Sec. II, we first
introduce our Markovian N + 4 model and then perform a
tracing out procedure to obtain an N-state non-Markovian sys-
tem. The results obtained for the pumping current are shown
in Sec. III. We obtain the geometrical form of the adiabatic
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current in the low-frequency limit and compare this to the
full nonadiabatic current obtained using numerical methods.
In Sec. IV, the results obtained and their physical implications
are discussed, and a conclusion is presented in Sec. V. Sup-
plemental information and details of the various calculations
in the main text are presented in the Appendixes.

II. NON-MARKOVIAN SN MODEL

In this section, we introduce our non-Markovian model by
deriving it from a Markovian model having a larger transition
matrix. This procedure is analogous to the Nakajima-Zwanzig
method in which we obtain a system obeying non-Markovian
dynamics by tracing out degrees of freedom [26–28]. How-
ever, as will be discussed below, we can solve the Markovian
model with a larger matrix in some situations, because the
larger Markovian system is phenomenological and governed
by simple dynamics. Therefore, in contrast to the relation
between the full von Neumann equation and the Redfield
equation or the Lindblad equation for a subsystem in the
Nakajima-Zwanzig method, in our case the relation between
the Markovian model and non-Markovian model is simple,
affording exact conversion between them.

A. Markovian formulation

Let us consider a Markovian ME for a system with N + 4
states,

d

dt
ρi(t ) = k0

N+4∑
j=1

Li j (t )ρ j (t ), (1)

where ρi is the probability of state i and the element Li j of
the transition matrix is the hopping rate between states i and
j. For convenience, we have introduced the inverse time scale
(characteristic hopping rate) k0 so that all other quantities ex-
cept for time t become dimensionless. The time dependence of
the hopping rates arises from modulation by an external agent.
This can be realized, for instance, by controlling the temper-
atures or chemical potentials of the environments, though the
temperature control is not easy in realistic situations [29]. In
the following, the rates will be assumed to undergo cyclic
modulation in time. We also assume that the environments
attached to the system are large enough such that the back-
reaction from the system is negligible and the probability
distribution in each environment is always described by an
equilibrium distribution ρ

ν,eqm
i , where ν = L or R is the index

to specify the left (L) or right (R) environment attached to the
system, even when some parameters such as the temperature
and chemical potential are controlled by an external agent.

We first briefly review the properties of the ME required for
conservation and non-negativity of the probabilities as well as
detailed balance to hold. For probability to be conserved, the
matrix elements must satisfy [1]

N+4∑
i=1

Li j = 0, ∀ j. (2)

The condition for complete positivity is more restrictive: We
are dealing with a continuous process in time, which means
that the only way for a probability, say ρi, to become negative

is if it first passes through zero. We thus require [1]

d

dt

∣∣∣∣
ρi=0

ρi =
∑
j �=i

Li jρ j � 0 (3)

for arbitrary non-negative ρi. This in turn means that all off-
diagonal elements of L ought to be non-negative.

Finally, we impose detailed balance. The principle of de-
tailed balance states that a process and its reverse happen at
the same rate at equilibrium:

Li jρ
eqm
j = Ljiρ

eqm
i . (4)

The equilibrium probability distribution would usually have
the Boltzmann form characterized by the inverse temperature
β and energy Ei of the state i, i.e., ρ

eqm
i ∝ e−βEi so that the

above equation can be written as

Li je
−βEj = Ljie

−βEi . (5)

Let us explore what this means for our ME. Summing over j,
we obtain ∑

j

Li jρ
eqm
j =

∑
j

L jiρ
eqm
i = 0, (6)

where we used Eq. (2). Thus, we arrive at

d

dt
ρ

eqm
i (t ) =

N+4∑
j=1

Li j (t )ρeqm
j (t ) = 0. (7)

This is not only a statement of the intuitive notion that an
equilibrium state should exist but also an important condition
to determine the hopping rule between the system and the
environment. It can be guaranteed to hold by requiring

det L = 0. (8)

Note that this condition is already guaranteed by Eq. (2). Thus,
requiring detailed balance to hold does not impose additional
constraints. We note that the Markovian SN model treated in,
e.g., Ref. [13] corresponds to a Markovian two-state model.
Now let us rewrite the Markovian ME in matrix notation,

�
d

dθ
ρ(θ ) = L(θ )ρ(θ ), (9)

where we have introduced the phase variable θ := �k0(t − t0)
with the dimensionless angular frequency � of cyclic modu-
lation and the time t0 required to reach a cyclic state which
is independent of a specific choice of initial conditions. We
assume that the system can be partitioned into one N-state
site and an adjacent two-state site on each side:

ρ(θ ) =

⎡
⎢⎢⎣

qL(θ )

p(θ )

qR(θ )

⎤
⎥⎥⎦, (10)

i.e., the N-state reduced system p and the left and right ad-
jacent states qL and qR, respectively. We note here that this
partitioning can be considered analogous to the projection op-
erators P and Q of the Nakajima-Zwanzig approach, though
the sizes of adjacent states qL and qR are small in our model.
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Provided that the adjacent states do not couple to each other
directly, the ME becomes

�
d

dθ
ρ(θ ) =

⎡
⎢⎢⎣

KL(θ ) W L
out (θ ) 0

W L
in (θ ) S(θ ) W R

in (θ )

0 W R
out (θ ) KR(θ )

⎤
⎥⎥⎦

⎡
⎢⎢⎣

qL

p

qR

⎤
⎥⎥⎦. (11)

Here, S(θ ) is a N × N square matrix, W ν
in (θ ) are N ×

2 and W ν
out (t ) are 2 × N rectangular matrices, and Kν (θ )

with ν = L, R are 2 × 2 square matrices. This small matrix
Kν (θ ) enables us to understand the relationship between non-
Markovian dynamics in a subsystem and Markovian dynamics
in the full system.

