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Entanglement clustering for ground-stateable quantum many-body states
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Despite their fundamental importance in dictating the quantum-mechanical properties of a system, ground
states of many-body local quantum Hamiltonians form a set of measure zero in the many-body Hilbert space.
Hence determining whether a given many-body quantum state is ground-stateable is a challenging task. Here we
propose an unsupervised machine learning approach, dubbed Entanglement Clustering (“EntanCl”), to separate
out ground-stateable wave functions from those that must be excited-state wave functions using entanglement
structure information. EntanCl uses snapshots of an ensemble of swap operators as input and projects these
high-dimensional data to two dimensions, preserving important topological features of the data associated with
distinct entanglement structure using the uniform manifold approximation and projection. The projected data are
then clustered using K-means clustering with k = 2. By applying EntanCl to two examples, a one-dimensional
free fermion model and the two-dimensional toric code, we demonstrate that EntanCl can successfully separate
ground states from excited states with high computational efficiency. Being independent of a Hamiltonian and
associated energy estimates, EntanCl offers a new paradigm for addressing quantum many-body wave functions
in a computationally efficient manner.
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I. INTRODUCTION

Quantum many-body wave functions are complex objects
that encode a great deal of information. However, interpreting
this information is difficult due to the exponential number of
parameters in the wave function and the need for a technique
to interpret those parameters. In particular, we are interested
in separating out wave functions that can be ground states of
local Hamiltonians from the exponentially large space of all
wave functions. Unfortunately, such “ground-statable” wave
functions likely form a set of measure zero in the full many-
body Hilbert space [1–4]. Although the typical approach to
wave functions is to measure their energies against a particular
Hamiltonian of interest, such ranking by energy is subject to
change when details of the Hamiltonian change.

As an alternative to resorting to a Hamiltonian, one could
turn to entanglement properties. In particular, given a parti-
tioning of a system into two subregions A and B, the scaling of
the (Von Neumann) entanglement entropy SA = −TrρA ln ρA,
where ρA is the reduced density matrix of subregion A, can
help determine ground-stateability [5]. Ground-stateable wave
functions typically exhibit SA that scales as the codimension-1
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boundary of the cut between subregions A and B (area law),
while that of non-ground-stateable wave functions typically
scales as a codimension-0 boundary (volume law). Such a
distinction has indeed previously been used to distinguish
ground-stateable and non-ground-stateable wave functions
(see, for example, [6–12]). However, at a practical level, an
investigation of the entanglement entropy scaling is often
prohibitively expensive, and the finite-size effects can make
it challenging to declare area or volume law with confidence.
Clearly, a computationally efficient approach to separate out
ground-stateable wave functions in an unbiased fashion is
much desired.

Here we introduce “EntanCl” (Entanglement Clustering),
a machine learning approach designed to learn the entangle-
ment structure of many-body quantum states and separate
ground-stateable states from the rest of the Hilbert space in
a computationally efficient yet unbiased manner. In this initial
study of EntanCl, we do not provide an exhaustive proof of
this stated aim, but rather we will primarily study applica-
tions to eigenstates of a single Hamiltonian or a family of
similar Hamiltonians. Also, we would like to emphasize that
the purpose of EntanCl is not to calculate and compare the
entanglement entropy of wave functions, but to learn struc-
ture in noisy snapshots of an entanglement-based quantity.
Increasingly, the quantum condensed-matter community is
successfully applying machine learning approaches to vari-
ous tasks such as phase recognition [13–33], hypothesis tests
on experimental data [34,35], and compact representation of
many-body wave functions [18,24,36–44]. A common feature
among these different problems that motivates the use of
machine learning approaches is the need to find structure in
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voluminous and complex data. However, the vast majority of
applications so far use supervised learning, which requires
labeled training data, and researchers’ bias gets built into
the labeling of the training data. Without the preconceived
notion of what makes a wave function ground-stateable, we
would like to separate out ground-stateable wave functions by
learning the entanglement structure inherent in the many-body
wave functions. For this, EntanCl uses Monte Carlo snapshots
of the swap operator as the subsystem partition scans over
the system. Then it employs uniform manifold approxima-
tion and projection (UMAP) [45], which is an unsupervised
machine learning (ML) approach of manifold learning in
high-dimensional spaces to project the data down to a two-
dimensional space. The final step of EntanCl is to cluster using
K-means clustering.

