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Transmission amplitude through a Coulomb blockaded Majorana wire
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We study coherent electronic transport through a Coulomb blockaded superconducting Rashba wire in the
cotunneling regime between conductance resonances. By varying an external Zeeman field the wire can be tuned
into a topological regime, where nonlocal transport through Majorana zero modes is the dominant mechanism.
We model coherent transport in the cotunneling regime by using a scattering matrix formalism, and find that
the transmission amplitude has a maximum as a function of Zeeman field, whose height is proportional to the
wire length. We relate the transmission amplitude to the Majorana correlation length, and argue that the Zeeman
field and length dependence of the transmission amplitude are unique signatures for the presence of Majorana
zero modes.
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I. INTRODUCTION

In recent years, Majorana zero modes (MZMs) have
attracted much attention as possible candidates for the real-
ization of topologically protected quantum bits [1–3]. MZMs
can arise as localized zero-energy excitations in topological
superconductors under suitable conditions [4–7], and many of
their predicted experimental signatures have been observed,
for instance a zero-bias conductance peak [8–12] and the
suppression of the even-odd splitting of Coulomb blockade
resonances in the topological phase [13].

The topological nature of MZMs manifests itself in their
nonlocal character [14,15]. We study how the nonlocality of
the electronic state encoded by MZMs can be probed by phase
coherent transport through a Coulomb blockaded wire with
MZMs at its ends [16–22]. By embedding the Majorana wire
into the arm of an electron interferometer, the amplitude of
coherent transmission through the MZMs can be studied [23].
In a conductance valley in between Coulomb blockade peaks,
the amplitude of the transmission through a Majorana wire
is determined by the magnitude of the wave functions at the
ends of the wire. For MZMs, the wave function has a large
magnitude ∝1/

√
ξ near the wire end, where ξ denotes the

Majorana correlation length. In contrast, if the transmission
is dominated by transport through extended states, the mag-
nitude of wave functions ∝1/

√
L depends on the wire length.

Taking into account the decrease of the charging energy with
wire length, in a conductance valley one expects an increase
of coherent transmission ∝L when entering the topological
regime, a robust signature of MZMs which also allows us
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to distinguish them from pseudo-MZMs [21,24–30], which
can arise in the presence of a soft confinement at the wire
ends. Details of the magnetic field dependence follow from the
relation 1/ξ = �p,ind/(h̄vF ), where �p,ind is the topological
p-wave superconducting gap, in agreement with results of a
recent experiment [23].

II. MODEL

A. Setup

In this article we consider a one-dimensional Rashba wire
in proximity to an s-wave superconductor and subject to a
perpendicular magnetic field. This system can be tuned into
a topological regime where it realizes MZMs at the ends of
the wire [1,32–36]. We consider a setup depicted in Fig. 1
where a wire in the Coulomb blockade regime is tunnel cou-
pled to leads at each end and embedded into one arm of
an Aharonov-Bohm interferometer. Thus, the combination of
wire and superconductor acts as a quantum dot. By adjusting

FIG. 1. Schematic sketch of the Majorana interferometer setup.
The lower arm contains the quantum dot consisting of a one-
dimensional Rashba wire (blue), superconductor (orange), and gate
(green). The upper arm of the interferometer is the reference arm
which only contains a wire. By varying a flux �, the transmission
amplitude of electrons tunneling through the dot as a function of
the gate voltage can be observed [22]. When the wire is tuned to
the topological regime by an external Zeeman field, Majorana zero
modes (red) are present at the ends. A reservoir is needed to avoid
the phase rigidity effect [31].
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the flux � through the Aharonov-Bohm ring and measur-
ing the conductance oscillations, it is possible to extract the
complex transmission amplitude. Here we focus on the mag-
nitude of the transmission amplitude, which includes phase
information in the thermal average over occupations of the
dot. For this reason, the transmission amplitude is able to
distinguish MZMs from pseudo-MZMs, which is not possible
when considering conductance measurements only.

B. Transmission amplitude

In lowest order interference, the current through the inter-
ferometer is given by

I (�) ∝ 2|Tref |2 +
∑
σσ ′

|Tσσ ′ |2 + 2
∑

σ

Re[ei�Tref T
∗
σσ ], (1)

where Tref is the transmission amplitude through the reference
arm (assumed to be diagonal in spin). Here Tσσ ′ is the trans-

mission amplitude of coherently tunneling electrons with spin
quantum number σ , σ ′, which is an entry of the scattering
matrix determined by the Mahaux-Weidenmüller formula [37]

S = 1 − 2π i

〈
W

1

ε − Heff + iπW †W
W †

〉
. (2)

The brackets denote the thermal average over occupa-
tions {ni} of BdG eigenstates in the dot, defined as
〈O〉 = 1/Z

∑
{ni} e−βE ({ni})O({ni}). The average is performed

for fixed total particle number N0, which determines the num-
ber parity of occupied BdG levels {ni}. Here ε is the energy
of incoming electrons, and the effective dot Hamiltonian Heff

and the matrix of dot-lead couplings W with lead index α and
spin σ are given by

Heff =
(

diag
[
εh

j (N0, {ni})
]

j=1,..., jmax
0

0 diag
[
εe

j (N0, {ni})
]

j=1,..., jmax

)
, (3)

(W )ασ = √

F

[
λh

α1σ (N0, {ni}), . . . , λh
α jmaxσ

(N0, {ni}), λe
α1σ (N0, {ni}), . . . , λe

α jmaxσ
(N0, {ni})

]
. (4)

The energies for electron(hole)-like tunneling processes
ε

e(h)
j (N0, {ni}) contain both charging energy and single particle

energy levels of the wire Hamiltonian. To describe cotunnel-
ing processes, we consider the dot in an initial state |N0, {ni}〉.
The transmission then occurs via an intermediate state |N0 ±
1, {n′

i}〉, where the allowed occupation numbers {n′
i} of the

intermediate state deviate from those of the initial state by
adding or removing a single Bogolubon, and by adding
(removing) one electron charge to the dot. The electron(hole)-
like couplings λ

e(h)
α jσ (N0, {ni}) of lead α to level j in the dot are

obtained from the overlap 〈N0, {ni}; {α, σ }|Htun|N0 ± 1, {n′
i}〉,

with Htun defined in Eq. (7).
In the topological regime, exponentially localized MZMs

occur for instance at the left end of the wire with the wave
function χσ,L(y) with envelop ξ−1/2e−y/ξ . In the presence of
a small overlap between the left and right MZM, the BdG
eigenfunctions are given by (χσ,L ± χσ,R)/

√
2. Evaluating

Eq. (2) to leading order in the dot-lead couplings, one finds
that the transmission amplitude through the MZMs is Tσσ ∼
χσ,L(yL )χ∗

σ,R(yR)/(Ec/2). Thus, the transmission amplitude
provides direct information about the Majorana localization
length ξ .

