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The key idea behind the renormalization group (RG) transformation is that properties of physical systems
with very different microscopic makeups can be characterized by a few universal parameters. However, finding a
systematic way to construct RG transformation for particular systems remains difficult due to the many possible
choices of the weight factors in the RG procedure. Here we show, by identifying the conditional distribution in
the restricted Boltzmann machine and the weight factor distribution in the RG procedure, that a valid real-space
RG transformation can be learned without prior knowledge of the physical system. This neural Monte Carlo
RG algorithm allows for direct computation of the RG flow and critical exponents. Our results establish a solid
connection between the RG transformation in physics and the deep architecture in machine learning, paving the
way for further interdisciplinary research.
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I. INTRODUCTION

The renormalization group (RG) [1] formalism provides
a systematic method for quantitative analysis of critical phe-
nomena. Among all the RG schemes, the real-space renormal-
ization group (RSRG), first proposed by Kadanoff [2], is the
most intuitive and natural way to perform RG transformations
on lattice models [3]. These methods allow for a straightfor-
ward construction of the critical surface and calculation of
the critical exponents using numerical methods such as the
Monte Carlo renormalization group (MCRG) [4–6]. However,
the RSRG transformation typically generates long-range cou-
plings not present in the original Hamiltonian and truncation is
necessary to make the method manageable. From the physical
point of view, we expect the range of the renormalized inter-
actions of a physical lattice system near the fixed point to be
short. Finding a systematic way to construct a coarse-graining
scheme for particular Hamiltonians is crucial for the success
of any RSRG scheme. The fundamental difficulty lies in the
enormous degrees of freedom in choosing the weight factors
for the RG transformation. Several attempts in the past have
been made to find the optimal transformation. Swendsen pro-
posed an optimal MCRG scheme by introducing variational
parameters into the RG procedure [7]. Blöte et al. proposed
the modification of the Hamiltonian and the weight factors
such that the corrections to scaling would be small [8]. Ron
et al. proposed a choice of parameters such that the critical
exponent of interest was nearly constant during the MCRG
iterations [9]. However, it remains unclear how to determine
the weight factors without prior knowledge of the system.
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A general guideline in searching for a RG transformation
is to identify important degrees of freedom in the RG flow.
However, it is difficult a priori to determine which degrees
of freedom should be retained. This resembles the question
in machine learning (ML) on how to extract relevant fea-
tures from raw data. Deep learning [10] using deep neural
networks (DNNs) has significantly improved the machine’s
ability in many areas such as speech recognition [11], object
recognition [12], and Go and video game playing [13–15], as
well as aided discoveries in various fields of physics [16–20].
Multiple layers of representation are used to learn distinct fea-
tures directly from the training data. The similarity between
the structure of the DNN and the course-graining schemes
in statistical physics has inspired many efforts to establish
connection between variational RG [21] and unsupervised
learning of DNNs [22–30]. Here we address a different ques-
tion: How can we train a DNN to obtain a good RSRG
transformation? This issue is partially addressed from an
information-theoretic perspective [25,26], where an optimal
RG transformation is obtained by maximizing the real-space
mutual information (RSMI). However, the proposed RSMI
algorithm requires a mutual information proxy to probe the
effective temperature (coupling) of the system along the RG
flow, rendering it less practical. A more direct and transparent
method that enables direct computation of the corresponding
RG flow and critical exponents is thus highly coveted.

Here we present a scheme called neural Monte Carlo
RG that parametrizes the RG transformation in terms of a
restricted Boltzmann machine (RBM) [31]. The RG transfor-
mation can be learned by minimizing the Kullback-Leibler
(KL) divergence between the system distribution and the
marginal weight factor distribution [defined in Eq. (5)]. This
provides an explicit link between the RG transformation and
the RBM, allowing us to use the modern ML techniques
to find an RG transformation. In addition, the scheme is
readily integrated with the MCRG techniques to directly de-
termine the effective couplings along the RG flow and critical
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exponents. We demonstrate the accuracy of this approach for
the two- and three-dimensional classical Ising models.

II. PARAMETRIZATION OF THE REAL-SPACE
RENORMALIZATION GROUP

Consider a generic lattice Hamiltonian

H (σ ) =
∑

α

KαSα (σ ), (1)

where the interactions Sα are combinations of the original
spins σ and the Kα are the corresponding coupling constants
where the usual Boltzmann factor −β = −1/kBT is conven-
tionally absorbed [3]. A general RG transformation [3,26] can
be written as

eH ′(μ) =
∑

σ

P(μ|σ )eH (σ ), (2)

with weight factor P(μ|σ ), where μ = ±1 correspond to
the renormalized spins in the renormalized Hamiltonian
H ′(μ) = ∑

α K ′
αSα (μ) with renormalized couplings K ′

α . We
parametrize the weight factors as

P(μ|σ ) = 1∑
μ exp

(∑
i j Wi jσiμ j

) exp

(∑
i j

Wi jσiμ j

)
, (3)

where Wi j are variational parameters to be optimized [see
Fig. 1(a)]. In particular, if Wi j are infinite in a local block of
spins and zero everywhere else, then we recover the majority-
rule transformation [4]. Importantly, this parametrization
satisfies the so-called trace condition∑

μ

P(μ|σ ) = 1, (4)

which is required to correctly reproduce thermodynamics
[3,24,26]. To make a connection to the RBM in the following
discussion, we define the weight factor distribution as

P(σ,μ) = 1

Z
exp

(∑
i j

Wi jσiμ j

)
, (5)

where Z = ∑
σ,μ exp(

∑
i j Wi jσiμ j ). The weight factor (3) is

then simply the condition distribution of the weight factor
distribution, that is, we have P(μ|σ ) = P(σ,μ)/

∑
μ P(σ,μ).

