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Long-range spin transport on the surface of topological Dirac semimetal
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We theoretically propose the long-range spin transport mediated by the gapless surface states of a topological
Dirac semimetal (TDSM). Low-dissipation spin current is a building block of next-generation spintronics
devices. While conduction electrons in metals and spin waves in ferromagnetic insulators (FMIs) are the major
carriers of spin current, their propagation length is inevitably limited due to Joule heating or Gilbert damping.
In order to suppress dissipation and realize long-range spin transport, we here make use of the spin-helical
surface states of TDSMs, such as Cd3As2 and Na3Bi, which are robust against disorder. Based on a junction of
two FMIs connected by a TDSM, we demonstrate that the magnetization dynamics in one FMI induces a spin
current on the TDSM surface flowing to the other FMI. By both the analytical transport theory on the surface
and the numerical simulation of real-time evolution in the bulk, we find that the induced spin current takes a
universal semiquantized value that is insensitive to the microscopic coupling structure between the FMI and the
TDSM. We show that this surface spin current is robust against disorder over a long range, which indicates that
the TDSM surface serves as a promising system for realizing spintronics devices.
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I. INTRODUCTION

Transmission of signals over a long distance is essential
in designing integrated information devices. While charge
current in normal metals is inevitably subject to Joule heating,
spin current is now intensely studied to realize long-range
transmission with less dissipation, in the context of spintronics
[1–3]. Spin current, namely, the flow of spin angular momen-
tum, is carried by various types of quasiparticle excitations
in materials. In metals, spin current is carried by conduction
electrons [4]. Electron spin current can be generated by cur-
rent injection from magnetic metals [5], spin pumping from
magnetic materials with magnetization dynamics [6–8], the
spin Hall effect [9–13], etc. Spin waves (or magnons) in mag-
netic materials, namely, the dynamics of the ferromagnetic
or antiferromagnetic order parameters, are also elementary
excitations that carry spin and heat currents [14–18]. Magnon
spin current can be generated by the magnetic resonance un-
der a microwave [19,20], by the spin Seebeck effect under a
temperature gradient [21,22], etc.

While those spin-current carriers are available in various
materials commonly used in experiments, their propagation
length is inevitably limited due to dissipation. Conduction
electrons are subject to scattering by phonons and disorder,
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which results in Joule heating. Magnon spin current in insu-
lators is considered to be advantageous in that it is free from
Joule heating [23–26], whereas Gilbert damping of spins leads
to the dissipation of spin and energy. Due to such dissipation
effects, transmission of spin current over a long range is
a challenging problem. Recent theoretical and experimental
studies showed that phonons in nonmagnetic insulators may
realize long-range transport of spin current [27–32]: Since
circularly polarized transverse phonons carry angular mo-
mentum, they can mediate spin current between magnets via
magnetoelastic coupling. However, for the efficient intercon-
version of magnons and phonons, one needs fine-tuning of
the magnon frequency. Such limitations in long-range spin
transport restrict the design of highly integrated spintronics
devices.

In this paper, we theoretically propose a long-range trans-
mission of spin mediated by the surface electronic states of
topological Dirac semimetals (TDSMs). TDSMs are a class
of three-dimensional (3D) crystalline materials having a pair
(or pairs) of Dirac nodes in the electronic band structure in
the bulk [33–35]. The TDSM phase is experimentally real-
ized in Na3Bi [36,37] and Cd3As2 [38–43]. TDSMs have
quasi-1D gapless states on the surface, which arise as Fermi
arcs connecting the Dirac points projected onto the surface
Brillouin zone [44,45]. These surface states are spin helical,
i.e., spin-↑ and spin-↓ states propagate along the surface op-
positely to each other, and are protected by the Z2 topology
in the bulk [46,47]. These features are analogous to the heli-
cal edge states of 2D quantum spin Hall insulators (QSHIs)
[48–50], and hence the surface states of TDSMs are robust
against disorder as long as the system preserves time-reversal
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FIG. 1. (a) Schematic illustration of our setup for a joint system
between a topological Dirac semimetal (TDSM) and ferromagnetic
insulators (FMIs). The magnetization dynamics in the left-side FMI
(FM1) induces a spin current flowing through the TDSM. We inves-
tigate the torque exerted on the right-side FMI (FM2). (b) Schematic
illustration of the spin current carried by the helical surface states of
the TDSM. There are four spin-polarized channels on the surface of
the TDSM connecting FM1 and FM2. The magnetization dynamics
induces population imbalance among the four edge channels, which
yields a net spin current from FM1 to FM2.

symmetry [51,52]. From these features, we can expect that the
helical surface states of TDSMs are suitable for long-range
spin transmission.

Indeed, in the context of 2D QSHIs, it was theoretically
proposed in numerous studies in the literature that the helical
edge states are capable of interconversion between spin angu-
lar momentum and electric current, based on the topological
field theory, the numerical simulations, the scattering theory,
and the Floquet theory [53–60]. The electric current and the
spin torque arising from the interconversion take quantized
values irrespective of the microscopic coupling structure be-
tween the edge electrons and the spins in magnets, which is
traced back to the band topology of the 1D edge states. The
similar spin-charge interconversion is expected also on the
helical surface states of TDSMs, as long as the Fermi level
is tuned in the vicinity of the Dirac points so that the bulk
transport may be negligible [61]. However, the spin-charge
conversion discussed in those works occurs locally at the
interface of a magnet and a TDSM (or a QSHI), and a theory
for nonlocal transmission of spins with the helical edge states
over a long distance, which is essential for device application,
is not well established.

Based on the above background, we here consider the
transmission of spin angular momentum between two fer-
romagnetic insulators (FMIs) connected by a TDSM, as
schematically shown in Fig. 1(a). We assume a magnetization
dynamics in one of the FMIs (FM1) and discuss how the spin
current transmitted through the TDSM exerts a spin torque
on the other FMI (FM2), by constructing analytical and nu-
merical schemes to evaluate the nonlocal spin transmission
between the two FMIs separated at a distance. As a result, we
find that the transmitted spin current takes a semiquantized

value, which is determined only by the configuration of Dirac
points in momentum space and the frequency of magneti-
zation dynamics. This semiquantization of spin current can
be understood analytically as the electron transport on the
helical surface states, which comes from the imbalance of
the electron population among the edge channels driven by the
magnetization dynamics [see Fig. 1(b)]. Moreover, from the
numerical simulation of the real-time dynamics of electrons in
the whole 3D system, we directly confirm that this semiquan-
tized spin transmission is robust against moderate disorder
in the bulk. These results imply that the TDSM surface may
serve as a promising system for highly integrated spintronics
devices with long-range spin transmission.

This paper is organized as follows. In Sec. II, we review
the generic characteristics of TDSMs and give a detailed
explanation about our model setup with a TDSM and FMIs
shown in Fig. 1. In Sec. III, we give analytical expressions
of the flow of electrons and spin on the surface, based on
the 1D scattering theory. (The detailed calculation processes
are shown in Appendix.) In Sec. IV, we show the results of
our numerical simulations within the whole 3D system and
discuss their consistency with the analytical expressions and
their robustness against disorder. Finally, in Sec. V, we give
some experimental implications from our calculations and
conclude our discussion. Throughout this paper, we take the
natural unit h̄ = 1.

II. MODEL SETUP WITH A TDSM

In order to demonstrate spin transmission through a
TDSM, we construct a model that we shall use both for the
analysis and for the numerical simulation, as shown in Fig. 1.
We first review the generic characteristics of TDSMs and
give a detailed explanation about our model setup, with a
junction of a TDSM and two FMIs, on the basis of those
characteristics.