C. Hamiltonian

We describe the proximitized semiconductor wire by the
Hamiltonian

Hwire = τz ⊗
[
− h̄2∂2

y

2m∗ σ0 − μσ0 − ih̄αRσx∂y

]

− Ezτ0 ⊗ σz + �τx ⊗ σ0. (5)

Here τk and σk are Pauli matrices in particle-hole and spin
space, respectively, and the Nambu basis spinor is given by

[d†
↑(y), d†

↓(y), d↓(y), −d↑(y)]. The parameter m∗ is the ef-
fective mass of the electrons in the wire, αR is the Rashba
spin-orbit coupling strength, Ez is the Zeeman energy due to
the perpendicular magnetic field Bz, and � is the proximity
induced s-wave superconducting gap, which we choose to be
real. The operator d†

j creates an electron in the jth eigenstate
of Hwire in the absence of superconductivity. We treat the
charging term

Hch =
∑

j

[
−eVg + Ec

2

∑
i �= j

d†
i di

]
d†

j d j (6)

in the Hartree approximation, which yields Ec(N0 − 1) − eVg

for the expectation value of the expression in brackets in case
of a holelike cotunneling process, and EcN0 − eVg for an elec-
tronlike process. Here Ec is the charging energy needed to add
an electron to the dot, which is proportional to the inverse of
the wire length, and Vg is the gate voltage. Coupling between
dot and leads is described by the tunneling Hamiltonian

Htun =
∑
jσα

tα jσ c†
σ (yα )d j + H.c., (7)

where the couplings tα jσ = t0
∫

dy �α,σ (y) ϕ j (y) are approxi-
mated as the overlap integral between a decaying wave �α,σ

from lead α and the eigenfunction ϕ j of the Hamiltonian
Hwire for � = 0 (see Appendix A). This approximation is
relaxed later where we use a microscopic model to compute
the couplings. In the topological regime, the weight of wave
function �α↑ dominates over �α↓, such that the tunneling bar-
rier effectively filters one spin direction [30]. In the first part
we therefore focus on the transmission amplitude for spin-up
electrons |T↑↑|. From the Hamiltonians Eqs. (5)–(7) we deter-
mine the energies ε

e(h)
j (N0, {ni}) and couplings λ

e(h)
α jσ (N0, {ni})

of lead α by numerically solving the BdG equation, combined
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with analytical arguments for the spatial parity of wave func-
tions (see Appendix A). We take into account the particle-hole
redundancy in the solutions of the BdG equation by including
only the eigenstates with positive energy [38]. The quantum
dot contains an integer number N0 of electrons. On the other
hand, the particle number in the wire Nw is fractional in
general. We therefore describe the proximity effect using a
mean-field superconductivity term in the wire Hamiltonian,
but distinguish N0 from Nw [22].

The chemical potential μ is self-consistently determined
such that the expectation value of the number of particles in
the wire is given by Nw, but we take into account the total
number of particles in the dot N0 when we determine the
charging contribution to the effective single particle energies.
When varying the gate voltage one observes a conductance
resonance whenever a level crosses the Fermi level. We in-
crease N0 by one after each such resonance. However, it is
assumed that only a charge �Nw 
 1 is added to the wire.

D. Parameters

For the numerical calculations we use a spin orbit cou-
pling strength of h̄αR = 0.2 eV Å and an effective mass m∗ =
0.02 me, which are typical for semiconductor structures such
as InAs [8,39]. From these parameters we obtain the charac-
teristic energy and length scales Eso = α2

Rm∗/2 = 0.05 meV
and lso = h̄/(αRm∗) = 0.19 μm, respectively. We discretize
the wire Hamiltonian Eq. (5) to N lattice sites with lattice con-
stant a = L/N = 0.026 lso, where L denotes the wire length.
We assume that each electron that is added to the dot con-
tributes a charge �Nw = 1/20 to the wire. We use a charging
energy Ec = 8 Eso (32.5 lso)/L. For computing the average of
the scattering matrix Eq. (2) we use finite temperature T =
34 mK [23] corresponding to β = 18 Eso.

III. MAGNETIC FIELD DEPENDENCE
OF THE TRANSMISSION AMPLITUDE

A. Magnetic field independent induced gap

We consider the transmission amplitude |T↑↑(Vg,mid )| as a
function of Zeeman energy Ez, computed at a gate voltage
Vg,mid in the middle between the two conductance resonances
for a fixed particle number Nw = (L/lso)(14/13), such that the
particle density is the same for all wire lengths.

We first consider a magnetic field independent proximity
gap � = 2 Eso. By increasing Ez, the transition to the topo-
logical phase takes place, in which an eigenstate close to
zero energy is formed, separated from the second level by
the topological gap (see Fig. 2). The transmission amplitude
strongly increases when entering the topological phase at
Ez,top, reaches a peak value, and then decreases. In the topo-
logical regime the tunneling matrix element for a Majorana
wave function is ∝1/

√
ξ , where the correlation length

ξ = h̄vF

�p,ind
, (8)

with vF = h̄kF [1/m∗ − α2
R(E2

z + h̄2α2
Rk2

F )−1/2], is determined
by the induced effective p-wave gap at the Fermi points in the

FIG. 2. Transmission amplitude |T↑↑(Vg,mid )| (blue y axis) for
transmission through the lowest effective level only (dotted, red),
and jmax = 200 effective levels (solid, blue), together with the lowest
BdG energy (black y axis, solid black line) of the wire Hamiltonian
as a function of the magnetic field. Here Vg,mid is the center between
amplitude resonances corresponding to a particle number Nw = 35.
The dashed gray line shows the decay of the amplitude according
to Eq. (10), where the constant factor is obtained from a fit. We use
� = 2 Eso and L = 32.5 lso.

hybrid wire [35,40,41]

�p,ind = h̄kF αR�√
E2

z + α2
Rh̄2k2

F

. (9)

With this, we obtain the Zeeman field dependence of the
transmission amplitude as

|T↑↑| ∼ m∗αR�

h̄

1√
E2

z + α2
R h̄2k2

F − α2
Rm∗

, (10)

proportional to the inverse field strength for large Ez (dashed
gray line in Fig. 2, in very good agreement with the numerical
result taking a single level into account). When comparing the
result for transmission through jmax = 200 levels (solid blue
line) with that for a single level (Fig. 2, dotted red line) it
becomes apparent that the amplitude at the beginning of the
topological range is mostly determined by the lowest level,
i.e., the MZMs. For very large Zeeman energy, the Majorana
modes are split more strongly, and there is a small correction
due to taking into account many higher levels. In the trivial
regime for Ez < Ez,top however, where the spacing between
the lowest energy Bogolubons is small, many levels contribute
to the transmission amplitude, and interfere destructively.