Next, we specify the structure of the submatrices intro-
duced above. First, Kν (θ ) are assumed to be given by

Kν (θ ) =
[−kν

2 (θ ) − w kν
1 (θ )

kν
2 (θ ) −kν

1 (θ ) − w

]
, (12)

where, to make the model concrete, we choose [24]

kR
1 (θ ) = kL

2 (θ ) = k1(θ ),

kL
1 (θ ) = kR

2 (θ ) = k2(θ ),

k1(θ ) = 1 + r cos θ ,

k2(θ ) = 1 + r cos(θ − φ),

(13)

where the internal rate constant w > 0, amplitude r, phase
difference φ, and dimensionless modulation frequency � of
Eq. (9) are used as control parameters. This choice can be mo-
tivated as follows. First, in the space of the rate coefficients,
the protocol trajectory must enclose a finite area for finite
pumping current to be observed in the adiabatic limit [24].
The phase difference φ in the last equation of Eq. (13) ranges
from 0 to π/2. Below we mainly focus on the choice φ = π/2
which gives a circle of radius r centered at k1 = 1, k2 = 1,
but for illustrative purposes we will also consider a straight
line which does not enclose any area, obtained by setting φ

to zero. Second, as can be seen from Appendix A, to obtain
a finite pumping current, there needs to be a phase difference
between the left and right rates as well as the rates of the two
states on each side.

We note that the concrete calculations below are performed
for N = 2, where S, W ν

in and W ν
out were assumed to be pro-

portional to the 2 × 2 identity matrix 1: S = −2w1, W ν
in =

W ν
out = w1, though we do not specify N in the general frame-

work. The full transition matrix for N = 2 is shown explicitly
in Eq. (A2).

As can be checked by direct calculation, the Markovian
equation (11) together with the above structure of the sub-
matrices guarantees the conservation and non-negativity of ρ,
thus also satisfying detailed balance. Physically, an important
feature of this model is that the two states at each site, e.g.,
qR

1 and qR
2 for the right adjacent site, can only mix in the

left and right environments, so there is no coupling between
them within the system. Furthermore, we assume that only kν

1
and kν

2 have time dependence. Physically, this corresponds to
externally modulating only the coupling between the adjacent
states and the environment.

We note that Kν in Eq. (12) can be split as

Kν (θ ) = K0 + rKν
1 (θ ), (14)

where, K0 and KL
1 (θ ) are, respectively,

K0 =
[−1 − w 1

1 −1 − w

]
,

KL
1 (θ ) =

[− cos θ cos(θ − φ)

cos θ − cos(θ − φ)

]
, (15)

and KR
1 (θ ) is obtained by exchanging cos θ with cos(θ − φ).

Furthermore, with the quantity of interest, the pumping cur-
rent, in mind, we introduce the counting field χ :

KR(θ ) → KR(θ, χ ) :=
[−kR

2 (θ ) − w eχkR
1 (θ )

e−χ kR
2 (θ ) −kR

1 (θ ) − w

]
. (16)

We may now consider the modified ME,

�
∂

∂θ
ρ(θ, χ ) = L(θ, χ )ρ(θ, χ ), (17)

where the partial derivative is used to emphasize the depen-
dence of ρ on χ . The modified transition matrix L(θ, χ )
is defined as the original matrix with KR(θ ) replaced by
KR(θ, χ ); its explicit form is shown in Eq. (A2). Thus, the
modified probability vector ρ(θ, χ ) is simply defined as the
solution of the modified ME, Eq. (17). Solving for ρ(θ, χ ),
computing the cycle averaged characteristic function z(θ ),

z(χ ) := 1

2π

∫ 2π

0
z(θ, χ ), (18)

where

z(θ, χ ) :=
∑

i

ρi(θ, χ ), (19)

and defining the cumulant generating function,

g(χ ) = ln z(χ ), (20)

will now give us access to all moments of the pumping cur-
rent. It can be readily shown that the pumping current, defined
as the first moment,

J (�) := ∂

∂χ

∣∣∣∣
χ=0

g(χ ), (21)

can equivalently be obtained by taking the cycle average of
the instantaneous current:

J (�) = 1

2π

∫ 2π

0
J (θ )dθ , (22)

where

J (θ ) = kR
in1(θ )qR

2 (θ ) − kR
in2(θ )qR

1 (θ ). (23)

Physically, this corresponds to the current flowing from the
right adjacent states to the right environment. In the adiabatic
limit, this pumping current has a geometrical formulation and
can be obtained analytically, as shown in the next section.
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B. Non-Markovian form

It is well known that memory effects arise when we trace
out environmental degrees of freedom. Physically, when the
environment is allowed to back-react with the system, the
environment will retain information about the past states of
the system, which can affect its dynamics.

We now demonstrate how this arises for our system.
Specifically, we show that the N + 4 -state Markovian ME is
equivalent to an N-state nMME. First, we rewrite the Marko-
vian ME, Eq. (11), in the split form

�
d

dθ
p(θ ) = Sp(θ ) +

∑
ν

W ν
inqν (θ ),

�
d

dθ
qν (θ ) = Kν (θ )qν (θ ) + W ν

out p(θ ).

