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Deep learning using the eponymous deep neural networks (DNNs) has become an attractive approach towards
various data-based problems of theoretical physics in the past decade. There has been a clear trend to deeper
architectures containing increasingly more powerful and involved layers. Contrarily, Taylor coefficients of DNNs
still appear mainly in the light of interpretability studies, where they are computed at most to first order. However,
especially in theoretical physics, numerous problems benefit from accessing higher orders, as well. This gap
motivates a general formulation of neural network (NN) Taylor expansions. Restricting our analysis to multilayer
perceptrons (MLPs) and introducing quantities we refer to as propagators and vertices, both depending on the
MLP’s weights and biases, we establish a graph-theoretical approach. Similarly to Feynman rules in quantum
field theories, we can systematically assign diagrams containing propagators and vertices to the corresponding
partial derivative. Examining this approach for S-wave scattering lengths of shallow potentials, we observe NNs
to adapt their derivatives mainly to the leading order of the target function’s Taylor expansion. To circumvent this
problem, we propose an iterative NN perturbation theory. During each iteration we eliminate the leading order,
such that the next-to-leading order can be faithfully learned during the subsequent iteration. After performing
two iterations, we find that the first- and second-order Born terms are correctly adapted during the respective
iterations. Finally, we combine both results to find a proxy that acts as a machine-learned second-order Born
approximation.
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I. INTRODUCTION

Machine learning (ML) is a highly active field of re-
search that provides a wide range of tools to tackle various
data-based problems. As such, it has also received grow-
ing attention in the theoretical physics literature, such as
in Refs. [1–15]. Many data-based problems involve mod-
eling an input-target distribution from a data set, which is
referred to as supervised learning. After a successful train-
ing procedure, the ML algorithm is capable of correctly
predicting targets, even when given previously unknown in-
puts, i.e., it generalizes what it has learned to new data.
Nowadays, neural networks (NNs) are a popular choice in
the context of supervised learning. There is an overwhelm-
ing variety of NN architectures that are as diverse as the
problems they are specially suited for. The certainly most
fundamental class of NNs is given by multilayer perceptrons
(MLPs). Many obvious properties of state-of-the-art NNs
such as the concept of a layered architecture or the use of
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nonlinear activation functions originate in much simpler MLP
architectures.

The property that makes NNs perform so well in many
different applications is that of being a universal approxima-
tor: As long as the architecture comprises an output layer
and at least one hidden layer that is activated via a bounded,
nonlinear activation function, the NN can approximate any
continuous map between inputs and targets arbitrarily precise
for a sufficiently large number of neurons in that hidden layer,
as described by the universal approximation theorem (UAT);
see Refs. [16,17]. However, increasing the number of neurons
in one layer is a rather inefficient way to improve the NN’s
performance. It is more promising to introduce additional
nonlinearly activated hidden layers, instead, which eventually
opens up the field of deep learning. Here, the term “deep”
refers to a large number of such nonlinearly activated lay-
ers. Its protagonists, the deep neural networks (DNNs), are
known for their enormous predictive power and for demon-
strating superhuman performances for specific tasks. Last
but not least, this makes them a promising approach to-
wards problems of theoretical physics, as shown, e.g., in
Refs. [1–3].

While there has clearly been a trend towards deeper and
more complex architectures in the past decade, capable of
approximating increasingly involved target functions, the in-
terest in the analytical properties of NNs remains limited to
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interpretability studies. Notable methods used to gather post
hoc interpretations of NN predictions are the deep Taylor
decomposition and local interpretable model-agnostic expla-
nations (LIME); see Refs. [18] and [19]. The former is
used exclusively for image classifiers: Given a root point
of the classifier, a heat map can be constructed using the
NN’s first-order derivatives, assigning to each pixel a certain
relevance value. This highlights those pixels that are sub-
stantially involved in the resulting decision. Similarly, LIME
performs a linear regression of adjacent synthetic samples
and thus provides a linear approximation, or in the language
of Ref. [20] a linear proxy, of the target function in the
vicinity of the root point. Both methods, indeed, facilitate
powerful local post hoc interpretations of the respective NN’s
behavior in feature space. However, they do not provide any
information about second- or higher-order derivatives and are,
therefore, blind to most of the NN’s analytical structure. This
contrasts greatly with the fact that a majority of problems
in theoretical physics certainly benefit from having access
not only to the NN’s first-order derivatives but also ideally
to their entire analytical structure. Obvious examples that
come to mind are the post hoc verification of equations of
motion or, which the present study focuses on, the extrac-
tion of dominating terms from an underlying perturbation
theory.

Closing the mentioned gap requires a general method to
compute NN derivatives of arbitrary order. On one hand, a nu-
merical differentiation is certainly no difficult task, but it may
be rendered inaccurate due to truncation and roundoff errors
and does not reveal the contribution of the individual weights
and biases to a particular order. On the other hand, a naive an-
alytical differentiation of NN predictions does not share these
weaknesses but will suffer from an unmanageable amount of
different contributions, especially for high-order derivatives
and a large number of hidden layers. Restricting the analysis
for simplicity to MLPs, we propose a graph-theoretical for-
malism to analytically compute partial derivatives of any order
for arbitrarily many hidden layers, while keeping track of
the combinatorics. Similarly to backpropagation in gradient-
descent techniques, where the first-order derivatives of the
loss function with respect to an internal parameter can be
represented as a matrix product, we want to bypass the naive
and inefficient use of the chain and product rules and un-
derstand arbitrary derivatives of an MLP in terms of tensor
products. We observe two distinct classes of quantities, which
we refer to as propagators and vertices, that each depend
on the weights, biases, and chosen activation functions and
naturally appear in such a tensor formulation. Their naming
is intentional, as we discover several similarities between the
Taylor expansion of MLPs and perturbation theory in quantum
field theories: Analogously to Feynman rules, we find under-
lying rules that specify which combinations of vertices and
propagators, i.e., which diagrams, are allowed and contribute
to a given Taylor coefficient. One major difference, however,
is that loops are not allowed in contrast to quantum field theo-
ries. In a graph-theoretical context, we can show that these
diagrams are oriented and rooted trees, i.e., arborescences.
The concept of explaining derivatives in terms of graphs is
already known and is a successful approach in the context of
ordinary differential equations or, more precisely, the Butcher

series; see Ref. [21]. In contrast to the Butcher series, how-
ever, we clearly want to set our focus on Taylor expansions
and perturbation theory.

Due to its simplicity and ubiquity in quantum physics, two-
body scattering appears to be an adequate field for studying
the adaptation of MLPs to perturbation theories. In fact, the
present study is strongly motivated by the weight inspections
performed in Ref. [11]: Considering the first hidden layer of
MLPs trained to predict S-wave scattering lengths for shallow,
attractive potentials of finite range, it is shown that weights
among all of its active neurons satisfy a quadratic pattern
wnm ∝ m2. This can be proven to reproduce the first-order
Born approximation. As soon as MLPs are trained on succes-
sively deeper potentials, additional structures emerge within
their weights, which are later identified with the second-order
Born term. This qualitatively indicates that during training,
MLPs adapt to the Born series and thus develop a quantum
perturbation theory. Applying the proposed graph-theoretical
formalism, we complement these findings by a quantitative
investigation of the dominating analytical structure of MLP
ensembles that predict S-wave scattering lengths. Since we
observe these MLPs to mainly adapt their derivatives to the
leading order, we develop an iterative scheme that can be un-
derstood as an NN perturbation theory to successively obtain
remaining terms of the target function’s Taylor expansion:
At each iteration, the idea is to eliminate the leading order
from the current targets in the training and test sets, which
generates new data sets for the next iteration, which a new
auxiliary ensemble of MLPs can be trained on. A downside
of this approach is that each iteration requires that one run
an additional training pipeline. However, the dominating con-
tributions of the auxiliary ensembles are significantly more
faithful to the corresponding terms of target functions’ Taylor
expansion than a differentiation of a single, naively trained
ensemble could provide. The first- and second-order Taylor
coefficients found this way can be identified one to one with
the first- and second-order Born term, respectively. These two
results are then combined to a machine-learned second-order
Born approximation, which performs well for shallow poten-
tials. Finally, these indicate that our NN perturbation theory
naturally translates to a perturbation theory for scattering
lengths.

This paper is organized as follows: At first, Sec. II intro-
duces the S-wave scattering length as a functional, briefly
presents the first two variational derivatives, and relates
them to the Born series in quantum two-body scattering.
When approximated by NNs, their sampled form gives rise
to understanding the Born series as a Taylor series in the
space of sampled potentials. In Sec. III, we then propose
a graphically motivated approach to compute partial deriva-
tives of arbitrarily deep MLPs in terms of propagators and
vertices. Section IV builds on these findings, develops the
NN perturbation theory we finally want to apply to MLPs
trained on S-wave scattering lengths, and sheds light on
the training pipeline as well as on architecture details. The
first-order Born term is evaluated and discussed in Sec. V,
followed by investigation of the second-order Born term af-
ter one iteration in Sec. VI. We end with a discussion and
outlook in Sec. VII. Various technicalities are relegated to
Appendix.
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II. THE BORN SERIES AS A TAYLOR SERIES

Let Y : RH0 → RHL be an analytical function. The local behavior of Y in the vicinity of an arbitrary point x0 ∈ RH0 can be
described by neglecting higher-order terms in the Taylor expansion

Yn(x) − Yn(x0) =
H0∑

k=1

∂Yn

∂xk

∣∣∣∣
x=x0

(x − x0)k + 1

2

H0∑
k1=1

H0∑
k2=1

∂2Yn

∂xk1∂xk2

∣∣∣∣
x=x0

(x − x0)k1 (x − x0)k2 + · · · . (1)

In the following, we interpret the components xk = f (k/H0) of any given vector x ∈ RH0 as samples of an analytical function
f ∈ Cω([0, 1]). In this context, higher dimensions H0 correspond to higher sampling rates. Note that x and f become totally
equivalent in the limit of an infinitely fine sampling rate; that is, H0 → ∞. In this case the given function Y can rather be
understood as a functional Y : Cω([0, 1]) → RHL . Consequently, the above expression generalizes to an expansion around a
given function f0 ∈ Cω([0, 1]),

Yn[ f ] − Yn[ f0] =
∫ 1

0
dk

δYn[ f ]

δ f (k)

∣∣∣∣
f = f0

{ f (k) − f0(k)}

+ 1

2

∫ 1

0
dk1

∫ 1

0
dk2

δ2Yn[ f ]

δ f (k1)δ f (k2)

∣∣∣∣
f = f0

{ f (k1) − f0(k1)}{ f (k2) − f0(k2)} + · · · .

