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Full characterization of the transmission properties of a multi-plane light converter
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Multi-plane light conversion (MPLC) allows to perform arbitrary transformations on a finite set of spatial
modes with no theoretical restriction to the quality of the transformation. Even though the number of shaped
modes is in general small, the number of modes transmitted by an MPLC system is extremely large. In this
paper, we aim to characterize the transmission properties of a multi-plane light converter inside and outside
the design-modes subspace. We report the construction of the full transmission matrix of such systems. By
performing singular value decompositions, we individuate ways to evaluate their efficiency in performing the
design transformation. Moreover, we develop an analytical random matrix model that suggests that in the regime
of a large number of shaped modes an MPLC system behaves like a random scattering medium with limited
number of controlled channels.
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I. INTRODUCTION

The ability of shaping light’s spatial profile is crucial
for several different technologies such as imaging through
opaque media [1] and biological tissues [2], classical [3] and
quantum [4] communication, and quantum information pro-
cessing [5]. One of the first methods that has been used to
manipulate light’s spatial distribution was adaptive optics [6],
which uses deformable mirrors for the real-time correction
of turbulence-induced phase distortions. Light fields’ spatial
profile can also be manipulated via wave front shaping in
complex scattering media [7,8]. In this context, the propaga-
tion medium supports a very large number of spatial modes,
and couples them with one another in a complex, but static,
way. This fact can be exploited to engineer the phase front of
the incident light in order to obtain the desired output spatial
distribution.

Another way to shape spatial modes of light is to control
the medium they propagate through, as it happens, e.g., in
complex nanostructures [9] and in photonic lanterns [10,11].
In the latter, an array of single-mode fibers is gradually
merged into a multimode waveguide such that the modes of
the fibers are adiabatically mapped into the modes of the wave
guide. The propagation medium can be controlled dynami-
cally as well, using, for instance, mechanical deformations in

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

fibers in the optical regime [12], or tunable metasurfaces in
the microwave regime [13].

Multi-plane light conversion (MPLC) is a light-shaping
technique that allows to map a set of input spatial modes
of light into a set of output modes by alternating free-space
propagation and phase modulations (see Fig. 1) [14]. MPLC
systems can be designed using so-called wave front match-
ing techniques [15,16] to determine the phase modulations
necessary to perform a specific mode transformation. Such,
generally complex, phase transformations are physically im-
plemented via reflecting phase plates [14]. A particularity
of MPLC systems is that the number of input scattering
channels is much larger than the number of shaped modes.
Because of the complexity of the phase pattern on each phase
plate, an MPLC system is thus expected to behave as an
open chaotic cavity, producing a speckle pattern at the out-
put for most input channels except the ones it is designed
for.

So far, the study of MPLC focused on the design of specific
transformations involving a certain number of modes either
via optimization algorithms using a reasonably small number
of phase plates [14–18] or via exact analytical methods using a
very large number of phase transformations [19]. In this paper,
we do not aim to present methods for the efficient design
of MPLC systems, but rather to provide a comprehensive
description of the transmission properties of existing devices,
and in particular of their behavior outside the subset of modes
that they are designed to shape. Apart from its fundamental
interest, this characterization has a practical relevance. In fact,
construction defects and experimental imperfections (e.g.,
misalignment, modal crosstalk, etc.)—which must be taken
into account for an optimal use of physical devices—lead to
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FIG. 1. Example of an MPLC transformation that maps Nm = 6 input modes {vi}1�i�Nm=6 (Gaussian spots) into Nm = 6 output modes
{ui}1�i�Nm=6 (fiber modes). The transformation is implemented via a series of NP = 14 phase plates separated by free-space propagation over
a distance L. The reader should notice that modes {ui}1�i�Nm=6 in the bottom row are not the ideal design modes, but were obtained by
(numerically) propagating the input modes through the actual device.

the injection of modes different from the design ones into the
MPLC system.