(24)

Next, we formally solve for qν ,

qν (θ ) = 1

�
U ν (θ )

∫ θ

0
dθ ′[U ν (θ ′)]−1W ν

out p(θ ′), (25)

where transient terms are neglected, and the time evolution
operator U ν (θ ) obeys the differential equation,

�
d

dθ
U ν (θ ) = Kν (θ )U ν (θ ). (26)

While U ν (θ ) can be written with the help of the time-ordered
exponential operator,

U (θ ) = exp←

[
− 1

�

∫ θ

0
dθ ′Kν (θ ′)

]
, (27)

this expression is not useful for concrete analysis. Neverthe-
less, if we restrict our interest to the case of small r, Eq. (27) is
reduced to an exponential function. Accordingly, we expand
U ν (θ ) as

U ν (θ ) =
∞∑

n=0

rnU ν
n (θ ), (28)

which, on substituting into Eq. (26) and solving at each order,
leads to

n = 0 : U ν
0 (θ ) = eθK0/�, (29)

n � 1 : U ν
n (θ ) =

∫ θ

0
dθ ′e(θ−θ ′ )K0/�Kν

1 (θ ′)U ν
n−1(θ ′). (30)

Substituting this into the differential equation for p, we indeed
obtain a nMME of the form

�
d

dθ
p(θ ) = Sp(θ ) +

∫ θ

0
dθ ′M(θ, θ ′)p(θ ′), (31)

where the memory kernel is given by

M(θ, θ ′) := 1

�

∑
ν

W ν
in (θ )U ν (θ )[U ν (θ ′)]−1W ν

out (θ
′). (32)

On the other hand, we may obtain coupled equations for qν (t )
instead, as

qν (θ ) =
∫ θ

0
dθ ′U ν (θ )[U ν (θ ′)]−1W ν

out

×
{∫ θ ′

0
dθ ′′e−(θ ′−θ ′′ )K0/�

∑
ν

W ν
inqν (θ ′′)

}
. (33)

We emphasize that we have not used any approximations
in deriving these time-nonlocal equations, so the important
properties of the original Markovian model, namely that ρ

remains non-negative and conserved throughout the time evo-
lution, are retained. However, the effectiveness of the above
procedure hinges on there being only a few adjacent states
qν connecting the system to each environment. In the general
case, as treated by the Nakajima-Zwanzig formalism, tracing
out a large number of irrelevant degrees of freedom does not
lead to an analytically workable equation.

In many situations, the memory kernel M(θ, θ ′) is de-
scribed by a multiple exponential function. In fact, it is known
in the literature on Markovian embedding of non-Markovian
processes that an exponential memory kernel is the easiest
case to treat analytically [30,31]. However, our model does
not lead to a multiple exponential function, but a more com-
plicated form due to the time dependence introduced by the
external modulation and small adjacent vectors qL and qR, and
thus, treating this system anaytically is nontrivial.

The advantage of our approach is that there is no need
to deal with the non-Markovian dynamics: We can simply
solve the equivalent Markovian system because the eliminated
adjacent systems are small. Working with the non-Markovian
form of the equations does not present any mathematical or
physical merit. Indeed, we do not employ the non-Markovian
form of the dynamics in the treatment that follows. However,
deriving the time-nonlocal form serves as an interesting exam-
ple of how non-Markovianity arises naturally in the context of
externally modulated systems.

There are a number of alternative ways to deal with
nMMEs that have been explored in the literature. The most
straightforward approach is to transform the nMME into
Laplace space and solve the resulting algebraic equation there.
However, it often happens that M(θ, θ ′) does not depend
only on the phase difference (as is the case here), so that
the convolution theorem cannot be utilized. This issue can be
circumvented by performing a Taylor expansion of M(θ, θ ′)
around one of the time variables so as to create terms which
only depend on the difference between θ and θ ′ [32]. While
this allows transformation into Laplace space, it is generally
difficult to perform the inverse transformation explicitly. Fur-
thermore, the resulting solution is in the form of an infinite
series instead of the closed-form approach of the present pa-
per.

A more general approach to deal with nMMEs is based on
the Nakajima-Zwanzig projection operator technique [33–35].
In essence, one first eliminates the environment dynamics
[corresponding to qν of Eq. (24)] to obtain a nMME and then
performs an expansion in the system-environment coupling
to achieve a time-covolutionless equation of motion for the
system [26–28]. Again, however, while a number of refined
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FIG. 1. The Berry curvature F (k1, k2 ) for w = 2 plotted together
with the circular trajectory of the parameter modulation with r = 0.9.

expansion protocols have been developed over the recent
years [36], a closed-form time-local equation which is easy to
work with numerically or analytically cannot be derived using
this approach.

III. RESULTS

A. Analytical expression of the adiabatic current

As can be seen from Eqs. (A14) and (A15) in Appendix
A, we can write the pumping current in terms of the BSN
curvature in the adiabatic limit:

Jad(�) =
∫∫

dk1dk2F [k1(r, θ ), k2(r, θ )], (34)

where the BSN curvature is written as

F [k1(r, θ ), k2(r, θ )] := ∂k2 A1[k1(r, θ ), k2(r, θ )]

− ∂k1 A2[k1(r, θ ), k2(r, θ )]

= − w

3[k1(r, θ ) + k2(r, θ ) + w]3
. (35)

The Berry vector potential Aα with α = 1, 2 is defined in
terms of the eigenvectors of the modified transition matrix
L(θ, χ ) in Eq. (A15). In the above equations, the rates k1

and k2 are treated as functions of the radial and azimuthal
parameter which prescribe the area to be integrated over. Note
that F is a second-rank antisymmetric tensor in general, but in
the case of only two independent modulation parameters, this
can readily be reduced to a scalar quantity. A surface plot of
the curvature together with the circular modulation trajectory
(for r = 0.9 and φ = π/2) is shown in Fig. 1.