In this limit it is no longer the partial derivatives ∂NY/∂xk1 · · · ∂xkN |x=x0 , but the variational derivatives
δNY [ f ]/δ f (k1) · · · δ f (kN )| f = f0 that parametrize the local behavior of Y . Sampling the latter yields partial derivatives and again
reproduces the multidimensional Taylor expansion in Eq. (1). An example we study thoroughly in Secs. V and VI is the functional
that maps an attractive, dimensionless potential U = 2μρ2V with finite range ρ to the corresponding dimensionless S-wave
scattering length in units of ρ,

a0[U ] = 2π2

ρ3
〈0|T |0〉 = 2π2

ρ3
〈0|U |0〉 + π2

ρ6
〈0|UG0U |0〉 + · · ·

=
∫ 1

0
dr r2U (r) − 1

2

∫ 1

0
dr1

∫ 1

0
dr2 r1r2(r1 + r2 − |r1 − r2|)U (r1)U (r2) + · · · . (2)

Here, the quantities μ, V , T , and G0 denote the reduced mass of the two-body system, the dimensionful potential, and the
dimensionless T matrix and resolvent, respectively. Equation (2) not only contains the expansion of a0 around the force-free case
U = 0 but also displays the classical representation of the S-wave scattering length as the Born series and therefore suggests that
we treat a0 perturbatively for shallow potentials. The two lowest-order variational derivatives,

δa0[U ]

δU (r)

∣∣∣∣
U=0

= r2,
δ2a0[U ]

δU (r1)δU (r2)

∣∣∣∣
U=0

= −r1r2(r1 + r2 − |r1 − r2|),

can then be used to compute the first- and second-order Born approximation of a0, respectively. Consequently, their sampled
versions are given by

∂a0

∂Uk

∣∣∣∣
U=0

= k2

(H0)3
,

∂2a0

∂Uk1∂Uk2

∣∣∣∣
U=0

= − 1

(H0)5
k1k2(k1 + k2 − |k1 − k2|). (3)

Equations (1) and (3) give rise to understanding the Born
series in the space of sampled potentials as a Taylor series.
Thereby, each sampled potential U corresponds to an H0-
dimensional vector with components Uk = U (r = k/H0). It is
obvious that the discretization error becomes negligibly small
for sufficiently high sampling rates H0. Now Y could serve as
a target function that we try to imitate by an NN. In the context
of the above example this means that the NN can successfully
predict S-wave scattering lengths for sampled potentials after
completing a supervised training procedure. According to the
UAT, these predictions can be arbitrarily precise, provided that
the given architecture contains sufficiently many neurons or is
sufficiently deep. Nonetheless, the UAT in no way guarantees
that the NN also reproduces the analytical properties, i.e., the
target function’s partial derivatives at each order. A patholog-
ical, but obvious example is NNs with Heaviside activations:

Here, the derivatives at any order can only take the values
0 or ±∞, which can be realized as a superposition of delta
functions.

At this point the following questions arise: What conditions
must the given architecture satisfy such that loss minimization
during training also causes the partial derivatives of the MLP
for any given order to approximate the corresponding deriva-
tives of the target function? Asked differently, If we are given
a raw data set and do not know the analytical representation
of the target function, how can we be sure that its analytical
structure is reproduced by the trained NN? What is the benefit
of having the NN approximate the analytical structure of the
target function? How can MLP and target function derivatives
be compared with each other analytically in the first place?

Of course, in order to comply with the assumed analyticity
of the target function, the activation functions themselves need
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to be analytical. As many pooling layers such as maximum
(max) pooling or rectifiers such as the rectified linear unit
(ReLU) are not everywhere differentiable, this already ex-
cludes a wide range of conventional architectures. Also, note
that this analyticity criterion is just a necessary and not a
sufficient condition for the NN in order to approximate the
analytical structure of the target function. To give an example,
the Gaussian error linear unit (GELU) is an analytical recti-
fier that serves as an activation function later in this paper.
While lower-order derivatives are unproblematic, higher-order
derivatives vanish almost everywhere and diverge for a small
range of inputs, which renders them highly unstable. Also,
there is no ad hoc guarantee that the NN approximates all
lower-order derivatives of the target function equally well: If
the training set only covers a narrow range of inputs around
the expansion point, the NN may tend to approximate only
the leading order. While we will observe this issue for the
numerically stable first- and second-order derivatives of the
Born series in Secs. V and VI, a further investigation for
higher-order derivatives is beyond the scope of the present
study and, therefore, left for future studies.

III. PARTIAL DERIVATIVES OF MULTILAYER
PERCEPTRONS

An MLP with L layers is the prototype example of a
layered architecture and can be understood as a nonlin-
ear function Y : RH0 → RHL between real vector spaces.
The term “layered” describes that Y is a composition
Y = YL ◦ · · · ◦ Y1 of L layers Y l : RHl−1 → RHl containing
Hl neurons z(l )

n . In MLPs, exclusively linear layers are used in
combination with nonlinear activation functions a(l,n) : R →
R, where a(l,n) is applied to the nth neuron of the lth layer.
This can be formulated recursively,

Yn(x) = y(L)
n , (4)

with the recursive step

y(l )
n = a(l,n)

(
z(l )

n

)
, z(l )

n =
Hl−1∑
m=1

w(l )
nmy(l−1)

m + b(l )
n , (5)

together with the weights w(l )
nm and biases b(l )

n . The recursion in
Eq. (5) is terminated for l = 1 due to reaching its base y(0)

m =
xm. For deep architectures, i.e., for L 	 1, Y is a strongly
nested function, such that computing derivatives becomes
an extremely difficult task because of a hardly manageable
amount of chain- and product-rule applications. In fact, there
is another field of machine learning in which it is well known
how to efficiently compute first-order partial derivatives of a
strongly nested function: Within gradient-descent-based train-
ing algorithms it is necessary to compute the gradient of a
loss function, which is an error function of the network Y
and therefore nested to the same extent. Here, the first-order
partial derivatives of the loss function with respect to any
internal parameter can be expressed by a matrix product. This
is the famous backpropagation which significantly speeds up
training steps by avoiding naively applying chain and product
rules; see Ref. [22].

In order to derive Taylor coefficients of Y of any order and
for an arbitrary number L of layers in terms of the weights

and biases, we desire a systematic description in the spirit of
backpropagation. Let us therefore at first define

D(l,p)
nm = w(l+1)

nm

d
p
a(l,m)

dxp

(
z(l )

m

)
, (6)

which we refer to as the nmth matrix element of the lth-layer
propagator of order p. Since the last layer is usually activated
via the identity, a(L,n) = id, and has no bias, i.e., b(L)

n = 0, we
can write

Yn(x) =
HL−1∑
m=1

D(L−1,0)
nm . (7)

This redefinition entirely describes outputs in terms of
propagators and reduces the search for Taylor coefficients to
computing partial derivatives of propagator matrix elements,

∂NYn

∂xk1 · · · ∂xkN

=
HL−1∑
m=1

∂N D(L−1,0)
nm

∂xk1 · · · ∂xkN

, (8)

∂D(l,p)
nm

∂xk
= D(l,p+1)

nm �
(l,1)
mk ,

�
(l,1)
mk = ∂z(l )

m

∂xk
=

Hl∑
ql =1

· · ·
H1∑

q1=1

δmql w
(1)
q1k

l−1∏
i=1

D(i,1)
qi+1qi

. (9)

In Eq. (9) we make two observations: First, a derivation
increases the order of the propagator by 1. Second, an addi-
tional factor �

(l,1)
mk is introduced, which impacts higher-order

derivatives of propagators. We introduce the tensor elements

�
(l,p)
mk1···kp

= ∂z(l )
m

∂xk1 · · · ∂xkp

, (10)

which are obviously invariant under permutations of the in-
dices k1, . . . , kp. Now we can express the N th derivative of
the propagator as the following superposition by successively
applying the rule mentioned in Eq. (9) and by absorbing the
remaining derivatives by Eq. (10) (see Appendix A 2),

∂N D(l,p)
nm

∂xk1 · · · ∂xkN

=
N∑

c=1

D(l,p+c)
nm

∑
σ∈SN

∑
π∈	c

N

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

.

(11)

Each summand in Eq. (11) includes a higher-order propa-
gator. Here, the second sum runs over the set of all partitions
of the number N with length c,

	c
N =

{
π ∈ Nc

∣∣∣∣∣
c∑

i=1

πi = N ∧ (π1 � · · · � πc)

}
,

	N =
N⋃

c=1

	c
N . (12)

The set 	N of all partitions is, thereby, simply given by
the union of all 	c

N . Lastly, the third sum runs over the per-
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TABLE I. All partitions π ∈ 	N and corresponding factors επ for N = 1, 2, 3, 4 required for computing the propagator derivatives
∂N D(l,p)

nm /(∂xk1 · · · ∂xkN ) using Eq. (11). Note that the index permutation symmetry of the �
(l,p)
mk1···kp

has been used to combine επ summands.
Thus there are only N!/επ remaining summands for each partition π.

