
PHYSICAL REVIEW RESEARCH 3, 023210 (2021)

Symmetry-protected topological phases in spinful bosons with a flat band
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We theoretically demonstrate that interacting symmetry-protected topological (SPT) phases can be realized
with ultracold spinful bosonic atoms loaded on the lattices which have a flat band at the bottom of the band
structure. Ground states of such systems are not conventional Mott insulators in the sense that the ground states
possess not only spin fluctuations but also non-negligible charge fluctuations. The SPT phases in such systems
are determined by both spin and charge fluctuations at zero temperature. We find that the many-body ground
states of such systems can be exactly obtained in some special cases, and these exact ground states turn out to
serve as representative states of the SPT phases. As a concrete example, we demonstrate that spin-1 bosons on a
sawtooth chain can be in an SPT phase protected by Z2 × Z2 spin rotation symmetry or time-reversal symmetry,
and this SPT phase is a result of spin fluctuations. We also show that spin-3 bosons on a kagome lattice can
be in an SPT phase protected by D2 point group symmetry, but this SPT phase is, however, a result of charge
fluctuations.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases refer to the
quantum phases of those short-range entangled ground states
that can never be smoothly deformed into product states while
preserving certain symmetry. On the other hand, a ground
state is classified into a trivial phase if it can be smoothly
deformed into a product state even when certain symmetry
is imposed [1]. A product state stands for a tensor product
of microscopic states and possesses no quantum entangle-
ment. In contrast, entanglement in the SPT phases cannot
be smoothly eliminated when preserving the symmetry. The
Affleck-Kennedy-Lieb-Tasaki (AKLT) models provide great
insight into the SPT phases of interacting bosonic systems.
The AKLT models are a class of quantum spin models that
can be defined on arbitrary lattices [2,3]. The models have
exact and unique ground states, known as the valance-bond-
solid (VBS) states. In a simple one-dimensional (1D) chain,
the spin-1 VBS state (i.e., the ground state of the spin-1
AKLT model) represents an SPT phase protected by any of
the following symmetries [4–7]: (1) Z2 × Z2 spin rotation
symmetry, (2) time-reversal symmetry, and (3) inversion sym-
metry. This SPT phase is often called the Haldane phase.
This Haldane phase is also characterized by a nonlocal order
parameter—the spin string order parameter, which quantifies
the hidden antiferromagnetic order in the 1D spin-1 VBS
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state [5,7–9]. In certain two and higher dimensional lattices,
integer-spin VBS states can be in SPT phases if either transla-
tion symmetry or crystalline symmetry is involved, as we will
discuss later.

Ultracold atoms/molecules in optical lattices serve as an
ideal platform for realizing topological quantum phases due
to the high tunability of interactions, the viability of building
various lattice structures, and the feasibility of directly mea-
suring nonlocal order parameters [10,11]. Motivated by recent
experimental progress, many theoretical predictions about the
existence of the Haldane phase in lattice systems of bosons
[12–23] and fermions [24–32] have been made.

Alkali-metal atoms carry integer spins and are thus of-
ten treated as spinful bosons in experiments [33]. Spinful
bosons in optical lattices typically have both spin and charge
degrees of freedom (DOF). Free from the Pauli exclusion
principle, one major difficulty of theoretically studying the
systems of many-body spinful bosons lies in their immense
Hilbert spaces (i.e., a huge number of DOF). Therefore,
except for very few rigorous results [34,35], various ap-
proximations or constraints have been employed to simplify
the problem (i.e., to reduce the Hilbert space dimension by
freezing some DOF). In particular, to theoretically investi-
gate the Haldane phase of bosonic atoms in one dimension,
there have been two main approaches. One is to study the
effective spin Hamiltonians by focusing on the conventional
Mott insulating limit where the charge DOF are frozen [23].
For example, the system of Mott insulating spin-1 bosons
is effectively described by the bilinear-biquadratic (BLBQ)
model, whose ground state in one dimension has been known
to exhibit the Haldane phase in a wide parameter region
[36]. The other approach is to study models that describe
itinerant but spinless bosons. (A system is said to be itin-
erant if it has charge DOF.) In the itinerant case, it is
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generally believed that a sufficiently strong long-range (re-
pulsive) interaction is indispensable for triggering the SPT
phase [12–20,22]. The mechanism is as follows. At the fill-
ing of one spinless boson per site on average, if we truncate
the particle number on each site to n = 0, 1, 2, one can define
pseudospin as Sz := n − 1, thus resulting in an effective spin-
1 model, where the long-range repulsion acts as an anisotropic
spin exchange interaction [4,13]. However, among bosonic
alkali-metal atoms, although a relatively strong dipole-dipole
interaction plays the role of long-range interaction in certain
situations [33], the dipole-dipole interaction is usually much
weaker than the short-range s-wave collision, and thus the
long-range interaction is typically negligible in many exper-
iments [33].