The parametrization of Eq. (13) has the Jacobian | sin φ|r,
so we have

Jad(�) = 1

2π
| sin φ|

∫ 2π

0
dθ

∫ r

0
r′dr′F (θ, r′). (36)

Let us first consider expanding around φ = π/2; a straight-
forward integration for N = 2 shows that

Jad(�) 	
{
− r2w

6[(2 + w)2 − 2r2]3/2
+ r4w

2[(2 + w)2 − 2r2]5/2

(
φ − π

2

)
− r2w[11r4 + 4r2 + (2 + w)2 − (2 + w)4]

12[(2 + w)2 − 2r2]7/2

(
φ − π

2

)2

+ r4w[19r4 + 16r2 + (2 + w)2 − 4(2 + w)4]

12[(2 + w)2 − 2r2]9/2

(
φ − π

2

)3}
� + O

((
φ + π

2

)4)
. (37)

It can be confirmed that the adiabatic current is negative for
all frequencies. Next, we expand the current for N = 2 around
φ = 0, which gives

Jad(�) 	
{
− r2w

6[(2 + w)2 − 4r2]3/2
φ

+ r2w[(2 + w)2 + 5r2]

36[(2 + w)2 − 4r2]5/2
φ3

}
� + O(φ5). (38)

This indicates that in the absence of phase difference, no geo-
metrical current is generated. While the above equations hold
only for the adiabatic limit, the numerical results shown below
support this conclusion also for the nonadiabatic regime.

B. Numerical results

To check the validity of our analytical findings, we also
numerically solve the Markovian ME, Eq. (24), of the N = 2
system. The computations were performed for frequencies
below � = 20 and for a range of the system parameters w,
r, and the phase difference φ. It is found that to guarantee

convergence and independence from initial values, 40 initial
cycles, i.e., k0t0 = 80π/� is sufficient. Equations (23) and
(22) are used to compute the pumping current for each so-
lution.

We first show plots of the pumping current for selected
values of w with modulation amplitude r = 0.9 and phase
difference φ = π/2 in Fig. 2. From these plots we see that
the agreement between the numerical averaged current (solid
lines) and the adiabatic current expressed by Eq. (37) (dashed
lines) is good in the adiabatic regime � → 0.

We have also investigated the dependence of the pumping
current on the modulation phase difference φ in the low-
frequency regime (� = 0.1). Results are shown in Fig. 3,
where the solid circles indicate the numerical result, ob-
tained again by direct solution of Eq. (24), the dashed lines
correspond to the analytical result for φ 	 π/2 of Eq. (37)
[including O(φ3)] and the solid lines show the result for φ 	 0
as shown in Eq. (38) {including O[(φ − π/2)3]}. We see that
both expansions agree well with the numerical results and
together the two expansions capture the φ dependence of the
pumping current in the adiabatic regime sufficiently well.
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FIG. 2. Averaged current J (�) as a function of the modulation
frequency for different values of w at modulation amplitude r = 0.9
and phase φ = π/2, obtained by solving Eq. (24) numerically. The
dashed lines show the corresponding adiabatic approximations ob-
tained from Eq. (37).

Finally, we investigate the dependence of the pumping
current on the modulation amplitude r and the internal rate
factor w again for the adiabatic regime (� = 0.1), as shown in
Figs. 4 and 5, respectively. It is again seen that in this regime,
the agreement between the numerical and the analytical re-
sults is good.

Comparing our results with those reported, e.g., in
Ref. [24], we can see that the qualitative features of the current
are unchanged. We note, however, that, due to the fact that our
system is fundamentally different from the two-state Marko-
vian SN model characterized only by a 2 × 2 matrix, detailed
comparison is not possible.

We also note that the above analytical calculations can in
principle be extended to the nonadiabatic regime by using a
more general form of Eq. (A13) that allows for transitions
between different eigenstates. This approach is investigated in
Appendix B. The higher-order eigenvectors have a complex
form and the required integrations rapidly become involved.

FIG. 3. Averaged current J (φ) as a function of the modulation
phase difference φ with r = 0.9 and w = 2 and � = 0.1. The solid
circles represent the numerical current obtained by solving Eq. (24),
while the solid line corresponds to Eq. (38) (valid for small φ) and
the dashed line to (37) (valid for φ 	 π/2).

FIG. 4. Averaged current J (r) as a function of the modulation
amplitude r with � = 0.1, φ = π/2, and w = 2. The solid circles
correspond to the numerical current obtained by solving Eq. (24) and
the solid lines represent Eq. (37).

As shown in Appendix B, we have confirmed the quantita-
tive validity of our nonadiabatic analysis, at least at O(�3).
Compared with the ease of the above numerical treatment,
however, these calculations do not yield any worthwhile in-
sight into the physics, nor do they seem to offer a significant
improvement over the adiabatic calculations.

IV. DISCUSSION

The most important finding of our research is that a large
class of systems possessing memory can be embedded into
a larger Markovian system. The computational cost incurred
due to the increased number of dynamical variables is out-
weighed by not having to deal with the time-convolution
integral, at least for the model we analyzed [see Eq. (11)].
This is certainly true for numerical calculations, but we have
shown that it also applies to the analytical calculations in the
adiabatic limit.

Furthermore, analyzing the system in the non-Markovian
framework does not have any apparent merits. Involving the

FIG. 5. Averaged current J (w) as a function of the internal rate
factor w with � = 0.1, φ = π/2, and r = 0.9. The solid circles
correspond to the numerical current obtained by solving Eq. (24) and
the solid lines represent Eq. (37).
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time-convolution integral in the discussion obscures the defi-
nition of the pumping current; indeed, it is not clear how to
implement full counting statistics (FCS) in the presence of
memory effects. On the other hand, since the larger Markovian
system is not merely an approximation, but rather an exact
equivalent of the non-Markovian system, reliability is not
compromised by limiting oneself to the Markovian system.
Thus, direct treatment of an equation of the type of Eq. (31)
would be required only when the embedding into a larger
Markovian system is not feasible.