B. Magnetic field dependent induced gap

For a thin superconductor subject to a parallel field, we de-
scribe the suppression of the induced s-wave superconducting
gap by the magnetic field via [42]

�(Ez ) = �(0)

[
1 −

(
Ez

Ez,c

)2]1/2

, (11)

where Ez,c is the critical Zeeman energy at which supercon-
ductivity is destroyed. Entering the topological region at Ez,top
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FIG. 3. Transmission amplitude |T↑↑(Vg,mid )| for jmax = 200 ef-
fective levels as a function of the magnetic field. Here Vg,mid is the
center between amplitude resonances corresponding to a particle
number Nw = 35. We use a wire length of L = 32.5 lso and a field
dependent induced gap Eq. (11) where �(4.5 Eso ) = 2 Eso and Ez,c =
10 Eso (solid, blue). The dashed gray line shows the decay of the
amplitude according to Eq. (12), where the constant factor is obtained
from a fit.

is again accompanied by an increase in transmission ampli-
tude (see Fig. 3). Further within the topological regime, the
proximity gap � is reduced, and the correlation length ξ ∝
1/|�p,ind| increases, i.e., the Majorana wave function delocal-
izes. Therefore, the amplitude drops to the normal-conducting
value over a relatively narrow range of magnetic field values.
Using Eq. (11) in Eq. (9), we find an amplitude dependence

|T↑↑| ∼ m∗αR�(0)

h̄

√
1 − (Ez/Ez,c)2√

E2
z + α2

Rh̄2k2
F − α2

Rm∗
. (12)

This dependence is depicted by the dashed gray line and
fits well in the region where the amplitude decays to the
normal-conducting value (see Fig. 3). For Ez > Ez,c, the wire
is normal conducting, and the amplitude is approximately
constant. These results for the amplitude are in agreement
with the recent experiment [23].

C. Wire length dependence

The nonlocality of MZMs is expected to have a profound
consequence when considering wires of varying lengths. In
the inset of Fig. 4, the value of the amplitudes at the maximum
and in the normal-conducting region are depicted as a function
of the wire length L. From our scattering matrix analysis using
a charging energy that is proportional to the inverse of the
wire length, we find that the transmission amplitude is indeed
proportional to the wire length in the topological region, while
it is independent of the wire length in the normal-conducting
range (see Fig. 4).

FIG. 4. Transmission amplitude |T↑↑(Vg,mid )| as a function of
the magnetic field for different wire lengths L = 13 lso, 19.5 lso,

26 lso, 32.5 lso, 39 lso, 45.5 lso, 52 lso, 58.5 lso, and 65 lso. Here Vg,mid is
the center between amplitude resonances for a particle number Nw =
35L/(32.5 lso ). We assume a Zeeman field dependent gap parameter
Eq. (11) with �(4.5 Eso ) = 2 Eso and a critical field Ez,c = 10Eso.
The inset shows the value at the maximum of the amplitude in the
topological region (black circles) and the value of the amplitude in
the normal-conducting region (blue circles) as a function of the wire
length L.

IV. DISORDER IN THE WIRE

The proposed experiment for establishing the wire length
dependence of the transmission amplitude in the presence or
absence of MZMs requires the comparison of different wires.
Since these wires may differ from each other in terms of
their detailed composition, we study how robust our results
for the transmission amplitude are in the presence of on-site
disorder. We use a Gaussian disorder distribution with zero
mean and standard deviation W . Disorder is strong when the
elastic scattering rate h̄/τ from the impurities is on the order
of the induced effective gap �p,ind in the wire [43–50]. We
define a critical disorder strength Wm such that the effect
of disorder on the amplitude is negligible for W 
 Wm. For
W ≈ Wm disorder has noticeable effects on the amplitude and
for W � Wm pair breaking sets in and destroys the supercon-
ducting properties and the amplitude vanishes. Using Fermi’s
golden rule, we estimate the elastic scattering rate for the case
of a scatterer at each lattice site as

h̄/τ

Eso
=

(
W

Eso

)2 a

lso

1

kF lso
. (13)

The induced gap at the Fermi momentum kF lso={2+μ/Eso +
[(Ez/Eso)2 + 4 + 4μ/Eso]1/2}1/2 is given by

�p,ind

Eso
= 2

�

Eso

kF lso√
(Ez/Eso)2 + 4(kF lso)2

. (14)

We define Wm such that h̄/τ = �p,ind for W = Wm, i.e.,

Wm

Eso
=

√
2

lso

a

�

Eso

kF lso

[(Ez/Eso)2 + 4(kF lso)2]1/4 . (15)

Numerical results of the amplitude for various disorder
strengths are depicted in Fig. 5. When the disorder strength
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FIG. 5. Transmission amplitude |T↑↑(Vg,mid )| as a function of
the magnetic field for various strength of on-site disorder. We use
a wire length of L = 32.5 lso and compute the amplitude between
resonances corresponding to particle number Nw = 35. The gray
dashed line is for reference without disorder. The colored lines
(from top to bottom) are numerically computed for Gaussian disorder
with standard deviation W = 0.1 Eso 
 Wm, W = 1 Eso, W = 5 Eso,
W = 10 Eso ∼ Wm, and W = 20 Eso.

is smaller but of the order of Wm, the transmission amplitude
is reduced at its maximum. This reduction is however much
smaller that the peak height such that the proposed experiment
is robust against disorder W < Wm. When using a disorder
strength close to or larger than Wm, the amplitude is signifi-
cantly reduced.

