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We derive a general relation between the bosonic and fermionic entanglement in the ground states of
supersymmetric quadratic Hamiltonians. For this, we construct canonical identifications between bosonic and
fermionic subsystems. Our derivation relies on a unified framework to describe both bosonic and fermionic
Gaussian states in terms of so-called linear complex structures J . The resulting dualities apply to the full
entanglement spectrum between the bosonic and the fermionic systems, such that the von Neumann entropy
and arbitrary Renyi entropies can be related. We illustrate our findings in one- and two-dimensional systems,
including the paradigmatic Kitaev honeycomb model. While typically supersymmetry preserves features like
area law scaling of the entanglement entropies on either side, we find a peculiar phenomenon, namely, an
amplified scaling of the entanglement entropy (“super area law”) in bosonic subsystems when the dual fermionic
subsystems develop almost maximally entangled modes.
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I. INTRODUCTION

As a long-established concept in quantum physics, super-
symmetry (SUSY) finds applications in a wide range of fields
from particle physics to condensed matter in both relativistic
and nonrelativistic settings [1–5]. In a nutshell, SUSY posits a
fundamental equivalence between the two classes of elemen-
tary particles with distinct statistics. Mathematically, it maps
the fermionic degrees of freedom to the bosonic ones and vice
versa. From this perspective, they are equivalent and dubbed
superpartners of each other.

While normally SUSY is conceived as a symmetry in quan-
tum field theories, it as well applies to much simpler models of
quantum mechanics such as harmonic oscillators or the hydro-
gen atom [6–9]. The SUSY Hamiltonian Ĥ can be constructed
from a generating operator Q̂ (also called the supercharge
operator) which, for the harmonic oscillator problem, takes a
remarkably simple form Q̂ = √

ωb̂†ĉ, where b̂ (ĉ) denotes the
bosonic (fermionic) annihilation operator. The corresponding
SUSY Hamiltonian

Ĥ = {Q̂, Q̂†} = ω(b̂†b̂ + ĉ†ĉ) ≡ Ĥb + Ĥf , (1)

then decomposes into two simple quadratic Hamiltonians: one
for a bosonic oscillator (Ĥb) and the other for a fermionic one
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(Ĥf ). When it comes to dealing with real bosons or fermions,
a Hermitian form of the generating operator Q̂ = Q̂† (and
accordingly, Ĥ = Q̂2) is useful, as also is the case for this
paper.

Such a simple setting is readily amenable to accommodate
multiple bosonic and fermionic modes, or in other words,
systems of free (noninteracting) bosons and fermions (in
the continuum or on a lattice) if the generating operator Q̂
involves the bosonic and fermionic operators to linear or-
der [10,11], as shown in the previous harmonic oscillator
example and also will be demonstrated later. The resulting
partner Hamiltonians (referred to as Ĥb and Ĥf for bosons
and fermions, respectively) are isospectral in their one-particle
excitations except for zero modes. Inclusion of zero modes
in SUSY has, in addition, a topological aspect (referred to as
“Witten index” [12] and interpreted in several other contexts,
e.g., see Ref. [13]) and has been studied to a great extent;
however, that discussion is not relevant to this paper.

Ground states of a quadratic Hamiltonian (bosonic or
fermionic) garner special attention, as they provide a fertile
ground to trace several properties of the system, which they
are part of, analytically. These states are also known as Gaus-
sian states [14–18]. The study of the von Neumann bipartite
entanglement entropy plays a central role in the quantum
foundations of statistical mechanics [19–35], in quantum in-
formation theory [36–45], and condensed matter dedicated
to classifying novel states of matter, particularly those with
topological quantum order [46–54]. While measuring entan-
glement is numerically costly for a generic quantum state, it
greatly simplifies for the Gaussian states [55,56].

The main result of this paper is a duality between the
eigenvalues of reduced density operators in the bosonic and
the fermionic system, i.e.,the so-called entanglement spectra.
For Gaussian states, these spectra are fully encoded in the
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eigenvalues ±iλ of the so-called restricted complex structure
J , where λb ∈ [1,∞) for bosons and λf ∈ [0, 1] for fermions.
In supersymmetric systems, the charge operator Q̂ provides an
identification between the bosonic and the fermionic system,
so that picking a subsystem on the bosonic side automatically
defines a related subsystem on the fermionic side and vice
versa. Our key finding is that, under identification, we have
λb = 1/λf and Jb = −J−1

f , where we use b and f to refer to
the bosonic and fermionic structure, respectively.

Applying our results to examples, we also discuss conse-
quences of the derived duality for the entanglement entropy
in Gaussian states related by SUSY. Though not always, en-
tanglement entropy often turns out to be a sufficient measure
(among others) of the entanglement information encoded in a
quantum state [57–59]. In fact, in a number of strongly corre-
lated systems, this quantity serves as a smoking gun to identify
topological quantum order in the ground states. Examples
include Kitaev’s celebrated model of Majorana fermions on
a honeycomb lattice [60]. In earlier works [11], the bosonic
SUSY analog of this model has been realized and shown to
inherit the topological properties from its fermionic partner.
We will also regard this model here, as one of our examples
to illustrate the aspects of entanglement dualities considering
the SUSY-related Gaussian states.

Generally speaking, for noncritical ground states in d
dimensions (for both fermionic and bosonic systems), the
entanglement entropy of a subsystem A obeys the so-called
“area law” (for a review, see Refs. [58,61] and references
therein)

S (A) ∝ Ld−1 + . . . , (2)

meaning that, in the thermodynamic limit, the leading or-
der contribution to the entanglement entropy of A with the
rest of the system scales with its surface area Ld−1 when
L denotes the linear dimension of A. For critical states,
however, the ellipses in Eq. (2) can contain sublinear cor-
rections (e.g.,logarithmic corrections for free fermions), and
for topologically ordered states, a universal constant called
“topological entanglement entropy.”

The identification provided by the supercharge Q̂ facili-
tates a natural connection between a subsystem in one lattice
and a subsystem in the superpartner lattice. A priori, this iden-
tification does not warrant a local subsystem in one system
to get mapped to a localized subsystem in its superpartner
system. However, we will show that, even when well-localized
subregions are identified of both lattices, the scaling of the
entanglement entropy of the dual supersymmetric subsystem
can be very different—on the bosonic side, it can drastically
exceed the area law exhibited by the original fermionic sub-
system.

In summary, this paper extends the concept of SUSY be-
yond a spectral mapping between (supersymmetric) quadratic
Hamiltonians to discuss the general identification of fermionic
and bosonic supersymmetric Gaussian systems, their subsys-
tems, and entanglement spectra as implied by the supercharge
operator. Exemplifying lattice models in one dimensions (1D)
and two dimensions (2D), we investigate the locality proper-
ties of these identification maps and their consequences in the
context of entanglement area laws. In doing so, we employ
the idea of Kähler structure, which brings the bosonic and

fermionic Gaussian states within a unified frame to work in. A
further merit of this approach lies in treating the involved ge-
ometric structures independent of their matrix representation
in a given basis, as discussed at length, e.g.,in Refs. [62–64].

This paper is structured as follows: In Sec. II, we review
the unified Kähler structure formalism to describe bosonic
and fermionic Gaussian states and apply it to supersymmet-
ric quadratic Hamiltonians, where a charge operator induces
an identification map at the classical phase space level. In
Sec. III, we explore how the entanglement entropies in the
bosonic and fermionic systems are related and introduce a
general theorem on their entanglement spectra. In Sec. IV, we
summarize our key findings complemented by lattice models
as applications and discuss future work.

II. GAUSSIAN STATES AND SUSY

In this section, we review the unified formalism that treats
both bosonic and fermionic Gaussian states on the same
footing. For this, we present a hands-on introduction to the
formalism of Ref. [63], which can be consulted for a more
rigorous exposition. Other reviews of Gaussian states include
Ref. [15].

A. Bosonic and fermionic Gaussian states

We consider a bosonic or fermionic system with N degrees
of freedom described by a Hilbert space H. We can always
find a basis of creation and annihilation operators which we
denote as b̂i and b̂†

i for bosons and as ĉi and ĉ†
i for fermions,

but we use âi and â†
i in expressions valid for both bosons and

fermions (see Table I). These operators satisfy the canonical
commutation or anticommutation relations (CCR/CAR)

[b̂i, b̂†
j] = δi j (bosons),

{ĉi, ĉ†
j } = δi j (fermions). (3)

Out of these, we can construct a set of 2N Hermitian operators

q̂i = 1√
2

(b̂†
i + b̂i ), p̂i = i√

2
(b̂†

i − b̂i ) (bosons),

γ̂i = 1√
2

(ĉ†
i + ĉi ), η̂i = i√

2
(ĉ†

i − ĉi ) (fermions), (4)

which satisfy the commutation or anticommutation relations

[q̂i, q̂ j] = [ p̂i, p̂ j] = 0, [q̂i, p̂ j] = iδi j (bosons),

{γ̂i, γ̂ j} = {η̂i, η̂ j} = δi j, {γ̂i, η̂ j} = 0 (fermions). (5)

For bosons, these operators are commonly called quadra-
ture operators (generalized positions and momenta), while for
fermions, they are called the Majorana operators.

Up to normalization, there is a unique state |0〉 ∈ H, such
that âi |0〉 = 0 ∀i, which is called the vacuum state with re-
spect to our choice of operators. An orthonormal basis of
H can then be constructed by successively applying creation
operators on |0〉,

|n1, . . . , nN 〉 =
N∏

i=1

(â†
i )ni

√
ni!

|0〉 , (6)

where ni ∈ N for bosons, and ni = 0, 1 for fermions.
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TABLE I. Overview of notations for operator bases. Listed are real (self-adjoint) and complex operator bases for bosons and fermions, as
well as a unified notation used throughout this paper. For an N-mode quantum system, indices are in the range j, k ∈ {1, . . . , N}. The creation
and annihilation operators, in a complex basis, satisfy (CCR/CAR).

Real basis Complex basis

Bosons Quadrature operators ξ̂b ≡ (q̂ j, p̂k ) CCR operators (b̂ j, b̂†
k )

Fermions Majorana operators ξ̂f ≡ (γ̂ j, η̂k ) CAR operators (ĉ j, ĉ†
k )

Unified Hermitian operators ξ̂ Ladder operators (â j, â†
k )

We can now collect the 2N operators to form the vector

ξ̂ a ≡
{

(q̂1, . . . , q̂N , p̂1, . . . , p̂N ) (bosons)

(γ̂1, . . . , γ̂N , η̂1, . . . , η̂N ) (fermions)
, (7)

where we have the index a = 1, . . . , 2N (later, we use Latin
indices exclusively for bosons and Greek indices for fermions,
but for now, we use Latin indices for both). It is well known
that, for both bosons and fermions, any operator O can be
described as a power series in ξ̂ a or as a limit of such a series.
For many physically relevant operators, this series will be
finite and of low order. The CCR or CAR in terms of ξ̂ a read

[ξ̂ a, ξ̂ b] = i�ab (bosons),

{ξ̂ a, ξ̂ b} = Gab (fermions), (8)

where �ab is called the symplectic form, and Gab is a metric.
With respect to our choice of basis in Eq. (7), they are repre-
sented by the matrices

� ≡
(

0 1
−1 0

)
and G ≡

(
1 0
0 1

)
, (9)

and will play an important role in later formulas.
We define1 a Gaussian state |J〉 ∈ H as the solution of2

1
2 (δa

b + iJa
b)ξ̂ b |J〉 = 0. (10)

As shown in Ref. [63], a solution of Eq. (10) exists only
if J2 = −1 and the following compatibility conditions are
satisfied:

(1) For bosons, Gab := −Ja
c�

cb is a metric, i.e.,symmetric
and positive definite.