V. CONCLUSION

In this paper, the SN model, a periodically modulated
N-state system, was generalized. It was shown that the non-
Markovian SN model, governed by a non-Markovian master
equation (nMME), which includes a time-convolution inte-
gral, can be converted to a larger Markovian system, which
is easier to analyze. Thus a method of solving the system
dynamics, at least numerically without needing to resort to
any perturbative expansions, was presented, yielding an ap-
proach to deal with this type of nMMEs, which is in principle
exact. In addition to solving the ME numerically and using the
results to calculate the pumping current for different values
of the control parameters of the system, such as modulation
frequency, phase, and amplitude of the external modulation,
we also presented an analytical calculation of the geometrical
current in the adiabatic limit. It was found that the agreement
between the numerical results and the analytical calculation
was good.

Prospects of further research into this problem include the
following: Detailed microscopic derivation of the nMME in
the framework of the present model, studying how the fluc-
tuation theorem is affected by memory effects, and applying
the method developed here to periodically driven quantum-

mechanical models. In particular, it would be interesting to
see whether the dynamically modeled environment could be
interpreted as the diagonal part of the density matrix of a
two-state quantum system, thus leading to a connection be-
tween quantum coherence and non-Markovian time evolution.
We are also interested in the extension of this analysis to a
quantum-mechanical system with charge current induced by
the BSN curvature. It should be noted that for such systems,
the pumping charge current becomes zero if the repulsive
interaction between electrons is not considered, but it has a
finite value in the presence of such interactions [16,37]. We
also note that a quantum ME can be derived by using Green’s
function technique [16].
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APPENDIX A: DETAILS OF THE 6-STATE MODEL

In this Appendix, we consider the 6-state system (i.e., with
N = 2) obeying the Markovian ME of Eq. (24) in more detail
and outline the results used in the main text.

We begin by obtaining the BSN curvature tensor using the
machinery of FCS [38]. First, we note that in vector notation,
after adding the counting field χ to the transition rates be-
tween the right adjacent states and the right environment, the
Markovian ME reads

�
∂

∂θ
ρ(θ, χ ) = L(θ, χ )ρ(θ, χ ), (A1)

where the full modified transition matrix L(θ, χ ) is written as

L(θ ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−kL
2 (θ ) − w kL

1 (θ ) w 0 0 0

kL
2 (θ ) −kL

1 (θ ) − w 0 w 0 0

w 0 −2w 0 w 0

0 w 0 −2w 0 w

0 0 w 0 −kR
2 (θ ) − w eχkR

1 (θ )

0 0 0 w e−χ kR
2 (θ ) −kR

1 (θ ) − w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A2)

Figure 6 shows a schematic representation of this system:
As described in the main text, there is no coupling between
the two states at each site, except at the left and right reser-
voirs. Furthermore, we assume that only kν

1 and kν
2 depend on

time.
We note here that, together with the observation that an

alternative formula for the pumping current is

J (θ ) =
∑

i

∂

∂χ

∣∣∣∣
χ=0

Li j (θ, χ )ρi(θ, 0), (A3)

it can be seen from the above explicit form that unless kR
2 (θ ) �=

kR
1 (θ ), the pumping current vanishes, as mentioned in the main

text below Eq. (13). In more detail, having no phase difference
between these hopping rates means that the cumulant gener-
ating function becomes O(χ2), resulting in the first derivative
at χ = 0 evaluating to zero.

Let us now derive Eq. (35). In the adiabatic limit, we will
only need to consider one eigenvalue, λ(θ, χ ) of the mod-
ified transition matrix, and the corresponding right and left
eigenvectors, r(θ, χ ) and �†(θ, χ ). This eigenvalue is taken to
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FIG. 6. A schematic of our 6-state Markovian model.

correspond to the zero-mode of the unmodified ME:

λ(θ, 0) = 0, L(θ, 0)r(θ, 0) = 0, �†(θ, 0)L(θ, 0) = 0.

(A4)

In general, the above quantities cannot be obtained exactly, but
as we are only interested in their first derivatives with respect
to χ here, we find approximate expressions

L(θ, χ ) 	 L0(θ ) + L1(θ )χ , (A5)

λ(θ, χ ) 	 λ0(θ ) + λ1(θ )χ = λ1(θ )χ , (A6)

r(θ, χ ) 	 r0(θ ) + r1(θ )χ , (A7)

�†(θ, χ ) 	 �†
0(θ ) + �†

1(θ )χ . (A8)

Since λ(θ, 0) = 0, we have the approximate eigenvalue
λ(θ, χ ) 	 λ1(θ )χ , which we wish to compute explicitly. We
first note that the characteristic equation of the modified tran-
sition matrix for the eigenvalue λ has the form

det[L(θ, χ ) − λ1] = anλ
n + · · · + a1λ + χb0 + O(χ2)

= 0, (A9)

where an are functions of the matrix elements of L(θ, 0).
This form guarantees that when χ = 0, λ = 0 is a solution of
the characteristic equation. Thus, substituting in λ = αχ and
ignoring all terms of O(χ2) or higher, we obtain λ1 = −b0/a1.
This eigenvalue approximation can then be used to obtain
an approximation for the right and left eigenvectors. Writing
down the eigenvalue equation to first order in χ , we have

[L0(t ) + L1(θ )χ ][r0(θ ) + r1(θ )χ ],

	 χL0(θ )r1(θ ) + χL1(θ )r0(θ ),

= χλ1(θ )r0(θ ), (A10)

and similarly for the left eigenvector. These systems of linear
equations can be solved up to normalization algebraically.