We will demonstrate the effectiveness of EntanCl by ap-
plying the method to many-body states associated with two
specific models: a one-dimensional free fermion model and
Kitaev’s toric code [46] in two dimensions. The models are
chosen to be representative of cases in which the ground states
and excited states are distinguished by entanglement structure,
and they are useful benchmarking cases because we know
precisely what the ground states are. For any ML approach
to data to be successful, it is critical to select relevant features
to be fed into the ML algorithm. Motivated by the previously
established importance of entanglement properties in deter-
mining ground-stateability, we will use an ensemble of swap
operators [47] as feature selectors for our wave functions.

The rest of the paper is organized as follows. In Sec. II, we
introduce and describe the three steps of EntanCl. In Sec. III,
we apply EntanCl to a simple, one-dimensional free fermion
model and study the accuracy of our method in classifying
wave functions. In Sec. IV, we apply EntanCl to a strongly
correlated problem: Kitaev’s toric code [46]. In Sec. V,
we summarize our conclusions and discuss possible future
applications.

II. METHODS

EntanCl consists of three steps. The first step is to con-
struct the input data of swap operator snapshots. In search
of the right feature selection approach, we are inspired by
the use of the swap operator in calculating Renyi entropies
[47]. The action of the swap operator is illustrated in Fig. 1.
The expectation value of the swap operator in the state |�〉 =∑

α,β Cαβ |αβ〉 is given by

〈swapA〉 = e−S2 =
∑

α,β,α′,β ′
|Cαβ |2|Cα′β ′ |2 Cα′βCαβ ′

CαβCα′β ′
, (1)

where S2 denotes the second Renyi entropy, A denotes a
subsystem, the quantum numbers α describe subsystem A,
and β describe the remainder of the system. We will not take
the expectation value, however. Instead, we will variationally
sample the swap data for |�〉 = ∑

α,β Cαβ |αβ〉 according to
Eq. (1), where |Cαβ |2 × |Cα′β ′ |2 plays the role of the sam-
pling weights. To acquire more comprehensive data across
the system, we will consider many subsystems Ai to form an
ensemble of swap operators {swapAi

}.

FIG. 1. (a) Schematic depiction of the action of the swap op-
erator on a subsystem A. The quantum numbers α describe the
subsystem, and β describe the remainder of the system. Since swap
acts on a doubled Hilbert space, we denote the quantum numbers
belonging to one copy by primed variables and those belonging to
the other by unprimed variables. The operator swapA switches the
primed and unprimed variables within the region A. (b) Illustration of
our data collection procedure. At each VMC step j, we collect swap
data from a collection of subsystems Ai and store each in a vector �X j

at index i. The collection of �X j’s forms our complete dataset X.

As we sample the swap data with variational Monte
Carlo (VMC), we build up a collection of vectors X =
{ �X j} (cf. Fig. 1) where at index i, �X j contains the data
Cα′βCαβ ′/CαβCα′β ′ sampled from swapAi

at VMC step j. The
dimensionality of our data is precisely the number of subsys-
tems Ai we choose to consider. This will be of order hundreds
of dimensions for the free fermion model and thousands for
the toric code. We thus have a high-dimensional data set
X that contains entanglement information about the wave
function |�〉.

The second step of EntanCl is to project the input data
living in the high-dimensional space (typically hundreds or
thousands of dimensions) down to two-dimensional space in
which clustering can be visualized. Typical applications of
unsupervised ML to high-dimensional data sets involve visu-
alizing the data in a low-dimensional space via dimensional
reduction. Dimensional reduction algorithms (such as those
described in Refs. [48–55]) vary in the way that they approx-
imate the high-dimensional manifold populated by the data
and what features of that manifold they try to preserve under
projection to the low-dimensional space. We are interested in
an algorithm that will allow us to visualize the cluster structure
in our swap data set X. This is because we expect that those
�X j obtained from ground-stateable and non-ground-stateable
wave functions will appear as two separate clusters due to
differing entanglement structure.