(2) For fermions, �ab := Ja
cGcb is a symplectic form,

i.e.,antisymmetric and nondegenerate.
The matrix J is called a linear complex structure.
In Eq. (10) and the rest of this paper, we use Einstein’s

summation convention,3 where a sum is implied over repeated

1Here, we restrict to Gaussian states with 〈J|ξ̂ a|J〉 = 0, i.e.,the 1-
point correlation function vanishes. However, the formalism extends
to also include displacements za = 〈J|ξ̂ a|J〉 for bosons, as explained
in Ref. [63].

2Note that Eq. (10) only fixes |J〉 up to a complex phase. This
does not cause any problems when considering individual Gaussian
states, where the complex phase is unphysical. However, if consid-
ering superpositions of Gaussian states |J〉 + |J̃〉, we would need to
parametrize explicitly how the respective complex phases are related.

3All our equations with indices are fully basis independent and
compatible with Penrose’s abstract index notation [65]. In fact, we
can even use complex bases, such as ξ̂ a ≡ (â1, . . . , âN , â†

1, . . . , â†
N )

(see Ref. [63]).

indices (index contraction). The position of the index indicates
if it can be contracted with vectors va ∈ V in phase space or
dual vectors wa ∈ V ∗ in dual phase space. Objects with two
indices are often written as matrices, where matrix multipli-
cation is the same as contraction over adjected indices. This
may require a transpose, e.g.,�acJb

c needs to be written as
(�Jᵀ)ab = �ac(Jᵀ)c

b to make the indices c adjacent.
The above relations introduce for every Gaussian state |J〉

the object Gab for bosons and �ab for fermions, such that we
have in both cases a so-called Kähler structure: This is a triplet
(G,�, J ) such that

Gab = −Ja
c�

cb ⇔ �ab = Ja
cGcb, (11)

the equivalence following from J2 = −1. Moreover, we have
J�Jᵀ = � and JGJᵀ = G.

This definition of Gaussian states, unifying bosons and
fermions, may appear surprising to readers more familiar with
the definition of Gaussian states in terms of covariance ma-
trices or Bogoliubov transformations. However, as shown in
Ref. [63], these definitions are fully equivalent, as we review
in the following.

1. Covariance matrix

The covariance matrix of a quantum state |ψ〉 with
〈ψ |ξ̂ a|ψ〉 = 0 is defined as4


ab =
{

〈ψ |ξ̂ aξ̂ b + ξ̂ bξ̂ a|ψ〉 (bosons)

−i 〈ψ |ξ̂ aξ̂ b − ξ̂ bξ̂ a|ψ〉 (fermions)
, (12)

i.e.,the covariance matrix is exactly the expression that is not
already fixed by the CCR or CAR. Given a Gaussian state |J〉
with associated Kähler structures (G,�, J ), it follows from
Eq. (10) that we have the 2-point function

Cab
2 := 〈J|ξ̂ aξ̂ b|J〉 = 1

2 (Gab + i�ab), (13)

To prove this, we define ξ̂ a
± = 1

2 (δa
b ∓ iJa

b)ξ̂ b, which depends
on J . With this, we find ξ̂ a = ξ̂ a

+ + ξ̂ a
−, and we have ξ̂ a

− |J〉 = 0
and 〈J| ξ̂ a

+ = 0, due to Eq. (10). This implies

Cab
2 = 〈J|ξ̂ a

−ξ̂ b
+|J〉 =

{〈J|[ξ̂ a
−, ξ̂ b

+]|J〉 (bosons)

〈J|{ξ̂ a
−, ξ̂ b

+}|J〉 (fermions)
, (14)

4Some authors use a different normalization or sign. The extension
to states with 〈ψ |ξ̂ a|ψ〉 
= 0 is also straightforward and explained in
Ref. [63].
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due to 〈J|ξ̂ b
+ξ̂ a

−|J〉 = 0. Finally, the commutator or anticom-
mutator above can be evaluated using Eq. (8) to be

[ξ̂ a
−, ξ̂ b

+] = 1
4 (1 + iJ )a

ci�cd (1 − iJ )b
d (bosons),

{ξ̂ a
−, ξ̂ b

+} = 1
4 (1 + iJ )a

cGcd (1 − iJ )b
d (fermions),

(15)

which in both cases combines to 1
2 (G + i�) via Eq. (11).

We can reverse this argument to use Cab
2 (and thus the

covariance matrix 
ab contained in it) of a general state
|ψ〉, with 〈ψ |ξ̂ a|ψ〉 = 0, to check if |ψ〉 is a Gaussian state,
i.e.,|ψ〉 = |J〉 and find J . For this, we first compute Gab =
2 Re 〈ψ |ξ̂ aξ̂ b|ψ〉 and �ab = 2 Im 〈ψ |ξ̂ aξ̂ b|ψ〉 and then invert
Eq. (11) to compute

Ja
b = �ac(G−1)cb. (16)

One can then show [63] that J2 = −1 is necessary and suf-
ficient for |ψ〉 to be the Gaussian state |J〉, i.e.,a solution of
Eq. (10). However, if J2 
= −1, |ψ〉 is not a Gaussian state.

2. Bogoliubov transformations

These transformations map Gaussian states into Gaussian
states, hence, are also termed Gaussian transformations. For
a Gaussian state |J〉 annihilated by a set of annihilation op-
erators â′

i, i.e.,â′
i |J〉 = 0, the following transformation relates

them to the original âi

â′
i =

∑
j

(αi j âi + βi j â
†
j ), (17)

where the matrix elements αi j and βi j characterize the
transformation. Defining a Gaussian state |J0〉 as the state
annihilated by all âi, i.e.,âi |J0〉 = 0, we can use Eqs. (16) and
(9) to compute that J0 is represented by the matrix

J0 ≡
(

0 1
−1 0

)
, (18)

from which we deduce the resulting Bogoliubov transformed
state |J〉 with J = MJ0M−1, where the matrix M is [64]

M =
(

Re α + Re β Im β − Im α

Im α + Im β Re α − Re β

)
. (19)

The matrix M is a group element of the symplectic group
Sp(2N,R) for bosons or the orthogonal group O(2N,R) for
fermions, which induces the unitary representation of Gaus-
sian transformations on the Hilbert space [63].

Example 1. The simplest bosonic Gaussian state is the
ground state of the harmonic oscillator with Hamiltonian Ĥ =
1
2 ( p̂2 + ω2q̂2) that takes the form

|J〉 = 1

cosh ρ

2

∞∑
n=0

(
− tanh

ρ

2

)n

|2n〉 , (20)

with respect to the basis in Eq. (6) and ρ = log ω. Its covari-
ance matrix 
ab = Gab and complex structure as


 = G ≡
(

ω 0
0 1

ω

)
and J ≡

(
0 ω

− 1
ω

0

)
, (21)

with respect to the basis ξ̂ a ≡ (q̂, p̂).
The simplest fermionic Gaussian states are the basis states

|J+〉 = |0〉 and |J−〉 = |1〉, which are also the only Gaussian

states for a single degree of freedom. Their covariance matri-
ces 
± = �± and complex structures J± happen to coincide
in the basis ξ̂ a ≡ (q̂, p̂) as


± = �± ≡ J± ≡
(

0 ±1
∓1 0

)
. (22)

In summary, this section has reviewed how bosonic and
fermionic Gaussian states can be efficiently described in a uni-
fied formalism using the triplet (G,�, J ) of Kähler structures.
Physical properties, such as expectation values or entangle-
ment entropies, can be directly computed from them.

B. Supercharge operator and supersymmetric Gaussian states

We will now consider a system that contains both bosonic
and fermionic degrees of freedom. We denote the bosonic
operators by ξ̂ a

b and the fermionic ones by ξ̂ α
f , where we use

Latin letters for bosons and Greek letters for fermions. The
commutation and anticommutation relations then read[

ξ̂ a
b , ξ̂ b

b

] = i�ab
b and

{
ξ̂ α

f , ξ̂
β

f

} = Gαβ

f , (23)

while the bosonic and the fermionic operators commute
[ξ̂ a

b , ξ̂ α
f ] = 0.

The SUSY transformation between the bosonic and the
fermionic degrees of freedom can be generated by a Hermitian
supercharge operator [10]

Q̂ = Rαaξ̂
α
f ξ̂ a

b , (24)

with a real-valued R. As mentioned already in Eq. (1), this
supercharge defines a supersymmetric Hamiltonian

Ĥ = 1

2
{Q̂, Q̂} = 1

2
hb

abξ̂
a
b ξ̂ b

b + i

2
hf

αβ ξ̂ α
f ξ̂

β

f ≡ Ĥb + Ĥf , (25)

which splits into a bosonic part Ĥb and a fermionic part Ĥf .
Their Hamiltonian forms are

hf
αβ = Rαa�

abRᵀ
bβ, (26)

hb
ab = Rᵀ

aαGαβRβb, (27)

which satisfy hf
αβ = −hf

βα and hb
ab = hb

ba. Note that the full
Hamiltonian’s ground state energy E0 = iRαaRβbGβα�ba =
i tr(GR�ᵀRᵀ) = 0 vanishes, as the bosonic and the fermionic
contributions cancel each other.

The excitation spectrum of Ĥb and Ĥf can be derived by
diagonalizing the Lie generators Kb and Kf , defined via the
relations5[

Ĥ, ξ̂ a
b

] = (Kb)a
bξ̂

b
b and

[
Ĥ , ξ̂ α

f

] = (Kf )αβ ξ̂
β

f . (28)

One can show [63] that these matrices are Lie algebra ele-
ments satisfying

Kb� = −�Kᵀ
b and Kf G = −GKᵀ

f , (29)

which implies Kb ∈ sp(2N,R) and Kf ∈ so(2N,R). Using the
relations in Eq. (3) allows us to compute them explicitly as

(Kb)a
b = 1

2�ac(hcb + hbc) = �acRᵀ
cαGαβRβb, (30)

(Kf )αβ = 1
2 Gαγ (hγ β − hβγ ) = Gαγ Rγ a�

abRᵀ
bβ. (31)

5Alternatively, one can also exploit the Heisenberg equation of
motion leading to d

dt ξ̂
a
b = i[Ĥ , ξ̂ a

b ] = i(Kb)a
bξ̂

b
b and similarly for ξ̂ α

f .

023213-4



ENTANGLEMENT DUALITIES IN SUPERSYMMETRY PHYSICAL REVIEW RESEARCH 3, 023213 (2021)

From this, it is evident that Kb and Kf are isospectral except
for the degeneracy of potential zero eigenvalues.