V. MICROSCOPIC MODEL FOR COUPLINGS

In the first part we assumed that the couplings between lead
and dot are determined by the dot wave functions at the ends
of the wire. To validate this assumption we consider a tight-
binding model of leads and wire which are separated by tunnel
barriers of shape Vσi,V0 (y) = V0 exp[−y2/(2σ 2

i )]. The potential
at the left lead is given by

V (y) =
⎧⎨
⎩

Vσ1,V0+Vlead (y − Llead ) − Vlead, y � Llead,

Vσ1,V0 (y − Llead ), Llead < y < y1,

Vσ2,V0 (y − y1 + y2 − Llead ), y � y1,

y j =
√

2σ 2
j ln(V0/Es), (16)

where L and Llead are the length of wire and leads, respec-
tively. The potential in the leads is lowered by an offset Vlead =
100 Eso, such that both spin directions are present at the Fermi
level. The leads are normal conducting and without spin-orbit
coupling. In the wire the potential consists of two parts with
standard deviations σ1 and σ2 which are matched continuously
at (y1, Es) by shifting the second peak by y1 − y2.

We define microscopic couplings as matrix elements
λu

αiσ = 〈�u
ασ |H |�i〉 and λv

αiσ = 〈�v
ασ |H |�i〉 of the com-

bined Hamiltonian of wire and leads. Here �i is the
ith BdG level in the wire, and due to the particle-hole
symmetry and the absence of superconductivity in the

leads we can write �u
ασ = (ϕ(εF ,σ )

α↑ , ϕ
(εF ,σ )
α↓ , 0, 0) and �v

ασ =
(0, 0, ϕ

(εF ,σ )∗
α↓ ,−ϕ

(εF ,σ )∗
α↑ ) where (ϕ(εF ,σ )

α↑ , ϕ
(εF ,σ )
α↓ ) is the wave

function localized in lead α with spin σ that is closest to
the Fermi level. To numerically obtain the wave function
localized in one region, we fix the potential at height V0 in all
the other regions. Figure 6 depicts the couplings between lead
and first dot level for spin-↑ and spin-↓ electrons. For both
types of confinement, the couplings of spin-↑ electrons are
dominant. It is therefore justified to only consider |T↑↑| in the
more paradigmatic model in the first part. Due to the effective
time-reversal symmetry T = σzK with K denoting complex
conjugation T 2 = +1 and [H, T ] = 0, the transmission am-
plitudes T↑↑ and T↓↓ both have the same phase (modulo π ),
such that the magnitude of the interference term in Eq. (1) is
given by |T↑↑ + T↓↓|. We compute this magnitude for various
wire lengths.

We distinguish two types of barrier potentials (i) only a
narrow Gaussian peak and (ii) a narrow Gaussian peak to-
gether with a potential decaying smoothly into the wire [see
Fig. 7(a)]. Parameters for (i) the steep potential are given
by σ1 = σ2 = 0.1 lso, Es = V0, and V0 = 65 Eso, and for (ii)
the smooth confinement σ1 = 0.1 lso, σ2 = 6 lso, Es = 10 Eso,
and V0 = 65 Eso. In case (i) there are zero-energy states only
in the topological region, which are the MZMs [see inset
of Fig. 7(b)]. In case (ii), the Fourier decomposition of the
smooth potential does not contain large momenta, so that
in the trivial region each of the two bands contributes a
pair of MZMs, which however are not coupled among each
other by the potential [24,25,30]. Therefore, in addition to
the MZMs in the topological region, two quasidegenerate,
quasizero-energy Andreev bound states (also called pseudo-
MZMs) occur in the trivial region for 5 Eso < Ez < 7.6 Eso

[see inset of Fig. 7(b)]. Since they are nearly degenerate,
there are two ground states with equal Boltzmann weight
in the thermal average. For even N0 the degenerate ground
states for E1 = E2 = 0 are states where either all N0 elec-
trons are in the condensate or N0 − 2 electrons form the
condensate and both pseudo-MZMs are occupied. In the case
of odd N0 there are N0 − 1 electrons in the condensate and
either the first or the second pseudo-Majorana level is oc-
cupied. In both cases the thermally averaged amplitude is
proportional to

∑2
j=1(λu

L, j,↑λu∗
R, j,↑ + λv

L, j,↑λv∗
R, j,↑) ≈ 0. The an-

tiunitary reflection symmetry �̃ϕ j (y) = Kϕ j (L − y) (where
ϕ j are eigenfunctions of Hwire) ensures that both terms are real
and sgn(λu

L, j,↑λu∗
R, j,↑) = −sgn(λv

L, j,↑λv∗
R, j,↑) [22]. Due to the

Majorana condition for zero-energy states |ujσ | = |v jσ | the
terms cancel each other. Hence, the ground state degeneracy
gives rise to a vanishing amplitude upon thermal averaging
[21]: Forming a Cooper pair or occupying the two zero-
energy pseudo-MZMs requires the same energy, but yields
contributions with opposite signs and equal magnitude to
the transmission amplitude. For a wire of finite length, the
pseudo-Majorana modes do not lie exactly at zero energy
and a finite amplitude is observed. This is the case for the
smallest wire length in Fig. 8(a). As long as the two levels are
nearly degenerate and nearly at zero energy, the amplitude is
well below the � = 0 value and no pronounced maximum is
formed. In addition, the amplitude is not proportional to L in
the pseudo-MZM regime.
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FIG. 6. Dot-lead couplings for both spin directions using a wire of length L = 45.5 lso. We use the Zeeman field dependent induced
gap �(Ez ) Eq. (11) with a critical field Ez,c = 10 Eso. (a) Couplings to the lowest dot level using the steep potential and particle number
Nw = 47L/(39 lso ) in the wire. (b) Couplings to the lowest dot level using the smooth potential for Nw = 53L/(39 lso ).

In comparison with the more paradigmatic model consid-
ered before, we find that for a steep potential (i) all qualitative
features of the amplitude remain unchanged [Fig. 7(b)]. Im-
portantly, the suppression of the transmission amplitude in the
trivial regime occurs even when pseudo-MZMs are present
[see Fig. 8(b)].

VI. COMPARISON BETWEEN INTERFEROMETER SETUP
AND DIRECT CONDUCTANCE MEASUREMENT

In this section we compare signatures from the interfer-
ometer setup (Fig. 1), with an easier to implement direct
conductance measurement through the dot, without inter-
ferometer. In the calculation of the transmission amplitude
through the dot (interferometer case) or the transmission
probability (direct conductance), the main difference is how
the thermal average is performed. For the calculation of the
amplitude of conductance oscillations through the interfer-
ometer, the thermal average is performed over the complex
transmission amplitude [see Eq. (2)], so that the transmission
phase contributes to such an average. In the case of a direct
conductance measurement, the squared absolute value of the

transmission amplitude is averaged, and the phase information
does not contribute. Figure 8(b) depicts the direct conductance
through the dot for a smooth confinement potential, analogous
to Fig. 8(a). For MZMs we also find a maximum at the begin-
ning of the topological region, whose height scales with the
wire length. The crucial difference is that the conductance is
not suppressed for pseudo-MZMs and thus this maximum is
not a unique signature for the presence of MZMs.