In short, despite the fact that itinerant, spinful, and
short-range interacting bosonic atoms are very common in
experiments, due to the difficulty of theoretically dealing
with the huge amount of DOF, it remains an open question
whether the SPT phases can be realized in such systems.
Moreover, if the answer is yes, what kinds of SPT phases
can we get? We address these issues and argue that, when
there is a flat band at the bottom of the band structure (which
we dub a bottom flat band), SPT phases can be realized
with short-range interacting bosons that possess both un-
frozen spin and charge DOF. As a result, the SPT phases in
such systems are characterized by nontrivial spin or charge
entanglement.

A flat band refers to an energy band that is independent of
the quasimomentum. Usually, a flat band in an optical lattice
is the highest band. However, by shaking the optical lattices,
one can invert the sign of hopping [37–42], and the flat band
thus becomes the lowest band. Such lattice shaking techniques
have been realized experimentally [43–47].

Single-body eigenstates of a flat band can usually be
chosen to be strictly localized on a finite number of lattice
sites. Such eigenstates are termed as compact localized states
(CLSs) [48,49]. Different CLSs reside in different patches
(regions) of the lattice. Short-range interaction (s-wave col-
lision) between two bosons can happen only when their wave
functions have a finite overlap. (This is natural, because the
short-range interaction does not occur unless two particles are
very close to each other.) At low temperatures, boson wave
functions tend to avoid overlapping each other in order to
lower the system’s energy. Let X be a d-dimensional lattice
with a bottom flat band and N unit cells. When N spin- f
bosons are loaded on X , the wave function overlaps can be
minimized if each of the N CLSs hosts a boson. In other
words, N bosons are distributed into N different patches. A
boson is free to move around within a patch, which gives
rise to charge fluctuations in the ground state. On the other
hand, since all the patches (CLSs) are occupied by bosons
(i.e., the whole lattice is fully “packed” with bosons), partial
overlaps between neighboring wave functions are inevitable.
We notice an analogy between the Hamiltonian that describes
the short-range s-wave collision among spin- f bosons and
the spin- f AKLT Hamiltonian. This analogy implies that the
wave function overlaps will not cost energy, if the spins of
bosons entangle in a clever way similar to a spin- f VBS state.
(Intuitively, since the s-wave collision is spin-dependent by
its nature, when the bosons are in a certain spin state, the

collision between them can be avoided even if the bosons
are very close to each other.) When certain parameters in the
Hamiltonian are fine-tuned, the above configuration (lattice
fully packed with CLSs) becomes the exact and unique ground
state, and the state turns out to serve as a representative state of
the symmetry-protected phases of the system. (In this paper,
the term “symmetry-protected phase” refers to either SPT or
trivial phase.) We find that the phases are determined by the
spin or charge fluctuations in the ground state. In this paper,
we find a large class of models whose ground states can
be exactly written down when certain parameters are prop-
erly chosen. Each model has several on-site and crystalline
symmetries. Depending on the symmetry, these exact ground
states can be in either SPT or trivial phases. In particular, in
terms of crystalline symmetries, charge fluctuations can play
a nontrivial role.