TDSMs are characterized by a pair of Dirac points in
momentum space, which are protected by rotational symmetry
around a crystal axis [33,46,47]. If we take this axis as the z
axis, the Dirac points are located on the kz axis, which we
denote as k±

D = (0, 0,±kD). Due to the rotational symmetry,
the spin component σz serves as a good quantum number
around the kz axis, which means that the spin-↑ and spin-↓
states are degenerate around the Dirac points. The minimal
model for such a band structure at low energy is composed
of four degrees of freedom, with twofold spins and twofold
orbitals [34,36,38],

H (k) = v(kxτxσz + kyτy) − M(kz )τz,

M(kz ) = m0 − m1k2
z . (1)

Here, the Pauli matrices σx,y,z act on the spin subspace, and
τx,y,z act on the orbital subspace. In the effective model of
Cd3As2 [38], for instance, the basis functions with τz = +
correspond to the 5s orbitals of Cd with the total angular
momentum Jz = ±1/2, while those with τz = − correspond
to the 4p orbitals of As with Jz = ±3/2, and σz = ± repre-
sents the sign of Jz. The parameter m0 characterizes the band
inversion, which leads to the Dirac points of kD = √

m0/m1 if
m0, m1 > 0.
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FIG. 2. Schematic picture of the structure of the surface states of
TDSM. The surface states arise as Fermi arcs connecting the Dirac
points projected onto the surface Brillouin zone, shown as dark red
and blue dashed curves. They form a pair of counterpropagating
states, one with spin σz = ↑ and the other with σz = ↓. Taking the
2D slice in the band-inverted region (kz ∈ [−kD, kD], shown by the
gray plane), the Hamiltonian reduces to that of the 2D QSHI.

Due to the band inversion from spin-orbit coupling, the
system shows the intrinsic spin Hall effect. By fixing kz in
the band-inverted region −kD < kz < kD and considering the
2D slice, as shown in Fig. 2, the Hamiltonian reduces to that
for the 2D QSHI, with the quantized spin Hall conductivity
σ s(2D)

xy = e/2π . Therefore, by multiplying by the number of
2D slices νz = 2kD/2π per unit length in the z direction, the
spin Hall conductivity of the TDSM in 3D takes the “semi-
quantized” value

σ s(3D)
xy = νzσ

s(2D)
xy = ekD

2π2
, (2)

if the Fermi level is in the vicinity of the Dirac points [34,35].
Another consequence of the band inversion is the emer-

gence of surface states. On the surfaces parallel to the
rotational axis (z axis), which we call the side surfaces, there
emerge spin-helical states, with the spin-↑ and spin-↓ modes
propagating along the surface oppositely to each other [44].
These surface states can be regarded as the collection of 1D
helical edge states of the 2D QSHI at fixed kz. They form a
pair of Fermi arcs connecting the Dirac points projected onto
the surface Brillouin zone, which are robust against disorder
as long as time-reversal symmetry is preserved [52]. The con-
tribution of these surface states to the electron transport was
observed experimentally, as the quantum oscillation under a
magnetic field [40,51,62–67].

In order to make use of the helical surface states for spin
transmission, here we consider the model setup as shown in
Fig. 1, with two FMIs (FM1 and FM2) attached on the side
surfaces of the TDSM. FM1 and FM2 are set apart by the
distance Lx, and each of them is attached to the TDSM by
the length Ly. We assume a situation where the magnetiza-
tion of FM1 is steadily precessing around the z axis, which
is maintained by providing angular momentum and energy

x||

n(t)
I (in)

I (out)

I (out)

I (in)

↑

↓

↑

↓

FMI TDSM
x|| mapping onto 1D

FIG. 3. Schematic picture for the pumping process of the edge
electrons by a single FMI. The pumping process is mapped to the
scattering problem in the quasi-1D space (x‖) along the edge, by
regarding the interface region with the precessing magnetization n(t )
as the time-dependent scatterer. By solving the scattering problem as
described in Sec. III B, we see that the outgoing channel with spin ↑
becomes more populated than that with spin ↓.

externally by microwaves, etc. Under such a setup, we esti-
mate the spin torque exerted on FM2, which corresponds to
the spin current transmitted from FM1 to FM2 via the TDSM,
both analytically and numerically.

III. TRANSPORT ANALYSIS ON THE SURFACE

In this section, we treat the spin transmission through the
TDSM analytically, by focusing on the spin transport me-
diated by the helical surface states. If the Fermi level is in
the vicinity of the Dirac points, the bulk transport becomes
negligible, and the surface transport becomes dominant. In
order to evaluate the spin transmission between two FMIs
phenomenologically, we first formulate the transmission of
charge and spin at a single interface with a FMI. By using
this single-FMI picture as a building block, we formulate the
spin transmission between the two FMIs in our model setup
shown in Fig. 1.

As mentioned in the previous section, we regard the helical
surface states of the TDSM as the collection of 1D helical
edge states, which reside at every kz in the band-inverted re-
gion (−kD < kz < kD). As long as the translational symmetry
in the z direction is satisfied, kz serves as a good quantum
number, and the contribution from 1D helical edge states at
each kz can be treated separately. Therefore, in this section,
we first consider the spin transmission by a single pair of
1D helical edge states and then multiply by the number of
2D slices νz = 2kD/2π per unit length in the z direction to
evaluate the overall contribution from the 2D surface states.

A. Charge and spin pumping by a single FMI

In a manner similar to the theoretical treatment of spin
pumping and injection by a ferromagnet [7,8], we formulate
the role of a FMI coupled to the helical edge as a time-
dependent scatterer. We consider the scattering process in the
hypothetical 1D space along the edge, where we denote its 1D
coordinate as x‖ (see Fig. 3).
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As in the conventional Landauer-Büttiker formalism in
mesoscopic systems [68–72], the charge and spin currents can
be derived by comparing the numbers of the incoming and
outgoing electrons for the scatterer. Since the nonmagnetic
edge states are spin helical, there are two incoming channels
and two outgoing channels: As the incoming channels, spin-↑
electrons come from the left (x‖ < 0), and spin-↓ electrons
come from the right (x‖ > 0); as the outgoing channels, spin-
↑ electrons go out to the right (x‖ > 0), and spin-↓ electrons
go out to the left (x‖ < 0). We denote the annihilation (cre-
ation) operators of an electron with energy ε in these channels
as a(†)

↑/↓(ε) for the incoming channels and b(†)
↑/↓(ε) for the

outgoing channels, respectively.
The electron distributions in these channels with energy ε

are given by taking the quantum average 〈·〉 of the operators
defined above [69–71],

f (in)
↑/↓(ε) = 〈a†

↑/↓(ε)a↑/↓(ε)〉, f (out)
↑/↓ (ε) = 〈b†

↑/↓(ε)b↑/↓(ε)〉,
(3)

which we use throughout this section as the main tool to eval-
uate the transmission of spin current. With these distribution
functions, the numbers of electrons coming into or going out
of the scatterer with spin ↑ or ↓ per unit time are given by

I (in/out)
↑/↓ = 1

2π

∫
dε f (in/out)

↑/↓ (ε). (4)

By using these notations, the charge current flowing from the
left to the right is given by

I = −e
[
I (in)
↑ − I (out)

↓
] = −e

[
I (out)
↑ − I (in)

↓
]
. (5)

The two formalisms are equivalent due to the charge conserva-
tion at the scatterer. On the other hand, spin can be transferred
between the electrons and the FMI, and thus the net spin
current flowing out of the scatterer can be nonzero. Noting
that each electron carries spin ±1/2, the spin current pumped
by the FMI, namely, the net spin angular momentum flowing
into and out of the FMI per unit time, is given by

Is = 1
2 [I (out)

↑ − I (out)
↓ − I (in)

↑ + I (in)
↓ ]. (6)

From these relations, we can immediately see a simple rela-
tion between the charge and spin currents,

1

e
I + Is = −I (in)

↑ + I (in)
↓ , (7)

where the right-hand side is determined only by the numbers
of incoming particles and is independent of the scatter-
ing process. In particular, if the numbers of spin-↑ and
spin-↓ electrons entering the scattering region are equal, its
right-hand side vanishes and reduces to the simple relation
Is = −I/e.