The ground state of Ĥ is given by the tensor product

|GS〉 = |Jb〉 ⊗ |Jf〉 , (32)

where the associated Jb and Jf are computed from the genera-
tors as [63,66]6

Jb = ∣∣K−1
b

∣∣Kb and Jf = ∣∣K−1
f

∣∣Kf . (33)

These formulas may be surprising at first sight, but they can
be readily checked using a basis, where the individual normal
modes of Ĥ decouple. In this basis, we have

Ĥ =
∑

i

ωi

2

(
n̂b

i + n̂f
i

)
, (34)

where n̂i = â†
i âi are the normal mode number operators and ωi

are the one-particle excitation energies. Note that, due to hb
ab

being positive, all ωi are positive, and we choose n̂f
i , such that

excitations increase energy. If we go into the associated basis
ξ̂ a, where n̂b

i = 1
2 [(q̂b

i )2 + ( p̂b
i )2] and n̂f

i = iγ̂iη̂i, the matrix
representations of the generators are

Kb ≡ Kf ≡ ⊕i

(
0 ωi

−ωi 0

)
. (35)

In this specific basis, Jb and Jf assume the standard form from
Eq. (18), which then implies Eq. (33).

Example 2. The simplest supersymmetric Hamiltonian
consists of one bosonic and one fermionic degree of freedom.
The respective supercharge operator is given by

Q̂ = q̂γ̂ + p̂η̂, (36)

for which we find the Hamiltonian

Ĥ = Q̂2 = 1
2 (q̂2 + p̂2) + i

2 (γ̂ η̂ − η̂γ̂ ). (37)

(equivalent forms of Q̂ and Ĥ in terms of complex bosonic
and fermionic operators are shown in the introduction). The
associated Lie algebra generators are then given by

Kb ≡ Kf ≡
(

0 1
−1 0

)
, (38)

and the associated ground state is |GS〉 = |0b〉 ⊗ |0f〉.

C. Supersymmetric identification maps

We introduced supersymmetric Hamiltonians through the
supercharge operator Q̂ as Ĥ = Ĥb + Ĥf , where Ĥb and Ĥf

have identical one-particle spectra. Both the bosonic and
the fermionic part are described classically by phase spaces
Vb � R2N and Vf � R2N (with the corresponding dual spaces
denoted by V ∗

b and V ∗
f ), respectively, such that Vb is equipped

with the symplectic form �b, and Vf is equipped with a metric
Gf . The respective other structure in each space, i.e.,a metric

6Note that applying a function f (K ), such as the absolute value, to
a diagonalizable matrix K = U −1DU , where D is a diagonal matrix
containing the eigenvalues of K , is equivalent to applying f to its
eigenvalues, i.e., f (K ) = U −1 f (D)U .

G on Vb and a symplectic form � on Vf , is defined by the
ground state |J〉 = |Jb〉 ⊗ |Jf〉 of Ĥ .

In this section, we now use the supercharge Q̂ to construct
linear maps between the two phase spaces L1 : Vb → Vf and
L2 : Vf → Vb that identify the spaces in such a way that the
symplectic forms and metrics are mapped onto each other.

Under the above assumption that Raα is real, the super-
charge operator Q̂ = Rαaξ̂

α
f ξ̂ a

b induces the supersymmetric
identification maps T1 : Vb → Vf and T2 : Vf → Vb as

(T1)αa = GαβRβa and (T2)a
α = �abRᵀ

bα. (39)

These are related to the Lie generators noting Kb = T2T1 and
Kf = T1T2. Hence, T2 maps the eigenvectors of Kf (in Vf,C ,
the complexification on Vf ) to the eigenvectors of Kb with the
same eigenvalue, and for T1, the analogous holds:

Kbvb = ±iλvvb ⇒ Kf T1vb = ±iλvT1vb,

Kfwf = ±iλwwf ⇒ KbT2wf = ±iλwT2wf . (40)

If only the spaces Vb and Vf are given, each equipped with
Kähler structures (G,�, J ), then there exists a large class
of potential identification maps;7 however, the choice of Rαb

fixes this freedom.
We can use the supersymmetric identification maps to

construct normalized identification maps L1 : Vb → Vf and
L2 : Vf → Vb as

L1 = ∣∣K−1
f

∣∣1/2
T1, L2 = ∣∣K−1

b

∣∣1/2
T2, (41)

(where the form of L1 was identified in Ref. [11]). These have
the property that their products exactly reproduce the linear
complex structures

L1L2 = Jf and L2L1 = Jb, (42)

of the ground state of Ĥ .
To see this, it is convenient to work in the eigenbases of

the generators Kb and Kf . Let v(±k) ∈ Vb,C denote a basis
of eigenvectors of Kb with eigenvalues ±iλk . Then {T1v

(±k)}
is a basis of Vf,C diagonalizing Kf . In fact, with respect to
these bases, Kb and Kf are represented by the same matrix.
Accordingly, also |K−1

f |1/2 and |K−1
b |1/2 are represented by the

same matrices. From this follows, in particular,

L1 = ∣∣K−1
f

∣∣1/2
T1 = T1

∣∣K−1
b

∣∣1/2
, (43)

L2 = ∣∣K−1
b

∣∣1/2
T2 = T2

∣∣K−1
f

∣∣1/2
, (44)

7Given an identification map T1 : Vb → Vf , we can define a new
identification T ′

1 = Uf T1Ub, where both Ub : Vb → Vb and Uf : Vf →
Vf need to preserve the respective Kähler structures. This implies
that Ub and Uf form a representation of the group U (N ). In our
case, we also would like that T1 maps Kb onto Kf , which implies
that the respective symmetry group will depend on the degeneracy
of the one-particle spectrum. If Kb (and thus also Kf ) has m distinct
eigenvalue pairs ±iλi with degeneracy di such that

∑m
i=1 di = N , the

resulting symmetry group will be U (d1) × · · · × U (dm ). Only if the
Hamiltonian is fully degenerate with N eigenvalue pairs ±λ, this will
lead to the maximal symmetry group U (N ) of possible identification
maps T ′

1 .
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and hence, we have

L1L2 = ∣∣K−1
f

∣∣1/2
T1

∣∣K−1
b

∣∣1/2
T2

= ∣∣K−1
f

∣∣T1T2 = ∣∣K−1
f

∣∣Kf = Jf , (45)

L2L1 = ∣∣K−1
b

∣∣1/2
T2

∣∣K−1
f

∣∣1/2
T1

= ∣∣K−1
b

∣∣T2T1 = ∣∣K−1
b

∣∣Kb = Jb. (46)

In the following, we use the identification maps to associate
both linear observables and quadratic forms between the two
supersymmetric partner systems. For this, it is important to
note that, since the identification maps and their inverses act
on the phase spaces, i.e.,they act on upper indices from the
left, their corresponding transposes act on the dual phase
spaces, i.e.,on lower indices, as

Vb
L1−→ Vf , Vf

(L1 )−1

−−−→ Vb, V ∗
b

(Lᵀ
1 )−1

−−−→ V ∗
f , V ∗

f

Lᵀ
1−→ V ∗

b ,

Vf
L2−→ Vb, Vb

(L2 )−1

−−−→ Vf , V ∗
f

(Lᵀ
2 )−1

−−−→ V ∗
b , V ∗

b

Lᵀ
2−→ V ∗

f .

For example, let ŝ = saξ̂
a
b be a linear operator on the bosonic

system. Then

L2(ŝ) = sa(L2)a
αξ̂ α

f , (47)

is the linear fermionic operator associated to it by the iden-
tification map L1. Analogously, if r̂ = rαξ̂ α

f is a fermionic
operator, the identification map L1 associates the bosonic op-
erator

L1(r̂) = rα (L1)αaξ̂
a
b , (48)

with it. In this sense, the identification maps always identify
corresponding pairs of eigenmodes of the SUSY Hamiltonian
with each other: If we diagonalize the SUSY Hamiltonian as

Q̂2 =
∑

i

ωi(b̂
†
i b̂i + ĉ†

i ĉi ), (49)

then assuming that all ωi are different, we always have

L1(ĉi ) = eiφi,1 b̂i, L2
(
b̂i
) = eiφi,2 ĉi, (50)

for all i = 1, ..., N , because of Eq. (41). Also, due to Eq. (42),
the complex phases are such that eiφi,1 eiφi,2 = −i, since
Jb(b̂i ) = −ib̂i and Jf (ĉi ) = −iĉi as follows from Eqs. (11) and
(9) (expressed in the complex bases).

Example 3. The supercharge operator Q̂ introduced in
Example 2 induces the rather simple identification maps rep-
resented by the matrices

L1 ≡
(

1 0
0 1

)
, L2 ≡

(
0 1

−1 0

)
. (51)

Accordingly, the Hermitian mode operators are identified as

L1(γ̂ ) = q̂, L1(η̂) = p̂,

L2(q̂) = η̂, L2( p̂) = −γ̂ . (52)

D. Application: supersymmetric Kitaev chain

In this section, we choose the well-known Kitaev chain
[67] of N sites with open boundary conditions as a concrete
application for the formalism above and investigate the phys-
ical properties of the identification maps. In our construction,
the supersymmetric partner of the Kitaev chain resembles
the Kane-Lubensky (KL) chain [13]. We are interested in
addressing the question: To what extent do the identification
maps preserve the localization properties of operators, when
mapping them from one system to its SUSY partner?

The form of the fermionic Kitaev chain Hamiltonian which
we study is obtained by considering a real pairing and setting
its magnitude equal to the hopping (t) in the original model
proposed in [67]:

Ĥf = μ

2

N∑
i=1

(ĉ†
i ĉi − ĉiĉ

†
i ) + t

N−1∑
i=1

(ĉ†
i+1ĉi − ĉ†

i+1ĉ†
i + H.c.),

(53)

where μ denotes the chemical potential. A supercharge which
generates this Hamiltonian as the fermionic part of Q̂2 =
Ĥf + Ĥb is given by

Q̂ = √
μ

N∑
i=1

ĉib̂
†
i + t√

μ

N−1∑
i=1

(ĉib̂i+1 + ĉib̂
†
i+1) + H.c.

= √
μ

N∑
i=1

(γ̂iq̂i + η̂i p̂i ) + 2t√
μ

N−1∑
i=1

γ̂i+1q̂i. (54)

Its bosonic part resembles the KL chain, a well-studied model
in topological mechanics [13]:

Ĥb = μ

2

N∑
i=1

p̂2
i + 4t2 + μ2

2μ

N∑
i=2

q̂2
i + μ

2
q̂2

1 + 2t
N−1∑
i=1

q̂iq̂i+1

= μ

2
(b̂1b̂†

1 + b̂†
1b̂1) +

N∑
i=2

[
μ

2

(
1 + 2t2

μ2

)
(b̂†

i b̂i + b̂ib̂
†
i )

+ t (b̂i−1b̂†
i + b̂i−1b̂i ) + t2

μ
(b̂ib̂i ) + H.c.