We can view clusters from a neighborhood perspective.
As an example, in Fig. 2 we consider three-dimensional data
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FIG. 2. Schematic illustration of “neighborhood structure”
preservation, projecting points in three dimensions to two. The five
nearest neighbors of the star are found by application of B5

X. After
projection, we can see that the five nearest neighbors of the point
marked with a star remain its five nearest neighbors. Moreover, by
preserving local neighborhoods, we have discovered two distinct
clusters in the high-dimensional data. For this example, the projec-
tion was done by UMAP.

consisting of two clusters: 15 points randomly generated on
the upper hemisphere of a unit radius sphere, and 15 generated
on the lower hemisphere. Gaussian noise is applied to the
coordinates of the points. We then project the points down
to two dimensions so as to preserve their local neighborhood
structure. In this case, we use UMAP to do the projection.
On the right-hand panel of Fig. 2, we can see that in each of
the two clusters, the local neighborhoods of each point are
entirely contained within the same cluster as the point. To
emphasize this, we illustrate a local neighborhood of size five
around the point marked by a star. From this we can infer
that preserving local neighborhood structure also preserves
cluster structure. Formally, define a function Bm

X such that
Bm

X ( �X∗) ⊆ X is the set of the m nearest neighbors of �X∗ in X.
A cluster is then a subset C ⊆ X such that Bm

X ( �C ∈ C) ⊆ C.
For visualizing clusters, a natural choice for a dimensional
reduction algorithm is then one that preserves neighborhoods
after projection.

Algorithms that preserve neighborhood structure [48–52]
try to find a mapping P from the D-dimensional data space to
Rd (again, R2 for us), such that P ◦ Bm

X = Bm
P (X) ◦ P , where ◦

denotes the usual composition of mappings. Observe that pre-
serving neighborhoods entails not only keeping points within
a cluster nearby, but keeping points in separate clusters far
away from each other. Common algorithms accomplish this
by taking as input a hyperparameter that defines an estimated
neighborhood or cluster size, related to the m in our def-
inition of Bm

X . These algorithms treat the effective distance
between points outside of a neighborhood as extremely (or
sometimes infinitely) far away. One must be sure to choose
this hyperparameter large enough (based on the density of the
data) that spurious clusters do not appear in the projected data.
That is to say, the intersection of the neighborhoods Bm

X need
to contain the entire, true cluster. For our purposes, we use
UMAP, which has previously found use in biology [56–64],
materials engineering [65], and machine learning [66–68],

but has had limited use in quantum matter [69]. For more
details about how UMAP in particular works, see Appendix
A. We choose UMAP from the various unsupervised ML
algorithms that seek to preserve neighborhood structures for
two reasons. First, it led to the clearest projected clustering
for our purposes. Second, in contrast to other algorithms like
tSNE, UMAP provides us with a generalizable mapping that
can be applied immediately to new data without rerunning
UMAP.

The final step of EntanCl is to interpret the learned UMAP
output using k-means clustering. K-means clustering parti-
tions a set of data points into k clusters by placing k cluster
means (centroids) in a way that minimizes the sum of squared
distances from each data point to its nearest centroid. A
(k = 2)-means clustering thus naturally allows us to classify
(non-)ground-stateable wave functions in the 2D projected
space. For our test cases where we know which cluster cor-
responds to each type of wave function, we define a metric of
accuracy given by assignment to the correct centroid.

III. FREE FERMION MODEL

To establish EntanCl on a simple, known model, we first
study a one-dimensional free fermion model. This model is
described by the Hamiltonian

H =
∑

i

(t1b†
i ai + t2a†

i+1bi ) + H.c. (2)

This model has two bands with energy gap �E ∼ |t2 − t1|,
and we consider the case of half-filling. We report results
in terms of the dimensionless, normalized gap t ≡ |t2 −
t1|/t1. The ground-state Slater determinant wave function of
the half-filled system corresponds to completely filling the
lower band. The non-ground-stateable eigenstates we consider
have some fixed density nex ≡ Nex/L of randomly chosen
k-points promoted to the upper band, where L is the system
size. This model gives us a testbed to identify ground-state
wave functions and non-ground-stateable wave functions in
the parameter space of energy gap �E and excited k-point
density nex.

The ensemble of swap operators we use in this case is
the set of all length six contiguous subsystems of an L =
100 chain. Our dataset X consists of 1000, 100-dimensional
swap vectors �X j corresponding to the ground state and 1500
corresponding to a non-ground-stateable wave function. We
choose an uneven ratio of swap data from the two classes
to illustrate that a symmetric amount of data is nonessential
to our technique. We project the data to two dimensions via
UMAP and assign the projected data points to clusters with
k-means. Since we know which swap data points came from
(non-)ground-stateable wave functions, we also calculate the
accuracy.