Next, we need to impose the normalization
�†(θ, χ )r(θ, χ ) = 1 up to first order in χ , achieved by
the normalization factor

r(t, χ ) 
→ N (θ, χ )r(θ, χ ), N (θ, χ ) 	 N0(θ ) + N1(θ )χ .

(A11)

We clearly must have

N (θ, χ ) = [�†(θ, χ )r(θ, χ )]−1

	 [�†
0(θ )r0(θ ) + �†

0(t )r1(θ )χ + �†
1(θ )r0(θ )χ ]−1

	 1

�†
0(θ )r0(θ )

− �†
0(θ )r1(θ ) + �†

1(θ )r0(θ )

[�†
0(θ )r0(θ )]2

χ , (A12)

FIG. 7. Eigenvalues of the N = 2 system plotted against θ , with
r = 0.9, φ = π/2, and w = 2.

which shows that N0(θ ) = 1/[�†
0(θ )r0(θ )] and N1(θ ) =

−[�†
0(t )r1(θ ) + �†

1(θ )r0(θ )]/[�†
0(θ )r0(θ )]2.

Finally, we apply the above results to the calculation of the
pumping current in the adiabatic limit. Assuming the normal-
ization �†(θ, χ )r(θ, χ ) = 1, as long as � is sufficiently small,
we can show that

ρ(θ, χ ) 	 e
∫ θ

0 { 1
�

λ(θ ′,χ )−v(θ ′,χ )}dθ ′
r(θ, χ ), (A13)

where v(θ, χ ) := �†(θ, χ ) ∂
∂θ

r(θ, χ ) gives the geometrical
contribution. Note that with our choice of modulation proto-
col, the dynamical term λ(θ, χ ) averages to zero, and we are
left with just v(θ, χ ). Using this approximation to compute
the generating function of the current and then picking out the
term linear in χ (that is, taking the derivative with respect to
χ and setting χ to zero), we obtain

Jad(�) = − 1

2π

∫ 2π

0

∂

∂χ

∣∣∣∣
χ=0

v(θ, χ )dθ

= �

2π

∮
C(=∂S )

Aαdkα , (A14)

where we performed a change of variables from time to the
modulation parameter space spanned by k1 and k2. This is
equivalent to Eq. (23). Here the Berry vector potential is

FIG. 8. The 6 components of the eigenvector r1 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.
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FIG. 9. The six components of the eigenvector r2 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.

defined as

Aα (k1, k2) := ∂

∂χ

∣∣∣∣
χ=0

�†(k1, k2, χ )∂kα
r(k1, k2, χ ). (A15)

Finally, employing the generalized Stokes’ theorem, which
in the case of two-parameter modulation reduces to Green’s
theorem, we indeed obtain Eq. (35). This means that to obtain
the adiabatic current, we need to compute λ(θ, χ ), r(θ, χ ),
and �†(θ, χ ) only and only up to first order in χ .

APPENDIX B: EIGENVALUE EXPANSION BEYOND THE
ADIABATIC LIMIT

In this section, we consider an approach based on the full
eigenvector expansion of the N = 2 system [24]. We begin
with obtaining all six eigenvalues and the corresponding right
and left eigenvectors. Note that in this Appendix, the sub-
scripts refer to the index of the eigenvalue or eigenvector, and
series expansions are indexed by bracketed superscripts. Plots
of the eigenvalues and each component of the right eigenvec-
tors as a function of θ are shown in Figs. 7–13 for w = 2,
φ = π/2, and r = 0.9. As can be seen from Fig. 7, λ1 = 0
and the other eigenvalues are negative, which is expected
based on the defining properties of MEs discussed in Sec. II A.

FIG. 10. The six components of the eigenvector r3 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.

FIG. 11. The six components of the eigenvector r4 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.

Figures 8 and 9 show that the first two eigenvectors have a
relatively symmetric structure, while all six components of
r3 are distinct, as indicated by Fig. 10. r4 again has a simple
structure, as seen from Fig. 11. Finally, r5 and r6 are interme-
diate in terms of complexity with four distinct components,
as shown in Figs. 12 and 13, respectively. We note that while
for this choice of parameters all the eigenvectors remain well
behaved for all θ , exceptional points where the dimension of
the vector space spanned by the eigenvectors drops can arise
for some modulation parameters. This may limit the usability
of the approach presented here.

We normalize all eigenvectors as follows,

�†
i (θ )r j (θ ) = δi j , (B1)

and hence, necessarily we have∑
i

ri(θ )�†
i (θ ) = 1. (B2)

Transforming the eigenvectors according to

r̃i := e− ∫ θ

0 �†
i (θ ′ )ṙi (θ ′ )dθ ′

ri,

�̃i := e
∫ θ

0 �†
i (θ ′ )ṙi (θ ′ )dθ ′

�i,
(B3)

FIG. 12. The six components of the eigenvector r5 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.
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FIG. 13. The six components of the eigenvector r6 of the N = 2
system plotted against θ , with r = 0.9, φ = π/2, and w = 2.

where ṙ := ∂
∂θ

r leaves orthonormality and completeness un-
changed, but results in the convenient property

�̃
†
i
˙̃ri = �̃

†
i

(
e− ∫ θ

0 �†
i (θ ′ )ṙi (θ ′ )dθ ′

ṙi − �†
i ṙie

− ∫ θ

0 �†
i (θ ′ )ṙi (θ ′ )dθ ′

ri
)

= �†
i (ṙi − �†

i ṙiri ) = 0. (B4)

Let us now expand the state vector in terms of the transformed
eigenvectors:

ρ =
6∑

i=1

ci(θ )e
1
�

∫ θ

0 λi (θ ′ )dθ ′
r̃i. (B5)

Noting that since

λ1 = 0, �†
1ρ = 1, (B6)

we see that c1(θ ) = e
∫ θ

0 �†
i (θ ′ )ṙsi (θ ′ )dθ ′

, so that the expansion can
be written as

ρ = r1 +
6∑

i=2

ci(θ )e
1
�

∫ θ

0 λi (θ ′ )dθ ′
r̃i. (B7)

Substituting this into the original matrix equation, and multi-
plying on the left by �̃i, i > 1, we obtain

ċi(θ )e
∫ θ

0 λi (θ ′ )dθ ′ + �̃
†
i ṙ1 +

6∑
j �=(1,i)

c j (θ )e
1
�

∫ θ

0 λ j (θ ′ )dθ ′
�̃

†
i
˙̃r j = 0.

(B8)

Neglecting the last term, we have for the expansion coeffi-
cients

ci(θ ) 	 Ci −
∫ θ

0
e− 1

�

∫ θ ′
0 λi (θ ′′ )dθ ′′

�̃
†
i (θ ′)ṙ1(θ ′)dθ ′, (B9)

so the expansion becomes

ρ 	 r1 +
6∑

i=2

{
Cie

1
�

∫ θ

0 λi (θ ′ )dθ ′ + δi(θ )
}
r̃i, (B10)

FIG. 14. Averaged current J (�) as a function of the modulation
frequency � with φ = π/2, r = 0.9, and w = 2. The solid circles
correspond to the numerical result obtained by solving Eq. (24),
while the dashed and solid lines represent the O(�1) (adiabatic) and
O(�3) results obtained by the eigenstate decomposition method of
Appendix B.

where

δi(θ ) := −
∫ θ

0
e

1
�

∫ θ

θ ′ λi (θ ′′ )dθ ′′
�̃

†
i (θ ′)ṙ1(θ ′)dθ ′, (B11)

whence

δi = �
�̃

†
i ṙ1

λi
+ �

δ̇i

λi
. (B12)

Noting that the terms multiplying the constants of integration
Ci decay exponentially and can thus be neglected for long
times, the expansion becomes

ρ 	 r1 +
6∑

i=2

δi r̃i. (B13)

The numerical integrations required by Eq. (B11) are rather
slow, so let us obtain δi recursively instead. Defining δ

(0)
i :=

�
�̃

†
i ṙ1

λi
, we obtain

δi = δ
(0)
i +

n∑
k=1

(
�

λi

d

dθ

)n

δ
(0)
i . (B14)

To investigate the usefulness of this approach, we show the
pumping current obtained for n = 0, i.e., the adiabatic limit
(solid line) and n = 2, i.e., up to O(�3) (note that only odd
powers of the frequency contribute to the current) compared
with the numerical result from the main text in Fig. 14. We
see that the adiabatic result is correctly reproduced by the
eigenvalue analysis, and the addition of the O(�3) offers an
improvement over the linear approximation.

023238-10



PUMPING CURRENT IN A NON-MARKOVIAN N-STATE … PHYSICAL REVIEW RESEARCH 3, 023238 (2021)

[1] C. Gardiner, Stochastic Methods: A Handbook for the Natural
and Social Sciences, Springer Series in Synergetics (Springer,
Berlin, 2009).

[2] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys.
29, 255 (1966).

[3] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger, Gen-
eralized master equations for continuous-time random walks,
J. Stat. Phys. 9, 45 (1973).

[4] D. Campos and V. Méndez, Recurrence time correlations in
random walks with preferential relocation to visited places,
Phys. Rev. E 99, 062137 (2019).

[5] G. Clos and H.-P. Breuer, Quantification of memory effects in
the spin-boson model, Phys. Rev. A 86, 012115 (2012).

[6] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, Collo-
quium: Non-markovian dynamics in open quantum systems,
Rev. Mod. Phys. 88, 021002 (2016).

[7] H.-P. Breuer, E.-M. Laine, and J. Piilo, Measure for the Degree
of Non-Markovian Behavior of Quantum Processes in Open
Systems, Phys. Rev. Lett. 103, 210401 (2009).

[8] S. Pressé, J. Peterson, J. Lee, P. Elms, J. L. MacCallum, S.
Marqusee, C. Bustamante, and K. Dill, Single molecule confor-
mational memory extraction: P5ab RNA hairpin, J. Phys. Chem.
B 118, 6597 (2014).

[9] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine,
H.-P. Breuer, and J. Piilo, Experimental control of the transition
from Markovian to non-Markovian dynamics of open quantum
systems, Nat. Phys. 7, 931 (2011).

[10] M. Gessner, M. Ramm, T. Pruttivarasin, A. Buchleitner, H.-P.
Breuer, and H. Häffner, Local detection of quantum correlations
with a single trapped ion, Nat. Phys. 10, 105 (2013).

[11] D. J. Thouless, Quantization of particle transport, Phys. Rev. B
27, 6083 (1983).

[12] M. V. Berry, Quantal phase factors accompanying adiabatic
changes, Proc. R. Soc. London, Series A 392, 45 (1984).

[13] N. A. Sinitsyn and I. Nemenman, The Berry phase and the pump
flux in stochastic chemical kinetics, Europhys. Lett. 77, 58001
(2007).

[14] N. A. Sinitsyn and I. Nemenman, Universal Geometric The-
ory of Mesoscopic Stochastic Pumps and Reversible Ratchets,
Phys. Rev. Lett. 99, 220408 (2007).

[15] J. Ren, P. Hänggi, and B. Li, Berry-Phase-Induced Heat Pump-
ing and Its Impact on the Fluctuation Theorem, Phys. Rev. Lett.
104, 170601 (2010).