N π ∈ 	N επ
∂N D(l,p)

nm
∂xk1

··· ∂xkN

1 (1) 1 D(l,p+1)
nm �

(l,1)
mk1

2 (1,1) 2 D(l,p+2)
nm �

(l,1)
mk1

�
(l,1)
mk2

2 (2) 2 +D(l,p+1)
nm �

(l,2)
mk1k2

3 (1,1,1) 6 D(l,p+3)
nm �

(l,1)
mk1

�
(l,1)
mk2

�
(l,1)
mk3

3 (2,1) 2 +D(l,p+2)
nm

(
�

(l,2)
mk1k2

�
(l,1)
mk3

+ �
(l,2)
mk1k3

�
(l,1)
mk2

+ �
(l,2)
mk2k3

�
(l,1)
mk1

)
3 (3) 6 +D(l,p+1)

nm �
(l,3)
mk1k2k3

4 (1,1,1,1) 24 D(l,p+4)
nm �

(l,1)
mk1

�
(l,1)
mk2

�
(l,1)
mk3

�
(l,1)
mk4

4 (2,1,1) 4 +D(l,p+3)
nm

(
�

(l,2)
mk1k2

�
(l,1)
mk3

�
(l,1)
mk4

+ �
(l,2)
mk1k3

�
(l,1)
mk2

�
(l,1)
mk4

+ �
(l,2)
mk1k4

�
(l,1)
mk2

�
(l,1)
mk3

.

+�
(l,2)
mk2k3

�
(l,1)
mk1

�
(l,1)
mk4

+ �
(l,2)
mk2k4

�
(l,1)
mk1

�
(l,1)
mk3

+ �
(l,2)
mk3k4

�
(l,1)
mk1

�
(l,1)
mk2

)
4 (2,2) 8 +D(l,p+2)

nm

(
�

(l,2)
mk1k2

�
(l,2)
mk3k4

+ �
(l,2)
mk1k3

�
(l,2)
mk2k4

+ �
(l,2)
mk1k4

�
(l,2)
mk2k3

)
4 (3,1) 6 +D(l,p+2)

nm

(
�

(l,3)
mk1k2k3

�
(l,1)
mk4

+ �
(l,3)
mk1k2k4

�
(l,1)
mk3

+ �
(l,3)
mk1k3k4

�
(l,1)
mk2

+ �
(l,3)
mk2k3k4

�
(l,1)
mk1

)
4 (4) 24 +D(l,p+1)

nm �
(l,4)
mk1k2k3k4

mutation group SN . For a given partition π ∈ 	c
n, the factor

1/επ takes the symmetry of the tensor elements �
(l,p)
mkσ (1)···kσ (p)

=
�

(l,p)
mk1···kp

under index permutations σ ∈ SN into account and
can be derived via

επ =
c∏

i=1

(πi )!

[(
c∑

j=1

δπiπ j

)
!

]1/
c∑

j=1
δπiπ j

. (13)

Table I contains all partitions, respective επ, and result-
ing propagator derivatives for N = 1, 2, 3, 4. What remains
is to find an expression of the tensors �

(l,p)
mk1···kp

in terms of
propagators such that we can completely determine the partial
derivatives of the propagators in Eq. (11). We therefore intro-
duce the mkth matrix element of a vertex of order p in the
lth layer, acting as a weighted sum over elements of arbitrary
tensors f ,

(14)

If l − 1 � p, the vertex becomes saturated; that is, it becomes a constant and is equal to any higher-order vertex in the same
layer. Because of this and due to Eq. (9), vertices display the following behavior when exposed to a partial derivative:

(15)

Obviously, vertices of order p in the lth layer only commute with partial derivatives if they are saturated. This is embodied
by the proportionality of the commutator to the step function with �(0) = 0. Note that we have expressed �

(l,1)
mk as a vertex of

order zero in order to arrive at Eq. (15),

Δ(l,1)
mk1

= Ω
(qa)l

a=1

mk1

= Θ(l − 0)
(l,1)

mk1

,
(16)
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for which we choose the graphical representation of a single vertex. Applying Eq. (15) to Eq. (16) yields

Δ(l,2)
mk1k2

= Θ(l − 1) Ω
(qa)l

a=1(j1)

mk1

D(j1,2)
qj1+1qj1 Ω

(qa)
j1
a=1

qj1
k2

= Θ(l − 1)Θ(l − 0) Ω
(qa)l

a=1(j1)

mk1

D(j1,2)
qj1+1qj1

(j1,1)

qj1
k2

= Θ(l − 1)
(l,2)

mk1k2

.

(17)

This term depends on a first-order vertex that sums over a second-order propagator and a zeroth-order vertex, which suggests
the graphical representation of two vertices that are connected via a propagator with one arrowhead, directed from the first to the
second vertex. Note that the index permutation symmetry of the �

(l,p)
mk1···kp

is inherited by the right-hand side of Eq. (17). Applying
Eq. (15) once more to Eq. (17) yields

Δ(l,3)
mk1k2k3

= Θ(l − 2) Ω
(qa)l

a=1(j1,j2)

mk1

D(j1,2)
qj1+1qj1

D(j2,2)
qj2+1qj2 Ω

(q′a)
j1
a=1

qj1
k2 Ω

(q′′a )
j2
a=1

qj2
k3

+ Θ(l − 1) Ω
(qa)l

a=1(j1)

mk1

D(j1,3)
qj1+1qj1 Ω

(q′a)
j1
a=1

qj1
k2 Ω

(q′′a )
j1
a=1

qj1
k3

+ Θ(l − 1) Ω
(qa)l

a=1(j1)

mk1

D(j1,2)
qj1+1qj1 Ω

(q′a)
j1
a=1(j′1)

qj1
k2

D
(j′1,2)

q′
j′1+1

qj′1 Ω
(q′′a )

j1
a=1

q′
j′1

k3

,

which can be graphically represented as

Δ(l,3)
mk1k2k3

= Θ(l − 2)
(l,3)

mk1k2k3

+ Θ(l − 1)
(l,3)

mk1k2k3

+ Θ(l − 1)
(l,3)

mk1k2k3

. (18)

This is a superposition of three different terms, to each of which we can assign a different graph. Note that the second term
only contains one propagator of third order instead of two second-order propagators as in both other terms. Given a vertex,
we decide to enumerate outgoing propagators by the number of their arrowheads. If there are n outgoing edges with the same
number of arrowheads, as is the case in the second term with n = 2, they represent the same propagator of order n + 1.

It would not be of much use to continue with successively deriving higher-order tensors as above. The general idea of how
the �

(l,N )
mk1···kN

are structured and how the individual terms can be translated into graphs should be clear:

(i) �
(l,N )
mk1···kN

can be represented by a sum of directed and rooted trees, i.e., arborescences; see Ref. [23]. Each arborescence
consists of N vertices and up to N − 1 propagators.

(ii) At each vertex, outgoing propagators are counted by the number of arrowheads on the respective edges. Therefore an edge
with n arrowheads belongs to the nth propagator originating at that vertex.

(iii) If there are n edges with the same number of arrowheads originating in a given vertex, these represent a propagator of
order n + 1 originating in that vertex. Consequently, this propagator establishes connections to n other vertices.

(iv) A term of the structure

. . . Ω
(q

{1}
a )

j
{0}
1

a=1 (j
{1}
a )

p1
a=1

q
{0}
j
{0}
1

kx1

D
(j

{1}
b ,n)

q
{1}
j
{1}
b

+1
q
j
{1}
b

. . . Ω
(q

{2}
a )

j
{1}
a

a=1 (j
{2}
a )

p2
a=1

q
{1}
j
{b}
1

kx2

. . . Ω
(q

{n}
a )

j
{1}
a

a=1 (j
{n}
a )pn

a=1

q
{1}
j
{b}
1

kxn

. . .

indicates that it is the bth propagator originating in the kx1 th
vertex that establishes a connection to the kx2 th, . . . , kxn−1 th
and kxn th vertex. This implies that this propagator is of order
n. If no propagator is originating in a vertex, that vertex is
called a leaf of the given arborescence.

(v) Derivatives of saturated vertices vanish, as seen in
Eq. (15). Thus whether a certain arborescence contributes or
not depends on the layer l for which propagators and vertices
are considered. This is embodied by multiplying a factor
�(l − α) to each arborescence. The given arborescence only
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contributes if l overshoots its saturation threshold, which we
denote by α. The appearance of internal vertices and propaga-
tors of order 3 or higher decreases α.

In order to pursue a more systematical approach, we want
to understand an arborescence in terms of an adjacency ma-
trix A ∈ NN×N

0 containing information about which of the N
vertices are connected by which propagators. At this point, it
is useful to recall the propagator numbering based on arrow-
heads, which has been introduced above: If Ai j = 0, there is
no connection from the ith to the jth vertex. Otherwise, it is

the Ai j th propagator originating in the ith vertex that estab-
lishes this connection. Alternatively, Ai j can be understood as
the number of arrowheads on the edge directed from the ith
to the jth vertex. Due to orientation, each allowed adjacency
matrix is an upper triangular matrix with a vanishing main
diagonal. Since all vertices but the first one have exactly one
incoming propagator, there is exactly one nonzero entry in
each but the first column of A. The set of such triangular
matrices over K is given by

TN
K = {

M ∈ KN×N
∣∣∀i ∈ {1, . . . , N}∀ j ∈ {1, . . . , i} : Mi j = 0

× ∧(N > 1 ⇒ ∀ j ∈ {2, . . . , N}∃=1i ∈ {1, . . . , N − 1} : Mi j �= 0
)}

.