This paper will gradually build up a general framework on
the SPT phases of spinful bosons with a flat band, starting
from a simple 1D spin-1 model before progressing towards
general dimensions and general spins. The remainder of this
paper is divided into two parts: Sec. II and Sec. III. In Sec. II,
we use spin-1 bosons on the 1D sawtooth chain as a con-
crete example to demonstrate our argument. The sawtooth
chain has two energy bands, and the bottom one is flat. We
prove that when the interaction between spin-1 bosons is
fine-tuned, the ground state is unique and can be exactly
obtained. The proof is based on the fact that the ground
state can be exactly mapped to the 1D spin-1 VBS state.
This exact ground state turns out to be in a Haldane phase.
Beyond the fine-tuned case, based on perturbation theory
and numerical calculations, we confirmed that the Haldane
phase exists in a rather broad parameter region. In Sec. III,
we discuss the SPT phases with a general setup: short-range
interacting spin- f bosons on a bottom-flat-band lattice X in
d dimension. Let |GS f ,X 〉 be the many-body ground state.
Let |VBS f ,X ′ 〉 be the spin- f VBS state defined on a lattice
X ′ (i.e., the ground state of the spin- f AKLT model on X ′).
With fine-tuned interactions, |GS f ,X 〉 can be exactly mapped
to |VBS f ,X ′ 〉, provided that the lattice structures of X and
X ′ satisfy a certain relation. This proves that |GS f ,X 〉 is the
exact and unique ground state of the itinerant spin- f model.
The spin fluctuations of |GS f ,X 〉 are inherited from |VBS f ,X ′ 〉.
Therefore, with respect to the spin rotation symmetry or the
combination of spin rotation and translation symmetry, the
d-dimensional symmetry-protected phase of |GS f ,X 〉 is iden-
tical to that of |VBS f ,X ′ 〉. Spins in |VBS f ,X ′ 〉 are pinned to
the lattice sites and cannot move. However, |GS f ,X 〉 is not
a conventional Mott-insulating state (where a fixed number
of bosons stay rigidly on each site), i.e., spin- f bosons in
|GS f ,X 〉 have nonvanishing charge fluctuations. It turns out
that in terms of crystalline symmetries (i.e., point group or
space group symmetries), both spin and charge fluctuations
in |GS f ,X 〉 together determine its symmetry-protected phase.
Hence, the crystalline-symmetry-protected phases of |GS f ,X 〉
and |VBS f ,X ′ 〉 may not be identical, because the charge fluc-
tuations may play a nontrivial role in the former state. For
example, as we will show later, interacting spin-3 bosons
in the kagome lattice can be in an SPT phase protected by
the point group D2 or D3, and this SPT phase is purely a
consequence of charge fluctuations at zero temperature.
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II. SPIN-1 BOSONS ON A SAWTOOTH CHAIN:
AN EXAMPLE

Let us start from a simple but nontrivial model: the spin-1
Bose-Hubbard model on the sawtooth chain (BHMSC). In
Sec. II A, we introduce the spin-1 BHMSC and the 1D spin-
1 bilinear-biquadratic (BLBQ) model. The ground state of
the BLBQ model is exactly solvable at the AKLT point. In
Sec. II B, we prove that in a special case where the interaction
between spin-1 bosons is fine-tuned, the ground state sectors
of the spin-1 BHMSC and the AKLT model can be exactly
mapped to each other, which enables us to obtain an exact
and unique ground state of the spin-1 BHMSC. This ground
state, as we will show in Sec. II C, turns out to serve as a
representative state of the Haldane phase. We find that the
Haldane phase in this itinerant spin-1 boson system, char-
acterized by both nonvanishing spin and charge string order
parameters, is protected by (1) Z2 × Z2 symmetry or (2)
time-reversal symmetry, but not (3) inversion symmetry. In
Sec. II D, perturbation theory builds another bridge between
the spin-1 BHMSC and the BLBQ model. In Sec. II E, the
phase diagram of the spin-1 BHMSC is investigated with nu-
merical calculations based on the variational uniform matrix
product state (VUMPS) algorithm [50,51], which suggests
that the system can be in either a gapped Haldane or gapless
critical phase.

A. Hamiltonian

For spin-1 bosons (such as 7Li, 23Na, 41K, etc.) in a lattice
system, let â†

r,α (âr,α) be the operator that creates (annihilates)
a boson at lattice site r with magnetic sublevel α = −1, 0, 1.
The on-site spin operator Ŝr = (Ŝx

r , Ŝy
r , Ŝz

r ) is defined as Ŝz
r :=∑

α,β â†
r,αSz

α,β âr,β with Sz
α,β = αδα,β being the z-component

of the spin matrix for spin-1 (and similar definitions for Ŝx
r

and Ŝy
r ). We also define n̂r :=∑α â†

r,α âr,α , which counts the
particle number on site r. Spin-1 atoms in optical lattices
are effectively described by the spin-1 Bose-Hubbard model
[52,53]:

Ĥ = Ĥhop + Ĥint,

Ĥhop = −
∑
〈r,r′〉

1∑
α=−1

tr,r′ â†
r,α âr′,α +

∑
r

Vrn̂r,

Ĥint =
∑

r

(
g0,r P̂(0)

r + g2,r P̂(2)
r

)
,

(1)

where Ĥhop is the single-body Hamiltonian which contains
both hopping and on-site potential terms, and Ĥint describes
the interactions (s-wave collisions) between spin-1 bosonic
atoms [33,54]. There are two kinds of interactions: P̂(S)

r stands
for the projection operator onto the state with total spin
S = 0, 2 for a pair of spin-1 bosons at site r. For example,
P̂(0)

r = b̂†
r b̂r , where

b̂†
r := 1√

6
(â†

r,0â†
r,0 − 2â†

r,1â†
r,−1) (2)

creates a spin singlet. S = 1 is forbidden because two spin-1
bosons on the same site never form a total spin S = 1 state—
such a spin state is antisymmetric. The projection operators

FIG. 1. (Upper panel) The sawtooth lattice and one of its zero-
energy state. The state is localized on three consecutive sites covered
by the heart shape. The blue characters indicate the values of tr,r′

and Vr . (Middle panel) The state |β〉 in Eq. (12) with a typical
choice of β. Three different colors denote three different magnetic
sublevels. Linearly independent CLSs cover the whole lattice, and
two neighboring CLSs overlap on a top site. (Lower panel) The
“hidden VBS order” illustrated by a typical component of |GS〉 in
Eq. (19).

can be explicitly expressed as P̂(0)
r = [−(Ŝr )2 + (n̂r )2 + n̂r]/6

and P̂(2)
r = [(Ŝr )2 + 2(n̂r )2 − 4n̂r]/6 [33,54]. The sum of them

yields the “completeness relation”:

P̂(0)
r + P̂(2)

r = 1
2 n̂r (n̂r − 1). (3)

We assume the interaction strength gS,r � 0 as is the case of
long-lived alkali-metal spin-1 condensates [33]; Ĥint is thus
positive semidefinite.

On a sawtooth chain (see Fig. 1) with N unit cells (2N
sites), the single-body Hamiltonian can be written in a com-
pact form as [55–57]

Ĥhop = Ĥsaw =
N∑

i=1

1∑
α=−1

Â†
i,αÂi,α, (4)

where Â†
i,α := â†

2i−1,α + λâ†
2i,α + â†

2i+1,α determines the values
of tr,r′ and Vr in Eq. (1), and we assume λ ∈ R\{0}. Periodic
boundary condition (PBC) has been imposed. Ĥsaw is positive
semidefinite, and it has two energy bands: a dispersive band
with energy λ2 + 2 + 2 cos k > 0 and a flat band with exactly
zero energy. Every eigenstate of the flat band can be chosen to
be localized on three sites (see Fig. 1):

B̂†
j,α := 1√

λ2 + 2
(â†

2 j,α − λâ†
2 j+1,α + â†

2 j+2,α ), (5)

where B̂†
j,α creates a particle in a zero-energy eigenstate. In

other words, B̂†
j,α is a CLS creation operator. An experimen-

tal scheme for realizing an optical sawtooth chain has been
proposed [58].
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Note that lattices with a bottom flat band (and CLSs)
widely exist; they can actually be constructed systematically,
see Sec. III B.

From now on, the total particle number on the sawtooth
chain is assumed to be the same as the number of unit cells N .
For simplicity, we also assume translation symmetry: gS,r ≡
gt

S for top sites (r = even) and gS,r ≡ gb
S for bottom sites (r =

odd). The phase diagram of the spin-1 BHMSC with respect
to (gt

0, gt
2, 1/λ) is shown in Fig. 2(a).

For later purposes, we also introduce the 1D spin-1 BLBQ
model with PBC, whose Hamiltonian is given by [36]

ĤBLBQ =
N∑

j=1

(
g̃0P̂(0)

j, j+1 + g̃1P̂(1)
j, j+1 + g̃2P̂(2)

j, j+1

)
,

= J
N∑

j=1

[cos θ (Ŝ j · Ŝ j+1) + sin θ (Ŝ j · Ŝ j+1)2] + c,

(6)

where P̂(F )
j, j+1 projects the state of two neighboring sites onto

the state with total spin F = 0, 1, 2. Spin operators {Ŝ j} act on
the spin-chain Hilbert space spanned by the Sz-basis {|ψα〉 :=
|α1, α2, . . ., αN 〉}. Parameters (J cos θ, J sin θ, c) with J > 0
linearly depend on (g̃0, g̃1, g̃2). This model is in the Hal-
dane phase when −π/4 < θ < π/4, while it is in the critical
phase when π/4 � θ � π/2. At θ = arctan(1/3) and π/2,
the model is particularly known as the AKLT model and
the pure-biquadratic model [59,60], respectively. For the 1D
spin-1 AKLT model

ĤAKLT =
N∑

j=1

g̃2P̂(2)
j, j+1 (g̃2 > 0), (7)

the ground state |VBS〉 under PBC is unique and can be
exactly written as a matrix product state (MPS)

|VBS〉 =
∑

α1,...,αN

Tr(Mα1 Mα2 · · · MαN )|ψα〉, (8)

where M±1 := ∓√
2σ±, M0 := σ z, and σ±,z are Pauli matri-

ces. |VBS〉 in Eq. (8) is known as the 1D spin-1 VBS state,
which can be graphically represented as in Fig. 3(a). See
Sec. III A for details.