An RBM is a generative model that is a staple deep learning
tool to solve tasks that involve unsupervised learning [32,33].
Hidden layers of an RBM can extract meaningful features
from the data [34]. In this regard, an RBM with fewer hidden
variables than the visible variables resembles coarse grain-
ing in the RG, first pointed out by Mehta and Schwab [22].
However, their proposed mapping from the variational RG
procedure to unsupervised training of a DNN does not satisfy
the trace condition (4) and thus does not constitute a proper
RG (see Appendix B for a detailed comparison). Here we
propose a direct mapping between the RBM and the weight
factors such that Eq. (4) is naturally satisfied.

An RBM can be written in terms of weights Wi j , hidden
variables h j , and visible variables vi as

Q(v, h) = 1

ZRBM
exp

(∑
i j

Wi jvih j

)
, (6)

where ZRBM = ∑
v,h exp(

∑
i j Wi jvih j ). The empirical feature

distribution p̂′(h) can be extracted from the empirical distri-
bution p̂(v) through

p̂′(h) =
∑

v

Q(h|v) p̂(v), (7)

where Q(h|v) = Q(v, h)/
∑

h Q(v, h) is the conditional distri-
bution of the hidden variables, given the values of the visible
variables [32]. The parameters for the RBM are chosen by
minimizing the KL divergence between the empirical distri-
bution p̂(v) and the marginal distribution

∑
h Q(v, h),

DKL

(
p̂(v)

∥∥∥∥∥
∑

h

Q(v, h)

)
, (8)

where D(p‖q) = ∑
σ p(σ ) log[p(σ )/q(σ )] for two discrete

distributions p(σ ) and q(σ ).
Motivated by the similarity between Eqs. (2) and (7), we

identify the conditional distribution Q(h|v) in the RBM with
our parametrized weight factor P(μ|σ ) and associate the hid-
den and visible variables in the RBM with the renormalized
and original spins, respectively. In analogy to the optimiza-
tion scheme of an RBM, we propose an optimal choice of
the parameters in the weight factors by minimizing the KL
divergence between the system distribution and the marginal

FIG. 1. RG transformation. (a) RG transformation of original spins (black dots) using overlapping parametrized weight factors (red square)
as in Eq. (3). The opaque black dots are the periodic copies of the original spins. In this illustration, 82 spins are renormalized to 42 spins,
leading to a scale factor equal to 2. (b) The 82 filters are learned on a 322 Ising model at critical NN coupling K1 � 0.4407. From left to right,
we show the development of the filters at the 10th, 30th, and 50th epochs corresponding to Fig. 2(a).
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weight factor distribution

DKL

(
1

Z
eH (σ )

∥∥∥∥∥
∑

μ

P(σ,μ)

)
, (9)

which can be carried out using standard ML techniques.

III. STOCHASTIC OPTIMIZATION FOR THE OPTIMAL
CRITERION

The optimization problem is solved by the stochastic gra-
dient descent, where the parameters are updated through
decrementing them in the direction of the gradient of the KL
divergence. We replace the system distribution eH (σ )/Z by its
empirical distribution p̂(σ ) over Monte Carlo samples drawn
from the Wolff algorithm [35] and write the KL divergence
(9) as an expectation value over the empirical distribution

DKL

(
p̂(σ )

∥∥∥∥∥
∑

μ

P(σ,μ)

)
. (10)

The gradient Gi j of the KL divergence (10) with respect to Wi j

can be derived as

Gi j =
∑

σ

p̂(σ )∂Wi j F (σ ) −
∑

σ

P(σ )∂Wi j F (σ ), (11)

where F (σ ) is the free energy defined as F (σ ) =
− log

∑
μ exp(

∑
i j Wi jσiμ j ). The first term in Eq. (11) is sim-

ply a sample average of the derivative of the free energy and
can be readily computed. The second term is approximated
using the contrastive divergence algorithm [36] (CDk), where
the expectation value is calculated from samples drawn from
a Markov chain initialized with data distribution and imple-
mented by Gibbs sampling with k Markov steps.

We update the weights in the direction of negative gradients

W (k+1)
i j = W (k)

i j − G(k)
i j , (12)

where the superscript of the weight W (k) indicates the number
of training epochs the weight has descended. We initialize
W (0) randomly around zero. Along the gradient descent we
obtain a sequence of weight factors, which can be used to
compute critical exponents and renormalized couplings, to see
what feature distribution [ p̂′(h) in Eq. (7)] the RBM is trying
to learn. For translationally invariant systems, translationally

invariant parametrization of the weight factor distribution (5)
can be achieved via convolution [37].