Our results are shown in Fig. 3. Figure 3(a) corresponds
to a projection with the normalized gap t = 2 and excitation
density nex = 3%. In this case, one can clearly see the success
of EntanCl: the data corresponding to the ground-stateable
wave function (red) and the non-ground-stateable wave func-
tion (green) appear as two well-separated clusters. This case
corresponds to an accuracy of 99.12%. In Figs. 3(b) and 3(c)
we can see that as both t and excitation density increase, the
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FIG. 3. (a) UMAP projection of swap data obtained from wave functions for the free fermion model. Red dots correspond to swap data
from a ground-stateable wave function. Green dots correspond to swap data from a non-ground-stateable wave function with nex = 3% and
t = 2. Black diamonds denote the (k = 2)-means clustering centroids. This case has accuracy 96.52%. We also show the accuracy as a function
of (b) excitation density nex at normalized energy gap t = 2.0 and (c) t at nex = 10%. In both cases, accuracy increases as a function of the
relevant parameter, and moreover it stays relatively high at the minimum possible value.

accuracy also increases. This makes sense: as both t and nex

increase, the excited state becomes more entangled compared
to the ground state as the entanglement entropy scaling tran-
sitions from area law to volume law. Moreover, the accuracy
stays high even at the lowest possible nex (80.00% for t =
2) and for a gapless system (90.03% for nex = 10%). This
demonstrates that EntanCl is a viable method of identifying
the differing entanglement structure in ground-stateable and
non-ground-stateable wave functions.

The learned UMAP projection is generalizable. In Fig. 4
we illustrate the results of using the UMAP projection op-
timized with swap data obtained from the ground-stateable
wave function and a single non-ground-stateable wave func-
tion (i.e., a single choice of excited k-points) with t = 2 and
nex = 2% to four more non-ground-stateable wave functions
with the same t and nex. We collect 1000 MC samples for

FIG. 4. UMAP projection of swap data from free fermion model
wave functions at gap t = 2 and excitation density nex = 2%. The
UMAP projection was optimized using the ground state and a single
excited-state configuration (i.e., single choice of excited k-points).
We then use the same mapping on four more excited-state configu-
rations and display the results simultaneously. The ground-state data
are shown in red; the other colors correspond to various excited-state
configurations. Clearly, subsequent excited states cluster together
with each other, and more importantly all cluster separately from the
ground state.

the ground-stateable wave function and 1500 for each non-
ground-stateable wave function. The projection map clusters
all the data from non-ground-stateable wave functions to-
gether, away from the data from the ground-stateable wave
function. The accuracy in this case is 84.4%, lower than
the 96.6% in Fig. 3(b) for two wave functions. This is be-
cause most of the error is non-ground-stateable data being
misclassified as ground-stateable. Increasing the amount of
data collected from the ground-stateable wave function would
increase the accuracy. These results show that the structure
that UMAP is learning generalizes well.

We additionally consider an example using swap data from
ground-stateable wave functions (nex = 0%) at normalized
gap t = 0, 1, and 2. We can see in Fig. 5 that that although
the data from the gapped states appear as one cluster, the data
from the gapless state appear as a separate cluster. This is
presumably due to the logarithmic correction to the entangle-
ment entropy in the gapless system. If we consider as well
a non-ground-stateable wave function with nex = 10% and
t = 0 and allow for three clusters instead of two due to the
separation of the ground states, we find that the output clusters

FIG. 5. UMAP projection of swap data obtained from the free
fermion model for several ground-stateable wave functions (nex =
0%) at normalized gaps t = 0, 1, 2. The data from the gapped states
(red and green dots) cluster together, and they do so separately from
the data from the gapless state (blue dots).
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FIG. 6. (a) UMAP projection of swap data obtained from wave functions for the toric code. Red dots again correspond to swap data from
ground-stateable wave functions. Green dots correspond to swap data from a non-ground-stateable wave function from a lattice with linear
dimension L = 25 with spinon density nex = 20%. Black diamonds denote the (k = 2)-means clustering centroids, and this case corresponds
to accuracy 95.91%. (b) The accuracy at a fixed lattice size grows with nex, as expected. (c) Classification accuracy for UMAP projection of
toric code wave functions as a function of lattice linear dimension. Data shown are at spinon density ∼20%. Accuracy increases with system
size and plateaus around 95%. A slight nonmonotonicity near the plateau is expected because nex must be an even integer and is therefore not
exactly 20% for all lattice sizes.

with 95.82% accuracy. However, if we include additional ex-
cited states with nex = 10% and t = 1, 2, the accuracy drops
to 54%.