VII. CONNECTION TO EXPERIMENT

In a recent experiment by Whiticar et al. [23], the transmis-
sion amplitude through a Coulomb blockaded Majorana wire
was measured as a function of the Zeeman field. The exper-
imental transmission amplitude shows a rapid growth upon
entering the topological regime, followed by a pronounced
maximum. Here we discuss in detail how these features are
explained by the localization properties of MZMs, which de-
termine the transmission amplitude in the topological regime.

In the case of sufficiently long wires, in which the Ma-
jorana wave functions of opposite wire ends have negligible
overlap, an analytical solution for the MZM wave functions

FIG. 7. (a) Barrier potential used to compute the lead-wire couplings in the microscopic model. The leads of length Llead are normal
conducting and without spin-orbit coupling. At position y1 and energy Es the narrow Gaussian peak transitions continuously into the wide
peak in the case of the smooth potential. The height of the peak is given by V0 = 65 Eso. (b) Numerical results for the amplitude |T↑↑(Vg,mid ) +
T↓↓(Vg,mid )| with microscopic couplings as a function of the Zeeman field using a steep confinement potential and ground state particle number
Nw = 47L/(39 lso ). We consider wires of length L = 32.5 lso, 39 lso, 45.5 lso, 52 lso, and 58.5 lso. The results are in good agreement with Fig. 4
where we used the more paradigmatic model for the couplings.
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FIG. 8. (a) Numerical results for the transmission amplitude |T↑↑(Vg,mid ) + T↓↓(Vg,mid )| using tunnel couplings obtained for the smooth
barrier potential as a function of the Zeeman energy. (b) Conductance through the wire without an interferometer in the case of a smooth
potential for Nw = 53L/(39 lso ). A comparison with (a) shows that the interferometer is crucial to distinguish MZMs from pseudo-MZMs. We
consider wires of length L = 32.5 lso, 39 lso, 45.5 lso, 52 lso, and 58.5 lso. We use a Zeeman field dependent induced gap Eq. (11) with a critical
field Ez,c = 10 Eso and a particle number Nw = 53L/(39 lso ). The insets depicts the lowest two energy eigenvalues of the wire Hamiltonian for
L = 45.5 lso.

can be found (see Appendix B). Moreover, since the trans-
mission amplitude in the topological region is determined
almost exclusively by transport through MZMs, the transmis-
sion amplitude can directly be obtained from the Majorana
wave functions. In Sec. III we discussed that for large Zeeman
fields, deep in the topological regime, the spatial decay of
MZMs is characterized by the p-wave localization length ξ =
h̄vF /�p,ind [Eq. (8)]. However, from the full analytic solution
is is apparent that there is a second localization length

ξs =
(

−ξ−1 +
√

ξ−2 − μ2 + �2 − E2
z

(ξ−2 + k2
F )E2

so

)−1

∝ 1

Ez −
√

�2 + μ2
, (17)

which describes the localization properties of MZMs for
Zeeman fields Ez � Ez,top close to the topological phase tran-
sition. We can approximate the envelope of the Majorana
wave function by a sum of two exponentially decaying terms
(for details see Appendix B)

χL,↑ ≈ 1√
ξ + ξs

(e−y/ξ + e−y/ξs ). (18)

The corresponding Majorana wave function at the right end
is then given by χR,↑(y) ∝ χL,↑(L − y). This yields for the
transmission amplitude

|T↑↑(Vg,mid )| ∝ 1

ξ + ξs
. (19)

A comparison shows that the approximated transmission
amplitude (dotted, red line in Fig. 9) is in very good agreement
with the numerical results for transmission through 200 levels
(solid, blue line in Fig. 9). Thus, the competition of the two
correlation lengths ξ and ξs explains the occurrence of the
maximum in the transmission amplitude.

In addition, in Fig. 9 we compare the numerically obtained
transmission amplitude to approximations taking into account
the larger of the two localization lengths: The behavior of
the transmission amplitude at the beginning of the topological

region can be understood by the localization length ξs alone,
i.e., |T↑↑| ∝ 1/ξs (dashed gray line in the beginning of the
topological regime). On the other hand, the behavior near the
transition into the normal-conducting region is due to the p-
wave localization length ξ , i.e., |T↑↑| ∝ 1/ξ (dashed gray line
at the end of the topological regime). The maximum occurs
where the magnitude of the localization lengths is roughly
comparable.

The picture described above allows us to explain the mag-
netic field dependence of transmission amplitude found by

FIG. 9. Transmission amplitude |T↑↑(Vg,mid )| for jmax = 200 ef-
fective levels (solid, blue) as a function of the magnetic field with
parameters as in Fig. 3. The dashed gray lines depict the ξs ap-
proximation at the beginning of the topological regime and the ξ

approximation in the region where superconductivity is destroyed
by the magnetic field. The dotted red line depicts the approximation
Eq. (19), where both correlation lengths are taken into account. The
maximum of the transmission amplitude arises due to the interplay
of both terms. We use the same proportionality constant for all three
approximations obtained by a fit.
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Whiticar et al. [23]. In the experiment, the transmission am-
plitude depends only weakly on the magnetic field in the
region of small Zeeman fields, as predicted for the trivial
phase. Above a device-specific value of the magnetic field,
a rapid increase of the transmission amplitude is observed,
which can be explained by the magnetic field dependence of
1/ξs at the beginning of the topological phase. Due to the
divergence of ξs at the phase transition Ez = Ez,top, the trans-
mission amplitude increases linearly |T↑↑| ∝ Ez − Ez,top in the
topological regime. For larger Zeeman fields, a well-defined
maximum of the amplitude arises in the experiment, which
can be understood in terms of the concurrence of both corre-
lation lengths ξ and ξs. When superconductivity is destroyed
by the magnetic field, Whiticar et al. observe a rapid decline
of the transmission amplitude. This decrease can be explained
in our model by the divergence of the coherence length ξ due
to the vanishing of the induced p-wave gap when approaching
the critical magnetic field.