[16] T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa, Geometrical
pumping in quantum transport: Quantum master equation ap-
proach, Phys. Rev. B 86, 235308 (2012).

[17] T. Sagawa and H. Hayakawa, Geometrical expression of excess
entropy production, Phys. Rev. E 84, 051110 (2011).

[18] T. Yuge, T. Sagawa, A. Sugita, and H. Hayakawa, Geometrical
excess entropy production in nonequilibrium quantum systems,
J. Stat. Phys. 153, 412 (2013).

[19] K. L. Watanabe and H. Hayakawa, Non-adiabatic effect in
quantum pumping for a spin-boson system, Prog. Theor. Exp.
Phys. 2014, 113A01 (2014).

[20] C. Uchiyama, Nonadiabatic effect on the quantum heat flux
control, Phys. Rev. E 89, 052108 (2014).

[21] K. L. Watanabe and H. Hayakawa, Geometric fluctuation
theorem for a spin-boson system, Phys. Rev. E 96, 022118
(2017).

[22] Y. Hino and H. Hayakawa, Fluctuation relations for adiabatic
pumping, Phys. Rev. E 102, 012115 (2020).

[23] Y. Hino and H. Hayakawa, Geometrical formulation of adia-
batic pumping as a heat engine, Phys. Rev. Research 3, 013187
(2021).

[24] K. Takahashi, K. Fujii, Y. Hino, and H. Hayakawa, Nonadi-
abatic Control of Geometric Pumping, Phys. Rev. Lett. 124,
150602 (2020).

[25] K. Takahashi, Y. Hino, K. Fujii, and H. Hayakawa, Full
counting statistics and fluctuation-dissipation relation for pe-
riodically driven two-state systems, J. Stat. Phys. 181, 2206
(2020).

[26] S. Chaturvedi and F. Shibata, Time-convolutionless projection
operator formalism for elimination of fast variables. Applica-
tions to Brownian motion, Z. Phys. B 35, 297 (1979).

[27] F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized
stochastic Liouville equation. Non-Markovian versus memory-
less master equations, J. Stat. Phys. 17, 171 (1977).

[28] F. Shibata and T. Arimitsu, Expansion formulas in nonequi-
librium statistical mechanics, J. Phys. Soc. Jpn. 49, 891
(1980).

[29] Nevertheless, it is remarkable that the effective temperature of a
Stirling engine can be controlled by a sinusoidal function (see,
e.g., Ref. [39]).

[30] I. Goychuk, Viscoelastic subdiffusion: From anomalous to nor-
mal, Phys. Rev. E 80, 046125 (2009).

[31] R. Kupferman, Fractional kinetics in Kac-Zwanzig heat bath
models, J. Stat. Phys. 114, 291 (2004).

[32] F. Cavaliere, M. Governale, and J. König, Nonadiabatic Pump-
ing Through Interacting Quantum Dots, Phys. Rev. Lett. 103,
136801 (2009).

[33] H. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, London, 2002).

[34] S. Nakajima, On quantum theory of transport phenomena:
Steady diffusion, Prog. Theor. Phys. 20, 948 (1958).

[35] R. Zwanzig, Ensemble method in the theory of irreversibility,
J. Chem. Phys. 33, 1338 (1960).

[36] C. Timm, Time-convolutionless master equation for quantum
dots: Perturbative expansion to arbitrary order, Phys. Rev. B 83,
115416 (2011).

[37] R. Yoshii and H. Hayakawa, Analytical expression of geomet-
rical pumping for a quantum dot based on quantum master
equation, arXiv:1312.3772.

[38] M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium
fluctuations, fluctuation theorems, and counting statistics in
quantum systems, Rev. Mod. Phys. 81, 1665 (2009).

[39] Y. Izumida, Quasilinear irreversible thermodynamics of a low-
temperature-differential kinematic stirling heat engine, Phys.
Rev. E 102, 012142 (2020).

023238-11

https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1007/BF01016796
https://doi.org/10.1103/PhysRevE.99.062137
https://doi.org/10.1103/PhysRevA.86.012115
https://doi.org/10.1103/RevModPhys.88.021002
https://doi.org/10.1103/PhysRevLett.103.210401
https://doi.org/10.1021/jp500611f
https://doi.org/10.1038/nphys2085
https://doi.org/10.1038/nphys2829
https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1209/0295-5075/77/58001
https://doi.org/10.1103/PhysRevLett.99.220408
https://doi.org/10.1103/PhysRevLett.104.170601
https://doi.org/10.1103/PhysRevB.86.235308
https://doi.org/10.1103/PhysRevE.84.051110
https://doi.org/10.1007/s10955-013-0829-2
https://doi.org/10.1093/ptep/ptu149
https://doi.org/10.1103/PhysRevE.89.052108
https://doi.org/10.1103/PhysRevE.96.022118
https://doi.org/10.1103/PhysRevE.102.012115
https://doi.org/10.1103/PhysRevResearch.3.013187
https://doi.org/10.1103/PhysRevLett.124.150602
https://doi.org/10.1007/s10955-020-02661-6
https://doi.org/10.1007/BF01319852
https://doi.org/10.1007/BF01040100
https://doi.org/10.1143/JPSJ.49.891
https://doi.org/10.1103/PhysRevE.80.046125
https://doi.org/10.1023/B:JOSS.0000003113.22621.f0
https://doi.org/10.1103/PhysRevLett.103.136801
https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1063/1.1731409
https://doi.org/10.1103/PhysRevB.83.115416
http://arxiv.org/abs/arXiv:1312.3772
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/PhysRevE.102.012142