IV. TORIC CODE

We now turn to a two-dimensional example: Kitaev’s toric
code [46]. This is a strongly interacting system whose ground
state has topological order, and because it is exactly solvable,
we will be able to assess the accuracy of EntanCl. This model
is defined on a square lattice with spin-1/2 variables living on
the edges. The wave functions that we will consider in this
case are eigenstates of the Hamiltonian

H = −
∑
�

A� −
∑

v

Bv, (3)

where the operators

A� =
∏
i∈�

σ x
i , Bv =

∏
i∈∂v

σ z
i (4)

are defined as the product of Pauli σ x operators around a
plaquette and σ z operators on the edges incident on a vertex
v, respectively. Note that we will be working in the σ z basis.

The ground-state wave function we will consider is the
equal amplitude superposition of all lattice configurations of
closed loops in the trivial homology class [70]. The non-
ground-stateable wave functions we will consider are equal
amplitude superpositions of all states with a fixed spinon
density (also allowing closed loops) where a spinon is a
vertex v with Bv = −1. Note that this does not correspond
to fixed spinon locations, as such wave functions could be
made ground states by simply flipping the sign of the Bv’s
corresponding to the spinon locations. With this model, we
will classify wave functions at different values of our control
parameter: the spinon density nex.

We collect swap data at 1000 uncorrelated VMC time
steps for each wave function we consider. The ensemble of
swap operators we use in this case consists of all rectangular
subregions of the lattice, which grows with the linear dimen-
sion of the lattice L as L4. Due to the massively increased

dimensionality of the swap data in this case, we add a prepro-
cessing step to compress the data volume for RAM storage,
especially for larger system sizes. We average the swap data
for a fixed subsystem width and height over all basepoints for
the subsystem. This reduces the dimensionality of the data to
L2, which is sufficiently tractable for our purposes. With this
addition to our analysis, we can project the swap data to two
dimensions via UMAP [71].

Our results for the toric code are shown in Fig. 6. We find
that we can achieve 95.91% accuracy for nex = 20% for a
lattice with linear dimension L = 25 as shown in Fig. 6(a). For
a lattice with linear dimension L = 35, we get accuracy 99.1%
even at nex = 5%. Once again, for this high accuracy case,
the success of the clustering is remarkably clear. In Fig. 6(b),
we can see that the accuracy also increases with nex, as we
would expect. Moreover, we do not need such a large system
to achieve good accuracy. We can see in Fig. 6(c) that for
nex = 20%, the accuracy of the projection is over 90% already
at L = 16.

We now turn to a benchmarking exercise for generalizabil-
ity. Due to topological degeneracy, we have access to four
ground-stateable wave functions from the toric code. In Fig. 7
we show the results of optimizing the UMAP projection map-
ping for an L = 20 lattice using the ground-stateable wave
function containing only homologically trivial loops and the
non-ground-stateable wave function with nex = 20%. We then
generalize the projection map to swap data obtained from the
other three ground-stateable wave functions (those with an
odd parity of noncontractible loops around one or both cycles
of the torus). This is not a surprise given that all states were
drawn from the same probability distribution. Nevertheless, it
confirms that EntanCl works as expected. In Fig. 7, we can
see that the data from the non-ground-stateable wave function
(purple dots) cluster separately from the ground-stateable data
(other colors), which indeed all cluster together. The accuracy
of the collective projection is 98.04%, compared to 95.1%
from the initial data used to optimize the projection map.
This makes sense because the only errors are non-ground-
stateable data being classified as ground-stateable, so adding
more ground-stateable data reduces the error. This shows that

023212-5



MATTY, ZHANG, SENTHIL, AND KIM PHYSICAL REVIEW RESEARCH 3, 023212 (2021)

FIG. 7. UMAP projection of swap data obtained from the toric
code on a 20 × 20 lattice for all four topologically degenerate ground
states and an excited state at excitation density nex = 20%. The
projection was optimized using only data from the ground state
consisting of only homologically trivial loops and the excited state.
Then we subsequently apply the projection to the other three ground
states. The purple dots are data from the excited state; the other colors
are from the ground states. The overall accuracy is 98.04%. All of
the ground-stateable data cluster together, and more importantly they
cluster separately from the excited state except for the small fraction
of errors.

the learned UMAP projection optimized on one ground state
generalizes to other ground states in the presence of topologi-
cal degeneracy.