Since the amplitude of coherent transmission does not ex-
hibit a maximum in the case of pseudo-MZMs, we believe
that it is very likely that genuine topological MZMs were
observed in the experiment. This is further supported by the
observation that together with the appearance of the maximum
also the even-odd splitting of the conductance resonances is
suppressed. While the behavior of the transmission amplitude
in the topological regime can be understood with our one-
dimensional model, it is currently not possible to explain the
large ratio between the value of the transmission amplitude at
the maximum and the value in the normal-conducting regime
for device 2 measured by Whiticar et al. This could be be-
cause the amplitude in the experiment is not corrected for the
influence of the transmission through the reference arm. On
the other hand, it might be necessary to include the influence
of orbital effects and several transverse subbands in the theo-
retical calculations for quantitative agreement between theory
and experiment.

We believe that the experimental results are a promising
step towards a proof for the presence of MZMs. Further
evidence that MZMs can be consistently observed in these
devices would be provided by a systematic study of wires with
different lengths in future experiments.

VIII. CONCLUSION

We have studied coherent transport of electrons through
a system hosting MZMs. We find that the Zeeman field
and length dependence of the transmission amplitude pro-
vide unique signatures of MZMs. When considering wires
of varying lengths, the nonlocality of MZMs yields a stable
maximum of the amplitude at the onset of the topological
regime, whose height is proportional to the wire length. In
contrast, the amplitude is independent of the wire length if no
localized MZM is present.
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APPENDIX A: DETAILS ON SCATTERING
MATRIX FORMALISM

1. Truncation of the Hilbert space

As described in the main text, we do not explicitly model
the superconductor but account for the proximity effect by
including the induced superconducting gap directly into the
Hamiltonian of the wire. However, we distinguish the particle
number in the wire Nw from that in the dot N0 consisting
of wire and superconductor. Due to the Coulomb repulsion,
simultaneous tunneling of more than one electron or hole is
suppressed. We therefore truncate the Hilbert space to states
of N0 particles and states of N0 + 1 electrons for electronlike
cotunneling processes and N0 − 1 for holelike cotunneling,
respectively, but take into account many BdG eigenstates. We
denote the occupation number of the jth BdG eigenstate by
n j . We introduce states |N0, {ni}〉 and |N0 ± 1, {n′

i}〉 where the
former is the initial dot state with N0 electrons and occupation
of BdG quasiparticle states {ni}. The latter is the intermediate,
excited state with N0 ± 1 electrons, and occupation numbers
{n′

i}. As a result of the mean-field treatment of the interac-
tion in the BCS approach, the theory does not describe a
definite particle number N0 in the dot. However, fixed-N0
superconducting systems can even in case of small N0 be
adequately described in the grand-canonical BCS theory by
choosing the chemical potential μ such that the mean particle
number 〈N̂0〉μ is given by N0 [51]. We determine the chemical
potentials self-consistently for the particle number Nw in the
wire and use the dot particle number N0 for computing the
charging energy. We note that as the couplings only depend
on Nw and since we evaluate the transmission amplitude for
a gate voltage in between conductance resonances, which are
determined by the lowest effective holelike and electronlike
level, the amplitude does not depend on N0 but only on Nw.
We therefore define the self-consistently determined chemical
potential μ ≡ μ(N0, {ni}) such that

〈N̂〉μ ≡
∫

dy

[
2N∑
j=1

|v j (y, μ)|2

+
∑

j, n j = 1

(−|v j (y, μ)|2 + |u j (y, μ)|2)
]
=Nw.

(A1)

Here, due to the particle hole symmetry P = τy ⊗ σyK ,
we only need eigenfunctions with non-negative eigenenergies
E j (μ) � 0, which solve the BdG equation

Hwire(μ)

(
u j (μ)
v j (μ)

)
= E j (μ)

(
u j (μ)
v j (μ)

)
. (A2)

We rank order the energies and corresponding wave functions
such that E1 = min{E j} and E j+1 > E j . An important excep-
tion to this rule occurs when the wire is in the topological
regime |μ| <

√
E2

z − �2, where two Majorana subgap states
are present in the full BdG spectrum. As the two Majorana
wave functions overlap in a wire of finite length L, they
hybridize to form a finite energy subgap BdG state E1. In-
creasing the chemical potential, one observes that this energy
adiabatically evolves into a negative excitation energy −|E1|,
which corresponds to a change in parity of the ground state.
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We then need to take the solution with E−1 = −E1 and
(u−1, v−1) = (v∗

1, u∗
1 ) as the lowest level, because it corre-

sponds to the odd parity ground state in the topological regime
[22]. We denote this solution again by E1, (u1, v1) and use it
for the corresponding chemical potentials in the computation
of effective couplings and the effective energies.

We next express the wire and tunneling Hamiltonian in
terms of BdG operators β j . In order to do so, we first
relate annihilation and creation operators d j,σ , d†

j,σ to eigen-
functions ϕ j,σ with spin σ of Hwire for � = 0 via d j,σ =∑

σ

∫
dy ϕ∗

j,σ (y) �σ (y). Using the expansion of field op-

erators �σ (y) = ∑
j e−i φ

2 [u jσ (y, μ)β j (μ) + v∗
jσ (y, μ)β†

j (μ)]
one finds

Hwire =
∑

j
E j � 0

E j (μ)β†
j (μ)β j (μ), (A3)

Htun =
∑
jσα

c†
σ (yα )e−i φ

2
[
λu

jασ ′ (μ)β j (μ)

+ λv
jασ ′ (μ)β†

j (μ)
] + H.c. (A4)

Here the effective couplings are defined by

λu
jσα (μ) =

∑
iσ ′

∫
dy tiασ ϕ∗

iσ ′ (y) u jσ ′ (y, μ),

λv
jσα (μ) =

∑
iσ ′

∫
dy tiασ ϕ∗

iσ ′ (y) v∗
jσ ′ (y, μ). (A5)

In the first part, the couplings tα jσ = t0
∫

dy �α,σ (y) ϕ j (y) are
approximated as the overlap integral between a decaying wave
�α,σ from lead α and the eigenfunction ϕ j of the Hamilto-
nian Hwire for � = 0. We take �L,σ ∝ exp(−y/λ) with λ =
0.26 lso and similar for the right end. Since the couplings t jασ

are therefore mostly determined by the values of the wave
functions ϕ jσ (y) at the end yα of the wire, and these wave
function form an orthonormal set, the effective couplings are
determined by the BdG wave functions u jσ , v jσ at the ends
of the wire. This is why we can relate the localization of the
Majorana wave functions to the couplings that determine the
transmission amplitude.