In order to evaluate the charge current I and the spin current
Is separately, we need relations between the incoming and
outgoing distributions that are determined by the scatterer. If
the magnetization n is periodically precessing as

n(t ) = (sin θ cos(�t + φ), sin θ sin(�t + φ), cos θ ), (8)

where � is the precession frequency and θ is the polar angle
of magnetization, the energy of the electron is not conserved
in the scattering process. Such a time-dependent scattering

problem can be solved by taking the “rotating frame” of spin:
By the time-dependent unitary transformation

U (t ) = ei�tσz/2 (9)

on the edge electrons, which rotates their spin by the angle
� per unit time around the z axis, the magnetization direction
is fixed to n0 ≡ n(t = 0) in this rotating frame [57]. Since
this transformation U (t ) shifts the energies of spin-↑ or spin-↓
electrons by ±�/2, respectively, the operators in the rotating
frame, which we denote by ã↑/↓ and b̃↑/↓, are related to those
in the rest frame as

ã↑(ε) = a↑

(
ε + �

2

)
, ã↓(ε) = a↓

(
ε − �

2

)
,

b̃↑(ε) = b↑

(
ε + �

2

)
, b̃↓(ε) = b↓

(
ε − �

2

)
. (10)

The operators for the incoming and outgoing channels are
related by the S matrix. By using the S matrix in the rotating
frame

S̃(ε) =
(

r̃↓↑(ε) t̃↓↓(ε)
t̃↑↑(ε) r̃↑↓(ε)

)
, (11)

which can be obtained by solving the time-independent scat-
tering problem with the fixed magnetization (see Appendix for
details), the operators ã↑/↓ and b̃↑/↓ in the rotating frame are
related as [69–71](

b̃↓(ε)
b̃↑(ε)

)
=

(
r̃↓↑(ε) t̃↓↓(ε)
t̃↑↑(ε) r̃↑↓(ε)

)(
ã↑(ε)
ã↓(ε)

)
. (12)

Note that the components in the S matrix satisfy the reversibil-
ity relations

|r̃↓↑(ε)|2 = |r̃↑↓(ε)|2 ≡ R(ε), (13)

|t̃↑↑(ε)|2 = |t̃↓↓(ε)|2 ≡ T (ε) (14)

and the unitarity condition

R(ε) + T (ε) = 1 (15)

due to the time independence of the scatterer in the rotating
frame, where R(ε) is the reflection rate and T (ε) is the trans-
mission rate.

With the S matrix defined above, we are ready to evaluate
the electron distributions in the outgoing channels. By substi-
tuting Eqs. (10) and (12) into Eq. (3), we obtain the relations
for the distribution functions in the rest frame as

f (out)
↑

(
ε + �

2

)
= T (ε) f (in)

↑

(
ε + �

2

)
+ R(ε) f (in)

↓

(
ε − �

2

)
,

(16)

f (out)
↓

(
ε − �

2

)
= R(ε) f (in)

↑

(
ε + �

2

)
+ T (ε) f (in)

↓

(
ε − �

2

)
,

(17)

which we shall use as the fundamental relations throughout
this section to evaluate the spin transmission. By inte-
grating over the energy ε and using the unitarity relation
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R(ε) + T (ε) = 1, we obtain the relations between the num-
bers of incoming and outgoing electrons,

I (out)
↑ − I (in)

↑ =
∫

dε

2π
R

(
ε − �

2

)
[ f (in)

↓ (ε − �) − f (in)
↑ (ε)],

(18)

I (out)
↓ − I (in)

↓ =
∫

dε

2π
R

(
ε + �

2

)
[ f (in)

↑ (ε + �) − f (in)
↓ (ε)].

(19)

B. Scattering rates and quantized pumping

The scattering rates R(ε) and T (ε) are defined in the rotat-
ing frame of spin, by a FMI with its magnetization fixed to the
direction n0. The Hamiltonian for the edge electrons coupled
to this magnetization in the rotating frame is given as

H̃ (k‖) = vedgek‖σz + Jn0 · σ − �
2 σz

=
(

vedgek‖ + J cos θ− �
2 J sin θe−iφ

J sin θeiφ −vedgek‖− J cos θ+ �
2

)
,

(20)

where we define the 1D momentum along the edge as k‖.
We can immediately see from this matrix form that the in-
plane component of the magnetization opens an exchange gap
J⊥ ≡ |J sin θ | around zero energy in the edge spectrum, which
influences the scattering of the edge electrons by the FMI as
we shall see in the following discussions.

By evaluating the S matrix in the rotating frame, whose de-
tailed derivation process is shown in Appendix, the scattering
rates are given as

R(ε) = sin2(KL)

ε2/J2
⊥ − cos2(KL)

, (21)

T (ε) = ε2/J2
⊥ − 1

ε2/J2
⊥ − cos2(KL)

, (22)

with K =
√

ε − J2
⊥/vedge being the wave number inside the

interface region coupled with the FMI. (Note that these forms
are valid for ε inside the exchange gap, |ε| < J⊥, as well,
where K becomes pure imaginary and the wave function
inside the interface region exponentially decays by x‖.) The
numerical behavior of R(ε) is shown in Fig. 4, by varying the
electron energy ε and the length of the interface region L.

The most important feature in the reflection rate R(ε) is that
it reaches unity for |ε| < J⊥, which means that the electron
inside the exchange gap is totally reflected, if the length L
of the magnetic region is long enough. This is because the
electron wave function in the magnetic region, at energies
inside the exchange gap, decays exponentially. The decay
length of the wave function at ε = 0 is given as

l0 = [ImKε=0]−1 = vedge/J⊥, (23)

and hence the tunneling through the magnetic region is fully
suppressed if L � l0. On the other hand, if ε is out of the ex-
change gap, the reflection rate R(ε) oscillates as a function of
ε due to the formation of resonance states inside the interface
region.

By using the scattering rates obtained above, we can eval-
uate the charge and spin currents pumped by the FMI. If we

FIG. 4. The reflection rate R(ε) of the magnetic region given by
Eq. (21), as a function of (a) the incident energy ε and (b) the length
L of the magnetic region. L is rescaled by l0 = vedge/J⊥, which is
the decay length of the wave function inside the exchange gap of the
magnetic region.

assume that the distributions of the incoming channels f (in)
↑/↓(ε)

are in equilibrium, with both of them filled up to the Fermi
level εF , Eqs. (18) and (19) yield the balance of incoming and
outgoing electron numbers,

I (out)
↑ − I (in)

↑ = I (in)
↓ − I (out)

↓ ≈ �

2π
R(εF ), (24)

up to the first order in � for slow magnetization dynamics.
This relation means that the number rate of outgoing electrons
with spin ↑ is raised and that with spin ↓ is lowered by
R(εF )�/2π due to the magnetization dynamics, as schemati-
cally shown in Fig. 3.