Then the set of all allowed adjacency matrices for N vertices is the following subset of TN
N0

:

AN ={A ∈ TN
N0

∣∣∀i ∈ {1, . . . , N − 1}∀ j ∈ {2, . . . , N} : (Ai j > 0 ⇒ ∃ j′ < j : Ai j′ = Ai j − 1)
}
. (19)

Counting the appearances of Ai j > 0 in the ith line of a
given adjacency matrix A ∈ AN determines the order of the
respective propagator: If Ai j appears n − 1 times in the ith
line, the corresponding propagator is of order n. Note that the
appearance of a propagator of order n decreases the saturation
threshold α(A) by n − 2. Another source that leads to smaller
α(A) is internal vertices: α(A) is decreased by 1 for each inter-
nal vertex, or, in terms of adjacency matrices, for each nonzero
line but the first one. This behavior is entirely described by the
simple expression

α(A) = max
i, j

Ai j . (20)

If l reaches or undershoots α(A), the corresponding arbores-
cence is saturated and does not contribute to �

(l,N )
mk1···kN

. Table II
lists example arborescences and corresponding adjacency ma-
trices A as well as saturation thresholds α(A). Note that there
may be several allowed adjacency matrices for one arbores-
cence due to index permutation symmetry. The only thing

left for expressing �
(l,N )
mk1···kN

solely in terms of propagators

and biases is an analytical representation δ
(l,N )
mk1···kN

(A) of an
individual arborescence with N vertices for a given adjacency
matrix A. For its formulation, we use the function

βc(A) =
N∑

i=1

i · �(Aic), (21)

which determines the line in which the entry in the jth column
is nonzero. That means it provides the unique vertex, from
which a propagator leads to the cth vertex. Since there is no
antecedent propagator to the root of an arborescence, Eq. (21)
vanishes for c = 1. Using Eq. (21), the abbreviations

jc(A) = j{βc (A)}
Aβc (A) c

, qc(A) = qβc (A)
jc (A) ,

nbc(A) =
N∑

j=1

δb Ac j , D(p)
bc (A) = D( j{c}b ,p)

q{c}
j{c}b +1

q{c}
j{c}b

,

and the previous observations, we write

δ
(l,N)
mk1...kN

(A) =
∑
q
{0}
l

δ
mq

{0}
l

∑
j
{0}
A01

δ
lj

{0}
A01

N∏
c=1

Ω
(q

{c}
a )

jc(A)
a=1 (j

{c}
b )

maxr(Acr)
b=1

qc(A) kc

maxr(Acr)∏
b=1

D
(1+nbc(A))
bc (A).

(22)

Equation (22) may appear very intimidating at first sight, but its individual terms are easy to interpret and to recognize in the
summands of Eqs. (16)–(18):

(i) The expression maxr (Acr ) corresponds to the number of all propagators originating in the cth vertex. Thus all these
propagators are collected by the product

maxr (Acr )∏
b=1

D(1+nbc (A))
bc (A).

The order of the bth propagator originating in the cth vertex
is equal to 1 plus the total number nbc(A) of appearances of
the entry b in the cth line of A. If the cth vertex is a leaf of

the arborescence, i.e., if it is external such that there are no
outgoing propagators and maxr (Acr ) = 0, the product can be
neglected.
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TABLE II. All arborescences and corresponding adjacency matrices A ∈ AN as well as saturation thresholds α(A) for N = 1, 2, 3, 4
vertices. In the way arborescences are represented here, it is always the vertex k1 that serves as the root. From here, we can deduce that
the maximum saturation threshold among all arborescences with N vertices is N − 1.

MLP arborescence α(A)A MLP arborescence α(A)A

(ii) The cth vertex of the arborescence is denoted by the
expression

For each of the maxr (Acr ) propagators that originate in the
cth vertex, there is a summation index j{c}b . It is the βc(A)th
vertex, whose Aβc (A)cth propagator leads to the cth vertex.
This is the reason why we sum over the (qc(A), kc)th matrix
element of the cth vertex in the jc(A)th layer.

(iii) All N vertices of the entire arborescence are
collected by

∑
q{0}

l

δmq{0}
l

∑
j{0}
A01

δl j{0}
A01

N∏
c=1

.

Using Eq. (22) and taking the corresponding saturation
thresholds given in Eq. (20) into account, we can represent
�

(l,N )
mk1···kN

as the following sum over all adjacency matrices A in
AN (see Appendix A 3):

�
(l,N )
mk1···kN

=
∑

A∈AN

�[l − α(A)] δ
(l,N )
mk1···kN

(A). (23)
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Finally, Eq. (23) can be inserted into Eq. (11), which is
required for computing the Taylor coefficients of Y as shown
in Eq. (8). Considering Eq. (11), it is important to note that
none of the indices k1, . . . , kN is shared among several factors
�(l,πi ). Therefore each summand of ∂N D(l,p)

nm /(∂xk1 · · · ∂xkN )

consists of arborescences that each contain different vertices.
The effective saturation threshold of a product of several
�(l,πi ) is, thereby, simply the maximal saturation threshold
among all given factors. The Taylor coefficients up to third
order then turn out as

∂Yn

∂xk1

=
HL−1

m=1

D(L−1,1)
nm Θ(L − 1)

(L−1,1)

mk1

(24)

∂2Yn

∂xk1 ∂xk2

=
HL−1

m=1

D(L−1,1)
nm Θ(L − 2)

(L−1,2)

mk1k2

+ D(L−1,2)
nm Θ(L − 1)

(L−1,1)

mk1

(L−1,1)

mk2

(25)

∂3Yn

∂xk1 ∂xk2 ∂xk3

=
HL−1

m=1

⎧⎨
⎩D

(L−1,1)
nm

⎡
⎣Θ(L − 3)

(L−1,3)

mk1k2k3

+ Θ(L − 2)
(L−1,3)

mk1k2k3

+ Θ(L − 2)
(L−1,3)

mk1k2k3

⎤
⎦ + D

(L−1,2)
nm

⎡
⎣Θ(L − 2) ( )(L−1,1)

mk1

(L−1,2)

mk2k3

+ Θ(L − 2) ( )(L−1,1)
mk2

(L−1,2)

mk1k3

+ Θ(L − 2) ( )(L−1,1)
mk3

(L−1,2)

mk1k2

⎤
⎦

+ D
(L−1,3)
nm Θ(L − 1) ( )(L−1,1)

mk1
( )(L−1,1)

mk2
( )(L−1,1)

mk3

⎫⎬
⎭

(26)

Let I j = {i j
1, . . . , i j

y j } ⊆ {1, . . . , N} with j ∈ {1, . . . , p} be pairwise disjoint index sets such that I1 ∪ · · · ∪ Ip = {1, . . . , N}
and I j1 ∩ I j2 = ∅ for j1 �= j2. This implies y1 + · · · + yp = N . Given these indices, the following short-hand notation proves
useful for the Taylor series, since it helps to combine p arborescences covering N vertices to one disconnected graph with p
connected components:

(27)

023223-9



BASTIAN KASPSCHAK AND ULF-G. MEIßNER PHYSICAL REVIEW RESEARCH 3, 023223 (2021)

The resulting graph is only connected for p = 1. Using the Taylor coefficients from Eqs. (24)–(26) and the short-hand notation
from Eq. (27) finally yields the interesting series representation, which is ordered by the number of connected components:

(28)

Graphs that contain up to N vertices contribute to the N th Taylor approximation of Y . The deeper Y , i.e., the larger L, the
more graphs contribute to a given order of the Taylor expansion due to overshooting the corresponding saturation threshold.

IV. NN PERTURBATION THEORY APPLIED TO
SCATTERING LENGTHS

Depending on the analytical structure of the target func-
tion, there may be a difference of several orders of magnitude
between the Taylor coefficients of different orders. For exam-
ple, if the first-order Taylor coefficients dominate and if all
training samples are closely distributed around the expansion
point, then a trained MLP basically applies a linear approxi-
mation to imitate the target function. As a supervisor one does
not gain any insights into higher-order terms in such cases,
since these presumably are not faithful to the derivatives of
the target function. As can be seen in Eq. (3), the first- and
second-order Taylor coefficients of the sampled Born series
vary by a factor 1/(H2

0 ) ≈ 10−3. The sampling rate H0 must
be sufficiently large such that the discretization error becomes
negligible, which we assume to be the case for H0 = 32, as
used in the following analysis. For the specific application,
this implies that we cannot expect to recover both the first-
and second-order Born terms from a naively trained MLP or
ensemble. Therefore we propose an iterative scheme to gain
information on Taylor coefficients of successively rising order.
Given a training set T (0)

1 and test set T (0)
2 and assuming we do

not train single MLPs, but ensembles of several MLPs, the ith
iteration contains the following steps:

(1) Initialize a new ensemble Y (i) = {Y (i)
n }Ni

n=1 of MLPs
Y (i)

n . The output of the ensemble is simply the mean of the
individual member outputs.

(2) Train the ensemble Y (i) on the training set T (i−1)
1 and

validate it later using the test set T (i−1)
2 .

(3) Compute the ith-order term 1/(Nii!)∑
n

∑
k1

· · ·∑ki
(∂ iY (i)

n )/(∂xk1 · · · ∂xki )|x=x0

∏
j (x − x0)k j

of the Taylor expansion of
∑

n Y (i)
n /Ni around the expansion

point x0. As this term is of leading order, the corresponding
ith-order derivatives and, therefore, Taylor coefficients can be
assumed to be faithful to the analytical structure of the target
function.