2. Coupling matrix elements and energy levels

To obtain the effective couplings λe
jσα (μ) [λh

jσα (μ)] for
electron and holelike cotunneling processes, we consider a
tunneling event in which the dot is initially in the state
|N0, {ni}〉 and where cotunneling takes place via an excited
state |N0 ± 1, {n′

i}〉. The couplings are given by the over-
lap 〈N0, {ni}; {α, σ }|Htun|N0 ± 1, {n′

i}〉. In principle we would
need to consider overlap of condensate wave functions with
different numbers of Cooper pairs, which however are not
easily accessible in the BdG formalism. We hence neglect
this contribution and use Eq. (A5) to determine the couplings,
and we choose the chemical potential μ in the computation
of the wave functions such that it corresponds to intermediate
BdG state with N0 ± 1 electrons through which the tunneling
occurs.

We separately consider electronlike and holelike processes
and distinguish between even and odd particle number in

the ground state. As only pairs of electrons can enter the
condensate of the superconductor, the transmission depends
on the number parity of N0. For even N0, the T = 0 ground
state is given by |N0, {ni = 0}; {α, σ }〉, i.e., all electrons are
in the condensate. For odd N0 we assume that one electron
resides in the first BdG eigenstate such that the ground state is
given by |N0, {n1 = 1, ni �=1 = 0}; {α, σ }〉. Electronlike inter-
mediate states are |N0 + 1, {n′

m = 1, n′
i �=m = 0}〉 for even N0

and (|N0 + 1, {n′
i = 0}〉, |N0 + 1, {n′

1 = 1, n′
m = 1, n′

i/∈{1,m} =
0}〉) for odd N0. For holelike cotunneling, intermediate states
have N0 − 1 electrons and the occupancy of Bogolubons
changes in an analogous way to the electron excited states
described above. In this way we find the following effective
couplings for T = 0:

λh
α, j,σ (N0, {ni}) =

{
λu

α, j,σ

[
μh

j ({ni})
]
, for n j = 1,

λv
α, j,σ

[
μh

j ({ni})
]
, for n j = 0,

(A6)

λe
α, j,σ (N0, {ni}) =

{
λv

α, j,σ

[
μe

j ({ni})
]
, for n j = 1,

λu
α, j,σ

[
μe

j ({ni})
]
, for n j = 0,

(A7)

where the superscript e denotes electronlike and h holelike
couplings, α is a lead index, σ is the spin of the tunneling
electron in the lead, and n j is the state through which the
tunneling occurs.

In addition, we consider excited initial states |N0, {ni}〉
with energy E ({ni}) = ∑

j,n j=1 E j , whose statistical weight is

described by the Boltzmann factor e−βE ({ni}) with β = 1/kBT .
For even N0, an even number of BdG states has to be occupied,
and an odd number of BdG states for odd N0. Numerically
computing the excitation energies reveals that excited states
with occupied levels n j>10 = 1 have too small Boltzmann fac-
tors to significantly contribute to the transmission amplitude.
We therefore restrict ourselves to excited states where only
levels with energies among the ten smallest ones can be oc-
cupied. Also states with more than three occupied levels yield
negligible weights and are therefore neglected. In addition, we
do not recompute the chemical potential for each excited state
and instead use the chemical potential of the respective T = 0
state.

In addition to the tunneling matrix elements, the effective
energies of the intermediate states are needed. We find

εh
eff, j =

{+E j
[
μh

j ({ni})
] − eVg + Ec(N0 − 1), for n j = 1,

−E j
[
μh

j ({ni})
] − eVg + Ec(N0 − 1), for n j = 0,

(A8)

εe
eff, j =

{−E j
[
μe

j ({ni})
] − eVg + EcN0, for n j = 1,

+E j
[
μe

j ({ni})
] − eVg + EcN0, for n j = 0.

(A9)

Using these, we obtain the transmission amplitude from the
scattering matrix Eq. (2) via T↑↑ = S(1, 3) and T↓↓ = S(2, 4).
In the thermal average we define Z = ∑

{ni}|N0
e−βE ({ni}) where

the number parity of
∑

i ni is determined by the number
parity of N0. The antiunitary reflection symmetry �̃ϕ j (y) =
Kϕ j (L − y) (where ϕ j are eigenfunctions of Hwire) ensures
that Tσσ is imaginary in the middle between resonances where
the real part of the denominator ≈Ec/2 is large compared to
the level broadening. We consider transmission through the
first jmax levels.

023221-9



MATTHIAS THAMM AND BERND ROSENOW PHYSICAL REVIEW RESEARCH 3, 023221 (2021)

APPENDIX B: ANALYTIC SOLUTION FOR MAJORANA
WAVE FUNCTION

The BdG equations of a semi-infinite Rashba wire can in
fact be solved analytically for an exact zero-energy state [52].
Therefore, assuming a sufficiently long wire such that the Ma-
jorana wave functions of both ends have negligible overlap,
one can derive an analytical expression for the Majorana wave
functions. In this Appendix we present the analytical solution
and a series of approximations that help to understand the
emergence of the maximum of the transmission amplitude at
the onset of the topological regime.

The solution of the BdG equation Hwireψ = 0, ψ (0) = 0
for a zero-energy state with Hwire defined in Eq. (5) has
the form ψ = (χ↑, χ↓, iχ↓, iχ↑). By making use of the real
functions exp(iπ/4)χ↑ = χ̂↑ ∈ R, i exp(iπ/4)χ↓ = χ̂↓ ∈ R
the BdG equation reduces to the two equations

−∂2
ỹ χ̂↑ − μ̃χ̂↑ − Ẽzχ̂↑ − 2∂ỹχ̂↓ + �̃χ̂↓ = 0,

−∂2
ỹ χ̂↓ − μ̃χ̂↓ + Ẽzχ̂↓ + 2∂ỹχ̂↑ − �̃χ̂↑ = 0.