IV. TWO-DIMENSIONAL ISING MODEL

To validate our scheme, we first consider the two-
dimensional (2D) ferromagnetic Ising model

H (σ ) = K1SNN = K1

∑
〈i j〉

σiσ j, K1 > 0, (13)

where σi = ±1, K1 is the nearest-neighbor coupling, and SNN

denotes the collection of nearest-neighbor interspin interac-
tions. In the following, we consider a 2D lattice of size 322

with the periodic boundary condition. We analyze the learned
weight factors’ ability to remove long-range interactions by
directly calculating the renormalized couplings and extract
critical exponents [38]. The number of epochs required for
the parameters to reach convergence is on the order of 101 for
a training sample size of 104 and batch size of 101, which typ-
ically takes from seconds to several minutes on a workstation
with a single GPU.

Figure 1 shows the weight factors along the optimiza-
tion process [at 10th, 30th, and 50th epochs corresponding
to Fig. 2(a)] learned with a translationally invariant filter
of size 82. The filters are initialized uniformly around zero.
Localized features emerge after a few epochs of training and
progressively aggregate toward the center, in agreement with
the conventional wisdom that renormalized and original spins
close to one another should couple more strongly than those
farther apart [39]. On the other hand, the RBM also picks up
nonlocal correlations between the renormalized and original
spins, where the interaction strength falls off exponentially
with distance.

We proceed to investigate the effect of the criterion of
minimizing KL divergence to see what the machine is trying
to learn. In Fig. 2(a) we show the thermal critical exponents
calculated from weight factors W (k) along the optimization
flow. At the beginning of the training, the partially optimized
weight gives a poor estimate of the thermal critical exponent
at the first iteration of RG transformation. After the 30th
epoch, the value grows rapidly and converges to the exact
value. In Figs. 2(b) and 2(c) we use the weights obtained at
each training epoch to calculate the renormalized coupling

FIG. 2. Evolution of the critical exponents and coupling parameters during training. (a) Thermal critical exponent calculated from the
weights obtained along the learning process. (b) Short-range renormalized coupling parameters, the nearest neighbor K1 and next-nearest
neighbor K2, as a function of the training epoch. Insets indicate the corresponding couplings in real space. (c) Longer-range renormalized
coupling parameters (see Appendix A for details).
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FIG. 3. Renormalization group flow. (a) Flow of nearest- K1 and next-nearest-neighbor K2 coupling parameters calculated from the
converged weights along the renormalized group flow. The trajectory starts at critical couplings (K1 � 0.4407 and K2 = 0) and flows to
the renormalized couplings at the first, second, and third RG iterations. (b) Flow of long-range coupling parameters along the renormalized
group trajectory for majority-rule transformation and learned transformation. Insets indicate the corresponding couplings in real space.

parameters along the training trajectory. The renormalized
couplings, in machine-learning terms, completely describe the
energy model underlying the empirical feature distribution
[see Eq. (7)] extracted by the machine for the Ising empiri-
cal distribution. In Fig. 2(b) we see that the interactions are
dominated by nearest- (K1) and next-nearest- (K2) neighbor
couplings. The values for the longer-range interactions flow
progressively towards zero as shown in Fig. 2(c). The trend
shows that our criterion aims to remove longer-range coupling
parameters in the renormalized Hamiltonian.

Figure 3(a) shows the RG flow diagram projected on the
short-range coupling parameters’ subspace for the learned
weight factors. The RG trajectory starting from the nearest-
neighbor critical point flows rapidly to a fixed point. Slightly
away from the critical point, the coupling parameters flow
away to the infinite- (zero-) temperature trivial fixed points.
Figures 3(b) and 3(c) show the renormalized coupling pa-
rameters along the RG flow. The coupling parameters coarse
grained with the learned weight factors reach K1 = 0.3109(3),
K2 = 0.1051(2), and K3 = −0.0184(2) at the third RG it-
eration. The values for longer-range interactions are greatly
suppressed compared to those obtained by the majority-rule
transformation.

Table I shows the critical exponents of the 2D Ising model
computed using both the RBM and majority-rule transforma-
tions. Surprisingly, although the weights are learned without
any prior knowledge of the model, the exponent is very close
to the exact value at the first iteration of the renormaliza-
tion transformation giving yt = 1.000(2) for filter sizes 82

and 162, consistent with the exact value within the statistical

error. Equally surprising is that the RBM trained on such
a small amount of training data with only 104 samples can
generalize well. In contrast, the majority-rule transformation
gives yt = 0.975(3) at the first RG iteration. Table I also
shows that 22 and 42 filters are inadequate to produce exact
critical exponents in the first iteration of the renormalization
transformation. Even though the convergence for the thermal
critical exponents looks extremely good, the scheme overesti-
mates the magnetic critical exponents in the first RG iteration.
The discrepancy in the magnetic exponents was also noted
previously [7,40], indicating a separate filter is needed.