By using a singular value decomposition of the transmis-
sion matrix of realistic MPLC devices in Sec. II, we show how
the design mode subspace and the set of modes associated
to the largest singular values are related. A clear threshold
is identified beyond which singular modes produce speckle
patterns at the output. This analysis reveals new ways to as-
sess MPLC systems’ efficiency and suggests that, outside the
design subspace, such devices behave like random scattering
media. In Sec. III, we confirm this idea by deriving an ana-
lytical random matrix model, which predicts the transmission
eigenvalue distribution of MPLC systems. Finally, Sec. IV
concludes our work.

II. TRANSMISSION PROPERTIES OF MPLC SYSTEMS

We now set out to fully characterize the transmission
properties of some specific MPLC systems that have been
designed (and physically constructed) by the company Cail-
abs, matching particular industrial requirements that we detail
in Sec. II A. To this goal, we numerically propagate a basis
of input modes through the successions of phase plates that
define some particular MPLC systems. We then project the
transmitted modes on an output-mode basis in order to re-
construct the transmission matrix of the device. The singular
values and singular vectors of the latter fully describe the
transmission properties of the system.

A. Definition of the MPLC systems

The operation implemented by an MPLC system is a mode-
basis change, which is characterized by the number of basis
elements Nm and their input and output spatial profiles, which

we label as {vi}1�i�Nm and {ui}1�i�Nm . respectively (see Fig. 1
for a specific example). Such a transformation is performed
by transmitting light trough a specific set of Np phase plates
of size mx × my pixels, placed at a distance L from one another
as sketched on the right of Fig. 1.

The phase profiles of the phase plates are computed by
a deterministic optimization algorithm that takes as input
the details of the mode-basis change described above. Two
metrics are taken into account when designing a system.
The first metric the design algorithm tries to maximize is
how close to the ideal mode basis change the transforma-
tion we implement is, that is how well the shaped modes
overlap with the design ones. The second figure of merit
that the algorithm considers is the crosstalk between modes.
For an ideal mode-basis change, all crosstalk coefficients
are equal to zero. However, imperfections in the transfor-
mation introduce nonzero coefficients. In many applications
for which MPLC systems are used, such as telecommunica-
tions and metrology, crosstalk between modes is an important
source of errors. Accordingly, the design algorithm tries to
minimize modal crosstalk. Another design characteristic of
these systems is the set of optimization constraints taken
into account at the phase plate design level. Indeed, all
these systems are designed in an industrial setting with the
goal of being physically implemented. This set of constraints
aims at matching the physical characteristics of the numeri-
cally generated phase plates with the available manufacturing
capabilities.

The above mentioned criteria are common to all the MPLC
systems analysed in this work. New criteria (different from the
design ones) to evaluate the performance of an MPLC device
will emerge from the transmission matrix analysis presented
in the following sections. However, let us stress again that
our paper aims at analyzing these existing systems with a
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perspective to fully understand their transmission properties—
not at modifying their design.

B. Construction of the MPLC transmission matrix

We now construct the transmission matrices for a zoo of
MPLC systems, mapping series of spatially separated Gaus-
sian spots into different types of modes (free-space modes,
fiber modes, etc.). We restrict ourselves to the study of de-
vices that have been physically constructed according to the
criteria specified in Sec. II A, and for which the validity of the
prediction of our numerical propagation routine has already
been verified experimentally.

Every linear optical device maps an input field φ(x, y) into
an output field ψ (x, y) according to the integral equation

ψ (x, y) =
∫

t (x, y; x′, y′) φ(x′, y′) dx′dy′, (1)

with T (x, y; x′, y′) the transmission function of the optical
device. Introducing a basis of P input modes {φi}1�i�P and
a basis of Q output modes {ψi}1�i�Q, we can express Eq. (1)
in matrix form [20]

ψi =
P∑

j=1

ti jφ j, (2)

where t is known as the transmission matrix.
As the output mode basis {ψi}1�i�Q, we choose the pixel

basis, for which Q = mx × my is the number of pixels of the
actual phase plates. This is a natural choice, since this is the
basis used by the phase-matching algorithm to determine the
phase plates of a particular MPLC system.