We notice the analogy between the s-wave collision Hamil-
tonian Ĥint and the BLBQ Hamiltonian ĤBLBQ. This will help
us the find the exact ground state and the SPT phase in the
spinful, itinerant, and short-range interacting bosonic systems.

B. Exact ground states

Since both Ĥsaw and Ĥint are positive semidefinite, a
zero-energy ground state of Ĥ , if it exists, must satisfy (1)
Ĥsaw|GS〉 = 0 and (2) Ĥint|GS〉 = 0. In accordance with (1),
there must be

|GS〉 =
∑

∑
j,μ

n j,μ=N

xn

(
N∏

j=1

1∏
μ=−1

(B̂†
j,μ)n j,μ

)
|vac〉, (9)

where xn ∈ C, n = (. . ., ni,1, ni,0, ni,−1, ni+1,1, . . .), and |vac〉
is the vacuum state. Assume gb

0, gb
2 > 0, according to Eq. (3)

FIG. 2. (a) Schematic phase diagram of spin-1 bosons on a
sawtooth chain (in the thermodynamic limit N → ∞) in the pa-
rameter space (gt

0, gt
2, 1/λ). In the phase diagram we have assumed

gt
0, gt

2, λ � 0 and gb
0 = gb

2 = 1/λ2. In the gt
0 = 0 plane, Ĥ has an

exact and unique ground state (GS) given in Eq. (19). In the gt
2 =

0 plane, the GS is massively degenerate, and the ferromagnetic
states in Eq. (21) are exact ground states. Phase diagram in the
1/λ → 0 plane, derived by perturbation theory, coincides with the
phase diagram of the BLBQ model. Phase diagram in the 1/λ =
1 plane is determined by the numerical calculation based on the
VUMPS algorithm. In particular, numerical results along the curved
arrow parameterized by (

√
2 sin ϕ,

√
2 cos ϕ, 1) are shown in (b)–(d).

(b) Scaling of the inverse correlation length 1/ξ := ε2 with respect
to ε3 − ε2. Numbers near the data points denote the corresponding
bond dimensions of each block; see Appendix E. We can see that
a quantum phase transition occurs between ϕ = 6π/36 and 7π/36.
(c) The whole entanglement spectrum (ES) in the Haldane phase
region shows the even-fold degeneracy. For clarity, here we present
only the lowest part of the ES. (d) Magnetization M with respect to
the applied magnetic field h in the z-direction. In (c) and (d), the bond
dimension of each block is 50.
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FIG. 3. Examples of bosonic VBS states. Each spin- f is regarded
as a composite state of 2 f spin-1/2’s, and a spin singlet is formed
between two spin-1/2’s on neighboring sites. (a) 1D spin-1 VBS
state, whose expression is given in Eq. (8). (b) 2D spin-2 VBS state
on a square lattice, denoted as |VBS2,�〉. (c) 2D spin-3 VBS state on
a triangular lattice, denoted as |VBS3,�〉. (d) 3D spin-3 VBS state on
a cubic lattice, denoted as |VBS3,

〉.

and the positive semidefiniteness of P̂(S)
r , one can conclude

that

Ĥint|GS〉 = 0

⇐⇒ (gb
0P̂(0)

2 j+1 + gb
2P̂(2)

2 j+1

)|GS〉 = 0, ∀ j

⇐⇒ n̂2 j+1(n̂2 j+1 − 1)|GS〉 = 0, ∀ j

⇐⇒ â2 j+1,α â2 j+1,β |GS〉 = 0, ∀ j, α, β

�⇒ xn = 0,∀n s.t. n j,+1 + n j,0 + n j,−1 > 1. (10)

Equation (9) thus reduces to

|GS〉 =
∑

β

yβ|β〉, (11)

where yβ ∈ C, β = (β1, . . ., βN ), and

|β〉 :=
(

N∏
j=1

B̂†
j,β j

)
|vac〉. (12)