(4) Generate new training and test sets T (i)
1 and T (i)

2 by
subtracting the leading-order term of the previous step from
the targets of T (i−1)

1 and T (i−1)
2 , respectively. If necessary, the

targets must be normalized or standardized again.
At the cost of rerunning the training pipeline for each

iteration anew, we especially expect this procedure to yield
faithful first- and second-order Taylor coefficients in the case
of S-wave scattering lengths. Note that such an iterative ap-
proach is anything but unnatural and is really just the central
idea of perturbation theory.

At first we generate training and test sets of shallow
potentials without any bound states. The scattering lengths
for sampled potentials are derived using the transfer matrix
method (see Ref. [24]) and are uniformly distributed between
the boundaries a0 = −1 and a0 = 0. The training and test
sets contain |T (0)

1 | = 3 × 104 and |T (0)
2 | = 3 × 103 samples,

respectively.
Training and validation of the ensembles at each iteration

are performed in PYTORCH [25]. At first, we initialize an
ensemble Y (1) of N1 = 102 MLPs, in which each but the out-
put layer is activated via the GELU activation function [26].
GELU is smooth in the origin in contrast to other rectifiers
such as ReLU. Being a rectifier, it bypasses the vanishing-
gradients problem, which makes it particularly interesting for
deeper architectures; see Ref. [27]. The weights and biases of
the ensemble are initialized using He initialization [28]. Apart
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(i−1)
2
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• i = 2

FIG. 1. Histogram of individual MAPEs LY (1)
n ,T (0)

2
and LY (2)

n ,T (1)
2

among all members of the ensembles Y (1) and Y (2) with respect to
the corresponding test sets T (0)

2 and T (1)
2 . We see that members of

the first ensemble perform slightly better, which also leads to a better
MAPE LY (1),T (0)

2
for the entire ensemble Y (1). Since all hyperparam-

eters are drawn from the same distributions for both ensembles, it
appears that it is an easier task to learn a linear relation than to learn
a quadratic relation.

from the requirement of being a GELU-activated MLP, we al-
low various numbers of layers L(i)

n , numbers (Hl )(i)
n of units per

hidden layer, learning rates η(i)
n and weight decays λ(i)

n : The
former two are uniformly distributed random integers in the
intervals [3, 10] and [16, 256], respectively. For the random

floats η(1)
n and λ

(1)
n drawn from the uniform distributions over

the intervals [2, 3] and [3, 5], we work with an exponentially
decaying learning rate schedule

(η(i)
n )ε = exp

(
−ε − 1

η(i)
n

)
× 10−η(i)

n (29)

and with the weight decay

λ(i)
n = 10−λ

(i)
n . (30)

The index ε labels the current training epoch and ranges
from ε = 1 to ε = 20. We decide to use the mean average
percentage error (MAPE) as loss function,

LY (i)
n ,t = 1

|t |
∑

(U ,a0 ) ∈ t ⊆ T (i−1)
1/2

∣∣∣∣Y (i)
n (U ) − a0

a0

∣∣∣∣,

LY (i),t = 1

|t |
∑

(U ,a0 ) ∈ t ⊆ T (i−1)
1/2

∣∣ 1
Ni

∑Ni
i=1 Y (i)

n (U ) − a0

∣∣
|a0| .

The upper expression is used to evaluate the loss of a sin-
gle member Y (i)

n during training, while the lower expression
corresponds to the MAPE of the entire ensemble. Processing
these losses and computing corresponding weight updates by
the Adam optimizer (see Refs. [29] and [30]), we perform
minibatch learning with batch size B = 128.

0 8 16 24 32

0.00

0.01

0.02

0.03

k1

• 1
N1

N1∑
n=1

(Hn)Ln−1∑
m=1

D
(Ln−1,1)

[
Y (1)

n

]
nm Θ(Ln − 1) ( )(Ln−1,1)

[
Y (1)

n

]
mk1

∣∣∣∣∣
U =0• α k1

2

• k1
2/(H0)

3

FIG. 2. First-order Taylor coefficients of the ensemble Y (1), val-
ues of the model αk1

2 fitted over these coefficients, and first-order
Taylor coefficients k1

2/(H0)3 of the sampled Born series over the
index k1. As α deviates just slightly more than 1σ from 1/(H0 )3,
this ensemble, indeed, applies the first-order Born approximation to
shallow potentials in order to predict S-wave scattering lengths.

When it comes to the Taylor decomposition of the en-
sembles Y (i), it is convenient to choose the same expansion
point, i.e., U = 0, as we have already seen for a0 in Sec. II.
We note that the scattering length a0(U ) = 0 vanishes in the
case with no interaction. Therefore we expect the dominating
term of the Taylor series of Y (1) not to be the first, con-
stant term, but the second summand, containing the first-order
derivatives ∂Y (1)

n /∂Uk|U=0. With (U , a0(U )) ∈ T (0)
1/2 this mo-

tivates us to skip one iteration and to directly perform the
substraction

a′
0(U ) = a0(U ) − 1

N1

N1∑
n=1

Y (1)
n (0) − 1

N1

N1∑
n=1

H0∑
k=1

Y (1)
n

∂Uk

∣∣∣∣
U=0

Uk

(31)

in order to compute samples (U , a′
0(U )) ∈ T (1)

1/2 of the succes-
sive data sets. We expect these new targets to have a vanishing
constant and linear contribution and, therefore, to behave
mainly as 1/2 · U�KU with the Hessian K ∈ RH0×H0 . Since
we are already satisfied with these first two orders, we stop
after training the auxiliary ensemble Y (2) on T (1)

1 , using the
same training pipeline as before, and do not perform further
iterations beyond that.

Both ensembles perform sufficiently well on their re-
spective test sets, which follows from their low MAPEs of
LY (1),T (0)

2
= 0.152% and LY (2),T (1)

2
= 0.438%. Note that Y (2)

as well as its individual members exhibits a slightly worse
performance than the members of Y (1); cf. Fig. 1. Since
both ensembles draw their hyperparameters from the same
probability distributions, the task of adapting to a dominat-
ing, quadratic relation between inputs and targets appears
to be more challenging than learning a constant or linear
relation.
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V. FIRST-ORDER BORN TERM

Given the first ensemble Y (1), we first verify that its
members have, indeed, adapted to a vanishing axis intercept.
This is an important performance requirement, as the scat-
tering length vanishes in the force-free case U = 0, which
we choose as an expansion point for our proxy model. De-
riving errors of ensemble-related quantities by computing
the standard deviation of that quantity among all members,
we find

Y (1)(0) = 1

N1

N1∑
n=1

Y (1)
n (0) = −(1.51 ± 2.38) × 10−4. (32)

As Y (1)(0) takes a small value compared with the range of
all targets in T (0)

1/2 and since the corresponding error even has
a slightly larger magnitude, we can confirm a vanishing axis
intercept for the first ensemble.

The next step is crucial, not only to this iteration but also to
the success of the following one: We compute the first-order
Taylor coefficients of the ensemble Y (1) using Eq. (24) and the
formalism provided in Sec. III. This reveals its dominating,
linear contribution in the space of sampled potentials. Ide-
ally, the ensemble would reproduce the linear contribution in
Eq. (3) of the scattering length one to one, which then would
imply for the Taylor coefficients

(33)

The superscript [Y (1)
n ] points out that the respective quantity is computed for the weights and biases of the ensemble member

Y (1)
n . In order to evaluate how well the left-hand and right-hand sides actually match, we fit the model αk1

2 to the H0 = 32
ensemble Taylor coefficients on the left-hand side. Considering the mean and standard deviation of the distribution of all fitting
parameters among the members of Y (1) yields

α = (2.834 ± 0.169) × 10−5. (34)

The ensemble’s Taylor coefficients are displayed together with the fitted curve and the values k1
2/(H0)3 in Fig. 2. We note that

the deviation of the fitting parameter α from the value 1/(H0)3 = 3.052 × 10−5 is just slightly larger than 1σ . This shows that the
ensemble Y (1) reproduces the first-order Born approximation sufficiently well and, thereby, predicts S-wave scattering lengths
for shallow potentials.

VI. SECOND-ORDER BORN TERM

Having identified and analyzed the linear contribution of the first ensemble Y (1), it is time to move over to
the successive data sets T (1)

1/2 with their targets derived according to Eq. (31) and to train the auxiliary ensemble

Y (2). As argued in Sec. IV, it is the quadratic contribution, based on the Hessian, which dominates these new tar-
gets. Similar to the investigation of the first-order Taylor coefficients in Sec. V, we can specify an ideal case in
which Y (2) would reproduce the second-order Born term one to one, namely, if their second-order Taylor coefficients
satisfy

(35)

In order to investigate how closely the auxiliary ensem-
ble actually approximates this ideal case, we fit the model
βk1k2(k1 + k2 − |k1 − k2|). If we observe the fitting parame-
ter β to closely approach the value −1/(H0)5= − 2.98×10−8,
we can be certain that Y (2) applies the second-order Born term
to predict the dominating, quadratic contribution.

To justify our perturbative ansatz, we not only com-
pute the Hessian of the auxiliary ensemble Y (2) but also

consider the Hessian of the ensemble Y (1) from the previ-
ous iteration. The latter can be expected to be significantly
less faithful to the second-order Born term, since the
quadratic contribution to scattering lengths of shallow po-
tentials is lower than that of the linear term from Sec. V
and thus has not been prioritized during training. Both Hes-
sians and the Hessian of the Born series [cf. Eq. (3)] are
shown in Fig. 3. For Y (2) we find the fitting parameter
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FIG. 3. Second-order Taylor coefficients of the ensembles Y (1) (a) and Y (2) (b) and the Hessian of the Born series (c). Both ensembles
reproduce the basic behavior displayed by the Hessian in (c). Since adapting to the second-order Born term has not been prioritized during the
training of Y (1), the resulting elements in (a) are noisy, and very large values appear in the bottom right corner. In contrast to Y (1), the auxiliary
ensemble Y (2) has adapted to the second-order Born term much better. The diagonals appearing on both ensemble Hessians are presumably an
artifact that could be eliminated using other and more capable architectures than MLPs.