It is tempting to choose the pixel basis also for the input
modes {φi}1�i�P. However, for typical MPLC systems Q is
fairly large (150 000 � Q � 400 000) and a matrix of size
Q × Q would be numerically intractable. We therefore chose
a mode basis for which a limited number P � Q of modes can
accurately describe the input of the system. A basis satisfying
this requirement is constituted by the Hermite-Gauss (HG)
modes, which are constructed as a product of nx and ny modes
in the x and y directions, meaning P = nx × ny. In particular,
in our numerical simulations we considered P = 645 (nx = 15
and ny = 43).

Our choice for the input-mode basis is justified by the fact
that, often, the inputs of an MPLC system are spatially sepa-
rated Gaussian modes. Because of experimental imperfections
(e.g. misalignment) and construction defects (e.g., errors in
positioning of the phase plates), in practice, the spatial param-
eters (displacement, tilt, waist size, defocus) of these modes
will be altered. Such modified Gaussian modes can be well ap-
proximated by a linear combination of a small number of HG
modes. On the other hand, we have no a priori information on
the output modes of a misaligned MPLC device, but we have
experimental evidences that they resemble speckle patterns.
The high spatial resolution necessary to accurately describe
such patterns is guaranteed by our choice of representing the
output field with a large number of pixel modes.

Finally, to ensure that our numerical representation of the
transmission matrix t is accurate, we tested different types

of mode bases and of mode-bases sizes without spotting any
notable difference.

C. Singular value decomposition

Several important properties of a scattering medium, e.g.,
its total transmittance, can be obtained from the singular value
decomposition (SVD) of its transmission matrix t [7]. The
latter is defined as

t = UDV †, (3)

where U and V are unitary matrices of dimensions Q × Q
and P × P, while D = diag(τ1, · · · , τP) is a Q × P diagonal
matrix containing the P singular values τ of t . The columns
of the matrices U and V (also referred to as singular vectors
in literature) define two sets of singular modes that are ex-
actly mapped into one another by the linear optical device
under study with a transmittance given by the square of the
corresponding singular values [20]. The singular values can
be calculated as the square roots of the standard eigenvalues
T of the P × P Hermitian matrix t†t , i.e., τ = √

T [7].
For an ideal MPLC system, the first Nm singular values are

exactly equal to one, i.e.,

D = diag(

Nm︷ ︸︸ ︷
1, · · · , 1,

P−Nm︷ ︸︸ ︷
τNm+1 , · · · , τP ), (4)

while the first Nm left and right singular vectors, contained in
U and V , respectively, are given by orthogonal linear com-
binations of the output ({ui}1�i�Nm ) and input ({vi}1�i�Nm )
design modes.

In practical implementations, a combination of suboptimal
design and losses induces a deviation of the first Nm singular
values from unity. For the same reasons, the first Nm singular
vectors of a realistic device will acquire finite contributions
from modes different from the design ones. These deviations
can therefore be used to evaluate the quality of the design
of an MPLC system. On the other hand, the other P − Nm

singular values and singular vectors describe the transmission
properties of the device outside of the design subspace.

In Fig. 2, we plot the singular values of four different
MPLC systems, which are distinguished by the number of
shaped modes (Nm = 6, 10, 15, 9), as well as the number of
phase plates (Np = 14, 14, 20, 14) used to construct them. All
four systems map spatially separated Gaussian spots in the
input plane (the modes {vi}1�i�Nm ) into a set of orthogonal co-
propagating modes {ui}1�i�Nm . For the systems corresponding
to the first three rows in Fig. 2, the output modes {ui}1�i�Nm

are different numbers of optical fibers’ modes, while for the
one corresponding to the bottom row they are Laguerre-Gauss
(LG) modes.