In particular, if the Fermi level εF is inside the exchange
gap (|εF | < J⊥), the electrons at the Fermi level are fully
reflected, i.e., R(εF ) ≈ 1. The right-hand side of Eq. (24)
thus reduces to �/2π , which corresponds to one electron
per a precession period Tp = 2π/�. As a consequence, the
electric current pumped through the magnetic region becomes
quantized as

Ī = −e
�

2π
, (25)

which is consistent with the previous literature on the helical
edge states of QSHI [53–60]. The spin injection rate (per unit
time) from the FMI into the edge electrons is also quantized
as

Ī s = �

2π
, (26)

which satisfies the relation in Eq. (7). The overall contribution
from the 2D surface states of TDSM is given by multiplying
those quantized values by the factor νz = 2kD/2π .
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FIG. 5. Schematic picture of the model setup shown in Fig. 1
sliced at a fixed kz. On this 2D slice, FM1 and FM2 are connected
by four edge channels, two with spin ↑ and two with spin ↓. We
consider the electron distributions in these channels, to understand
the flow of spin Is

1 and Is
2 .

C. Spin transfer between two FMIs

We now consider the model setup constructed in Sec. II.
By slicing the system at fixed kz in the band-inverted region
(−kD < kz < kD), FM1 and FM2 are connected by four chan-
nels, namely, two pairs of counterpropagating modes with
spin ↑ and ↓, as shown in Fig. 5. We denote the distribution
functions for the incoming or outgoing electrons with spin s
(=↑,↓) at FMi (i = 1, 2) as f (in/out)

is (ε). If the electrons on
the edges propagate coherently on these channels, f (out)

1↑ (ε) at

a certain time is equal to f (in)
2↑ (ε) after a time Tx = Lx/vedge,

and in similar manners for the other channels. Electron prop-
agation on these channels leads to spin transmission between
FM1 and FM2. We do not take into account the contribution
from the bulk electrons here, which is a valid approximation
if the Fermi level is set in the vicinity of the Dirac points so
that the density of states in the bulk is small enough.

Now we consider the spin transmission, with the magneti-
zation in FM1 precessing around the z axis by the frequency �

and that in FM2 fixed in the x direction. Here, the transmission
and reflection coefficients at FM1 are the same as those ob-
tained in Sec. III B (with L → Ly), and those at FM2 are given
by setting � = 0. Therefore, in a manner similar to Eqs. (16)
and (17), the incoming and outgoing distribution functions are
related as follows:

f (out)
1↑ (ε) = T

(
ε − �

2

)
f (in)
1↑ (ε) + R

(
ε − �

2

)
f (in)
1↓ (ε − �),

(27)

f (out)
1↓ (ε) = T

(
ε + �

2

)
f (in)
1↓ (ε) + R

(
ε + �

2

)
f (in)
1↑ (ε + �),

(28)

f (out)
2↑ (ε) = T (ε) f (in)

2↑ (ε) + R(ε) f (in)
2↓ (ε), (29)

f (out)
2↓ (ε) = T (ε) f (in)

2↓ (ε) + R(ε) f (in)
2↑ (ε). (30)

FIG. 6. Schematic pictures of the electron population of edge
channels, after switching on the magnetization dynamics in FM1 at
time t = 0. In a manner similar to Fig. 3, gray arrows indicate edge
channels in the equilibrium distribution, pink thick arrows indicate
channels more populated than the equilibrium distribution, and blue
thin arrows indicate less populated channels.

For simplicity of discussion, we assume here that electron
transmission and reflection at each magnetic region occur
instantaneously, which is satisfied if Ly � vedgeTp.

Based on the above relations, we evaluate the flow of
charge and spin between FM1 and FM2, driven by the mag-
netization dynamics in FM1. As the initial condition, we start
with the system in equilibrium, where all the edge channels
are in the equilibrium distribution f0(ε) filled up to the Fermi
level εF . We then switch on the magnetization dynamics in
FM1 at time t = 0 adiabatically, so that the switch-on pro-
cess may not cause any significant disturbance in the electron
distributions, and estimate the transient behavior of the edge
electrons after the switch-on by considering the following
steps (a)–(d). (Schematic pictures corresponding to these steps
are shown in Fig. 6.)

(a) Before the magnetization dynamics is switched on
(t < 0), all the edge channels are in the equilibrium distri-
bution f0(ε).

(b) Soon after the switch-on, for time 0 � t � Tx, the
channels going out from FM1 ( f (out)

1↑/↓ ) are modulated by
the magnetization dynamics, whereas the incoming channels
( f (in)

1↑/↓) are still in equilibrium distributions. Therefore f (out)
1↑

and f (out)
1↓ are given as

f (out)
1↑ (ε) = T

(
ε − �

2

)
f0(ε) + R

(
ε − �

2

)
f0(ε − �), (31)

f (out)
1↓ (ε) = T

(
ε + �

2

)
f0(ε) + R

(
ε + �

2

)
f0(ε + �). (32)

In particular, if the Fermi level εF is inside the exchange gap
and the magnetization dynamics is adiabatic (� � J⊥), we
can apply the same discussion as in Eq. (24) in Sec. III B.
While the number rates of the incoming electrons per unit time
I (in)
1↑ and I (in)

1↓ are equal, the number rate of the outgoing elec-

trons I (out)
1↑ gets raised, and I (out)

1↓ gets lowered by �/2π , due to
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the magnetization dynamics in FM1 [see Fig. 6(b)]. Therefore
both the electric current passing through the magnetic region
and the spin current pumped from FM1 reach the quantized
values

Ī1 = −e
�

2π
, Ī s

1 = 1

2
× �

2π
+ −1

2
× −�

2π
= �

2π
(33)

per a single 2D slice at kz.
(c) For time Tx � t � 2Tx, the electrons going out from

FM1 at step (b) reach FM2 and are reflected or transmitted by
FM2. As a consequence, the outgoing distributions for FM1
given by Eqs. (31) and (32) serve as the incoming distribu-
tions for FM2, f (in)

2↑ (ε) = f (out)
1↑ (ε) and f (in)

2↓ (ε) = f (in)
1↓ (ε). By

comparing them with the outgoing distributions f (out)
2↑ , f (out)

2↓
on the basis of the scattering theory in 1D, we see that the
spin angular momentum per unit time

Is
2 = 1/2

2π

∫
dε

[
f (in)
2↑ (ε) − f (in)

2↓ (ε) − f (out)
2↑ (ε) + f (out)

2↓ (ε)
]

(34)

is transferred from the edge electrons to FM2. By substituting
Eqs. (29)–(32), this spin current reads

Is
2 = 1

2π

∫
dε R(ε)

[
R

(
ε − �

2

)
[ f0(ε − �) − f0(ε)]

− R

(
ε + �

2

)
[ f0(ε + �) − f0(ε)]

]
,

(35)

which is the general form applicable to arbitrary precession
frequency � and equilibrium Fermi energy εF .