Another interesting feature of the clustering in this case is
that misclassifications are always excited states being incor-
rectly classified as ground states. The distinction between the
ground state and the excited state is the presence of spinons
and the string operators connecting them. To detect the excited
nature of the wave function, a swap operator must swap a
subsystem in a way that cuts a string operator. We therefore
conjecture that misclassifications of MC samples from excited
states as ground states is due to VMC configurations in which
the string operators connecting spinons are sufficiently short
such that very few subsystems pick up the excited character
of the wave function.

Additionally, we study the effects of considering wave
functions from the toric code and the free fermion model
simultaneously. To do so, we extend the dimensionality of
the swap data vectors collected from the free fermion wave
functions to match that of the toric code data by simply ap-
pending zeros. We take data from one ground-stateable wave
function from the free fermion model (nex = 0%, t = 2) and
one from the toric code (the one with no nontrivial loops). We
also take one non-ground-stateable wave function from each
at nex = 10%. In Fig. 8 we can see that with two clusters, both
ground-stateable wave functions would be assigned to one
cluster and both non-ground-stateable wave functions to the
other with accuracy 97.45%. The non-ground-stateable wave
functions all cluster together, which is surprising.

The two systems differ in their dimensionality and the
geometry of the subsystems used to collect swap data. We
contend that this demonstrates that EntanCl has learned some-
thing meaningful about the data that goes beyond the specifics
of individual datasets. However, at the moment we are unable

FIG. 8. UMAP projection of swap data obtained from both the
free fermion model and the toric code. Red dots correspond to a
ground-stateable free fermion wave function with (nex = 0%, t = 2),
blue dots to a ground-stateable toric code wave function with no
nontrivial loops, green dots to a non-ground-stateable free fermion
wave function with (nex = 10%, t = 2), and yellow dots to a non-
ground-stateable toric code wave function with nex = 10%. Using
k = 2-means clustering, the ground states cluster separately from the
excited states with an accuracy of 97.75%. Note, however, that the
toric code and free fermion ground states cluster form disjoint (but
nearby) clusters.

to say what that was, and we leave further exploration of this
result as a subject of future work. The ground-stateable toric
code wave function forms a separate cluster from the ground-
stateable free fermion wave function (albeit relatively nearby).
Again, the entanglement structure of these wave functions
differs: that of the toric code has an additional constant con-
tribution due to topological order. Also note that adding more
non-ground-stateable wave functions does not decrease the
accuracy. The data from the ground-stateable wave function
corresponding to the gapless limit of the free fermion model,
however, cluster with the data from the non-ground-stateable
wave functions in this case.

In this example and the one presented in Fig. 5, we
have seen that although two wave functions may both be
ground-stateable, differences in entanglement structure (e.g.,
log corrections and topological terms) may result in them
forming separate clusters in the EntanCl output. The non-
ground-stateable wave functions also formed a single cluster
in all the cases we studied. This suggests that in more general
situations with different kinds of potential ground-stateable
wave functions, it may be more useful to assess ground-
stateability by looking for multiple clusters in EntanCl output
separate from a larger cluster of non-ground-stateable wave
functions and not necessarily as a single cluster. We also saw
that the gapless ground state is poorly separated from gapped
excited states. Thus the entanglement structure of the ground
state can cause EntanCl to fail when including both ground
and excited states from wave functions with multiple types of
entanglement structure.

V. CONCLUSION

In summary we introduced EntanCl, an unsupervised ma-
chine learning method to separate out the ground-stateable
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wave functions from the exponentially large Hilbert space
of many-body wave functions with high computational effi-
ciency. EntanCl consists of three steps: (i) preparation of input
data, (ii) projection of the data down to two-dimensional space
using UMAP, and (iii) K-means clustering of the projected
data. The input data of our choice are matrix elements of an
ensemble of swap operators collected as snapshots of indi-
vidual uncorrelated variational Monte Carlo steps. By using
the noisy snapshots as opposed to demanding convergence of
the swap operator expectation value, EntanCl gains computa-
tional efficiency. For example, for the case of the free fermion
with normalized gap t = 3 and excitation density nex = 0%
(nex10%), it takes O(106–107) [O(105–106)] (depending on
subsystem length) uncorrelated MC steps and swap evalua-
tions for 〈swapA〉 to converge to five digits for a particular
subsystem A. We collect data from only 103 uncorrelated
MC steps and perform 105 swap evaluations, an order of
magnitude fewer than it takes to converge the average to five
digits. Note also that we have all the data we need from
those 105 swap samples, while in a typical diagnosis of the
entropy scaling law, the average must be converged multiple
times for finite-size scaling. In this example, doing finite-size
scaling for 10 subsystem sizes would take at least an order
of magnitude more uncorrelated swap evaluations compared
to EntanCl. Moreover, we would like to reemphasize that
converging 〈swapA〉 must be done for each wave function.