In Fig. 2, we observe that the first Nm singular values stand
out from the others: a gap appears. This feature, which is
not surprising since these systems are optimized to shape and
transmit preferentially Nm modes, can be used to compare the
performances (in terms of transmission losses) of different
MPLC devices. In fact, the amplitude of the gap depends on
the design transformation, as we can notice in the bottom row
of Fig. 2, where the difference between the first Nm singular
values and the rest of them is practically unnoticeable. This
suggests that the conversion to LG-modes is less efficient than
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FIG. 2. Singular values for different MPLC systems with Nm =
6, 10, 15, 9 and Np = 14, 14, 20, 14 (top to bottom). On the left we
plot all the singular values while on the right we only plot the 30
largest ones. The systems corresponding to the first three rows were
designed to manipulate the guided modes of three different optical
fibres, while the one in the last row was designed to shape Laguerre-
Gaussian modes.

the transformations to fiber-modes performed by the other
three devices considered. We will confirm this fact in the
following, with a detailed singular modes analysis. Moreover,
it should be noted that the amplitude of the gap is depen-
dent on the optimization algorithm used to design the MPLC
systems. The devices associated with the singular-value dis-
tributions in Fig. 2 are all multiplexing devices constructed
for telecommunication purposes, and therefore optimized to
reduce the crosstalk among the output modes. In a different
context, an optimization algorithm, which focuses on reducing
losses could be used to enhance this gap between the first Nm

singular values and the others. Let us now have a look at the
left and right singular modes {Ui}1�i�Q and {Vi}1�i�P of the
transmission matrix t , which are obtained from the unitary
matrices U and V according to

Ui =
Q∑

k=1

Uikψk, (5)

Vi =
P∑

k=1

Vikφk . (6)

In all analyzed cases, the singular modes corresponding to the
largest Nm singular values—i.e., the most efficiently transmit-
ted singular modes—are close to linear superpositions of the
design modes. This is evident in Fig. 3 where some singular
modes of an MPLC system designed to map Nm = 6 Gaussian
spots aligned along the y direction into an equal number of
modes of an optical fiber are showed. The design modes of
this particular MPLC device are those shown in Fig. 1, while
its singular values are plotted in the top panel of Fig. 2. We
can clearly see (top row of Fig. 3) that the right singular
modes corresponding to the 6 largest singular values (V1 − V6)
of this MPLC system correspond to a linear superposition
of the Gaussian spots in the top row of Fig. 1. In a similar
fashion the modes U1 − U6 (bottom row of Fig. 3) correspond
to linear superposition of the design fiber modes (bottom row
of Fig. 1). To make this observation more quantitative, let us
consider which fraction of the power of the design output
modes {ui}1�i�Nm is contained into the subspace spanned by
the best transmitting left singular modes {Uj}1� j�Nm . Such
fraction can be computed as

pi =
Nm∑
j=1

∣∣∣∣
∫

u∗
i (x, y)Uj (x, y) dx dy

∣∣∣∣
2

. (7)

The quantity (7) is reported in Table I for all the design
modes ui of the four MPLC systems whose singular values are
plotted in Fig. 2. The large values of pi reported in Table I
confirm that the design transformation is almost completely
represented in the subspace of the most efficiently transmitted
modes. This means that the studied devices make a very effi-
cient use of the high-dimensional mode space at their disposal,
relying on almost exactly as much degrees of freedom as
needed to realize the design transformation. One should how-
ever notice that the values of pi for the device corresponding
to the second row of Table I are lower (significantly lower in
the case of p1 and p2) than those of the other devices. We
remind the reader, that this device’s output modes ui are LG
modes, and that its singular value distribution does not feature
a gap (see bottom row of Fig. 2). The main difference between
the LG modes and the fiber modes at the output of the other
MPLC systems considered in Fig. 2 and Table I is that the
width of the LG modes quickly increases with their mode
order. Therefore, it is, arguably, harder for the MPLC system
to widen the input modes to the proper size within a limited
number of reflections on phase plates. This results in the need
of a larger set of singular modes to properly represent the
design mode transformation. Or, in other words, this MPLC
system is making a slightly less efficient use of the resources
at its disposal to realize the design transformation.