β = (−2.25 ± 1.63) × 10−8. Indeed, the deviation from
−1/(H0)5 is less than 1σ . However, at this point, we also
notice the unfortunately large error, which may be explained
by the slightly weaker performance of the auxiliary ensemble.
Moreover, interestingly, we can observe a very distinct diago-
nal in both ensemble Hessians, which does not appear in the
second-order Born term. Since weight decay and ensembling
have a regulatory influence on the resulting predictions, we
can exclude overfitting as cause. We therefore conjecture that
these diagonals are artifacts that might disappear when using
other, more capable architectures than MLPs. Apart from that,
Fig. 3(b) shows that the auxiliary ensemble Y (2) mostly re-
produces the desired behavior. A glimpse at Fig. 3(a) lets us
surmise that even the ensemble Y (1) very roughly behaves as
−1/(H0)5k1k2(k1 + k2 − |k1 − k2|). Nonetheless, by moving
to the auxiliary ensemble, much of the noise attached to the
coefficients in Fig. 3(a) is heavily reduced, and the desired
shape of the Hessian displayed in Fig. 3(c) is much better
approximated. In conclusion, we consider the Hessian of the
auxiliary ensemble to be suitable for constructing an S-wave
scattering length proxy.

In completing the second iteration, we can now use the
gradient and the vanishing axis intercept of the first ensem-
ble Y (1) and the Hessian of the auxiliary ensemble Y (2) to
construct a much simpler proxy

p0(U ) = Y (1)(0) +
H0∑

k1=1

∂Y (1)

∂Uk1

∣∣∣∣
U=0

Uk1

+ 1

2

H0∑
k1=1

H0∑
k2=1

∂2Y (2)

∂Uk1∂Uk2

∣∣∣∣
U=0

Uk1Uk2 . (36)

The proxy p0 can be understood as a machine-learned second-
order Born approximation. In order to examine its range of

validity, we proceed as follows: At first we randomly gen-
erate two different potential shapes ni ∈ RH0 . For both of
these shapes we generate a set of 100 equidistant potentials
U i = ‖U i‖ni with magnitudes ‖U i‖ ∈ [0, . . . , 5]. For each of
these potentials U the above, machine-learned Born approxi-
mation p0(U ) and true scattering lengths a0(U ) are evaluated
and plotted in Fig. 4. We observe that the relative error be-
tween p0(U ) and a0(U ) is less than 3% for shallow potentials
with ‖U‖ � 1. Beyond that regime, additional higher-order
terms must be introduced to the proxy to make better scatter-
ing length predictions.

VII. DISCUSSION AND OUTLOOK

In this paper we propose a neural network perturba-
tion theory for MLPs. This allows us to construct much
simpler proxies of the original target function. The key
idea of that perturbation theory is the successive identi-
fication and elimination of the leading-order contribution
to the ensemble’s Taylor decomposition. This establishes
a sequence of ensembles that each specialize in approxi-
mating consecutive orders of the target function’s Taylor
decomposition. Combining these accordingly can, thus,
be viewed as the first step of a proxy method; see
Ref. [20].

Especially when dealing with deep MLPs, the computation
of higher-order Taylor coefficients can be a challenging task.
Nonetheless, we manage to obtain an analytical expression
for partial derivatives of any order for arbitrarily deep, ana-
lytically activated MLPs in terms of propagators and vertices.
The underlying formalism is motivated by Feynman diagrams
in quantum field theories, and the entailed graph-theoretical
approach makes the underlying combinatorics significantly
more systematical and manageable. Note that the graph-
ical representation of its derivatives does not depend on
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FIG. 4. Scattering lengths a0(U ) and corresponding scattering
length predictions p0(U ) by the proxy from Eq. (36) for 200 dif-
ferent, sampled potentials that take one of two randomly generated
shapes. Solid (dashed) lines are related to potentials of the first (sec-
ond) randomly generated shape. The relative error between p0(U )
and a0(U ) is less than 3% for shallow potentials with ‖U‖ � 1. Intro-
ducing successively higher-order terms to the proxy would provide
better predictions and would, consequently, increase the range of
validity.

the particular choice of an MLP: Indeed, the calculation of
propagators, vertices, and saturation thresholds themselves
may be altered due to varying weights, biases, activation
functions, number of neurons, and hidden layers. However,
there is no way to uniquely infer more information about
its architecture from the mere structure of the contributing
arborescences.

We apply this graphical formalism and neural network
perturbation theory to S-wave scattering lengths of shallow
potentials. For this, we train two ensembles within the same
number of iterations. Using the axis intercept and gradient
of the first ensemble and the Hessian from the second, aux-
iliary ensemble yields a proxy of the Born series, which
reproduces the second-order Born approximation for shallow
potentials. At this point, one could, of course, argue that it
would have been much more convenient to simply train an
NN Y : R32 → R that is just the sum of one linear layer l and

one bilinear layer B, i.e.,

Y (U ) = l · U + 1
2U�BU .

Using this architecture instead of deep MLPs not only would
reduce the computational effort significantly but also would
have imposed some desired properties such as Y (0) = 0
and simultaneously learning the first- and second-order Born
terms. Note that Y in this case is a second-order Taylor ap-
proximation by itself, which allows one to directly read off
Taylor coefficients instead of deriving them first, as performed
in our analysis. However, such an NN is not a universal
approximator, as it violates the UAT, and therefore will fail
in reproducing scattering lengths for deeper potentials than
in this analysis. This is because models of this architecture
are unable to adapt to higher-order terms of the Born series.
Therefore using such an architecture may indeed simplify the
analysis but must be well justified for the particular case.

Note that the obvious next step of this analysis would be
the interpretation of the constructed proxy in the space of
all sampled potentials. In doing so, we would just gather a
post hoc interpretation, based on approximations and thus
deviations from actual scattering lengths. In this case, pre-
diction and interpretation therefore have to be understood as
two independent instances. In recent years there have been
many efforts to close the gap between prediction and interpre-
tation by ad hoc interpretation methods. These exemplarily
involve training NNs whose architectures either are intrin-
sically interpretable or can be brought into an interpretable
representation; see Ref. [20]. At the cost of a prediction-
interpretation trade-off, the advantage of ad hoc methods
is that resulting interpretations are completely faithful to
the NN’s prediction, in contrast to the mentioned post hoc
methods.
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APPENDIX: PROOFS

1. Proof of Equation (9)

Theorem 1. The first-order partial derivatives of the nmth matrix element of the lth layer propagator D(l,p)
nm of order p are

given by

∂D(l,p)
nm

∂xk
= D(l,p+1)

nm �
(l,1)
mk ,

023223-14



NEURAL NETWORK PERTURBATION THEORY AND ITS … PHYSICAL REVIEW RESEARCH 3, 023223 (2021)

where we have introduced the matrix elements

�
(l,1)
mk =

Hl∑
ql =1

· · ·
H1∑

q1=1

δmql w
(1)
q1k

l−1∏
i=1

D(i,1)
qi+1qi

.

Proof. First of all, it is easy to see that the derivative with respect to the kth component xk of the input is proportional to a
propagator of higher order p + 1. Due to the chain rule, the term ∂z(l )

m /∂xk appears,

∂D(l,p)
nm

∂xk
= w(l+1)

nm

d p+1a(l,m)

dxp+1

(
z(l )

m

)
︸ ︷︷ ︸

=D(l,p+1)
nm

Hl∑
ql =1

δmql

∂z(l )
ql

∂xk
.

By inserting the recursive step from Eq. (5), this dependency can be shifted to the previous layer,

∂D(l,p)
nm

∂xk
= D(l,p+1)

nm

Hl∑
ql =1

δmql

Hl−1∑
ql−1=1

w(l )
ql ql−1

∂y(l−1)
ql−1

∂xk
= D(l,p+1)

nm

Hl∑
ql =1

δmql

Hl−1∑
ql−1=1

w(l )
ql ql−1

da(l−1,ql−1 )

dx

(
z(l−1)

ql−1

)
︸ ︷︷ ︸

=D(l−1,1)
ql ql−1

∂z(l−1)
ql−1

∂xk
.

In the same manner, we can apply the chain rule successively to all antecedent layers until the base y(0)
q0

= xq0 is reached.
Thereby, each layer provides a matrix multiplication with a first-order propagator:

∂D(l,p)
nm

∂xk
= D(l,p+1)

nm

Hl∑
ql =1

δmql

Hl−1∑
ql−1=1

D(l−1,1)
ql ql−1

Hl−2∑
ql−2=1

D(l−2,1)
ql−1ql−2

· · ·
H1∑

q1=1
D(1,1)

q2q1

d∑
q0=1

w(1)
q1q0

∂xq0

∂xk︸︷︷︸
=δq0k

.

Rearranging those propagators and sums finally yields

∂D(l,p)
nm

∂xk
= D(l,p+1)

nm

Hl∑
ql =1

· · ·
H1∑

q1=1
δmql w

(1)
q1k

l−1∏
i=1

D(i,1)
qi+1qi

.

2. Proof of Equation (11)

Theorem 2 [Equation (11)]. The N th derivative of the propagator D(l,p)
nm is given by

∂N D(l,p)
nm

∂xk1 · · · ∂xkN

=
N∑

c=1

D(l,p+c)
nm

∑
σ∈SN

∑
π∈	c

N

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

.