We applied EntanCl to a simple one-dimensional free
fermion model and Kitaev’s toric code to find accurate cluster-
ing results. Moreover, we established that the learned UMAP
projection is generalizable to an expansion of the data set.
The clustering errors are found to occur asymmetrically: an
excited state may get misplaced into the ground-state cluster
but not vice versa. Hence the cluster assignment into excited
states will be a reliable way of ruling out ground-stateability
of the quantum many-body state. As with any VMC sampling,
the quality of the results can depend on the sampling basis
due to the basis dependence in the spread of the noise. As we
demonstrate in Appendix B, as long as the spread of the noise
remains comparable under a basis transformation, EntanCl
will work independent of the basis choice.

Using EntanCl on larger collections of wave functions cer-
tainly warrants further study. Moreover, we have thus far only
considered wave functions obtained from integrable systems
and wave functions that are eigenstates of the models we
considered. A subject of future work could be to explore
applications of EntanCl to both nonintegrable systems and
non-eigenstate wave functions. Challenges in these cases may
arise in finding efficient ways to sample swap data.

In the same vein of addressing wave functions, a more
ambitious approach would be to attempt to reconstruct the
Hamiltonian that takes a given wave function as its ground
state. There has been recent progress in this direction with
concrete proposals [72–75]. However, the Hamiltonian re-
construction is computationally costly as it requires precise
measurements of many correlation functions. EntanCl can
be a swift first pass that can weed out non-ground-stateable
many-body states without reference to Hamiltonians. Fur-
thermore, as a method that can efficiently sort the swap
data associated with different quantum many-body states
based on the their entanglement structure, we anticipate that

EntanCl will find applications beyond separating out ground-
stateable wave functions. For instance, EntanCl will be ideal
for studying quantum phase transitions involving a change of
entanglement structure due to spontaneous symmetry break-
ing or topological order [76].
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APPENDIX A: OVERVIEW OF UMAP PROCEDURE

The purpose of the uniform manifold approximation and
projection (UMAP) algorithm is to create a low-dimensional
projection of high-dimensional data such that the nearest
neighbors of a data point in high dimensions remain its near-
est neighbors in the low-dimensional projection. How many
nearest neighbors we try to keep is an input parameter to
the algorithm. This is useful for us because data that belong
to distinct clusters in the high-dimensional space will not
share nearest neighbors between clusters. Thus, in the low-
dimensional space, these data should still show up as distinct
clusters. Here we give an overview of how this algorithm
works.

(i) Let X = {X1, . . . , XN } denote our set of input data,
where each Xi is an n-dimensional vector. Let Y =
{Y1, . . . ,YN } denote the output projected data points, where
Yi corresponds to the projection of Xi, and each Yi is a d-
dimensional vector with d � n.

(ii) We would like the data to be uniformly distributed
on the underlying manifold because then the collection of
local neighborhoods of our data points will provide a good
picture of the underlying manifold. UMAP forces our data
to be uniformly distributed by normalizing the distance from
each point to the furthest neighbor we would like to consider.
We are also going to assume that there are no isolated points
on the underlying manifold, which we will enforce by fixing
the distance to the nearest neighbor. To do this, we define a
local metric di for each input data point Xi,

di(Xj, Xk ) =
{ 1

ri
dRn (Xj, Xk ) − ρi if i = j or i = k,

∞ otherwise,

where dRn is the Euclidean metric on Rn, ρi fixes the distance
to the nearest neighbor to be zero, and ri fixes the distance
to the furthest neighbor we would like to consider. Note that
we choose ri’s so that for each di, the distance from Xi to
its furthest relevant neighbor is the same. For the projected
output, we will define local metrics as well. The difference
in the projected space is that we know what the underlying
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manifold is (Rd ), so we know what the true metric is. UMAP
still enforces an assumption of local connectivity. Our local
metrics for the encoded output Yi’s are then

di(Yj,Yk ) =
{

dRd (Yj,Yk ) − ρi if i = j or i = k,

∞ otherwise.