In particular, if the precession frequency � in FM1 and
the Fermi level εF are inside the exchange gap J⊥ (i.e., �,

εF � J⊥), we can again derive the quantized pumping. If
the interface region is sufficiently long (i.e., Ly � l0), the
incoming electrons in the vicinity of εF are fully reflected at
FM2. The incoming electron with spin ↑, whose number rate
per unit time is raised by �/2π , flips its spin on the reflection
process at FM2 and injects spin 1 to FM2 for each electron,
whereas that with spin ↓ is lowered by �/2π and injects
spin −1 to FM2 [see Fig. 6(c)]. Therefore the spin current
Is
2 transmitted to FM2 reaches the universal value

Ī s
2 = 1 × �

2π
− 1 × −�

2π
= �

π
, (36)

which means that spin 2 is injected into FM2 during a preces-
sion period Tp per a single 2D slice at kz. For the 3D TDSM,
the injected spin current (per unit length in the z direction)
takes the semiquantized value

j̄s
2 = νzĪ

s
2 = kD�

π2
. (37)

This (semi)quantization of spin current is one of the main
results in our analysis, which is determined only by the num-
ber of helical channels on the surface and is independent of
the microscopic structures in the bulk. Note that this relation
is satisfied only if the electrons at the Fermi level are fully
reflected by FM2. If � or εF is out of the exchange gap, or
once magnetization dynamics is driven in FM2, some elec-

trons are transmitted through the magnetic region of FM2, and
Is
2 becomes not exactly twice of Is

1.
(d) For time 2Tx � t , the electrons reflected at FM2 at step

(c) reach FM1. At this step, all the edge channels are no longer
in equilibrium distribution. Moreover, once the magnetization
in FM2 acquires dynamics, the incoming electrons at FM2 are
no longer fully reflected. Therefore the spin currents Is

1 and
Is
2 deviate from the (semi)quantized values Ī s

1 and Ī s
2 at this

stage. In order to make use of the (semi)quantization of spin
current, the magnetization dynamics in FM1 should be in a
pulse shorter than the time scale Tx.

The important feature seen from the analysis above is
that the value of the spin current transmitted by the surface
states of TDSM [during steps (b) and (c)] is universal and is
determined only by the location of the Dirac points kD and
the precession frequency �, as given by Eq. (37). It only
requires the existence of a sizable exchange gap in the helical
surface states induced by the FMIs and is insensitive to the
microscopic structure and value of the exchange coupling.
Moreover, the transmitted spin current is independent of the
system size Lx,y, since only a single pair of helical edge states
contribute to the spin transmission for each 2D slice at kz. This
analytical estimation is valid as long as the surface states are
robustly present against disorder, which shall be checked by
the numerical simulation in the next section.

IV. NUMERICAL SIMULATION ON A LATTICE

In this section, we present our numerical simulation of the
spin transmission process via a TDSM, which is performed
with the 3D lattice model of a TDSM. For the numerical simu-
lation, we use the model constructed in Sec. II, with two FMIs
(FM1 and FM2) connected by a TDSM. By following the
real-time evolutions of the wave function of all the electrons in
the TDSM and of the magnetization in FM2, we evaluate the
flow of spin driven by the magnetization dynamics in FM1.
As a result, we find that the transmitted spin current reaches
the semiquantized value at the early stage after switching on
the magnetization dynamics. This semiquantization behavior
of the spin current agrees with the surface transport picture
employed in the previous section, which implies that the spin
transmission in the TDSM is dominated by the surface states.
Moreover, we observe that this semiquantized spin transport
is robust under disorder even at a long range.

A. Model

For the numerical simulation, we use a lattice model of
a TDSM [36,38]. On a hypothetical cubic lattice with lattice
spacing a, the tight-binding Hamiltonian

HTDSM(k) = u[sin(akx )τxσz + sin(aky)τy] − M(k)τz,

M(k) = r0 − r1

∑
i=x,y,z

[1 − cos(aki )] (38)

reproduces the low-energy effective model in Eq. (1) around
k = 0, with the correspondence of parameters v = au, m0 =
r0, and m1 = a2r1/2. This lattice Hamiltonian gives a pair
of Dirac points located at k±

D = (0, 0,±kD), with kD = a−1

arccos(1 − r0/r1). Throughout our calculation, we fix the pa-
rameters r0 = r1 = u, which gives kD = π/2a.
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In real space, the Hamiltonian becomes

HTDSM =
∑

r

∑
i=0,x,y,z

[c†
r Dicr+ai + H.c.] (39)

in the operator formalism, where c(†)
r is the four-component

annihilation (creation) operator at the lattice site r. The vectors
ai=0,x,y,z are defined as a0 = 0 and ax,y,z = aex,y,z, with the
Cartesian unit vectors ex,y,z, and the matrices Di=0,x,y,z are
defined as

D0 = − r0 − 3r1

2
τz, Dz = − r1

2
τz,

Dx = iu

2
τxσz − r1

2
τz, Dy = iu

2
τy − r1

2
τz. (40)

In order to simulate the setup shown in Fig. 1(a), we here
take open-boundary conditions in x and y directions, with the
size represented by Lx and Ly. For the z direction, we take a
periodic boundary condition, with the size Lz. The number of
sites Nx,y,z in each direction is related to the system size by
Lx,y,z = aNx,y,z.

The magnetizations in the FMIs are defined as macrospins,
with their directions denoted by the unit vectors

ni = (sin θi cos φi, sin θi sin φi, cos θi ) (i = 1, 2). (41)

We investigate their dynamics by solving the Landau-Lifshitz-
Gilbert (LLG) equation, as we discuss in detail in Sec. IV B,
and hence we do not implement their dynamical properties in
the Hamiltonian of the TDSM. We require that the magneti-
zations n1,2 are coupled to the electron spins in the TDSM at
the boundaries x = 0 and x = Lx, respectively. The coupling
is described by the Hamiltonian

Hexc = Jexc

x=0∑
r

c†
r (n1 · �)cr + Jexc

x=Lx∑
r

c†
r (n2 · �)cr, (42)

with the phenomenological coupling constant Jexc. The ma-
trix � characterizes how the exchange coupling depends on
the atomic orbital (s or p) that each electron in the TDSM
belongs to [73]. Here, we define it as � = (1 + τz )σ, so that
the structure of the exchange coupling shall be invariant under
a C4 rotation around the z axis. By incorporating this coupling
term, H = HTDSM + Hexc is the full Hamiltonian for the elec-
trons in the TDSM.

B. Simulation method

Based on the lattice model defined above, we perform a
numerical simulation of the dynamics of the electrons and the
magnetization. The aim of this simulation is to evaluate the
influence of the magnetization dynamics in FM1 n1(t ) on
the magnetization dynamics in FM2 n2(t ), which character-
izes the spin current transmitted via the TDSM. In order to
evaluate them, we simultaneously solve the time-dependent
Schrödinger equation

i∂t |�(t )〉 = H(t )|�(t )〉 (43)

for the many-body wave function |�(t )〉 for all the electrons
in the TDSM [74,75] and the LLG equation

ṅ2(t ) = −γ Beff (t ) × n2 + αn2 × ṅ2 (44)

for the magnetization in FM2 n2(t ), with γ being the gy-
romagnetic ratio and α being the Gilbert damping constant.
We introduce the dynamics of n1(t ) as the input and do not
evaluate the feedback on n1(t ) from the electron dynamics.
The Hamiltonian H(t ) for the electrons depends on n2(t ),
and the effective magnetic field Beff (t ) for FM2 depends on
|�(t )〉 via the exchange coupling. In particular, if we define
the number and magnitude of spins in FM2 as Ns and S, the
effective magnetic field Beff (t ) for each spin is given by

γ Beff (t ) = − 1

NsS

〈
∂H
∂n2

〉
(t )

= − Jexc

NsS

x=Lx∑
r

〈c†
r �cr〉(t ), (45)

where 〈O〉(t ) denotes the expectation value of the operator
O evaluated with the many-body wave function |�(t )〉. Equa-
tions (43) and (44) are thus correlated, from which we can
evaluate the spin-current transmission via the TDSM.

As the initial condition for t < 0, we set n1(t < 0) =
n2(t < 0) = ex and take |�(t < 0)〉 as the Slater determinant
of the occupied states in equilibrium, where all the eigenstates
in the TDSM below the Fermi energy εF = 0 are occupied. At
time t = 0, we switch on the in-plane magnetization dynamics
in FM1

n1(t ) = (cos �t, sin �t, 0), (46)

with the precession periodicity Tp = 2π/�, and solve the
time-dependent equations (43) and (44) simultaneously. In
order to evaluate the effect of the transmitted spin current ex-
clusively, we neglect the Gilbert damping α and solve Eq. (44)
solely with Beff from the exchange coupling. We suppose
that the spins in FM2 are residing on the lattice sites at the
interface x = Lx, which yields Ns = NyNz, and fix S = 1 for
the simplicity of calculation. Throughout our simulations, we
fix Ny = 28 and Nz = 16.