Proof. We prove Eq. (11) by a complete induction. Therefore we quickly convince ourselves of its validity in the base case
N = 1 with ε(1) = 1,

∂D(l,p)
nm

∂xk1

= D(l,p+1)
nm

∑
(π1 ) ∈ {(1)}

1

ε(1)

∑
σ∈{id}

�
(l,π1 )
mkσ (π1 )

= D(l,p+1)
nm �

(l,1)
mk1

.

This, indeed, corresponds to Eq. (9), which is also the defining equation for �
(l,1)
mk1

. Subsequently, the inductive step involves
evaluating the derivative

∂N+1D(l,p)
nm

∂xk1 · · · ∂xkN+1

= ∂

∂xkN+1

N∑
c=1

D(l,p+c)
nm

∑
σ∈SN

∑
π∈	c

N

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

.

By applying the product rule, we either encounter propagator derivatives or derivatives of tensor elements, which we split
into two distinct sums,

∂N+1D(l,p)
nm

∂xk1 · · · ∂xkN+1

(9), (10)=
N∑

c=1

D(l,p+c+1)
nm �

(l,1)
mkN+1

∑
σ∈SN

∑
π∈	c

N

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

+
N∑

c=1

D(l,p+c)
nm

∑
σ∈SN

∑
π∈	c

N

1

επ

c∑
i=1

�
(l,πi+1)
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )kN+1

×
c∏

i′ = 1
i′ �= i

�
(l,πi′ )
mk

σ(1+∑i′−1
j=1 π j )··· k

σ(∑i′
j=1 π j )

.
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Up to the N th summand in the first sum and the first summand in the second sum, all other summands can be combined into
one sum from c = 2 to c = N ,

∂N+1D(l,p)
nm

∂xk1 · · · ∂xkN+1

= D(l,p+N+1)
nm �

(l,1)
mkN+1

∑
σ∈SN

∑
π∈	N

N

1

επ

N∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

+
N∑

c=2

D(l,p+c)
nm

∑
σ∈SN

⎡
⎣�

(l,1)
mkN+1

∑
α∈	c−1

N

1

εα

c−1∏
i=1

�
(l,αi )
mk

σ(1+∑i−1
j=1 α j )··· k

σ(∑i
j=1 α j )

+
∑
β∈	c

N

1

εβ

c∑
i=1

�
(l,βi+1)
mk

σ(1+∑i−1
j=1 β j )··· k

σ(∑i
j=1 β j )kN+1

×
c∏

i′ = 1
i′ �= i

�
(l,βi′ )
mk

σ(1+∑i′−1
j=1 β j )··· k

σ(∑i′
j=1 β j )

⎤
⎦

+ D(l,p+1)
nm

∑
σ∈SN

∑
(π1 )∈	1

N

1

ε(π1 )
�

(l,π1+1)
mkσ (1)··· kσ (π1 )kN+1

.

The two external summands can be explicitly derived using 	N
N = {(1)N

i=1} and 	1
N = {(N )}. In both cases, the symmetry

factor is given by

ε(1,...,1) = ε(N ) = N!

and

ε(1,...,1,1) = ε(N+1) = (N + 1)!,

respectively, such that each summand finally can be written as a sum over SN+1:

�
(l,1)
mk1

· · · �(l,1)
mkN+1

= �
(l,1)
mkN+1

∑
σ∈SN

∑
π∈	N

N

1

επ

N∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

=
∑

σ ∈ SN+1
σ (N + 1) = N + 1

∑
π∈	N+1

N+1

N + 1

επ

N∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

=
∑

σ∈SN+1

∑
π∈	N+1

N+1

1

επ

N∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

and

�
(l,N+1)
ml1···kN+1

=
∑
σ∈SN

∑
(π1 )∈ 	1

N

1

ε(π1 )
�

(l,π1+1)
mkσ (1)··· kσ (π1 )kN+1

=
∑

σ ∈ SN+1
σ (N + 1) = N + 1

∑
(π1 )∈ 	1

N+1

N + 1

ε(π1 )
�

(l,π1+1)
mkσ (1)··· kσ (π1 )

=
∑

σ∈SN+1

∑
(π1 )∈ 	1

N+1

1

ε(π1 )
�

(l,π1+1)
mkσ (1)··· kσ (π1 )

. (A1)

Finally, the remaining sum can be expressed as a sum over 	c
N+1. Then, combining all terms finally proves the inductive step,

∂N+1D(l,p)
nm

∂xk1 · · · ∂xkN+1

= D(l,p+(N+1))
nm

∑
σ∈SN+1

∑
π∈	N+1

N+1

1

επ

N∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

+
N∑

c=2

D(l,p+c)
nm

∑
σ∈SN+1

∑
π∈	c

N+1

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )
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+ D(l,p+1)
nm

∑
σ∈SN+1

∑
π∈	1

N+1

1

επ

�
(l,π1+1)
mkσ (1)··· kσ (π1 )

=
N+1∑
c=1

D(l,p+c)
nm

∑
σ∈SN+1

∑
π∈	c

N+1

1

επ

c∏
i=1

�
(l,πi )
mk

σ(1+∑i−1
j=1 π j )··· k

σ(∑i
j=1 π j )

.

3. Proof of Equation (23)

Theorem 3 [Equation (23)]. The tensor elements �
(l,p)
mk1···kN

can be expressed as the following weighted sum of all N-vertex
arborescences, as defined in Eq. (22), with adjacency matrices A ∈ AN ,

�
(l,N )
mk1···kN

=
∑

A∈AN

�[l − α(A)] δ
(l,N )
mk1···kN

(A).

Weighting with factors �[l − α(A)] causes an arborescence only to contribute as long as the layer l for which the tensor
element is considered overshoots the saturation threshold α(A), given in Eq. (20).

Proof. Since the base case (N = 1) has already been shown in Eq. (16), we directly start with the inductive step. The
commutator formula [

O,

N∏
c=1

Bc

]
=

N−1∑
i=0

(
i∏

j=1

Bj

)
[O, Bi+1]

(
N∏

j=i+2

Bj

)
(A2)

will later prove to be useful. For O = ∂/∂xkN+1 and for

Bc(A) = Ω
(q

{c}
a )

jc(A)
a=1 (j

{c}
b )

maxr(Acr)
b=1

qc(A) kc

maxr(Acr)∏
b=1

D
(1+nbc(A))
bc (A)

from the cth vertex of the arborescence δ
(l,N )
mk1···kN

(A), we derive the individual commutators

[
∂

∂xkN+1

, Bc(A)
]

(15)= Θ (l − maxr(Acr) − 1)

× Ω
(q

{c}
a )

jc(A)
a=1 (j

{c}
b )

maxr(Acr)
b=1

qc(A) kc

maxr(Acr)∏
b=1

D
(1+nbc(A))
bc (A)

× D
(maxr(Acr)+1,2)

q
{c}
j
{c}
maxr(Acr)+1

+1
q
{c}
j
{c}
maxr(Acr)+1

Ω
(q′a{c})

maxr(Acr)+1
a=1

q
{c}
j
{c}
maxr(Acr)+1

kN+1

+ Ω
(q

{c}
a )

jc(A)
a=1 (j

{c}
b )

maxr(Acr)
b=1

qc(A) kc

maxr(Acr)∑
b=1

D
(2+nbc(A))
bc (A)

×
maxr(Acr)∏

b′ = 1
b′ �= b

D
(1+nb′c(A))
b′c Ω

(q′′a{c})
j
{c}
b

a=1

q
{c}
j
{c}
b

kN+1

(A3)
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Due to the derivation, a new vertex is introduced to each summand. However, note that the way this new vertex is connected
to the given vertices differs in both terms: In the first summand there now appears to be an additional propagator of second order
establishing a connection to the (N + 1)th vertex, while in the remaining maxr (Acr ) summands, the order of the bth propagator
is raised by 1, which also allows an additional connection to the new vertex. Let us define the set

νc(A) =
maxr (Acr )+1⋃

b=1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN b
...

. . .
...

...

AN1 · · · ANN 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (A4)

which is a subset of AN+1. Its |νc(A)| = maxr (Acr ) + 1 elements correspond to adjacency matrices of N-vertex arborescences,
which have been extended by an (N + 1)th vertex, which is connected to the cth vertex. For the element with b = maxr (Acr ) + 1,
this corresponds to establishing a connection via an additional propagator, which is consequently of second order. Otherwise, we
have b ∈ {1, . . . , maxr (Acr )}, which corresponds to raising the order of the bth propagator in the cth vertex and thereby allows
being connected with the new vertex.

The observations made above can be formulated in the language of adjacency matrices: In terms of (N + 1) × (N + 1)
adjacency matrices of the set νc(A), the commutator in Eq. (A3) is given by

[
∂

∂xkN+1

, Bc(A)

]
= �[l − maxr (Acr ) − 1]Bc

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN maxr (Acr ) + 1
...

. . .
...

...

AN1 · · · ANN 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

× BN+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN maxr (Acr ) + 1
...

. . .
...

...

AN1 · · · ANN 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+
maxr (Acr )∑

b=1

Bc

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN b
...

. . .
...

...

AN1 · · · ANN 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

BN+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN b
...

. . .
...

...

AN1 · · · ANN 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)

Here, we could express the (N + 1)th vertex as a term BN+1(A′) with A′ ∈ νc(A), due to the (N + 1)th line containing only
zeros, thus maxr (A′

N+1,r ) = 0, and due to βN+1(A′) = c as well as A′
βN+1(A′ ),N+1 = b,

Each element of νc(A) is represented in this sum, which implies that each possible connection from the cth vertex to the
(N + 1)th vertex is established. Note that the first summand, which introduces a new propagator, is the only term that may alter
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the saturation threshold of the arborescence, namely, in the case that maxr (Acr ) � α(A). Therefore we write

�[l − maxr (Acr ) − 1]�[l − α(A)] = �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

l − α

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 · · · A1N 0
...