]
. (55)

Denoting the energy eigenmodes of the system with primed
operators, the SUSY Hamiltonian can be diagonalized as

Q̂2 = Ĥf + Ĥb =
N∑

i=1

ωi(b̂
′†
i b̂′

i + ĉ′
i
†ĉ′

i ). (56)

Figure 1 schematically shows the spectrum of the Kitaev
chain, which is in a trivial phase for |t/μ| < 1/2 and in a
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FIG. 1. Spectrum of the Kitaev chain with open ends. The system
is in a trivial phase for |t/μ| < 1/2, critical at t/μ = ±1/2, and
topological otherwise, with edge modes appearing.

topological phase otherwise. The bulk gap closes at the critical
point t/μ = ±1/2 in the limit of large N . The trivial phase
is featureless; all eigenmodes together form a bulk mode
continuum. However, as the system enters the topological
phase for |t/μ| > 1/2, an edge mode gradually separates from
the continuum and stabilizes at zero energy (albeit with an
exponentially small gap with N) as a telltale signature of the
topological phase. On the fermionic side, i.e.,for the Kitaev
chain, the edge modes are localized at both ends of the chain.
In contrast, on the bosonic side, i.e.,for the KL chain, they are
localized only at one end (here the left end) of the chain. For
completeness, we mention that, in the KL chain, there exists a
nonlinear zero mode (soliton) that can reverse the location of
the edge mode [68]; however, that falls beyond the ambit of
the present setting. The localization of the edge mode at the
boundaries of the chain is exponential, in the sense that, when
writing the edge mode operator as ĉ′

N = ∑
j α j ĉ j + β j ĉ

†
j or

b̂′
N = ∑

j α j b̂ j + β j b̂
†
j , the quantities |α j |2 and |β j |2 decay

exponentially away from the concerned edge.
The appearance and localization of the edge modes have

consequences for the properties of the identification maps.
They affect to what extent the identification maps preserve the
locality of the onsite observables in a system when mapping
them onto its SUSY partner, as visualized in Fig. 2. From
above, we know that the identification maps exactly map cor-
responding eigenmodes of the partner Hamiltonians to each
other and that we can choose the relative phase factor such
that

L1(ĉ′
i ) = b̂′

i, L2(b̂′
i ) = −iĉ′

i. (57)

Thus, at the point (t = 0), where the individual chain sites
can be chosen as eigenmodes of the partner Hamiltonians,
the identification maps exactly associate the fermionic and
bosonic chain sites one to one, maintaining their ordering.

This feature of locality of the identification maps is
conspicuous throughout the trivial phase, except the onsite
localization at t = 0 now transforms to an exponential one
(with a length scale falling with the spectral gap), as seen in
Fig. 2(a) for a chain of N = 30 sites. In detail, in the trivial
phase, the identification maps associate single site operators
ĉi and b̂i with operators L1(ĉk ) = ∑

j αk j b̂ j + βk j b̂ j , such that
|αk j |2 and |βk j |2 decay exponentially in |k − j|. Likewise, in
the trivial phase, L2 maps onsite bosonic operators to expo-
nentially localized fermionic operators.

In the topological phase, however, the identification maps
develop nonlocal features, as can be seen in Fig. 2(c). Here, a
fermionic site operator ĉk (e.g.,in the figure, k = 15 in a chain
of N = 30 sites) when mapped to the operator L1(ĉk ) on the
bosonic side, can acquire a significant component located at
the left edge of the bosonic chain, which is the edge where also
the bosonic edge mode is localized. If we shift the original
fermionic site to further right, the edge contribution to L1(ĉk )
decays, and the localization of the resulting observable gains
prominence. On the other hand, if we move the original site to
the left, the edge contribution to L1(ĉk ) starts dominating over

FIG. 2. Locality of the identification map L1 and its dependence on the relative coupling t/μ. As schematically visualized in (b), the plots
show, for a system of N = 30 modes, how L1 associates the onsite operator ĉ15 in the fermionic Kitaev chain in Eq. (53) to the operator
L1(ĉ15) = ∑

j α j b̂ j + β j b̂
†
j on the bosonic Kane-Lubensky chain in Eq. (55). In the trivial phase, as plotted on the left in (a) for t = 0.35μ,

the identification map preserves locality to a very high degree, namely, with an exponential decay of the coefficients |α j |2 and |β j |2 with the
distance |k − j| (here k ≡ 15). In the topological phase, as plotted on the right in (c) for t = μ, the operator L1(ĉk ) can be nonlocal with a
strong contribution from the boundary sites.
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the bulk coming from (bosonic) sites in the neighborhood of
the kth site.

Instead of the map L1, we may as well employ L−1
2 to

map the fermionic site operators to their bosonic counterparts.
The observed behavior is similar; however, for L−1

2 (ĉk ), in
the topological phase, the edge contribution at the left end of
the bosonic chain dominates as k → N , i.e.,when the original
fermionic operator approaches the right end of the chain.

The converse association of bosonic onsite operators with
the corresponding fermionic observables via the identification
maps L2 or L−1

1 behaves very similar: In the trivial phase, they
are exponentially localized as above, and in the topological
phase, they exhibit similar nonlocal features. However, here,
both L2(b̂k ) and L−1

1 (b̂k ) develop a dominant edge contribu-
tion when the original bosonic operator b̂k approaches the left
end of the chain. For L2(b̂k ), the edge contribution appears on
the left edge of the fermionic chain; for L−1

1 (b̂k ), it appears on
the right edge.

This example demonstrates that the identification between
the bosonic and the fermionic parts of a SUSY Gaussian
state via the identification maps may or may not coincide
with an identification based intuitively on some underlying
(lattice) geometry of the SUSY Hamiltonians. Whereas we
observe agreement in the trivial phase of the SUSY Kitaev
chain, in the topological phase, the identification maps behave
vastly differently and disengage from notions based on the
geometric intuition. The duality relations of the next section
will show that, whereas the geometrical appearance of modes
can be distorted by the identification maps, their entanglement
properties remain intimately related.

III. ENTANGLEMENT DUALITY

In this section, we derive how subsystem decompositions
V = A ⊕ B behave under the supersymmetric identification
maps L1 and L2, which leads to a duality between the bosonic
and fermionic (mixed) Gaussian states. We can also use this
to relate the associated entanglement entropies.

A. Reduced Gaussian states and entanglement

Given a classical phase space V � R2N , a subspace A ⊂
V defines a physical subsystem if the following condition is
satisfied:

(1) Bosonic: The restriction of �ab to the subspace A is
nondegenerate, i.e.,has nonzero determinant.

(2) Fermionic: The subspace A is even dimensional.
Note that the bosonic condition also implies that A is even

dimensional, as any antisymmetric odd-dimensional matrix
has a vanishing determinant.

In practice, we choose a basis ξ̂ a = (ξ̂ a
A, ξ̂ a

B ) that splits V =
A ⊕ B into a direct sum, where B is the complementary system
to A defined as

B =
{{

va ∈ V
∣∣ va�−1

ab ub = 0 ∀ ub ∈ A
}

(bosons){
va ∈ V

∣∣ vaG−1
ab ub = 0 ∀ ub ∈ A

}
(fermions)

,

(58)
which is called the symplectic complement for bosons and the
orthogonal complement for fermions.8 We have the two bases
ξ̂A and ξ̂B with NA + NB = N , such that the resulting matrix
representations of �ab and Gab take the forms

�ab ≡

⎛
⎜⎝

1
−1

1
−1

⎞
⎟⎠ ≡

(
�A

�B

)
(bosons),

Gab ≡

⎛
⎜⎝

1
1

1
1

⎞
⎟⎠ ≡

(
GA

GB

)
(fermions). (59)

Note that this implies that the restrictions �A and �B,
or GA and GB, respectively, reproduce the standard forms
from Eq. (9), i.e.,the subsystems are themselves a bosonic
or fermionic system consisting of NA and NB degrees
of freedom.

When quantizing the subsystems A and B, we can construct
Fock spaces HA and HB as described in Sec. II A, such that
the full Hilbert space is a tensor product H = HA ⊗ HB. In
general, a pure Gaussian state |J〉 ∈ H will itself not be a

8Here, we used the inverse matrices �−1 and G−1, which are
bilinear forms on the phase space (rather than its dual). In
Refs. [63,64,69], they are denoted by �−1

ab ≡ ωab and G−1
ab ≡ gab.

tensor product state with respect to this decomposition, which
means that the subsystems are entangled.

It is well-known that the bipartite entanglement en-
coded in a general pure state |ψ〉 can be characterized
by the spectrum of the mixed state ρA = TrB |ψ〉 〈ψ | that
results from tracing over HB. If |ψ〉 is a pure Gaus-
sian state |J〉, the reduced state ρA is a mixed Gaussian
state. It can be expressed in terms of the linear complex
structure J as [63]

ρA = e−Q̂ with Q̂ =
{

qrsξ̂
r ξ̂ s + c0 (bosons)

iqrsξ̂
r ξ̂ s + c0 (fermions)

, (60)
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with qrs is a 2NA-by-2NA matrix9 given by [63]

qrs =
{−i

(
�−1

A

)
rl arccoth(iJA)l

s (bosons)

+i
(
G−1

A

)
rl arctanh(iJA)l

s (fermions)

=
{+(

�−1
A

)
rl arccot(JA)l

s (bosons)

−(
G−1

A

)
rl arctanh(JA)l

s (fermions)
.

(61)

Here, JA is the restriction of J to the 2NA-by-2NA subblock,
representing the action of J onto the subspace A ⊂ V , and
similarly, �−1

A and G−1
A denote the restrictions of �−1 and

G−1. The coefficient c0 is given by

c0 =
⎧⎨
⎩

1
4 log det

(1+J2
A

4

)
(bosons)

− 1
4 log det

(1+J2
A

4

)
(fermions)

. (62)

It can be shown [62,63] that the eigenvalues of JA are purely
imaginary and appear in NA conjugate pairs ±iλi, where λi ∈
[1,∞) for bosons, and λi ∈ [0, 1] for fermions.

These relations have the consequence that, for Gaussian
states, the rather complicated spectrum of ρA simplifies so
that it can be efficiently calculated from the much simpler
spectrum of JA given by ±iλi. Specifically, the eigenvalues
of ρA are

μ(n1, . . . , nN ) =
⎧⎨
⎩
[∏NA

i=1
(tanh ri )ni

cosh ri

]2
(bosons)[∏NA

i=1
(tan ri )ni

sec ri

]2
(fermions)

, (63)

where ri = 1
2 cosh−1(λi), ni ∈ N for bosons, and ri =

1
2 cos−1(λi ), ni = 0, 1 for fermions.