The weight factors considered in the literature are mostly
short range [41] (decimation and majority transformation),
i.e., they only couple one renormalized spin to a few orig-
inal spins in the immediate vicinity. However, despite the
seeming locality, these weight factors generally lead to an
infinite proliferation of interactions upon renormalizing. With
our proposed criterion, the learned weight factors contain
nonlocal terms that work as counter terms, making the renor-
malization transformation more local; therefore, only a few
short-range interactions are produced during the RG transfor-
mation. We note that the strategy along this line of transferring
the complexity in renormalized Hamiltonian to the weight
factors has yielded the first exactly soluble RG transformation
[39].

Next we consider the antiferromagnetic Ising model on a
square lattice with nearest-neighbor interactions

H (σ ) = K1

∑
〈i, j〉

σiσ j, K1 < 0. (14)

TABLE I. Thermal and magnetic critical exponents of the 2D ferromagnetic Ising model. Results are obtained on a 322 lattice using the
learned weight factors and the majority-rule transformation. Here Nr is the number of RG iterations. Seven (four) coupling terms are used for
even (odd) interactions. The exact values are yt = 1 and yh = 1.875.

Filter size

Critical exponent Nr Majority 22 42 82 162

yt 1 0.975(3) 0.974(1) 0.975(2) 1.000(2) 1.000(2)
yt 2 1.000(3) 1.000(1) 1.000(3) 1.000(1) 1.000(2)
yh 1 1.8804(2) 1.8845(1) 1.8887(2) 1.8941(5) 1.8917(1)
yh 2 1.8758(3) 1.8771(1) 1.8801(1) 1.8827(3) 1.8810(2)
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FIG. 4. Learned filter for the antiferromagnetic model. The val-
ues of the learned filters are staggered on sublattices. This pattern is
learned without any prior knowledge of the system.

This model can be mapped to the ferromagnetic Ising model
through a sublattice rotation, so the even (thermal) critical
exponent is expected to be the same as for the ferromagnetic
Ising model. Due to the sublattice structure, the conventional
majority-rule transformation with scale factor b = 2 or 3 fails
to generate a proper renormalization group flow for this model
and hence cannot be used to extract critical exponents. To
circumvent this difficulty, Swendsen adopted an RG transfor-
mation introduced by van Leeuwen [42] with a scale factor
b = √

5 such that all sites in a block are on the same sublattice
[43]. Here we train a 92 filter on a 542 lattice without any
restrictions. Figure 4 shows that the filter learns the proper
staggering structure on different sublattices, which leads to an
improved thermal critical exponent at the first RG iteration
(Table II).

V. THREE-DIMENSIONAL ISING MODEL

The scheme can be easily generalized to higher dimen-
sions as long as we can train an RBM to represent an RG
transformation. Table III shows the thermal critical exponents
computed using learned filters starting at a system size of 643.
The filters at the first and second RG iterations are learned.
The filters for the subsequent RG iterations use the same filter
obtained in the second iteration. We compare the results with
the values obtained from the majority rule [44]. Only the first

TABLE II. Thermal critical exponents for the antiferromagnetic
model. The learned filter size is 92 and the scale factor for the coarse
graining is b = 3. The van Leeuwen coarse-graining rule [42] has a
scale factor b = √

5. The result using van Leeuwen’s coarse-graining
rule is taken from [4].

Nr van Leeuwen’s Learned

1 0.883 0.953(1)
2 0.997 0.997(2)

TABLE III. Thermal and magnetic critical exponents of the 3D
Ising model. Results are obtained on a 643 lattice using the learned
weight factors and the majority-rule transformation. Here Nr is the
number of RG iterations. The first 20 coupling terms from [44]
are used for even and odd interactions. The accepted values are
yt � 1.587 and yh � 2.482 [45].

Filter size

Critical
exponent Nr Majority [44] 23 43 83

yt 1 1.425(3) 1.531(6) 1.300(4) 1.318(2)
yt 2 1.509(2) 1.568(2) 1.521(2) 1.548(1)
yt 3 1.547(2) 1.579(2) 1.556(4) 1.566(1)
yt 4 1.563(9) 1.587(3) 1.558(6) 1.555(2)
yh 1 2.4578(5) 2.515(1) 2.377(1) 2.3819(5)
yh 2 2.4603(2) 2.4940(2) 2.4670(2) 2.4916(1)
yh 3 2.4721(4) 2.4875(3) 2.4770(2) 2.4854(3)
yh 4 2.476(1) 2.4850(8) 2.4815(1) 2.4845(8)

20 couplings out of the total 53 couplings in Ref. [44] are
used. The 23 learned filter gives the exponent closest to the
best estimate from the finite-size scaling result yt = 1.587
[45]. We find that the eight values of the 23 learned filter
are homogeneous, with an average value of 0.5254(2) for the
first-iteration filter, which is very close to the tuned optimal
choice of 0.4314 in Ref. [9]. The weight value at the second
iteration is 0.5057(9).