The above discussion is an example of how SVD can pro-
vide information about the quality of MPLC transformations
and the optimality of their design. Let us now move our atten-
tion to the singular modes Ui and Vi with i > Nm. In general,
these modes bear no resemblance with the design modes, and,
especially in the output plane, look like speckle patterns (see
U7,U8, and V7,V8 in Fig. 2). This observation, together with
the high dimensionality and complexity of the MPLC transfor-
mation, suggests that an MPLC system essentially behaves as
a chaotic cavity. In the following section, we will build on this
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FIG. 3. Right (top row) and left (bottom row) singular modes {Vi}1�i�P and {Ui}1�i�Q of the MPLC system with Nm = 6 and NP = 14,
whose singular values are showed in the top panel of Fig. 2. The axes of the numerical grid have the same size as the actual phase plates of
the device and are centered with respect to them. The modes in the green rectangle correspond to the Nm = 6 largest singular values, and are
dominated by linear superpositions of the design modes. On the other hand, the other singular modes (red rectangle) look like speckle patterns.

behavior to derive an analytical model for the transmission
properties of MPLC devices.

III. ANALYTICAL THEORY

Let us therefore consider an MPLC device as a scattering
system. As such, it can be described by a 2N × 2N scattering
matrix

S =
(

r0 t ′
0

t0 r′
0

)
, (8)

with N the total number of spatial modes supported by the
system. Accordingly, r0 (r′

0) and t0 (t ′
0) are blocks of size

N × N and determine the amplitudes of the modes, which
incoming from the top (bottom) in Fig. 1 are, respectively, re-
flected and transmitted by the MPLC system. In real devices,
diffraction causes a portion of the injected light to go beyond
the physical extent of the phase plates. This effect limits the
number of spatial modes that can be controlled by a particular
system. Therefore, in practice, one does not have access to
the full transmission matrix t0, but rather to a submatrix t ,

which is obtained by filtering t0, i.e., by removing N − N1

columns and N − N2 rows of t0. Here, N1 and N2 represent the
number of spatial modes that can be controlled in the input
and output planes, respectively. We will refer to these modes
as the controllable modes. They are determined by physical
constraints of the system, and are, in general, unknown. The
reader should not confuse them with the modes the system is
designed to shape, nor with the modes φi and ψi we used in
Sec. II to obtain an accurate numerical representation of t .

Given that a perfect scattering system does not have losses,
its scattering matrix S is by definition unitary: S†S = 1. In
addition, given the high dimensionality and complexity of
an MPLC system, we will treat its scattering matrix as a
random matrix, similarly to what is done in condensed mat-
ter physics for characterizing transport in quantum dots or
metal wires [21]. When increasing the number Nm of modes
to be shaped, in order to resolve finer spatial structures, the
patterns to be impressed on the phase plates get finer, and,
thereby, look more random. Therefore, we expect the ran-
dom matrix theory approach to become valid for large values
of Nm.

TABLE I. Power fraction of the design output modes {ui}1�i�Nm contained into the subspace spanned by the best transmitting left singular
modes {Uj}1� j�Nm for the four MPLC systems whose singular values are plotted in Fig. 2 [see Eq. (7)]. The first two columns report the number
of shaped modes Nm and the number of phase plates NP characterizing the MPLC devices, while the following columns contain the values of
pi.

Nm Np 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 14 0.940 0.938 0.953 0.939 0.916 0.949
9 14 0.413 0.682 0.835 0.864 0.849 0.863 0.786 0.738 0.802
10 14 0.887 0.897 0.909 0.845 0.883 0.863 0.838 0.861 0.874 0.902
15 20 0.838 0.877 0.898 0.927 0.902 0.907 0.898 0.899 0.882 0.857 0.874 0.900 0.900 0.865 0.824
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Considering the transmission matrix S as random allows
us to use filtered random matrix (FRM) theory to derive the
probability distribution ρt†t (T ) of the eigenvalues T of the
matrix t†t , which is related to the probability distribution
ρt (τ ) of the singular values τ of the transmission matrix t
according to ρt (τ ) = 2τρt†t (τ 2) (see Sec. II).

A. Filtered random matrix model

Let us notice that the extraction of the transmission matrix
t0 from the scattering matrix S can be considered as a filtering
where N rows and N columns are removed. Accordingly, t is
obtained from two successive filtering, a first one to extract t0
from S, and a second to extract t from t0. In the following, we
recall the general FRM formalism, and then apply it twice to
derive ρt†t (T ).