The entanglement entropy SA(|ψ〉) = SB(|ψ〉) is computed
as the von Neumann entropy S(ρA) of the reduced state ρA,
namely,

SA(|ψ〉) = S(ρA) = − Tr ρA log ρA. (64)

Calculating this quantity in practice is notoriously hard, as
it requires computing the spectrum of ρA that demands vast
computational resources for large systems and appropriate
approximations or truncation for infinite dimensional Hilbert
spaces (in the case of bosons). However, if the state |ψ〉
happens to be a Gaussian state |J〉, we can exploit the relation
between the spectra of ρA and JA to find analytical formulas
in terms of the restriction JA to the subsystem A. These re-
strictions correspond exactly to the symplectic or orthogonal
decomposition V = A ⊕ B introduced at the beginning of this
section. The formulas for the von Neumann entropies are
given by [55,56]

S(ρA) =
{∑NA

i=1 sb(λi ) (bosons)∑NA
i=1 sf (λi ) (fermions)

, (65)

with sb(x) = ( x+1
2 ) log( x+1

2 ) − ( x−1
2 ) log( x−1

2 ) for bosons, and
sf (x) = − 1+x

2 log( 1+x
2 ) − 1−x

2 log( 1−x
2 ) for fermions, which

9Not to confuse with the quadrature operator q̂i, which carries at
most one index.

can be unified by the single trace formula [63,70]

S(ρA) = 1

2

∣∣∣∣Tr

[(
1 + iJA

2

)
log

(
1 + iJA

2

)2]∣∣∣∣. (66)

The formula in Eq. (65) can also be used to compute the Renyi
entropy of order n if we replace sb and sf by the respective
Renyi entropy functions [63]:

r (k)
b (λ) = 1

k − 1
log

[(
λ + 1

2

)k

−
(

λ − 1

2

)k]
, (67)

r (k)
f (λ) = − 1

k − 1
log

[(
1 + λ

2

)k

+
(

1 − λ

2

)k]
. (68)

It follows from the above that a subsystem A (bosonic or
fermionic) of a system in a pure Gaussian state is not entan-
gled with the rest of the system, i.e.,it is in a product state with
the rest of the system, if and only if λi = 1 for all eigenvalues
of JA. In that case, we have J2

A = −1A, and the subsystem
is in a pure Gaussian state on its own. This is equivalent to
J (A) = A, i.e.,the full (unrestricted) linear complex structure
mapping A onto itself.

B. Supersymmetric ground states and identification maps

Above in Eq. (42), we saw that L1 and L2 together encode
the linear complex structures of both the bosonic and the
fermionic part of the ground state in Eq. (32) of Ĥ . In the
following, we will use L1 and L2 to identify subsystems of
fermionic modes with subsystems of bosonic modes and vice
versa.

The maps L1 and L2 are the canonical choices for the iden-
tification maps because they preserve the Kähler structures of
the fermionic ground state |Jf〉 and the bosonic ground state
|Jb〉. That is, if we consider the fermionic 2-point function

Cαβ

f,2 = 〈Jf | ξ̂ α ξ̂ β |Jf〉 = 1

2

(
Gαβ

f + i�αβ

f

)
, (69)

and the bosonic

Cab
b,2 = 〈Jb| ξ̂ aξ̂ b |Jb〉 = 1

2

(
Gab

b + i�ab
b

)
, (70)

then one can show that we have

Gab
b = (L2)a

αGαβ

f

(
Lᵀ

2

)
β

b = (
L−1

1

)a
αGαβ

f

(
Lᵀ −1

1

)
β

b, (71)

as well as (dropping the indices for a better readability)

�f = L1�bLᵀ
1 = L−1

2 �bL−1 ᵀ
2 . (72)

Thus, the identification maps L1 and L2 preserve both the sym-
metric and the antisymmetric forms of the Kähler structure
and exactly map the bosonic and fermionic 2-point functions
of the ground state onto each other. Interestingly, we see that
it makes no difference whether we use L1 and (L1)−1 or L2

and (L2)−1 for this purpose. The reason is that both maps are
closely related. In fact, since J2

f = −1 and J2
b = −1, it follows

that

(L1)−1 = −L2Jf = −JbL2,

(L2)−1 = −Jf L1 = −L1Jb.
(73)
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C. Dual supersymmetric subsystems

Since the identification maps L1 and L2 preserve the Kähler
structures, subsystems in one part (bosonic/fermionic) of a
supersymmetric Gaussian state can be identified with subsys-
tems in the other part (fermionic/bosonic).

If A ⊂ Vb corresponds to a bosonic subsystem, then both
L1(A) and L−1

2 (A) are even-dimensional subspaces of the
fermionic phase space Vf ; hence, they correspond to a
fermionic subsystem, as defined in Sec. III A. If, on the other
hand, A ⊂ Vf corresponds to a fermionic subsystem, then
L2(A) and L−1

1 (A) only correspond to a bosonic subsystem, if
the restriction of �f to A is nondegenerate. Following Eq. (72),
this condition ensures that �b is nondegenerate as required for
L2(A) and L−1

1 (A) to yield a bosonic subsystem.
How does the subsystem which A is mapped to depend on

whether we use the identification map L1 (and its inverse) or
the map L2? If the subsystem A is in a pure state, there is no
difference; both identification maps identify A with the same
subsystem. For example, if A ⊂ Vb is a bosonic subsystem
which is in a pure state, then we have Jb(A) = A; thus,

L1(A) = L1[Jb(A)] = L−1
2 (A). (74)

However, for an entangled subsystem, we have J (A) 
= A
and are led to the following commutative diagram:

(75)

Here, we have chosen Ab ⊂ Vb as a bosonic subsystem, de-
fined Af = L1(Ab) and denoted Ãb = Jb(Ab) and Ãf = Jf (Af ).

Whereas Ab and Ãb (Af and Ãf ) define different bosonic
(fermionic) subsystems, they are intimately related: Ab ∪ Ãb

(Af ∪ Ãf ) is the smallest subsystem containing Ab (Af ) which
is in a pure partial state, i.e.,shares no entanglement with the
rest of the system.

Furthermore, Ab (Af ) shares the same amount of entangle-
ment with the rest of the system as does Ãb (Ãf ). This follows
from the fact that the restricted linear complex structures Jb

Ab

and Jb
Ãb

(J f
Af

and J f
Ãf

) have the same spectrum. To see this,
consider the decomposition of the phase space into the direct
sum Vb = Ab ⊕ Bb according to Eq. (58). We define by PAb the
projector onto A with respect to this decomposition:

PAb (Ab) = Ab, PAb (Bb) = 0. (76)

The restriction of Jb to Ab is then Jb
Ab

= PAb JbPAb . Analo-
gously, considering the decomposition Vb = Ãb ⊕ B̃b, we find
that the projector onto Ãb is PÃb

= −JbPAb Jb, and

Jb
Ãb

= PÃb
JbPÃb

= −JbJb
Ab

Jb. (77)

Since J−1
b = −Jb, Jb

Ãb
and Jb

Ãb
are represented by similar ma-

trices and, hence, have the same spectrum. In fact, if v ∈ Ab

is an eigenvector of Jb
Ab

with Jb
Ab

v = ±iλv, then Jbv is an
eigenvector of Jb

Ãb
with the same eigenvalue.

D. Duality for Gaussian states and their entanglement

In the previous section, we analyzed the structure of sub-
systems in supersymmetric Gaussian states. We discussed
how the identification maps L1 and L2 relate bosonic subsys-
tems to fermionic subsystems and vice versa. We can now
use this background structure to derive the following duality
between bosonic and fermionic Gaussian states.

The setting is as follows. We consider a classical phase
space V � R2N with Kähler compatible structures (G,�, J )
and a choice of a subspace A ⊂ V with dim A = 2NA. We can
associate two distinct quantum theories, namely, a bosonic
Hilbert space Hb with Gaussian state |J〉b and a fermionic
Hilbert space Hf with Gaussian state |J〉f . In both quan-
tum theories, we can construct a reduced density operator
ρA whose spectrum is determined by the restricted complex
structure.

Crucially, however, the restriction of J to A is different
depending on whether we consider a bosonic system and use
a symplectic decomposition of the phase space or consider
a fermionic system and use an orthogonal decomposition, ac-
cording to Eq. (58). This is due to the fact that the 2NA-by-2NA

subblock of the matrix J associated to the subspace A depends
also on the basis elements that are not contained in A. We
choose two different bases for the bosonic and fermionic case
ξ̂b = (ξ̂A

b , ξ̂B
b ) and ξ̂f = (ξ̂A

f , ξ̂B
f ), such that

span
(
ξ̂A

b

) = A = span
(
ξ̂A

f

)
, (78)

span
(
ξ̂B

b

) = Bb 
= Bf = span
(
ξ̂B

f

)
, (79)

where Bb and Bf are the respective bosonic and fermionic
complements defined in Eq. (58). Consequently, the restric-
tions of J to the subspace A can be different on the bosonic
and the fermionic side, which therefore are denoted by Jb

A and
J f

A, respectively. Equipped with this, we can now prove the
following proposition.

Proposition 1 (Entanglement duality). We consider a su-
persymmetric system with phase space V � Vb � Vf equipped
with Kähler structures (G,�, J ), which simultaneously de-
scribe a bosonic and a fermionic Gaussian state, namely,
|J〉b ∈ Hb and |J〉f ∈ Hf . We now choose a subsystem A ⊂
V . This leads to two inequivalent decompositions of V ,
namely, V = A ⊕ Bb and V = A ⊕ Bf , where the comple-
mentary subsystems Bb and Bf are defined in Eq. (58). The
associated reduced states ρb

A and ρf
A are both Gaussian and

fully described by the restricted complex structure Jb
A and J f

A,
respectively, which satisfy the following relation:

J f
A = −(

Jb
A

)−1
. (80)

This implies that the eigenvalues ±iλb
i of Jb

A are related to the
eigenvalues ±iλf

i of J f
A via λb

i = 1/λf
i .

Proof. The decompositions V = A ⊕ Bb and V = A ⊕ Bf

define projectors, such that Pb : V → A, Pf : V → A, P̄b :
V → Bb, and P̄f : V → Af , such that 1 = Pb + P̄b = Pf + P̄f .
The restricted complex structures are then defined as

Jb
A = PbJ|A : A → A, (81)

J f
A = Pf J|A : A → A. (82)
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We need to show J f
A = −(Jb

A )−1, which is equivalent to J f
AJb

A =
−1A. To show the latter, we take a vector a ∈ A and calculate

−a = −Pf a = Pf J
2a = Pf J (Pb + P̄b)Ja

= Pf JJb
Aa + Pf JP̄bJa = J f

AJb
Aa + Pf JP̄bJa. (83)

The second term in Eq. (83) vanishes since, for an arbitrary
vector v ∈ V , the inner product

G−1(v, Pf JP̄ba) = G−1(Pfv, JP̄bJa)

= −�−1( Pfv︸︷︷︸
∈A

, P̄bJa︸︷︷︸
Bb

) = 0, (84)

where we have used the relationship G−1(·, J·) = −�−1(·, ·)
following from Eq. (11). In matrix notation, we would write
G−1(v,w) = (G−1)abv

awb and so on. That the inner product
�−1(·, ·) in Eq. (84) vanishes follows from the definition
of Bb in Eq. (58), and therefore, proves the identity in
Eq. (80). �

At first glance, this result is a simple statement about re-
stricting a complex structure J : V → V to a subspace A ⊂ V
in two inequivalent ways. However, its application to bosonic
and fermionic Gaussian states implies a rather complicated
relationship of the spectra ρb

A and ρf
A via Eqs. (63) and (80),

which can be made precise in the following corollary relating
the restricted complex structures of the dual subsystems.