Table IV shows the thermal critical exponents yt starting
at various system sizes using the 82 learned filter. Compar-
ing the results for lattice sizes 643 and 323, we find that
up to the second RG iteration all results for yt agree within
the statistical errors. We conclude that the finite-size effect
is significant when coarse graining 83 lattices down to 43.
We perform the finite-size correction outlined in Refs. [8,44]
and the estimate of yt becomes 1.5681(34) at the third RG
iteration and 1.5771(50) at the fourth RG iteration. Linear
extrapolation of the finite-size corrected results to the infinite
coarse-graining level yields yt = 1.5860(109).

VI. REAL-SPACE MUTUAL INFORMATION

The RSMI measures the information that the knowledge
of the environmental degrees of freedom E gives about the
relevant degrees of freedom H and is defined as

I (H; E ) =
∑
H,E

P(H, E ) log

(
P(H, E )

P(H)P(E )

)
. (15)

If E completely determines H, then the information gained is
maximized and I (H; E ) reduces to the self-information (the
entropy) of the relevant degrees of freedom H, which itself is
upper bounded by the logarithm of all possible configurations
of H. The RSMI scheme argues that an optimal RG transfor-
mation can be obtained by maximizing the RSMI [25,26].

Adopting the definition in Refs. [25,26], we consider a sys-
tem described by a quadripartite distribution P(V, E,H,O)
[Fig. 5(a)]. We define the RSMI of the system as I (H; E ),
i.e., the mutual information between hidden and environment
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TABLE IV. Finite-size corrections for the 3D Ising model. The filter size is 83. The second to fifth columns show the thermal critical
exponents for different lattice sizes. In the sixth and seventh columns we give estimates of finite-size corrections when coarse graining the 163

lattice to 83 and the 83 lattice to 43, respectively [8,44]. In the last column we give estimates of finite-size corrected exponents and we linear
extrapolated these two numbers to infinite RG iterations.

Lattice size Finite-size corrections

Nr 643 323 163 83 163 → 83 83 → 43 643 (corrected)

1 1.3182(15) 1.3216(17) 1.3212(14) 1.2953(26) −0.0030(21) 0.0230(30)
2 1.5475( 9) 1.5476(13) 1.5244(17) −0.0010(15) 0.0230(20)
3 1.5661(12) 1.5433(22) 0.0021(32) 0.0227(25) 1.5681(34)
4 1.5546(21) 0.0225(46) 1.5771(50)
∞ 1.5860(109)

random variables. The relevant distributions needed to com-
pute I (H; E ) are appropriate marginals of P(V, E,H,O).

Here we consider a 42 Ising model with the periodic bound-
ary condition where RSMI can be can computed exactly. We
train a 32 filter on the system to obtain a learned weight factor
distribution. Figure 5(b) shows the partition of the lattice into
visible (orange), environmental (green), hidden (top left red
square), and other (top right, bottom left, and bottom right red
squares) random variables. Figure 5(c) shows the evolution
of RSMI during training. Random initialization of the filters
gives zero RSMI, and as the training progresses, the RSMI
saturates to the upper bound ln 2 � 0.693.

Similar behavior also appears in the two-dimensional
antiferromagnetic (32 lattice with 32 filter size) and
three-dimensional Ising model (23 lattice with 23 filter size),

FIG. 5. Real-space mutual information for the 2D ferromagnetic
Ising model. (a) Schematic decomposition of a system described
by a quadripartite distribution P(V, E,H,O) over visible, environ-
mental, hidden, and other random variables. (b) Decomposition for
2D ferromagnetic Ising model. The 32 squares represent the hidden
variables which connect to the overlapping visible variables. The
opaque dots are the periodic copies of the visible variables. The
system is partitioned into visible (orange), environmental (green),
hidden (top left red square), and other (top right, bottom left, and
bottom right red squares) random variables. (c) RSMI as a function
of training epochs for 2D ferromagnetic, 2D antiferromagnetic, and
3D ferromagnetic Ising models. As the training progresses, the RSMI
saturates to the upper bound ln 2 � 0.693.

where the RSMI increases and plateaus at the maximum
possible value. Although the RG transformation and the
RSMI values may be subject to strong finite-size effects due
to the small sizes we study, the results suggest a possible
connection between the RSMI scheme and neural MCRG;
more theoretical and numerical studies are necessary to
establish the connection.

VII. CONCLUSION

We have demonstrated a scheme based on an RBM that
is capable of learning an RG transformation from Monte
Carlo samples. The similarity between the standard RBM
and the weight factors means that we can take advantage
of the progress in the ML architectures and techniques to
parametrize and train the filters for the RG. This algorithm
is flexible and can be directly applied to disordered systems
[46]. Although we focus on the RBM with binary variables,
for models with continuous variables such as the Heisenberg
model, one can use Gaussian-Bernoulli RBMs to better model
the RG transformation [47]. Generalization of the present
scheme to quantum systems should be straightforward by a
quantum-to-classical mapping of the d-dimensional quantum
system to the (d + 1)-dimensional classical system [48]. On
the other hand, how to extend the present scheme to study
models with emergent degrees of freedom such as dimer and
ice-type models remains an open question which requires
further study.