C. Spin current versus spin torque

Before showing our simulation results, we discuss how
the spin torque on FM2 calculated from the simulation is
related to the spin current flowing into FM2, to compare the
simulation results with the analytical estimations given in the
previous section. From the torque ṅ2(t ) = −γ Beff × n2 on
FM2, we extract the dampinglike component

τDL(t ) = (ṅ2 · e2θ )e2θ (t ) = −ṅ2z(t )√
1 − n2

2z

e2θ (t ), (47)

where the unit vector e2θ (t ) is defined by

e2θ (t ) = n2 × n2 × ez

|n2 × ez|
= (cos θ2 cos φ2, cos θ2 sin φ2,− sin θ2). (48)

The dampinglike torque tilts the magnetization toward the
z axis, which originates from the spin angular momentum
injected into the magnet.

We need to check whether the surface-mediated spin cur-
rent estimated in the previous section is the main contribution
to the dampinglike torque τDL(t ). From the discussion in
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FIG. 7. (a) Time evolution of the components of n2(t ) for Jexc =
0.5u, Tp = 20u−1, and Lx = 16a. The inset shows the time evolution
of n2(t ) on the Bloch sphere. (b) Time evolution of the ratio ρ(t )
of the dampinglike torque τDL(t ) in comparison with τ̄stt (t ) from the
surface transport picture, with several values of Tp for Jexc = 0.5u
and Lx = 16a.

the previous section, the net spin current flowing into FM2
reaches the semiquantized value

Ī s(tot)
2 = Lz j̄s

2 = LzkD�

π2
(49)

in our lattice system, if the spin transport is dominated by the
helical surface states. On the normalized magnetization n2(t )
in FM2, this spin current may exert a spin-transfer torque
[14]

τ̄stt (t ) = γ

M (tot)
n2 × (

n2 × Ī s(tot)
2 ez

)

=
√

1 − n2
2z

NsS
Īs(tot)
2 e2θ (t ) (≡ τ̄stte2θ ), (50)

where M (tot) = γ NsS denotes the net magnetic moment in
FM2.

Therefore, in order to check whether the surface transport
picture is valid, we compare the numerically calculated damp-
inglike torque τDL(t ) with this surface-mediated spin-transfer
torque τ̄stt (t ) from estimation, by evaluating their ratio ρ(t ) ≡
τDL(t )/τ̄stt (t ). By using the particular settings kD = π/2a,
Ns = NyNz, and S = 1 employed in our simulation, this ratio
can be derived from the time evolution of n2(t ),

ρ(t ) ≡ τDL(t )

τ̄stt (t )
= NyTp

−ṅ2z(t )

1 − n2
2z

, (51)

which we shall plot in the following figures. If this ratio ρ(t )
reaches unity, we can understand that the spin transmission in
the TDSM is dominated by its surface states.

D. Results and discussion

We now show our results of the numerical simulations.
First, we demonstrate a typical time-evolution behavior of
n2(t ) in Fig. 7(a). We here take the parameters Jexc =
0.5u, Lx = 16a, and Tp = 20u−1. As mentioned above, n2 is
fixed to the x direction as the initial condition (t < 0). After
the magnetization dynamics n1(t ) in FM1 is switched on at
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FIG. 8. (a) Time evolution of the ratio ρ(t ) of the dampinglike
torque τDL(t ) in comparison with τ̄stt (t ) from the surface transport
picture, with several values of Jexc for Tp = 20u−1 and Lx = 16a.
(b) The time-averaged ratio ρave in the window 25u−1 < t < 40u−1

for several values of Jexc, with Tp = 20u−1 and Lx = 16a. The error
bar on each data point represents the maximum deviation of ρ(t )
from the averaged value.

t = 0, the magnetization n2(t ) in FM2 also deviates from its
initial direction, which implies that spin angular momentum is
transmitted from FM1 to FM2 via the TDSM. We can see that
the out-of-plane component n2z evolves first at the early stage
of the magnetization dynamics, which can be considered as
the effect of the dampinglike torque from the transmitted spin
current.

In order to see the nature of the transmitted spin current in
more detail, we plot in Fig. 7(b) the time evolution of ρ(t ),
namely, the ratio of the dampinglike torque τDL(t ) from this
simulation in comparison with the spin-transfer torque τ̄stt (t )
from the surface transport picture, with several values of Tp.
We can see that, for any value of Tp in these calculations, ρ(t )
reaches unity at the time t ∼ 20u−1, which implies that the
spin current is dominated by the helical surface states of the
TDSM, as predicted in Sec. III C.

The time evolution of the dampinglike torque τ
(tot)
DL (t ) can

be associated with the transient steps (b)–(d) described in
Sec. III C (or Fig. 6) as follows. Its zero-value plateau for
t � u−1 can be regarded as step (b), with the spin signal from
FM1 propagating toward FM2. The semiquantized plateau for
20u−1 � t � 40u−1 corresponds to step (c), where the signal
from FM1 is reflected by FM2 and is injecting spin angular
momentum into FM2. For 40u−1 � t , the injected spin current
deviates from the semiquantized value. This behavior can be
associated with step (d), where the signal reflected by FM2
returns to FM1 and gradually enters FM2 again, enhancing
the spin injection into FM2.

We next investigate how the transmitted spin current is
affected by the exchange coupling parameter Jexc at the in-
terfaces of the TDSM and the FMIs. Figure 8(a) shows the
time evolution of the ratio ρ(t ) between τDL(t ) and τ̄stt (t )
for several values of Jexc, with Tp = 20u−1. While ρ(t ) for
Jexc � 0.4u shows a plateau close to unity at the early stage
of the magnetization dynamics, the plateau for Jexc = 0.2u
is lower than unity. The suppression of the plateau for
small Jexc can be clearly seen by plotting the time-averaged
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FIG. 9. (a) Time evolution of the ratio ρ(t ) = τDL(t )/τ̄stt (t ) un-
der the random disorder potential for several values of the disorder
strength W , with Jexc = 0.5u, Tp = 20u−1, and Lx = 16a. The error
bar on each data point represents the standard error of ρ(t ) with
respect to the disorder. (b) The time-averaged value ρave of the ratio
ρ(t ) in the window 25u−1 < t < 40u−1 for several values of W , with
Jexc = 0.5u, Tp = 20u−1, and Lx = 16a.

value of ρ(t ),

ρave = 1

tfin − tini

∫ tfin

tini

dt ρ(t ), (52)

for tini = 25u−1 and tfin = 40u−1, which is shown in Fig. 8(b).
The dependence on Jexc can again be understood from the
surface transport picture: The semiquantized spin current is
achieved if the magnetization dynamics is adiabatic, which
requires the exchange gap 2Jexc on the surface spectrum to
be much larger than the precession frequency � = 2π/Tp ≈
0.3u−1 of the magnetization n1(t ) (for Tp = 20u−1).