Corollary 1. Given a supersymmetric system with super-
charge operator Q̂, we have a supersymmetric ground state
|Jb〉 ⊗ |Jf〉 of Ĥ = Q̂2 and identification maps L1 : Vb → Vf ,
L2 : Vf → Vb, and their inverses L−1

1 and L−1
2 , as above. Then

Proposition 1 implies the following.
Let S ⊂ Vb be a bosonic subsystem and L(S) ⊂ Vf , with

L = L1 or L = L−1
2 , be a dual fermionic subsystem. Then

the restricted linear structures Jb
S : S → S and J f

L(S) : L(S) →
L(S) of these two subsystems are such that(

Jb
S

)−1 = −L−1J f
L(S)L,

(
J f

L(S)

)−1 = −LJb
S L−1. (85)

Let R ⊂ Vf be a fermionic subsystem and L(R) ⊂ Vb, with
L = L2 or L = L−1

1 , be a dual bosonic subsystem. Then the re-
stricted linear structures J f

R : R → R and Jb
L(R) : L(R) → L(R)

of these two subsystems are such that(
J f

R

)−1 = −L−1Jb
L(R)L,

(
Jb

L(R)

)−1 = −LJ f
RL−1. (86)

Thus, the eigenvalues of the dual restricted complex structures
are inverses of each other as implied by Eq. (80), and their
entanglement spectra are accordingly related by Eq. (63).

While our result applies to any identification where a
bosonic and a fermionic phase space are related, supersym-
metric systems with the identification maps L1 and L2, as
discussed in Sec. II C, are the prime examples where such an
identification is naturally chosen.

The entanglement duality implies an intimate relation of
the entanglement entropy of a subsystem with that of its dual
subsystem because both the von Neumann entropy in Eq. (65),
as well as the Renyi entropies in Eq. (67) are functions of
the spectrum of the restricted complex linear structure. For
the simplest possible case, where the subsystems each consist
of a single mode only, Fig. 3 shows the relation between
the von Neumann entropy of the fermionic and the bosonic
modes. Here, the restricted complex structures have one pair

FIG. 3. Entanglement entropies for dual subsystems each con-
sisting of a single mode. The solid line shows the entanglement
entropy of a single fermionic mode for which the restricted complex
structure has eigenvalues ±iλ. Due to the entanglement duality in
Eq. (80), the restricted complex structure of the dual bosonic mode
has eigenvalues ±iλ−1, and the dashed line plots the resulting entan-
glement entropy.

of imaginary eigenvalues, ±iλ for the fermionic and ±iλ−1

for the bosonic system, which with the formula for the von
Neumann entropies in Eq. (65) yields the relation plotted in
Fig. 3.

Evidently, the bosonic and the fermionic entanglement be-
come asymptotically equal when the corresponding modes
approach a pure partial state, and consequently, the entan-
glement approaches zero (λ → 1). In the opposite direction,
however, the entanglement in the bosonic mode grows without
a bound as λ → 0, whereas the entanglement in the dual
fermionic mode tends to saturate at the maximal value of
log 2.

This relation between the SUSY partner single modes read-
ily extends to multiple modes because, as is evident from
Eq. (65), the total entanglement entropy of a subsystem is
given by the sum of the entanglement entropies over the indi-
vidual normal modes of that subsystem. This is related to the
fact that a mixed Gaussian state always can be expressed as
the product state of its normal modes, which are given by the
eigenmodes of the restricted linear complex structure [62]. As
a consequence of the entanglement duality, the identification
maps identify normal modes with reciprocal eigenvalues of
the restricted complex linear structures.

At this stage, it is an important question whether the entan-
glement duality is merely an interesting observation or to what
extent it matters for physical systems. In the following two
sections, we therefore investigate the entanglement duality in
two concrete applications. First, we consider the toy model of
a supersymmetric system with two bosonic and two fermionic
modes in Sec. III E before we then move onto the recently
proposed SUSY Kitaev honeycomb model in Sec. III F.

Before proceeding, we note that mixed states that arise as
a thermal state of a supersymmetric Hamiltonian also come
under the ambit of our duality. In detail, we ask if a relation,
like what applies to the mixed states arising from a reduc-
tion of a pure state to a subsystem A, holds for a thermal
state of a supersymmetric Hamiltonian Ĥ = Q̂2 = Ĥb + Ĥf ,
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i.e.,ρ = 1
Z eβĤ = 1

Z eβĤb ⊗ eβĤf . The following proposition an-
swers this question in the affirmative.

Proposition 2 (Thermal state duality). We consider a su-
persymmetric system with phase space V � Vb � Vf equipped
with Kähler structures (G,�, J ), for which we have a Hamil-
tonian Ĥ = Q̂2 = Ĥb + Ĥf . The thermal state ρ = 1

Z eβĤ at
inverse temperature β is a tensor product of two Gaussian
states ρ = ρb ⊗ ρf with associated restricted complex struc-
tures Jb and Jf related by

Jb = −(Jf )−1, (87)

which exactly resembles the entanglement duality, but now
applies to the whole system. This implies that the eigenvalues
±iλb

i of Jb are related to the eigenvalues ±iλf
i of Jf via λb

i =
1/λf

i .
Proof. Our identification of the phase spaces V � Vb �

Vf gives rise to a single Lie algebra generator K : V → V
for the Hamiltonian βĤ from Eq. (25). The spectrum of K
agrees with that of the bosonic generator Kb : Vb → Vb as well
as the fermionic generator Kf : Vf → Vf defined as (Kb)a

b =
β �achb

cb and (Kf )αδ = β Gαγ qf
γ δ , respectively. We can com-

pare with Eq. (60) to identify that ρ = e−βĤ/Z gives rise to
qb

ab = β

2 hb
ab = β

2 �−1
ac (Kb)c

b and qf
αγ = β

2 hf
αγ = β

2 G−1
αδ (Kf )δγ .

We can invert Eq. (61) to find

Jb = − cot �qb = − cot
(Kb

2

)
≡ − cot

(K

2

)
, (88)

Jf = tan Gqf = tan
(Kf

2

)
≡ tan

(K

2

)
, (89)

from which Eq. (87) readily follows. �

E. Application: two-mode system

In this section, we study some consequences of the en-
tanglement duality in a basic two-mode example where the

SUSY Hamiltonian is given by a fermionic and a bosonic
two-mode squeezing Hamiltonian. While this is a minimal ex-
ample, it explains certain basic relations which are important
for our analysis of a lattice Hamiltonian in the next subsec-
tion. It highlights that almost maximally entangled fermionic
modes are mapped to almost degenerate bosonic modes. This
relation is central to the entanglement scaling in 2D systems
discussed in Sec. III F.

Consider the following supercharge operator Q̂, which is
parametrized by real numbers rb � 0 and 0 � rf < π/4, cor-
responding to squeezing parameters:

Q̂ = [cosh(rb) cos(rf ) − sinh(rb) sin(rf )](γ̂1q̂1 + η̂1 p̂1)

+ [cosh(rb) cos(rf ) + sinh(rb) sin(rf )](γ̂2q̂2 + η̂2 p̂2)

+ [cosh(rb) sin(rf ) − sinh(rb) cos(rf )](γ̂1q̂2 − η̂1 p̂2)

+ [cosh(rb) sin(rf ) + sinh(rb) cos(rf )](−γ̂2q̂1 + η2 p̂1).
(90)

It generates a SUSY Hamiltonian Ĥ = Ĥb + Ĥf which con-
sists of the two-mode Hamiltonians:

Ĥb = cosh(2rb)

2

∑
i=1,2

(
q̂2

i + p̂2
i

) + sinh(2rb)( p̂1 p̂2 − q̂1q̂2),

(91)

Ĥf = i cos(2rf )

2

∑
i=1,2

(γ̂iη̂i − η̂iγ̂i ) + i sin(2rf )(γ̂1η2 − γ2η1).

(92)

The ground states of these Hamiltonians are two-mode
squeezed states. Accordingly, the identification maps L1 and
L2 are represented by

L1 ≡

⎛
⎜⎜⎝

cos(rf ) cosh(rb ) − sin(rf ) sinh(rb ) sin(rf ) cosh(rb ) − cos(rf ) sinh(rb ) 0 0
− sin(rf ) cosh(rb ) − cos(rf ) sinh(rb ) sin(rf ) sinh(rb ) + cos(rf ) cosh(rb ) 0 0

0 0 cos(rf ) cosh(rb ) − sin(rf ) sinh(rb ) cos(rf ) sinh(rb ) − sin(rf ) cosh(rb )
0 0 cos(rf ) sinh(rb ) + sin(rf ) cosh(rb ) sin(rf ) sinh(rb ) + cos(rf ) cosh(rb )

⎞
⎟⎟⎠,

L2 ≡

⎛
⎜⎜⎝

0 0 cos(rf ) cosh(rb ) − sin(rf ) sinh(rb ) cos(rf ) sinh(rb ) + sin(rf ) cosh(rb )
0 0 cos(rf ) sinh(rb ) − sin(rf ) cosh(rb ) sin(rf ) sinh(rb ) + cos(rf ) cosh(rb )

sin(rf ) sinh(rb ) − cos(rf ) cosh(rb ) cos(rf ) sinh(rb ) + sin(rf ) cosh(rb ) 0 0
cos(rf ) sinh(rb ) − sin(rf ) cosh(rb ) − sin(rf ) sinh(rb ) − cos(rf ) cosh(rb ) 0 0

⎞
⎟⎟⎠.

(93)

They lead to the complex structures

Jb ≡

⎛
⎜⎝

0 0 cosh(2rb) sinh(2rb)
0 0 sinh(2rb) cosh(2rb)

− cosh(2rb) sinh(2rb) 0 0
sinh(2rb) − cosh(2rb) 0 0

⎞
⎟⎠,

(94)

J f ≡

⎛
⎜⎝

0 0 cos(2rf ) sin(2rf )
0 0 − sin(2rf ) cos(2rf )

− cos(2rf ) sin(2rf ) 0 0
− sin(2rf ) − cos(2rf ) 0 0

⎞
⎟⎠,

(95)

which define pure two-mode squeezed states.

Let us now study how the identification maps act on the
single site modes (q̂1, p̂1) and (γ̂1, η̂1), respectively. It is clear
from Eq. (93) that, when both the bosonic and fermionic
squeezing vanish, i.e.,rb = 0 = rf , these are trivially identified
with each other. However, when either squeezing parameter
takes a nonzero value, the identification maps will mix the
modes 1 and 2.