The code that generates data used in this paper is available
from [49].
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APPENDIX A: MONTE CARLO RENORMALIZATION
GROUP

Here we summarize the MCRG method used to calculate
the critical exponents and renormalized coupling parameters
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from Monte Carlo samples for a given filter [38]. To determine
the critical exponents, we need to calculate the derivatives of
the transformation

T (n+1)
αβ ≡ ∂K (n+1)

α

∂K (n)
β

, (A1)

which is given by the solution of the linear equation [4]

∂〈S(n+1)
γ 〉

∂K (n)
β

=
∑

α

∂〈S(n+1)
γ 〉

∂K (n+1)
α

∂K (n+1)
α

∂K (n)
β

. (A2)

Here 〈S(n)
γ 〉 is the expectation of the spin combinations at the

nth RG iterations. The derivatives of these expectation values
of the spin combinations are obtained from the correlation
functions

∂〈S(n+1)
γ 〉

∂K (n)
β

= 〈
S(n+1)

γ S(n)
β

〉 − 〈
S(n+1)

γ 〉〈S(n)
β

〉
, (A3)

∂〈S(n+1)
γ 〉

∂K (n+1)
α

= 〈
S(n+1)

γ S(n+1)
α

〉 − 〈
S(n+1)

γ 〉〈S(n+1)
α

〉
. (A4)

Given a set of spin configurations sampled from some
Hamiltonian H = ∑

α KαSα , we would like to infer the cou-
pling parameters of H . We define a specific spin-dependent
expectation

〈Sα,l〉l ≡ 1

zl

∑
σl

Sα,l e
Hl , (A5)

where zl = ∑
σl

eHl , Hl = ∑
α KαSα,l , and Sα,l are combina-

tions of spins in Sα that include only σl . Here zl and Hl , and
hence 〈Sα,l〉l , depend on spins neighboring σl . The summation
of σl can be carried out analytically and we obtain the formula

〈Sα,l〉l = Ŝα,l tanh

[∑
β

Kβ Ŝβ,l

]
, (A6)

where Sα,l ≡ σl Ŝα,l .
The correlation functions can then be written in another

form as

1

Z

∑
σ

SαeH = 1

Z

∑
σ

[
1

mα

∑
l

〈Sα,l〉l

]
eH (σ ), (A7)

where mα is the number of spins in the combination Sα . Intro-
ducing a second set of coupling parameters {K̃α}, we define

〈S̃α〉 = 1

Z

∑
σ

{
1

mα

∑
l

Ŝα,l tanh

[∑
β

K̃β Ŝβ,l

]}
eH (σ ). (A8)

It can be shown that {〈Sα〉} = {〈S̃α〉} if and only if {Kα} =
{K̃α}.

Figure 6 shows the couplings used for the calculation of the
renormalized coupling parameters for the two-dimensional
Ising model. The first seven even couplings in Fig. 6(a) are
used to compute the thermal critical exponent. The odd cou-
plings in Fig. 6(b) are used to compute the magnetic critical
exponent.

FIG. 6. 2D couplings. (a) Couplings used for the calculation of
renormalized coupling parameters. The first seven are used for the
calculation of the thermal critical exponent. (b) The four couplings
used to compute the magnetic critical exponent.

APPENDIX B: COMPARISON WITH OTHER RBM-BASED
SCHEMES

1. RG transformation and normalizing condition

Consider again a general RG transformation

eH ′(μ) =
∑

σ

P(μ|σ )eH (σ ), (B1)

where P(μ|σ ) is the weight factor. The weight factor is re-
quired to satisfy the trace condition∑

μ

P(μ|σ ) = 1. (B2)

We argue that the trace condition is indispensable, since the
condition leads to the invariance of free energy under renor-
malization and the fundamental relation

f (K ) = b−d f (K ′), (B3)

where f (K ) is the free energy density of the system in the
thermodynamic limit. For K consisting of nearest-neighbor
coupling and a magnetic field, under suitable transformation,
we could arrive at f (t, h) = b−d f (byt t, byh h), where yt and
yh are the often-sought-after critical thermal and magnetic
exponents, respectively.

In the following, we review the schemes proposed in
Refs. [22,25] and point out the shortcomings in each scheme.

2. Variational RG and Mehta and Schwab’s mapping

In Ref. [22] the weight factor is defined as

PW (μ|σ ) = exp

(∑
i j

Wi jσiμ j − H (σ )

)
. (B4)

Here H (σ ) is the original Hamiltonian, e.g., H (σ ) =
K

∑
〈i j〉 σiσ j . The Wi j are the variational parameters. The form

of the weight factor does not satisfy the trace condition and
in general it is not possible to choose the parameters Wi j to
satisfy the trace condition (B2). The fundamental relation (B3)
is only approximated.
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We note that in the original procedure of the variational
renormalization group [21], the form of the weight factor is
chosen with variational parameters such that for all values
of variational parameters the weight factor must satisfy the
trace condition. The variational parameters are used instead
to optimize the lower bound of the approximated free energy
density.