(B1)

Here we use reduced quantities μ̃ = μ/Eso, Ẽz = Ez/Eso,
�̃ = �/Eso, ỹ = y/lso, and k̃ = klso. Since Majorana modes
are expected to be exponentially localized at the end of the
semi-infinite wire, we use an ansatz(

χ̂↑
χ̂↓

)
= e−Aỹ

(

↑

↓

)
. (B2)

With this ansatz we obtain the system of equations(−A2 − μ̃ − Ẽz 2A + �̃

−2A − �̃ −A2 − μ̃ + Ẽz

)(

↑

↓

)
= 0. (B3)

The requirement for a nontrivial solution, i.e., a vanishing de-
terminant of the coefficient matrix, yields the quartic equation

0 = A4 + A2(2μ̃ + 4) + A(4�̃) + μ̃2 − Ẽz
2 + �̃2 (B4)

in A which is already in the reduced form A4 + A2α + Aβ +
γ = 0 and can be solved analytically. By factorizing the
polynomial 0 = (A − A1)(A − A2)(A − A3)(A − A4) using its

four roots, and comparing to the above equation, one finds
that 0 = A1 + A2 + A3 + A4 and A1A2A3A4 = μ̃2 − Ẽ2

z + �̃2.
The four solutions are given by

Ai = 1
2

[±1W ±2

√
W 2 − 4(α + Y ±1 Z )

]
, (B5)

with the abbreviations P = −α2/12 − γ , Q = −α3/108 +
αγ /3 − β2/8, U = (−Q/2 +

√
Q2/4 + P3/27)1/3, Y =

−5α/6 + U − P/(3U ), W = √
α + 2Y , and Z = β/(2W ).

Here ±1 and ±2 can individually be +1 or −1 to
give rise to four solutions Ai. In the topological regime
γ = μ̃2 − Ẽz

2 + �̃2 < 0, it can be shown that a solution with
ReA1, ReA2, ReA3 > 0, A1 = A∗

2, ImA3 = 0, and ReA4 < 0
exists. To be able to normalize the solution, the coefficient of
the A4 term needs to vanish. Then, Eq. (B3) has the solution(


↑,i


↓,i

)
= Ni

(
2Ai + �̃

A2
i + μ̃ + Ẽz

)
, (B6)

where Ni are normalization constants. In the topological
regime we define

A1 = ξ̃−1
1 + ik̃eff , (B7)

A2 = ξ̃−1
1 − ik̃eff , (B8)

A3 = ξ̃−1
2 . (B9)

Therefore, the Majorana wave function

χ̂L(y) =N
[

e−y/ξ2

(
2ξ̃−1

2 + �̃

ξ̃−2
2 + μ̃ + Ẽz

)

+ e−y/ξ1

{
aeikeff y

(
2(ξ̃−1

1 + ik̃eff ) + �̃

(ξ̃−1
1 + ik̃eff )2 + μ̃ + Ẽz

)

+ be−ikeff y

(
2(ξ̃−1

1 − ik̃eff ) + �̃

(ξ̃−1
1 − ik̃eff )2 + μ̃ + Ẽz

)}]
(B10)

consist of a evanescent term with localization length ξ2 and
an oscillating term with localization length of the envelop ξ1.
Here the boundary condition χ̂L(0) = 0 fixes the coefficients

a = b∗ = [iξ̃2 + ξ̃1(−i + k̃eff ξ̃2)][−2 + 2(Ẽz + μ̃)ξ̃1ξ̃2 − �̃(ξ̃1 + ξ̃2) + ik̃eff ξ̃1(2 + �̃ξ̃2)]

4k̃eff
{
1 + ξ̃1

[
�̃ − (

Ẽz − k̃2
eff + μ̃

)
ξ̃1

]}
ξ̃ 2

2

. (B11)

In the following we refer to this solution as “analytic so-
lution.” To compute the transmission amplitude we use that
the Majorana wave function at the right wire end is given
by χR(y) ∝ χ∗

L (L − y) and evaluate the overlap with decaying
wave functions from the leads.

We find that the analytic expression is in very good agree-
ment with the numerical results (Fig. 10) in the topological
regime, even when taking transport through many levels into
account. However, without some approximations it is difficult
to gain much insight into the lengthy analytical expression. In
order to make progress, we first use that the oscillations of the
Majorana wave functions is approximately determined by the

Fermi momentum

keff ≈ k̃F =
√

2 + μ̃ +
√

Ẽ2
z + 4 + 4μ̃, (B12)

which is nearly independent of Ez in the case where the chem-
ical potential is self-consistently determined to fix the particle
number in the wire. In addition, the localization length of the
oscillating term can be approximated by the coherence length
due to the p-wave gap

ξ1 = Re(A1)−1 lso ≈ ξ = h̄vF

�p,ind
. (B13)
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FIG. 10. Comparison between numerical result (solid, blue) for
the transmission amplitude |T↑↑(Vg,mid )| in the topological region as
a function of the magnetic field for jmax = 200 level, Nw = 35 and
� = 2 Eso and full analytical solution (dashed, green), in very good
agreement with the numerical result. For very large Zeeman energies,
higher levels contribute to the transmission and the overlap between
the MZMs from the ends is finite such that there is a small deviation
between analytic and numeric results.

The evanescent term however, has a different correlation
length whose divergence at the topological phase transition is
governed by the closing of the topological gap at Ez = Ez,top,

ξ2 = A−1
3 lso ≈ ξs =

(
−ξ−1 +

√
ξ−2 − μ̃2 + �̃2 − Ẽ2

z

ξ−2 + k2
F

)−1

∝ 1

Ez −
√

�2 + μ2
. (B14)

Here we used the relations between the Ai above Eq. (B5) to
express A3 in terms of A1, A2 and ultimately in terms of ξ .

FIG. 11. Full analytic correlation lengths ξ1 = lsoRe(A1)−1 and
ξ2 = lsoRe(A3)−1 (solid lines) and approximations ξ and ξs (dashed
lines). Here we used the self-consistent chemical potential μ(Ez ) for
fixed particle number Nw = 35 in the wire and � = 2 Eso.

We find that the approximations for the localization lengths
(dashed lines in Fig. 11) are in excellent agreement with the
exact analytical expressions (solid lines in Fig. 11) in the
whole topological regime. For the approximation in the main
text, the Majorana wave functions are reduced to the sum of
the envelops of oscillating and evanescent term, neglecting
the spin dependence and the oscillations. As the couplings
are determined by the wave function weights at the ends of
the wire, the oscillations are less important. However, in the
evanescent term, the spin-↓ component can be larger than
the spin-↑ component at the beginning of the topological
regime. Nevertheless, this rough approximation is still in good
agreement with the numerical results for the case where kF

is approximately constant (as for a fixed particle number in
the wire) and allows us to understand the occurrence of the
amplitude maximum.
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