In order to check the robustness of spin transmission
against disorder, we introduce the local random potential

Hdis =
∑

r

Vrc
†
r cr, (53)

where Vr takes a random value Vr ∈ [−W/2,W/2] for each
lattice site r, with W characterizing the strength of the dis-
order. With 20 profiles of the random disorder potential Vr,
we simulate the time evolution of n2(t ) and take the average
of n2(t ) over the 20 profiles to evaluate the disorder-averaged
behavior. The time evolution of the ratio ρ(t ) = τDL(t )/τ̄stt (t )
and its time-averaged value ρave in the window t = 25u−1 to
40u−1 are shown in Figs. 9(a) and 9(b), with Tp = 20u−1,
J = 0.5u, and Lx = 16a. We calculate both the standard errors
of the dampinglike torque with respect to the disorder and
the disorder-averaged oscillations of the dampinglike torque
and plot the larger one as the error bar for each data point.
We can see that the plateau ρ(t ) ≈ 1 is achieved for a weak
disorder W � 2u, due to the robustness of the helical sur-
face states under disorder with time-reversal symmetry. The
plateau value is gradually suppressed under a strong disorder,
once its magnitude exceeds the bandwidth ∼2u of the Dirac
bands in the bulk.

Finally, in order to check the robustness of the surface
spin transport over a long range, we vary the system size
Lx and observe its effect on the torques. In Fig. 10(a), we
show the time evolution of the ratio ρ(t ) = τDL(t )/τ̄stt (t ) for
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FIG. 10. (a) Time evolution of the ratio ρ(t ) = τDL(t )/τ̄stt (t ) un-
der the random disorder potential of W = u for several values of the
system size Lx , with Jexc = 0.5u and Tp = 20u−1. The error bar on
each data point represents the standard error of ρ(t ) with respect to
the disorder. (b) The relation between the system size Lx and the time
trise when the calculated ratio ρ(t ) = τDL(t )/τ̄stt (t ) rises to the plateau
ρ(t ) ≈ 1. The calculated trise agrees well with trise = Lx/vedge, which
comes from the surface transport picture with the velocity vedge = ua.

several values of Lx, with the disorder strength W = u. We can
see that ρ(t ) rises to the plateau ≈1 at trise ≈ Lx/vedge (here,
vedge ≈ ua), as shown in Fig. 10(b), namely, the time when an
electron propagating from FM1 arrives at FM2. Moreover, the
semiquantized plateau is not significantly violated by the dis-
order, even for a long distance Lx = 24a. From these results,
we can conclude that the helical surface states of the TDSM
can realize a long-range spin transport that is robust against a
moderate disorder below the bulk bandwidth.

V. CONCLUSION

In this paper, we have theoretically demonstrated a long-
range spin transport realized by the surface states of a TDSM.
TDSMs, such as Cd3As2 and Na3Bi, have quasi-1D gapless
states on the surface in the form of Fermi arcs, which are
spin helical and robust against disorder keeping time-reversal
symmetry. By taking a junction of two FMIs and a TDSM as a
model setup, as shown in Fig. 1, we have investigated the spin
transfer between the two FMIs driven by the magnetization
dynamics in one FMI (FM1). We have evaluated the spin
transfer both analytically by evaluating the electron numbers
in the helical surface channels based on the 1D scattering
theory and numerically by simulating the real-time evolution
of all the electrons in the TDSM on a lattice model. As a result,
we have found that the spin transfer between the two FMIs at
charge neutrality is dominated by the helical surface states and
that such a surface spin transport is almost insensitive to the
disorder keeping time-reversal symmetry.

In particular, at the early stage of the spin transmission after
turning on the magnetization dynamics, we have found that
the transmitted spin current reaches the semiquantized value
j̄s
2, which is a universal value determined by the precession

frequency � of the magnetization dynamics in FM1 and the
number of helical channels νz on the surface, correspond-
ing to the distance of the Dirac points 2kD in momentum
space. This semiquantized spin current is achieved if the
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magnetization opens a large exchange gap on the helical sur-
face states in comparison with the frequency �. This condition
is in common with the quantized charge pumping driven by
magnetization dynamics on the helical edge states of QSHI
[53–61]. Indeed, as discussed in Sec. III, the (semi)quantized
charge current and spin current are described in the unified
framework based on the edge (surface) transport picture, and
they are related independently of the coupling to the FMIs,
as in Eq. (6). Since our analysis and simulation show that the
transmitted spin current will deviate from the semiquantized
value after a long time of magnetization dynamics in FM1, we
expect that the semiquantized spin current can be measured if
the magnetization dynamics is in a short time, e.g., driven by
a microwave pulse.

From our findings in this paper, we expect that the helical
surface states of the TDSM are advantageous for long-range
spin transport, in comparison with conduction electrons in
normal metals or magnons (spin waves) in magnetic in-
sulators. Plus, in comparison with 1D edge states of 2D
topological insulators (QSHIs) and Chern insulators, the heli-
cal surface states of 3D TDSMs are advantageous in that they
consist of many 1D channels and are capable of transferring
a large spin current. The recent transport measurement of a
heterostructure of the TDSM Cd3As2 and a FMI indicates the
effect of exchange splitting on the surface states [41], and
hence we may expect that the long-range spin transport can
be possibly measured with such heterostructures of Cd3As2.
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APPENDIX: S MATRIX

We here evaluate the scattering rates R(ε) and T (ε) intro-
duced in Sec. III A, which are defined in the rotating frame
of spin. Assuming that the FMI is of length L and located
at x‖ = 0, the Hamiltonian for the edge electrons in the rest
frame is given as

H (t ) = vedge p‖σz + Jn(t ) · σπL(x‖), (A1)

where πL(x‖) is the rectangular function taking a value 1
for −L/2 < x‖ < L/2 and 0 otherwise, and p‖ = −i∂/∂x‖
is the momentum operator along x‖. We take the precession
of magnetization around the z axis, where the magnetization
direction n(t ) is given as

n(t ) = ( sin θ cos(�t + φ), sin θ sin(�t + φ), cos θ ). (A2)

We introduce Jz = J cos θ and J⊥ = J sin θ for later discus-
sions. J⊥ gives the exchange gap, if the magnetization is
stationary.

FIG. 11. Schematic pictures for the scattering problem in the
rest frame (top) and the rotating frame (bottom). By the unitary
transformation U (t ) to the rotating frame of spin, the direction of the
magnetization is fixed, and the energies of the incoming and outgoing
electrons are shifted.

The magnetization n(t ) is fixed in the rotating frame of
spin. By the time-dependent unitary transformation

U (t ) = ei�tσz/2, (A3)

which rotates spin by the angular velocity � around the z axis,
the Hamiltonian becomes time independent,

H̃ = U (t )[H (t ) − i∂t ]U
†(t )

=
(

vedge p‖ − �

2

)
σz + Jn(t = 0) · σπL(x‖), (A4)

as schematically shown in Fig. 11. Therefore we can apply
the conventional scattering theory with a time-independent
scatterer in this rotating frame, to treat the charge and spin
pumping by the precessing magnetization. We here fix the
energy ε̃ in this frame, evaluate the eigenstate in each region,
and connect the obtained eigenstates to derive the scattering
solution.

(i) In the nonmagnetic region, the solutions are simply
the eigenstates of spin. The plane-wave solutions for right-
moving spin-↑ electrons and left-moving spin-↓ electrons are
given as

eik↑x‖

(
1
0

) (
vFk↑ = ε̃ + �

2

)
, (A5)

eik↓x‖

(
0
1

) (
vFk↓ = −ε̃ + �

2

)
, (A6)

respectively.
(ii) The solutions in the magnetic region are given as

eik±x‖φ±
ε̃ , (A7)

where the momentum k± is defined by

vedgek± = ±vedgeK − Jz + �

2

(
vedgeK ≡

√
ε̃2 − J2

⊥
)

(A8)
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and φ±
ε̃ is the eigenvector of the matrix

H̃ |p‖=k±,πL (x‖ )=1 =
(

vedgek± − �
2 + Jz J⊥e−iφ

J⊥eiφ −vedgek± + �
2 − Jz

)

=
(±vedgeK J⊥e−iφ

J⊥eiφ ∓vedgeK

)
(A9)

for the eigenvalue ε̃. In particular, one can write φ±
ε̃ as

φ+
ε̃ =

(
uε̃

vε̃eiφ

)
, φ−

ε̃ =
(

vε̃e−iφ

uε̃

)
, (A10)

with (
uε̃

vε̃

)
=

(
ε̃ + vedgeK

J⊥

)
, (A11)

without normalization. If ε̃ is inside the exchange gap (|ε̃| <

J ), k± becomes imaginary, and the solutions become expo-
nentially growing and decaying functions.