We define a distribution of the weight factor with varia-
tional parameters Wi j ,

PW (σ ) =
∑

μ exp
( ∑

i j Wi jσiμ j
)

∑
σ

∑
μ exp

(∑
i j Wi jσiμ j

) . (B5)

In Ref. [22] the variational parameters are chosen to make

DKL

(
eH (σ )

Z

∥∥∥∥PW (σ )

)
(B6)

as small as possible. This completely fixes the variational
parameters, leaving no room for optimizing the lower bound
free energy approximation. That is to say, the variational
approximation in machine learning (B6) and the variational
approximation of the variational renormalization theory work
at completely different levels.

The rationale of the criterion (B6) for choosing the vari-
ational parameters is that it is a necessary but not sufficient
condition for the trace condition to be satisfied:

∑
μ

exp

(∑
i j

Wi jσiμ j − H (σ )

)
= 1

implies

eH (σ ) =
∑

μ

exp

(∑
i j

Wi jσiμ j

)
.

The normalization factor
∑

σ

∑
μ exp(

∑
i j Wi jσiμ j ) is equal

to the partition function for the original Hamiltonian, denoted
by Z . Therefore, the divergence (B6) is exactly zero. The
criterion is not sufficient since when

e f (σ )
/ ∑

e f (σ ) = eg(σ )
/ ∑

eg(σ ),

we have

e f (σ )−g(σ ) =
∑

e f (σ )
/ ∑

eg(σ ),

where the trace condition fails up to some unknown constant
not necessarily equal to one.

On the other hand, with the parametrized form of the
weight factor as in (B4), the renormalized Hamiltonian would
then describe the marginal distribution PW (μ) of the RBM.
We define PW (μ) to be

PW (μ) =
∑

σ exp
(∑

i j Wi jσiμ j
)

∑
σ

∑
μ exp

(∑
i j Wi jσiμ j

) . (B7)

FIG. 7. Weight factor factorized as identical copies of local
weight factors.

Carrying out the RG transformation (B1) for the weight fac-
tors (B4) gives

eH ′(μ) =
∑

σ

exp

(∑
i j

Wi jσiμ j − H (σ )

)
eH (σ )

=
∑

σ

exp

(∑
i j

Wi jσiμ j

)
. (B8)

The normalization factor
∑

σ

∑
μ exp(

∑
i j Wi jσiμ j ) is thus

equal to the partition function Z ′ for the renormalized Hamil-
tonian irrespective of the choice of the variational parameters
Wi j . Therefore,

PW (μ) = eH ′(μ)

Z ′ . (B9)

In this respect, we can say that the hidden variables of the
machine are described by the renormalized Hamiltonian.

3. Real-space mutual information algorithm

In Ref. [25] the weight factor factorizes as

P�(μ|σ ) =
∏

j

P�(H j |V j ), (B10)

where H j = {μ j} consists of a single renormalized spin and
V j = {σ 1

j , σ
2
j } consists of two original spins in the case of

a one-dimensional system (and 22 in the case of a two-
dimensional system) (see Fig. 7). The local weight factor is
parametrized as

P�(H j |V j ) = exp
( ∑

i �iμ jσ
i
j

)
∑

μ exp
( ∑

i �iμ jσ
i
j

) . (B11)

The variational parameter � is obtained through only a
single copy of the local weight factor and hence we omit
the subscript j in the following. Consider a single copy
of the local weight factor where the local visible spins V
are embedded among the buffer B, environmental E , and
other O spins which collectively form the original sys-
tem spins X (see Fig. 8). Construct two proxies P�1 (V )
and P�2 (V, E ) in the form of RBMs trained on the restric-
tion of X = (V,B, E,O) Monte Carlo (MC) samples (from
the Boltzmann equilibrium distribution of the Hamiltonian
of concerned). Define P�(E,H) = ∑

V P�2 (V, E )P�(H|V ),
P�(H) = ∑

V P�1 (V )P�(H|V ), and P(E ) = ∑
V P�2 (V, E ).

The variational parameters � are chosen to make

I�(H; E ) =
∑
H,E

P�(E,H) log

(
P�(E,H)

P�(H)P(E )

)
(B12)
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FIG. 8. Schematic decomposition of the system spins into the
visible (V), buffer (B), environmental (E) and other (O) spins, re-
spectively. We refer to a local block of hidden spins H.

as large as possible, where the distributions needed on
the right-hand side are defined as above. Since P(E ) is
independent of �, we instead maximize a proxy A� =∑

H,E P�(E,H) log[P�(E,H)/P�(H)] of mutual informa-
tion. However, to evaluate the proxy A�, further approxima-
tions have to be made.