Beginning with the bosonic mode S = (q̂1, p̂1), we find it
has the restricted complex linear structure

Jb
S ≡

(
0 cosh(2rb)

− cosh(2rb) 0

)
, (96)
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which has eigenvalues ±i cosh(2rb), signaling that, for rb > 0,
the mode is in a mixed Gaussian state due to its entanglement
with mode 2. Now we can use L2 to associate this bosonic
mode with a fermionic mode. Here, we need to consider that
the fermionic observables L2(q̂1) and L2( p̂1) are not properly
normalized Majorana operators. In fact, as a consequence of
Eq. (71), we have

〈Jf | {L2(q̂1), L2( p̂1)} |Jf〉 = 〈Jb| {q̂1, p̂1} |Jb〉 = cosh(2rb).
(97)

Instead, the properly normalized Majorana operators, which
correspond to an orthogonal basis in the fermionic phase
space, are

L̃2(q̂1) := L2(q̂1)√
cosh(2rb)

, L̃2( p̂1) := L2( p̂1)√
cosh(2rb)

, (98)

which we can use to calculate the restriction of Jf to this
subsystem, e.g.,to calculate its entanglement with the rest of
the fermionic system. When calculating their commutator, we
can make use of Eq. (72) to find

〈Jf | L̃2(q̂1)L̃2( p̂1) − L̃2( p̂1)L̃2(q̂1) |Jf〉

= 1

cosh(2rb)
〈Jb| q̂1 p̂1 − p̂1q̂1 |Jb〉 = i

cosh(2rb)
. (99)

Hence, the restriction of Jf has eigenvalues ±i[cosh(2rb)]−1,
as predicted by the entanglement duality.

The opposite identification of the fermionic mode R =
(γ̂1, η̂1) with a bosonic mode is completely analogous, but
it additionally highlights an important effect in the limit of
rf → π/4. The restriction of Jf to (γ̂1, η̂1) is represented by

J f
R ≡

(
0 cos(2rf )

− cos(2rf ) 0

)
, (100)

which has eigenvalues ±i cos(2rf ). Mapping γ̂1 and η̂1 via
the identification map L1, we obtain two bosonic observables
which obey

〈Jb| [L1(γ̂1), L1(η̂1)] |Jb〉 = cos(2rf ). (101)

Hence, we need to rescale the operators

L̃1(γ̂1) := L1(γ̂1)√
cos(2rf )

, L̃1(η̂1) := L1(η̂1)√
cos(2rf )

, (102)

to obtain properly anticommuting quadrature operators, defin-
ing a bosonic mode. For these, we find

〈Jb|{L̃1(γ̂1), L̃1(η̂1)}|Jb〉 = 1

cos(2rf )
, (103)

showing that the restriction of Jb has eigenvalues
±i[cos(2rf )]−1.

In the limit of rf → π/4, the fermionic site mode (γ̂1, η̂1)
approaches maximal entanglement with the rest of the system,
corresponding to an entanglement entropy of one bit, i.e.,log 2
in natural units. Consequently, also its bosonic dual system
approaches maximal entanglement. However, for the bosonic
mode, this means that its entanglement entropy grows without
bound, as shown in Fig. 3. At the point of rf = π/4, the
fermionic mode 1 would represent a fermionic subsystem
which is maximally entangled with mode 2. However, such
a fermionic mode is not mapped to a valid bosonic subsystem

by the identification maps. In fact, for rf = π/4, the identifi-
cation map L1 acts as

L1(γ̂1) = cosh(rb) − sinh(rb)√
2

(q̂1 + q̂2),

L1(η̂1) = cosh(rb) − sinh(rb)√
2

( p̂1 − p̂2), (104)

which are commuting observables, and thus do not define a
proper bosonic mode [cf. Eq. (58)], as also seen by the fact
that Eq. (101) vanishes.

This example highlights how, in general, fermionic Majo-
rana operators that generate an almost maximally entangled
mode are mapped to almost commuting bosonic operators
by the identification maps, which in the limit of maximal
fermionic entanglement, thus, fail to define a bosonic mode.
The following Sec. III F showcases a peculiar consequence
of this fundamental relationship between highly entangled
fermionic modes and their bosonic counterparts in 2D.

F. Application: supersymmetric Kitaev honeycomb model

In this section, we demonstrate consequences of the de-
rived entanglement duality in the example of the celebrated
Kitaev honeycomb model [60], a spin model with charac-
teristic bond-directional exchanges on the honeycomb lattice
[Fig. 4(a)], and its supersymmetric extension [11]. In their
gapped phases, both the fermionic and the bosonic lattice
of this supersymmetric system exhibit the entanglement-area
law in Eq. (2). Because the identification maps between the
fermionic and the bosonic lattice behave local and preserve the
shape of subregions of a lattice very well, one may expect also
the entropy of these dual subsystems to follow an area law.
However, we show that, in mapping from fermionic subre-
gions to bosonic ones, a peculiar phenomenon can arise where
the entanglement entropy of the dual bosonic subsystems
scales much faster than its pre-image in the fermionic lattice
which follows the area law. This is attributed to the presence
of almost maximally entangled modes in the fermionic sub-
system.

The analytical solution of the Kitaev honeycomb model is
achieved by recasting it in terms of noninteracting Majorana
fermions hopping on the same honeycomb lattice [in the back-
ground of a classical (static) Z2 gauge field]. The resulting
fermionic Hamiltonian reads

Ĥf = − i

2

N∑
i, j=1

(
η̂iAᵀ

i j γ̂ j − γ̂iAi j η̂ j
)
. (105)

Expressed this way, Ĥf describes the hopping of Majorana
fermions between the two types of sites of the honeycomb
lattice [Fig. 4(a)], where each of the Majorana operators γ̂i and
η̂i resides on one type of the lattice sites. The N × N-matrix
A corresponds to the connectivity matrix of the lattice as
depicted in Fig. 4(a), which we consider to be periodic. It
involves the hopping strengths along the three bonds around
each site of the honeycomb lattice, which we denote by
jx, jy, jz. The inequality | jx| � | jy| + | jz| and its cyclic per-
mutations together imply a gapless spectrum of Ĥf ; otherwise,
Ĥf has a gapped spectrum. While the phenomena discussed

023213-13



JONSSON, HACKL, AND ROYCHOWDHURY PHYSICAL REVIEW RESEARCH 3, 023213 (2021)

FIG. 4. Supersymmetric Kitaev honeycomb model: The schematic visualization in (a) represents, on the left, the fermionic honeycomb
Kitaev model in Eq. (105) and, on the right, the bosonic triangular lattice in Eq. (107), which are generated by the supercharge in Eq. (106).
The map L−1

1 identifies fermionic subsystems with bosonic dual subsystems. The plots below, in (b) and (c), show numerical calculations of
the entanglement entropy of parallelogram-shaped subsystems on the fermionic side and of their dual bosonic subsystems on the other side
for two different orientations of the hopping parameters �j = ( jx, jy, jz ). For the numerical examples, periodic lattices with a total number of
N = 45 × 45 = 2025 unit cells were considered. The parallelograms of the subsystems contain M = m × m modes, i.e.,M unit cells of the
honeycomb lattice, and are oriented such that they do not cut through links with hopping parameter jx . The fermionic entropies show good
numerical agreement with the area law, which they are known to follow in the thermodynamic limit. Depending on the orientation of the
couplings �j relative to the parallelogram, the dual entropies can follow the area law or a scale much faster.

below can arise in both phases, for our numerical results, we
will focus on the gapped phase below.

A supercharge operator Q̂ = Rαaξ̂
α
f ξ̂ a

b that leads to Ĥf be-
ing identified with the fermionic part of the supersymmetric
Hamiltonian Ĥ = Q̂2 is [11]

Q̂ =
N∑

i, j=1

(γ̂iAi j q̂ j + η̂iδi j p̂ j ), (106)

which implies a block-diagonal matrix representation of Rαa.
The bosonic part of this Hamiltonian

Ĥb = 1

2

N∑
i, j=1

q̂i(AᵀA)i j q̂ j +
N∑

i=1

p̂2
i , (107)

corresponds to a triangular lattice of harmonic oscillators, as
depicted in Fig. 4(a), or in the appropriate classical limit, to a
triangular network of balls and springs [11].

As previously mentioned, in the gapped phase, both the
fermionic and the bosonic lattices of this SUSY Hamiltonian

exhibit an area law scaling in Eq. (2) in the entanglement en-
tropy of lattice subregions. Accordingly, Fig. 4(b) shows good
agreement of our numerical example with an area law scaling
of the entanglement entropy. There, we consider a honeycomb
lattice which is periodic, with equal side lengths, comprising
N = 45 × 45 = 2025 unit cells, of two sites each, in total.
From this fermionic lattice, we cut out parallelogram-shaped
subsystems of side length m, i.e.,containing M = m × m unit
cells, as indicated in Fig. 4(a), and calculate their entangle-
ment entropy S(ρf

A) with the rest of the lattice. We compare
two different combinations of the hoppings �j = ( jx, jy, jz ) =
(2.5, 1, 1) and �j = (1, 1, 2.5) with respect to the orientation
of the parallelograms. These two orientations differ in the type
of neighboring sites which the boundary of the parallelogram
separates.

We emphasize that the absolute shape of the boundary is
not crucial here; instead, what types of links (strong or weak)
are separated leaves remarkable effects on the scaling of the
entanglement entropy in the dual bosonic subsystem, as will
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be demonstrated shortly. In detail, the boundary chosen here
only cuts through links with hopping jy and jz. Thus, in the
first case, it only separates sites linked by the two weaker
hoppings, whereas in the second case, it separates pairs of
sites linked by the strong hopping. Since the entanglement
area law holds independent of the orientation of the couplings,
Fig. 4(b) shows that the fermionic entanglement does exhibit
the scaling as predicted by the area law for both the ori-
entations. The only visible difference is that, in the second
case, due to the separation of strongly linked sites, the overall
entanglement entropy is about three times larger.

However, one subtle difference between the two ori-
entations which is not evident from the total fermionic
entanglement entropy of the parallelogram subsystems is that,
in the second case, when strongly linked sites are separated by
the boundary of a subsystem, the subsystem develops a sig-
nificant fraction of “almost maximally entangled” fermionic
modes that scales as

√
M for M sites in the subsystem. How-

ever, as we shall see, these fermionic modes lead to a vastly
different behavior of the entanglement entropy of the dual
subsystems in the bosonic lattice associated with the original
fermionic parallelograms by the identification maps.

In the periodic lattices considered here, the identifica-
tion maps behave local in the sense that onsite operators in
one lattice are mapped to exponentially localized operators
on the supersymmetric partner lattice. Hence, the geometri-
cal appearance of subsystems is well preserved when they
are mapped to their dual subsystems in the supersymmet-
ric partner lattice by the identification maps. At first sight,
this may seem to suggest that the entanglement entropy of
the dual systems also should exhibit an area law scaling
since the entanglement area relation of Eq. (2) holds in both
the fermionic and the bosonic lattice we consider. However,
Fig. 4(c) demonstrates, for the numerical example introduced
before, that the entanglement entropy of fermionic subsystems
and their dual bosonic subsystems can scale very differently:
depending on the hoppings �j with respect to the parallelogram
subsystems, the dual entropy may scale in agreement with an
area law scaling, or they can scale much faster according to a
“super area law.”