Given an M × M random matrix A, the eigenvalue density
of the Hermitian matrix A†A is given by

ρA†A(T ) = − 1

π
lim
ε→0

Im[gA†A(T + iε)], (9)

where we have introduced the resolvent

gA†A(z) = 1

M

〈
Tr

1

z − A†A

〉
, (10)

with 〈· · · 〉 denoting the ensemble average [22]. Let us now
consider the filtered random matrix

Ã = P2AP1, (11)

with P1 and P2 two matrices of sizes M × M1 and M2 × M,
respectively, that eliminate M − M1 columns and M − M2

rows of A. The resolvent gÃ†Ã(z) of Ã†Ã is connected to gA†A(z)
by the FRM equation [23]

N (z)gA†A

(
N2(z)

D(z)

)
= D(z), (12)

where N (z) and D(z) are defined according to

N (z) = zm1gÃ†Ã(z) + 1 − m1, (13a)

D(z) = m1gÃ†Ã(z)[zm1gÃ†Ã(z) + m2 − m1], (13b)

with the filtering parameters m1 = M1/M and m2 = M2/M.
Let us now apply the FRM equation (12) to derive the

resolvent of t†
0 t0 from the one of S†S. By using the unitarity of

S and Eq. (10), we have gS†S (z) = 1/(z − 1), which, together
with Eq. (12) with filtering parameters m1 = m2 = 1/2, gives
us

gt†
0 t0

(z) = 1√
z(z − 1)

. (14)

The eigenvalue density associated with the resolvent (14) [see
Eq. (9)] corresponds to the well-known bimodal distribution
associated to chaotic cavities [21]

ρt†
0 t0

(T ) = 1

π

1√
T (1 − T )

. (15)

We now apply Eq. (12) once more, this time with filtering
parameters m1 = N1/N and m2 = N2/N with N1 and N2 the

number of controllable modes, to obtain the resolvent of t†t

gt†t (z) = 1

2m1z(1 − z)

(
m1 − m2 + 2(1 − m1)z

− [(m1 − m2)2 + 4z2 − 4(m1 + m2 − m1m2)z]1/2
)
.

(16)

Finally, by using Eq. (9), we obtain the transmission-
eigenvalue density

ρt†t (T ) = 1

π

√
(T + − T )(T − T −)

m1T (1 − T )
+ max

(
1 − m2

m1
, 0

)
δ(T ),

(17)

with

T ± = m1 + m2 − m1m2 ± √
m1m2(2 − m1)(2 − m2)

2
. (18)

B. Comparison with numerical results

Let us now compare the prediction of the FRM theory
with the numerical data obtained from the MPLC devices
defined in Sec. II A. In general, the results of random matrix
theory are valid when an average over several elements of an
ensemble is considered. However, for large enough matrices, a
self-averaging or ergodicity argument can be invoked, i.e., we
can assume that a single matrix is sufficient to represent the
whole ensemble [22]. The transmission matrices t computed
in Sec. II satisfy this self-averaging argument. Accordingly,
we fit the probability distribution of the singular values, ρt (τ ),
extracted from the numerical data presented in Sec. II C to
those obtained from Eq. (17).

The fits were performed by optimizing the parameters m1

and m2 in order to maximize the similarity function 	 defined
as the area under the point-by-point minimum of the data
and the model curves (shaded area in Fig. 4). Given that
the singular value distribution ρt (τ ) is normalized to unity,
the similarity function 	 ∈ [0, 1]. The curves resulting from
this fitting procedure for eight different MPLC systems are
presented in Fig. 4. The corresponding fitting parameters m1

and m2 are listed in Table II.
Figure 4 shows that, for MPLC systems designed to shape

a low number Nm of modes by using a low number NP of
phase plates, the distribution ρt (τ ) presents a peak at low
singular values, which correspond to singular modes with low
transmittance. Such a peak is not well fitted by our analytical
model. On the other hand, when increasing the number Nm

of shaped modes as well as the number NP of phase plates,
the numerical singular value distributions are very well repro-
duced by FRM model. This behavior fits with our intuition
that the assumption for the scattering matrix S being random
is justified only for systems designed to shape a large number
of modes.