In order to perform a quantitative analysis, Koch-Janusz
and Ringel constructed a “thermometer” function T (A�)
which maps the proxy A� to the temperature. The ther-
mometer works to extract the effective temperature of the
renormalized system. Constructing such a thermometer re-
quires the generation of sets of MC samples at different
temperatures. For each set of samples, one can compute the
proxy A� and hence know the mapping from A� to the tem-
perature T for this set of samples. For a given type of system
(e.g., Ising), we can write T (A�) as T (T0, L, b, l ), where T0 is
the temperature of the initially prepared system, L is the initial
system size, b is the scale factor, and l is the scaling length
(l = 0 means the original system, l = 1 means one-step renor-
malization, and so on). We can then fit a function to these
sets of samples and construct the thermometer. Koch-Janusz
and Ringel [25] postulated a scaling function of the form
f ((L/bl )1/ν ) related to the effective renormalized temperature
T (T0, L, b, l ) as

T (T0, L, b, l ) − Tc

T0 − Tc
= f ((L/bl )1/ν ), (B13)

where Tc is the critical temperature of the original system.
Finally, one could collapse the plot of (T − Tc)/(T0 − Tc) as a
function of (L/bl )1/ν to estimate the values of ν and Tc.

4. Neural Monte Carlo renormalization group

In the present work we define the weight factor as

PW (μ|σ ) = exp
(∑

i j Wi jσiμ j
)

∑
μ exp

( ∑
i j Wi jσiμ j

) . (B14)

where, for the translationally invariant system, the variational
parameters are shift invariant; that is, for different j and j′ we
have

Wi j = W[(i+ j′− j)modN] j′ (B15)

in the case of the one-dimensional system. The weight
factor satisfies the trace condition for all values of Wi j . Let us
define a joint distribution out of this weight factor

PW (μ, σ ) = exp
( ∑

i j Wi jσiμ j
)

∑
σ

∑
μ exp

( ∑
i j Wi jσiμ j

) . (B16)

Here PW (μ, σ ) has exactly the same form of a RBM and the
weight factor can be viewed as the conditional distribution
PW (μ|σ ) = PW (μ, σ )/

∑
μ PW (μ, σ ).

Consider one of the breakthroughs in the realm of deep
learning where Hinton introduced a greedy layerwise unsu-
pervised learning algorithm (see Sec. 2.3 of [32]). Denote
by PW (μ|σ ) the posterior over μ associated with the trained
RBM (we recall that σ is the observed input). This gives rise
to a (feature) empirical distribution p′(μ) over the hidden
variables μ when σ is sampled from the data’s empirical
distribution p(σ ):

p′(μ) =
∑

σ

PW (μ|σ )p(σ ). (B17)

The samples of μ with empirical distribution p′(μ) become
the input for another layer of the RBM. We can view the RBM
to work as extracting features μ from inputs σ .

Note the similarity between the RG transformation (B1)
and the feature extraction process (B17). We could pos-
tulate that the input distribution p(σ ) is determined by
some Hamiltonian H (σ ) where p(σ ) = eH (σ )/Z . We pos-
tulate that the posterior distribution PW (μ|σ ) of an RBM
works as a weight factor to do the RG transformation:
eH ′(μ) = ∑

σ PW (μ|σ )eH (σ ). Hence the feature extraction pro-
cess (B17) becomes a necessary condition for the system to
perform the RG transformation. In other words, the feature
distribution extracted by the machine is described by the
renormalized Hamiltonian.

Now the variational parameters in the weight factor
PW (μ|σ ) are free to change. All choices of parameters should
derive a well-defined RG transformation. The criterion for
choosing the parameters is entirely arbitrary from the perspec-
tive of doing the RG: We do not know a priori what weights
Wi j could give a “nicer” RG flow. A nice RG flow, however,
should bring the original Hamiltonian closer to the fixed point
fast. Also, it should remove long-range coupling parameters
for practical purposes of performing the RG and, loosely
speaking, for killing the irrelevant scaling fields. Critical ex-
ponents and the coupling parameters can be easily computed
using the MCRG techniques described in Appendix A.

In the realm of machine learning, the weights of an RBM
are chosen to make the divergence (B6) as small as possible.
We note that the criterion is entirely machine-learning theo-
retical. In contrast, in Ref. [22] the criterion also serves as a
necessary condition for the weight factor to satisfy the trace
condition, a notion which is RG theoretical.

APPENDIX C: CRITICAL MAGNETIC EXPONENT

In Fig. 9(a) we show the critical magnetic exponents cal-
culated from the learned weight factors. As the training epoch
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FIG. 9. (a) Critical magnetic exponents for weight factors along
the training epoch. (b) Critical magnetic exponents for weight factors
learned on samples with an external magnetic field. The dotted line
shows the exact value of yh = 1.875.

increases, the evolution of the magnetic exponent shows be-
havior similar to that of the thermal exponent, although the
converged value overshoots the exact value. It is interesting to
see that at some point along the training epochs, the value of
the magnetic exponent at the first RG iteration meets that of
the second and third.

We next use training samples generated with an external
magnetic field to train our weight factors and use them to
calculate the critical magnetic exponents. Figure 9(b) shows
a crossing of the magnetic critical exponents when varying
the magnetic field. The learned weight factor is able to predict
well the magnetic exponent at the first RG iteration at a field
of h � 0.001.
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