How does this phenomenon arise? First, let us note that,
when the parallelogram in the original fermionic lattice only
cuts links with weaker hoppings, the dual entropy follows
an area law scaling. The higher scaling of the dual entropy
appears when the parallelogram cuts through links with the
strongest hopping. This separation of strongly linked Ma-
jorona sites, however, heralds the presence of normal modes
in the fermionic parallelogram which are (almost) maximally
entangled with the rest of the lattice. The presence of such
modes is the reason for the observed peculiar scaling of the
dual entropies.

In fact, the mathematical explanation for the observed
amplified scaling of the dual entropies is rooted in the spec-
trum of the restricted fermionic linear complex structure J f

A.
Figure 5 plots the absolute values of the eigenvalues for the
subsystems considered in Fig. 4(a) for the two distinct orienta-
tions of the hopping mentioned before. In the first case, where
the parallelograms do not cut through any strong links, the
eigenvalues roughly lie in the interval 0.9 < |λi| � 1, as seen
in the inset of Fig. 5. As is evident from Fig. 3, in this regime,

FIG. 5. Absolute values of the eigenvalues of the fermionic linear
complex structure J f

A on the Kitaev honeycomb lattice restricted to
the subsystems of Fig. 4. The inset zooms in on the eigenvalues of the
first case �j = (2.5, 1, 1), which hardly fall below |λi| ≈ 0.9. In the
second case �j = (1, 1, 2.5), the absolute values decay exponentially
with the subsystem size M, thus triggering the amplified scaling of
the dual entropies in Fig. 4(c) up until the subsystem exhausts the
full lattice of N = 2025 modes.

the entanglement entropy of each of the eigenmodes of J f
A,

i.e.,the normal modes of the subsystem, is almost the same as
the entanglement entropy of their dual bosonic modes. Thus,
in the first case, the entanglement entropies for the fermionic
subsystems and their bosonic duals are almost the same and
follow the same scaling.

In contrast, in the second case, the spectrum of J f
A exhibits a

certain number of eigenvalues which are very small or almost
zero. Note that the number of these pairs of eigenvalues ±iλi

that fall below λi � 0.1 corresponds exactly to the side length
of the parallelograms, i.e.,is half of the number of strong
links which the parallelogram cut through. The normal modes
corresponding to these eigenvalues thus share almost maximal
entanglement with the rest of the system, i.e.,the complement
of the region surrounded by the parallelogram. In terms of
their entanglement entropy, as discussed before and also ev-
ident from Fig. 3, the fermionic normal modes approach the
maximum value of one bit entanglement entropy as λi → 0
following Eq. (65), whereas the entanglement entropy of their
dual bosonic modes diverges as λ−1

i → ∞.
As a result, the total entanglement entropy of the dual

bosonic subsystem scales much faster with its subsystem size
than the original fermionic system does. This effect is visu-
alized in Fig. 6, whose stacked plots show the mode-wise
contribution of the normal modes to the total entropy of the
fermionic subregions and their duals in the bosonic lattice. On
the fermionic side, the individual contributions are bounded
by one bit per mode; thus, their summed contribution still
results in a growth linear in the perimeter of the parallelogram.
However, on the bosonic side, the individual contribution
from each normal mode continues to grow as the system size
increases, resulting in a higher scaling of the entanglement en-
tropy than that predicted by the area law. Let us emphasize that
the total number of low-lying fermionic eigenvalues scaling as
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FIG. 6. Stacked plots of the mode-wise contribution to the total entanglement entropy, for the setup of Figs. 4(b) and 4(c), for the case
�j = (1, 1, 2.5). The left plot refers to the fermionic hexagonal subsystems Af and the right plot to the dual bosonic subsystem L−1

1 (Af ). The
difference between the (i − 1)th and ith line gives the contribution of the ith normal mode of the subsystem to the total entanglement entropy.
Thus, the upper-most line coincides with the respective plot in Figs. 4(b) and 4(c). Note that, here, we have changed the horizontal axis to

√
M,

i.e.,the side length of the parallelogram-shaped fermionic subsystems. The fermionic entropy is dominated by the
√

M normal modes that are
almost maximally entangled and the bosonic entropy by their dual modes.

√
M (with M being the subsystem size) alone is not sufficient

to give rise to a “super area law” on the bosonic side but also
that these low-lying values actually decay towards zero. If
they were bounded by some λmin, such that λi � λmin > 0, the
entropy of each dual bosonic mode would be upper bounded
by sb(1/λmin), resulting again in the conventional

√
M scaling

of the area law.
The peculiar phenomenon observed above can be viewed

as a direct physical instance of the minimal two-mode exam-
ple in Sec. III E taking place at the edge of the subsystem:
Every time its boundary cuts through a pair of strong links
(on opposite sites of the parallelogram cutout), the subsystem
exhibits a strongly entangled normal mode (corresponding
to an almost vanishing eigenvalue of the restricted complex
structure). These normal modes are highly localized at the
edge of the subsystem and share no entanglement with any
mode inside the subsystem but with those lying on the com-
plement of the subsystem. In fact, the normal modes of the
subsystem, which carry entanglement, form pairs with those
from the complement such that each normal mode is entangled
with exactly one partner (normal) mode of the complement.10

The partner normal modes of the highly entangled subsys-
tem normal modes are localized right outside the subsystem.
Thus, a pair of partner modes (one inside the subsystem and
one outside) forms a two-mode subsystem, localized in the
immediate neighborhood of the boundary of the subsystem,
which is not entangled with the rest of the system but in a pure
two-mode squeezed state on its own. The identification maps
now map each pair of such fermionic normal mode partners
to a pair of bosonic normal mode partners, one inside the
dual subsystem and one outside. Due to the locality properties
of the identification maps, their joint support on the bosonic
lattice sites is closely related to the shape of the fermionic pair.

10These pairs are connected by the complex structure Jf of the
ground state.

In this mapping, pair by pair, the same mechanism as
discussed in Eq. (104) takes place. The Majorana operators
of the fermionic subsystem normal mode are mapped to a
pair of bosonic observables which are almost commuting, thus
defining a highly entangled bosonic mode. Such almost com-
muting bosonic observables need not be spatially separated
on the lattice, but they can have equal support on the same
lattice sites, as Eq. (104) demonstrates: There, both bosonic
observables have equal support on both of the two modes;
however, one quadrature is proportional to q̂1 + q̂2 but the
other to p̂1 − p̂2; thus, they commute.

Because of such localized and highly entangled bosonic
modes, it is possible for the dual bosonic subsystems, despite
being well localized, to exhibit a scaling of entanglement
entropy that exceeds the area law of the original fermionic
lattice. The entanglement area law assumes the subsystem
division being a direct sum of individual lattice sites, i.e.,in a
bosonic system, the quadarature operators q̂i and p̂i either both
belong to the subsystem, or they both do not. In contrast, the
boundary between the dual bosonic subsystems and the rest
of the (bosonic) lattice considered in this example may well
separate different linear combinations of the onsite bosonic
operators.

IV. DISCUSSION

In this paper, we study the entanglement properties of
bosonic and fermionic Gaussian states that are related via
SUSY, in other words, belong to Hamiltonians which are
supersymmetric partners of each other. After reviewing a
unified framework to describe these states in terms of Käh-
ler structures, we prove the main result of this paper in
Proposition 1, which relates the bosonic and the fermionic
entanglement spectrum of a chosen subsystem in a supersym-
metric Gaussian state. The result is based on supersymmetric
identification maps that are constructed from the supercharge
operator Q̂. They enable us to uniquely identify subsystems
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both bosonic and fermionic, which we refer to as dual to each
other. In Proposition 2, we extend the said duality to include
thermal states associated with supersymmetric Hamiltonians,
for which we find the same relationship between the bosonic
and the fermionic thermal states as for the reduced states in
the subsystems.

The rest of this paper illustrates this result and its im-
plications in supersymmetric lattice models. We investigate
to what extent identification maps constructed from a local
supercharge operator preserve this locality, i.e.,to what extent
a local subsystem on the bosonic side is identified with a local
subsystem on the fermionic side and vice versa. This is impor-
tant to explain why our abstract duality is of relevance when
studying physical systems: It shows a simple relation between
the entanglement of bosonic and fermionic subsystems that
can both be thought local in a precise way.

The examples in this paper suggest that, for SUSY lat-
tice Hamiltonians, the locality properties of the identification
maps are related to the boundary conditions of the lattice and
the presence of edge modes. For example, in the 1D open
chain of Sec. II D, the identification maps featured highly
nonlocal behavior in the topological phase. However, in the
same system with periodic boundary conditions [obtained by
extending the supercharge in Eq. (54) to be translation invari-
ant], the identification maps behave rather local, even deep in
the topological phase.

In the context of localized subsystems, a peculiar con-
sequence of the entanglement duality is the appearance of
“super area law” behavior in the entanglement entropy of
bosonic subsystems dual to subsystems with certain shapes
on the fermionic side, seen in Sec. III F. This phenomenon
is related to the appearance of almost maximally entangled
modes in the fermionic subsystem, for which the spectrum of
the fermionic linear complex structure nearly vanishes. The
entanglement duality then implies an unbounded growth of
entanglement for the dual bosonic system. Since it is well
known [61] that the entanglement entropy associated with a
ground state of a gapped and local Hamiltonian (bosonic or
fermionic) satisfies an area law, this raises the question of how
occasions where our entanglement duality relates an area law
on the fermionic side with a “super area law” on the bosonic
side for the respective ground states of a local supersymmetric
Hamiltonian (such as the honeycomb model considered in
III F) can appear. The answer to this question lies in the type of

bosonic subsystem that arises under the duality for a fermionic
subsystem with large entanglement. We saw in Sec. III E how
there can be an arbitrary amount of entanglement associated
with a single bosonic mode due to choosing a subsystem that
effectively partially separates a quadrature operator q̂i from its
canonically conjugate operator p̂i. Such types of subsystems
are typically not considered in the context of studying area
laws, and it is not surprising that the standard results on area
laws for the ground states of gapped local Hamiltonians do
not apply to them.

At this stage, it is a natural question to what extent such
dual subsystems, identified by the supersymmetric duality as
in Sec. III F, should be considered a physical reality or a
mathematical concept. The answer will highly depend on the
concrete physical realization of the model. For example, if
the bosonic degrees of freedom were represented by photons,
such a subsystem could at least in principle be probed by
applying an appropriate sequence of Gaussian transformations
(implemented by standard linear optics devices) as long as
q̂i and p̂i are not fully separated, i.e., [q̂i, p̂i] 
= 0. On the
other hand, since the implementation of large squeezing, as
discussed in Sec. III E, is known to be very challenging, ac-
cessing the subsystems may well be physically infeasible.

In keeping with the study of topological properties of
translation-invariant SUSY lattice Hamiltonians in arbitrary
dimensions, a generalization of the identification maps to
higher dimensional lattices certainly constitutes a promising
avenue to explore. Here, we would like to highlight Ref. [71],
where a spin-fermion correspondence, very much in the same
spirit of our SUSY map, has been worked out engaging
three-dimensional (3D) lattice models as well. Entanglement
properties of a 3D generalization of the Kitaev honeycomb
model have also been studied [72]. Other variants of 3D
Kitaev spin liquids exist [73,74] with entanglement proper-
ties hitherto unexplored; our dualities find a straightforward
application therein.
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