(iii) Comparisons of distance between our different local
metrics are meaningless, which seems to give us no way to
assess the quality of a projection. To circumvent this, UMAP
considers a new representation of the data: a neighborhood
graph. To build the graph, UMAP draws an edge between
each data point and each of its neighbors up to the furthest
one we would like to consider. The edges are weighted,
where for an edge from Xi to Xj , the weight of the edge is
exp ( − di(Xi, Xj )). UMAP performs the same procedure for
the projected data Y . Note that di(Xi, Xj ) is not necessarily
equal to dJ (Xj, Xi ). Thus, the edges drawn between Xi and Xj

by di and d j may not have the same weight.
(iv) Next UMAP combines edges so that there is at most

one edge between any two points. The edges are combined
pairwise, where for a pair of edges with weights α, β, UMAP
forms a combined edge with weight f (α, β ) = α + β − α · β.
This process occurs for both the input data X and the projected
data Y . The function f is not the unique way to combine edge
weights, but it is a choice made by UMAP.

(v) Now we have a neighborhood graph for X and Y with
an unambiguous definition of the edge between two points.
Because the neighborhood graphs for X and Y have the same
number of vertices and each vertex is the same degree, we
can define an isomorphism between them. We do this by
associating projected points with data points, being careful to
ensure that if there is an edge between Xi and Xj , the points Yi

and Yj that we associate with them are also connected by an
edge. Thus we can speak unambiguously about a single edge
set E . To measure the “similarity” of the two neighborhood
graphs, we will use the cross entropy

C(E ; μ∪, ν∪) ≡
∑
e∈E

μ∪(e) ln

(
μ∪(e)

ν∪(e)

)

+ [1 − μ∪(e)] ln

(
1 − μ∪(e)

1 − ν∪(e)

)
,

where E is the set of edges, μ∪(e) is the combined weight [as
in step (iv)] of an edge in Y , and ν∪(e) is the combined weight
of an edge in X . We can minimize the cross entropy using
stochastic gradient descent. For each step of the optimization,
we move the positions of the encoded points, changing the
distance, and therefore the edge weights, between them.

APPENDIX B: EXAMPLE OF BASIS DEPENDENCE

A basis transformation can affect the spread in the VMC
data obtained during step (i) of EntanCl by changing the rel-
ative magnitudes of the coefficients Cαβ in the wave function

FIG. 9. Here we show the clustering accuracy for swap data
obtained from the ground-state wave function of H′

k [cf. Eq. (B3)]
and non-ground-stateable wave functions with normalized energy
gap t = 2 and varying excitation density nex. Although the accuracy
at similar nex is lower for the model in this basis than the original [cf.
Fig. 3(b)], the accuracy is still high (peaking over 90%) and stays
above 80% even at low nex values.

[cf. Eq. (1)]. This change in the spread of the data can affect
the accuracy of the resultant clustering if the neighborhoods of
MC samples from ground-stateable wave functions intersect
those of non-ground-stateable wave functions in the high-
dimensional space. Here we discuss an example of the basis
dependence of our results by reexamining the free fermion
model of Sec. III under a basis transformation. The k-space
Hamiltonian for the original free fermion model is given by

Hk = [t1 + t2 cos(k)]σ x − t2 sin(k)σ y, (B1)

where the σ i’s are Pauli matrices. We now consider a new
model that differs from the original by an SU(2) unitary
transformation with Hamiltonian

H′ =
∑

i

t1(a†
i ai − b†

i bi )

+ t2
2

(a†
i+1ai − b†

i+1bi + b†
i+1ai − b†

i−1ai + H.c.), (B2)

H′
k = [t1 + t2 cos(k)]σ z + t2 sin(k)σ y. (B3)

This new model H′
k describes the same physics as Hk , but

it differs by a basis transformation. We show the clustering
accuracy results of scaling the excitation density nex at fixed
normalized gap t = 2 in Fig. 9. We can see that, as was the
case in Fig. 3, the accuracy is high and remains high even
at low nex values. However, the accuracy in this basis is not
as high as in the original basis at the same nex values. This
illustrates that noise in the VMC data does indeed carry a
basis dependence, but that sampling data in a new basis does
not necessarily destroy the separability of the swap data from
ground-stateable and non-ground-stateable wave functions.
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