The third row of Fig. 4 shows the singular value distribu-
tions of two MPLC systems that use the same number NP =
20 of phase plates to transform the same number Nm = 15
of separated Gaussian spots into modes from two different
mode families (e.g., the guided modes of two different optical
fibers). For both systems, our analytical model fits quite well
the numerical data, but with different values of the fitting
parameters (see in particular m2 in Table II). We therefore
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FIG. 4. Full lines: Singular value distributions obtained from
the numerical simulation of different MPLC systems with Nm =
5, 8, 10, 13, 15, 15, 17, 19, and NP = 14, 14, 14, 20, 20, 20, 20, 20
(left to right, top to bottom). Dashed lines: Filtered random matrix
model obtained from Eq. (17) that best fits the data. The corre-
sponding fit coefficients are presented in Table II. The shaded area
represents the similarity function 	 whose value is given in the upper
right corner.

conclude that, when the number of shaped modes is large,
the overall transmission properties of an MPLC system are
those of a random scattering system with a limited number of
controllable modes. However, the different values of m1 and
m2 tell us that the exact number of controllable modes can be

strongly influenced by the spatial profile of the modes that the
system is designed to shape.

Moreover, by looking at the fit parameters in Table II, we
note that m1 tends to get smaller when the number of shaped
modes Nm increases. This is probably due to the fact that, in
order to manipulate higher-order spatial modes, it is necessary
to enlarge the area of the patterns inscribed onto the phase
plates. As a consequence, diffraction pushes more and more
light beyond the edges of the phase plates and the fraction of
controlled channels, as quantified by m1 and m2, decreases.

IV. CONCLUSION

In this work, we presented a complete characterization of
the transmission properties of MPLC systems and investigated
the behavior of these systems outside the subspace of modes
that they are designed to shape.

Our analysis shows how the singular value decomposi-
tion of the MPLC systems’ transmission matrices can be a
powerful tool to quantify the performances of these devices.
In particular, we studied the overlap between the subspace
spanned by the singular modes corresponding to the largest
Nm singular values and the one spanned by the design modes.
This quantity provides a clear indication on how efficiently an
MPLC system can use the high-dimensional resources at its
disposal to realize the design transformation.

Together with the numerical results, we introduced a
filtered random matrix analytical model, which very well
captures the probability distribution of the singular values of
systems designed to shape a large number of modes. Such a
good agreement with our analytical model suggests that in
these cases an MPLC system behaves like a chaotic cavity
or random scattering medium with only a limited number of
controllable modes.

The results of our analysis provide elements to evaluate
and predict the performances of MPLC systems. For exam-
ple, we could predict the amplitude of the largest singular
values from our analytical model, and use the fact that these
singular values are associated with the design modes to put
a bound on the total transmittance of an MPLC transfor-
mation. Moreover, our study of the transmission properties
outside of the design-mode subspace brings to light param-
eters that could be optimized in the construction of MPLC
devices. For instance, one could enhance the gap between
the largest Nm singular values and the others. Doing so, one
would increase the losses experienced by injecting into the
MPLC system modes outside of the design subspace, e.g., by
misaligning the system. The result would be a device, which
could be easily aligned simply by monitoring the transmitted
power.

On a larger scope, these findings forge a connection be-
tween highly tuned optical technology and the physics of

TABLE II. Fitting parameters m1 and m2 corresponding to the curves presented in Fig. 4.

Nm 5 8 10 13 15 15 17 19

m1 0.87 0.68 0.64 0.56 0.47 0.46 0.52 0.49
m2 0.91 0.75 0.71 0.81 0.58 0.98 0.82 0.8
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complex media. As such, we are exploring the tension be-
tween, on the one hand, control and design, and, on the
other hand, complexity. Our results impose fundamental ques-
tions, e.g., about the point at which the system transitions
towards the physics of a random optical medium (as shown
in Fig. 4). More microscopic models will be needed to un-
derstand how the statistical features of MPLC ultimately sum
up to reproduce that statistics of a random matrix model, and
to understand the role of different design parameters in this

process. Then, ultimately, we may hope to exploit the chaotic
statistics that manifests in the system to improve the design of
such optical technology.