. . .
...

...

Ac1 · · · AcN maxr (Acr ) + 1
...

. . .
...

...

AN1 · · · ANN 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

The derivative of the arborescence δ
(l,N )
mk1···kN

(A) can be written as

∂

∂xkN+1

δ
(l,N )
mk1···kN

(A) =
[

∂

∂xkN+1

, δ
(l,N )
mk1···kN

(A)

]
=
∑
q{0}

l

δmq{0}
l

∑
j{0}
A01

δl j{0}
A01

[
∂

∂xkN+1

,

N∏
c=1

Bc(A)

]
.

Using the commutator relation in Eq. (A2), we can express δ
(l,N )
mk1···kN

(A) in terms of the individual commutators from Eq. (A5),

∂

∂xkN+1

δ
(l,N )
mk1···kN

(A) =
∑
q{0}

l

δmq{0}
l

∑
j{0}
A01

δl j{0}
A01

N−1∑
i=0

(
i∏

j=1

Bj

)[
∂

∂xkN+1

, Bi+1

]( N∏
j=i+2

Bj

)
. (A7)

It is very insightful to analyze Eq. (A7): We already know that the ith commutator [∂/∂xkN+1 , Bi(A)] is a sum of maxr (A) + 1
terms and corresponds to establishing a connection from the ith vertex to the (N + 1)th vertex, either by introducing a new
propagator or by raising the order of an already existing propagator by 1. However, Eq. (A7) is a sum of N terms with the
ith summand containing the ith commutator. This means that all allowed connections from all of the given N vertices to the
(N + 1)th vertex are covered here. As the ith commutator leaves other vertices unaltered,

i �= i′ ⇒ ∀A′ ∈ νi′ (A) : Bi(A
′) = Bi(A),

we can write for a single arborescence, using Eq. (A6),

�[l − α(A)]
∂

∂xkN+1

δ
(l,N )
mk1···kN

(A) =
∑

A′∈ν(A)

�[l − α(A′)]δ(l,N+1)
mk1···kN+1

(A′), (A8)

where we sum over the union

ν(A) =
N⋃

c=1

νc(A).

As the introduction of a new vertex to a given arborescence only influences the corresponding adjacency matrix by appending a
new line and column but leaves the original adjacency matrix unaltered, the disjuncture

A1 �= A2 ⇒ ν(A1) ∩ ν(A2) = ∅
is obvious. Nonetheless, it can be easily argued that AN+1 is the union of all ν(A) for A ∈ AN . Therefore it follows that both of
the following sums must be identical: ∑

A∈AN

∑
A′∈ν(A)

· · · =
∑

A∈AN+1

· · · .

Using Eq. (A8), we finally complete the inductive step,

�
(l,N+1)
mk1···kN+1

= ∂

∂xkN+1

�
(l,N )
mk1···kN

=
∑

A∈AN

�[l − α(A)]
∂

∂xkN+1

δ
(l,N )
mk1···kN

(A) =
∑

A∈AN+1

�[l − α(A)]δ(l,N+1)
mk1···kN+1

(A).

[1] P. Mehta and D. J. Schwab, An exact mapping between
the variational renormalization group and deep learning,
arXiv:1410.3831.

[2] P. Baldi, P. Sadowski, and D. Whiteson, Searching for ex-
otic particles in high-energy physics with deep learning, Nat.
Commun. 5, 4308 (2014).

[3] K. Mills, M. Spanner, and I. Tamblyn, Deep learning and the
Schrödinger equation, Phys. Rev. A 96, 042113 (2017).

[4] J. W. Richards, D. L. Starr, N. R. Butler, J. S. Bloom, J. M.
Brewer, A. Crellin-Quick, J. Higgins, R. Kennedy, and M.
Rischard, On machine-learned classification of variable stars
with sparse and noisy time-series data, Astrophys. J. 733, 10
(2011).

[5] A. Buckley, A. Shilton, and M. J. White, Fast supersymmetry
phenomenology at the Large Hadron Collider using machine
learning techniques, Comput. Phys. Commun. 183, 960 (2012).

023223-19

http://arxiv.org/abs/arXiv:1410.3831
https://doi.org/10.1038/ncomms5308
https://doi.org/10.1103/PhysRevA.96.042113
https://doi.org/10.1088/0004-637X/733/1/10
https://doi.org/10.1016/j.cpc.2011.12.026


BASTIAN KASPSCHAK AND ULF-G. MEIßNER PHYSICAL REVIEW RESEARCH 3, 023223 (2021)

[6] P. Graff, F. Feroz, M. P. Hobson, and A. N. Lasenby, SKYNET:
an efficient and robust neural network training tool for machine
learning in astronomy, Mon. Not. R. Astron. Soc. 441, 1741
(2014).

[7] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[8] S. J. Wetzel and M. Scherzer, Machine learning of explicit order
parameters: From the Ising model to SU(2) lattice gauge theory,
Phys. Rev. B 96, 184410 (2017).

[9] Y. H. He, Machine-learning the string landscape, Phys. Lett. B
774, 564 (2017).

[10] Y. Fujimoto, K. Fukushima, and K. Murase, Methodology study
of machine learning for the neutron star equation of state, Phys.
Rev. D 98, 023019 (2018).

[11] Y. Wu, P. Zhang, H. Shen, and H. Zhai, Visualizing neu-
ral network developing perturbation theory, Phys. Rev. A 98,
010701(R) (2018).

[12] Z. M. Niu, H. Z. Liang, B. H. Sun, W. H. Long, and Y. F. Niu,
Predictions of nuclear β-decay half-lives with machine learning
and their impact on r-process nucleosynthesis, Phys. Rev. C 99,
064307 (2019).

[13] J. Brehmer, K. Cranmer, G. Louppe, and J. Pavez, Constraining
Effective Field Theories with Machine Learning, Phys. Rev.
Lett. 121, 111801 (2018).

[14] J. Steinheimer, L. Pang, K. Zhou, V. Koch, J. Randrup, and H.
Stoecker, A machine learning study to identify spinodal clump-
ing in high energy nuclear collisions, J. High Energy Phys. 12
(2019) 122.

[15] A. J. Larkoski, I. Moult, and B. Nachman, Jet substructure at the
Large Hadron Collider: A review of recent advances in theory
and machine learning, Phys. Rep. 841, 1 (2020).

[16] G. Cybenko, Approximation by superpositions of a sigmoidal
function, Math. Control, Signals Systems 2, 303 (1989).

[17] K. Hornik, Approximation capabilities of multilayer feedfor-
ward networks, Neural Networks 4, 251 (1991).

[18] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and
K.-R. Müller, Explaining nonlinear classification decisions
with deep Taylor decomposition, Pattern Recognit. 65, 211
(2017).

[19] M. T. Ribeiro, S. Singh, and C. Guestrin, Why should I
trust you?: Explaining the predictions of any classifier, in
Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (Association
for Computing Machinery, New York, 2016), pp. 1135–1144.

[20] F. Fan, J. Xiong, and G. Wang, On interpretability of artificial
neural networks, arXiv:2001.02522.

[21] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations I. Nonstiff Problems (Springer, Berlin,
1993).

[22] M. Nielsen, Neural Networks and Deep Learning, 2015, http:
//neuralnetworksanddeeplearning.com/.

[23] N. Kamiyama, Arborescence problems in directed graphs: The-
orems and algorithms, Interdiscip. Inf. Sci. 20, 51 (2014).

[24] B. Jonsson, and S. T. Eng, Solving the Schrodinger equation
in arbitrary quantum-well potential profiles using the transfer
matrix method, IEEE J. Quantum Electron. 26, 2025 (1990).

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelstein, L. Antiga, A.
Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, T.
Alykhan, S. Chilamkurthy, B. Steiner, F. Lu, J. Bai et al.,
PyTorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Sys-
tems, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc.,
Vancouver, Canada, 2019), Vol. 32, pp. 8024–8035.

[26] D. Hendrycks and K. Gimpel, Gaussian error linear units
(GELUs), arXiv:1606.08415v4.

[27] Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji, Natural-logarithm-
rectified activation function in convolutional neural networks, in
5th International Conference on Computer and Communications
(ICCC) (IEEE Computer Society, Los Alamitos, CA, 2019),
pp. 2000–2008.

[28] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep
into rectifiers: Surpassing human-level performance on Ima-
geNet classification, in 2015 IEEE International Conference
on Computer Vision (ICCV) (IEEE, Piscataway, NJ, 2015),
pp. 1026–1034.

[29] D. P. Kingma and J. L. Ba, Adam: A method for stochastic opti-
mization, in Proceedings of the 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA (2015),
arXiv:1412.6980v9.

[30] I. Loshchilov and F. Hutter, Decoupled weight decay regu-
larization, in Proceedings of the 7th International Conference
on Learning Representations (ICLR), New Orleans, LA, USA
(2019), arXiv:1711.05101v3.

023223-20

https://doi.org/10.1093/mnras/stu642
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.96.184410
https://doi.org/10.1016/j.physletb.2017.10.024
https://doi.org/10.1103/PhysRevD.98.023019
https://doi.org/10.1103/PhysRevA.98.010701
https://doi.org/10.1103/PhysRevC.99.064307
https://doi.org/10.1103/PhysRevLett.121.111801
https://doi.org/10.1007/JHEP12(2019)122
https://doi.org/10.1016/j.physrep.2019.11.001
https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/j.patcog.2016.11.008
http://arxiv.org/abs/arXiv:2001.02522
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.4036/iis.2014.51
https://doi.org/10.1109/3.62122
http://arxiv.org/abs/arXiv:1606.08415v4
http://arxiv.org/abs/arXiv:1412.6980v9
http://arxiv.org/abs/arXiv:1711.05101v3