With the above solutions, we can construct the overall wave
function as

ψ (x‖) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A↑eik↑x‖

(
1
0

)
+ A↓eik↓x‖

(
0
1

) (
x‖ < − L

2

)
B+eik+x‖φ+

ε̃ + B−eik−x‖φ−
ε̃

( − L
2 < x‖ < L

2

)

C↑eik↑x‖

(
1
0

)
+ C↓eik↓x‖

(
0
1

) (
L
2 < x‖

)
.

(A12)

The boundary conditions at x‖ = ± L
2 lead to the relations

A↑e−ik↑L/2

(
1
0

)
+ A↓e−ik↓L/2

(
0
1

)
= B+e−ik+L/2

(
uε̃

vε̃eiφ

)
+ B−e−ik−L/2

(
vε̃e−iφ

uε̃

)
, (A13)

C↑eik↑L/2

(
1
0

)
+ C↓eik↓L/2

(
0
1

)
= B+eik+L/2

(
uε̃

vε̃eiφ

)
+ B−eik−L/2

(
vε̃e−iφ

uε̃

)
, (A14)

which can be assembled into the matrix forms as(
A↑e−ik↑L/2

A↓e−ik↓L/2

)
=

(
uε̃e−ik+L/2 vε̃e−iφ−ik−L/2

vε̃eiφ−ik+L/2 uε̃e−ik−L/2

)(
B+
B−

)
, (A15)

(
C↑eik↑L/2

C↓eik↓L/2

)
=

(
uε̃eik+L/2 vε̃e−iφ+ik−L/2

vε̃eiφ+ik+L/2 uε̃eik−L/2

)(
B+
B−

)
. (A16)

Therefore the relation between A↑/↓ and C↑/↓ is given as
(

C↑eik↑L/2

C↓eik↓L/2

)
=

(
uε̃eik+L/2 vε̃e−iφ+ik−L/2

vε̃eiφ+ik+L/2 uε̃eik−L/2

)(
uε̃e−ik+L/2 vε̃e−iφ−ik−L/2

vε̃eiφ−ik+L/2 uε̃e−ik−L/2

)−1(
A↑e−ik↑L/2

A↓e−ik↓L/2

)
(A17)

= 1

u2
ε̃ − v2

ε̃

(
u2

ε̃eik+L − v2
ε̃ eik−L uε̃vε̃e−iφ (eik−L − eik+L )

uε̃vε̃eiφ (eik+L − eik−L ) u2
ε̃eik−L − v2

ε̃ eik+L

)(
A↑e−ik↑L/2

A↓e−ik↓L/2

)
. (A18)

From the definitions vedgek↑/↓ = ±ε̃ + �
2 and vedgek± = ±vedgeK − Jz + �

2 , this relation can be further reduced as(
C↑eiε̃L/2vedge

C↓e−iε̃L/2vedge

)
= e−iJzL/vedge

u2
ε̃ − v2

ε̃

(
u2

ε̃eiKL − v2
ε̃ e−iKL uε̃vε̃e−iφ (e−iKL − eiKL )

uε̃vε̃eiφ (eiKL − e−iKL ) u2
ε̃e−iKL − v2

ε̃ eiKL

)(
A↑e−iε̃L/2vedge

A↓eiε̃L/2vedge

)
(A19)

≡ e−iJzL/vedge

(
�↑↑ �↑↓
�↓↑ �↓↓

)(
A↑e−iε̃L/2vedge

A↓eiε̃L/2vedge

)
. (A20)

Here, we need to recast the above relation into the form of
the S matrix,

(
C↑
A↓

)
=

(
t̃↑↑(ε̃) r̃↑↓(ε̃)
r̃↓↑(ε̃) t̃↓↓(ε̃)

)(
A↑
C↓

)
. (A21)

The relation

C↓e
−i ε̃L

2vedge = e
−i JzL

vedge

[
�↓↑A↑e

−i ε̃L
2vedge + �↓↓A↓e

i ε̃L
2vedge

]
(A22)

can be rewritten as

A↓ = e
−i ε̃

vedge
L

⎡
⎣−�↓↑

�↓↓
A↑ + e

i Jz
vedge

L

�↓↓
C↓

⎤
⎦, (A23)

which yields

r̃↓↑(ε̃) = −e
−i ε̃

vedge
L �↓↑
�↓↓

(A24)

= −e
−i

(
ε̃

vedge
L−φ

)
uε̃vε̃ (eiKL − e−iKL )

u2
ε̃e−iKL − v2

ε̃ eiKL
, (A25)

t̃↓↓(ε̃) = e
−i ε̃

vedge
L e

i Jz
vedge

L

�↓↓
(A26)

= e
−i ε̃−Jz

vedge
L u2

ε̃ − v2
ε̃

u2
ε̃e−iKL − v2

ε̃ eiKL
. (A27)

The relation

C↑e
i ε̃L

2vedge = e
−i JzL

vedge

[
�↑↑A↑e

−i ε̃L
2vedge + �↑↓A↓e

i ε̃L
2vedge

]
(A28)
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can be rewritten as

C↑ = e
−i Jz

vedge
L
[
�↑↑A↑e

−i ε̃
vedge

L + �↑↓A↓
]

(A29)

= e
−i Jz

vedge
L
[
�↑↑A↑e

−i ε̃
vedge

L + �↑↓(r̃↓↑A↑ + t̃↓↓C↓)
]
,

(A30)

which yields

t̃↑↑(ε̃) = e
−i Jz

vedge
L
[
�↑↑e

−i ε̃
vedge

L + �↑↓r̃↓↑(ε̃)
]

(A31)

= e
−i ε̃+Jz

vedge
L u2

ε̃ − v2
ε̃

u2
ε̃e−iKL − v2

ε̃ eiKL
, (A32)

r̃↑↓(ε̃) = e
−i Jz

vedge
L
�↑↓t̃↓↓(ε̃) (A33)

= −e
−i( ε̃

vedge
L+φ) uε̃vε̃ (eiKL − e−iKL )

u2
ε̃e−iKL − v2

ε̃ eiKL
. (A34)

The obtained reflection and transmission rates in the ro-
tated frame satisfy the detailed balance relations

|r̃↑↓(ε̃)|2 = |r̃↓↑(ε̃)|2, (A35)

|t̃↑↑(ε̃)|2 = |t̃↓↓(ε̃)|2, (A36)

which are R(ε̃) and T (ε̃) defined in the main text. From the
above calculations, these rates are explicitly obtained as

R(ε̃) = 1 − cos(2KL)(
2ε̃2/J2

⊥
) − 1 − cos(2KL)

, (A37)

T (ε̃) =
(
2ε̃2/J2

⊥
) − 2(

2ε̃2/J2
⊥
) − 1 − cos(2KL)

, (A38)

where

K = 1

vedge

√
ε̃2 − J2

⊥. (A39)

We can check that they satisfy the unitarity condition

R(ε̃) + T (ε̃) = 1. (A40)
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