ACKNOWLEDGMENT

The authors thank Guillaume Labroille from Cailabs for
providing access to the MPLC systems’ data and for helpful
discussions.

[1] I. M. Vellekoop, Opt. Express 23, 12189 (2015).
[2] H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, and Y. Park,

Curr. Appl. Phys. 15, 632 (2015).
[3] N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet,

and F. Chazallet, Proc. SPIE, Atmospheric Propagation of
Electromagnetic Waves III 7200, 72000J (2009).

[4] G. Sorelli, N. Leonhard, V. N. Shatokhin, C. Reinlein, and A.
Buchleitner, New J. Phys. 21, 023003 (2019).

[5] H. Defienne, M. Barbieri, I. A. Walmsley, B. J. Smith, and S.
Gigan, Sci. Adv. 2, e1501054 (2016).

[6] R. Tyson, Principles of Adaptive Optics (CRC Press, Boca
Raton, 2010).

[7] S. Rotter and S. Gigan, Rev. Mod. Phys. 89, 015005 (2017).
[8] M. W. Matthès, P. del Hougne, J. de Rosny, G. Lerosey, and

S. M. Popoff, Optica 6, 465 (2019).
[9] L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J.

Vuckovic, ACS Photonics 5, 301 (2018).
[10] T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval,

and R. R. Thomson, Adv. Opt. Photonics 7, 107 (2015).
[11] S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn,

Nanophotonics 2, 429 (2013).
[12] S. Resisi, Y. Viernik, S. M. Popoff, and Y. Bromberg, APL

Photonics 5, 036103 (2020).

[13] N. Kaina, M. Dupré, G. Lerosey, and M. Fink, Sci. Rep. 4, 6693
(2014).

[14] J.-F. Morizur, L. Nicholls, P. Jian, S. Armstrong, N. Treps, B.
Hage, M. Hsu, W. Bowen, J. Janousek, and H.-A. Bachor, J.
Opt. Soc. Am. A 27, 2524 (2010).

[15] J.-F. Morizur, G. Labroille, and N. Treps, “Device for
processing light/optical radiation, method and system for
designing such a device,” US Patent No. 10,324,286
(2016).

[16] N. K. Fontaine, R. Ryf, H. Chen, D. T. Neilson, K. Kim, and J.
Carpenter, Nat. Commun. 10, 1865 (2019).

[17] G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and
J.-F. Morizur, Opt. Express 22, 15599 (2014).

[18] F. Brandt, M. Hiekkamäki, F. Bouchard, M. Huber, and R.
Fickler, Optica 7, 98 (2020).

[19] V. J. López-Pastor, J. S. Lundeen, and F. Marquardt,
arXiv:1912.04721.

[20] D. A. B. Miller, Adv. Opt. Photonics 11, 679 (2019).
[21] C. W. J. Beenakker, Rev. Mod. Phys. 69, 731 (1997).
[22] A. M. Tulino and S. Verdú, Found. Trends Commun. Inf.

Theory 1, 1 (2004).
[23] A. Goetschy and A. D. Stone, Phys. Rev. Lett. 111, 063901

(2013).

023226-8

https://doi.org/10.1364/OE.23.012189
https://doi.org/10.1016/j.cap.2015.02.015
https://doi.org/10.1117/12.808142
https://doi.org/10.1088/1367-2630/ab006e
https://doi.org/10.1126/sciadv.1501054
https://doi.org/10.1103/RevModPhys.89.015005
https://doi.org/10.1364/OPTICA.6.000465
https://doi.org/10.1021/acsphotonics.7b00987
https://doi.org/10.1364/AOP.7.000107
https://doi.org/10.1515/nanoph-2013-0035
https://doi.org/10.1063/1.5136334
https://doi.org/10.1038/srep06693
https://doi.org/10.1364/JOSAA.27.002524
https://doi.org/10.1038/s41467-019-09840-4
https://doi.org/10.1364/OE.22.015599
https://doi.org/10.1364/OPTICA.375875
http://arxiv.org/abs/arXiv:1912.04721
https://doi.org/10.1364/AOP.11.000679
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1561/0100000001
https://doi.org/10.1103/PhysRevLett.111.063901