A typical |β〉 is illustrated in Fig. 1. Note that |β〉’s are
linearly independent but not orthonormal because Kj j′ :=
[B̂ j,μ, B̂†

j′,μ] �= δ j j′ . We define the “dual operator” of B̂ j,μ as
[61]

Ĉj,μ :=
∑

j′
(K−1) j j′ B̂ j′,μ (13)

such that [Ĉ j,μ, B̂†
j′,μ′] = δ j j′δμμ′ . Further defining

〈̃α| := 〈vac|
(

N∏
j=1

Ĉj,α j

)
(14)

such that 〈̃α|β〉 = δαβ, eigenequation Ĥ |GS〉 = 0 then implies
the matrix equation

∑
β 〈̃α|Ĥ |β〉 yβ = 0. Impressively, explicit

calculation shows that

〈̃α|Ĥ |β〉 = 〈̃α|Ĥint|β〉 = 〈ψα|ĤBLBQ|ψβ〉, (15)

provided that we take g̃1 = 0 and g̃S = 2gt
Sd/(λ2 + 2) in

Eq. (6), where d > 0 is a coefficient depending on the in-
verse matrix K−1 (matrix K is always invertable). Equation
(15) indicates that there is a one-to-one correspondence be-
tween the zero-energy states of Ĥ and ĤBLBQ. Note that such
correspondence does not hold for eigenstates with nonzero
energy, because P̂(S)

r=odd|β〉 = 0 implies that nonzero-energy
eigenstates cannot be purely spanned by {|β〉}. It is known
that in the following two cases, ĤBLBQ possesses zero-energy
ground states: (1) AKLT point (g̃0 = g̃1 = 0, g̃2 > 0) and (2)
pure-biquadratic point (g̃1 = g̃2 = 0, g̃0 > 0).

Case (1) maps to gt
0 = 0 and gt

2 > 0 for Ĥ . In this case,
the ground state of Ĥ is unique, which follows from the
uniqueness of the ground state of the AKLT model [2,3].
Despite the fact that the |GS〉 in Eq. (11) is not represented
in an orthonormal basis, the coefficient yβ is identical to that
of the 1D VBS state in Eq. (8):

yβ = Tr(Mβ1 Mβ2 · · · MβN ). (16)

Further expanding B̂†
j,β j

in terms of â†’s, we can see that |GS〉
is a superposition of states of the form

(−λ)b
∑

β

Tr(Mβ1 Mβ2 · · · MβN )â†
r1,β1

â†
r2,β2

. . .â†
rN ,βN

, (17)

where the integer b depends on {r1, . . . , rN }. In Eq. (17), we
note that as long as two particles occupy the same top site ,
there is the identity∑

β j ,β j+1

Mβ j Mβ j+1 â†
,β j

â†
,β j+1

=
√

6 b̂†
I2, (18)

where  = 2 j or 2 j + 2 and I2 is a 2-by-2 identity matrix.
Equation (18) implies that Eq. (17) has “hidden VBS order,”
i.e., if we ignore all the vacant sites and sites occupied by a
spin singlet, the remaining bosons form a perfect VBS state;
see Fig. 1. This enables us to express |GS〉 in an orthonormal
Fock basis as

|GS〉 =
3∑

τ1,...,τ2N =−1

Tr

(
N∏

j=1

(F τ2 j−1 E τ2 j )

)(
2N∏
r=1

d̂†
r,τr

)
|vac〉, (19)

where d̂†
r,τ := â†

r,τ for τ = −1, 0, 1, while d̂†
r,2 := b̂†

r and

d̂†
r,3 := 1, and

3∑
τ=−1

F τ d̂†
r,τ = 1√

λ2 + 2

(
I2 −λ

∑
α Mα â†

r,α
0 I2

)
,

3∑
τ=−1

E τ d̂†
r,τ =

(∑
α Mα â†

r,α

√
6 b̂†

r I2

I2
∑

α Mα â†
r,α

)
. (20)
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Matrices F τ and E τ are determined from Eq. (20); the ma-
trix product state (MPS) in Eq. (19) is injective [62]. Using
Eq. (20), one can easily see that the ground state in Eq. (19)
is indeed a superposition of 1D VBS states decorated with
two-body singlets and/or vacant sites.

Case (2) maps to gt
2 = 0 and gt

0 > 0 for Ĥ . It is obvious
that the ferromagnetic states(

2N∑
r=1

Ŝ−
r

)k ( N∏
j=1

B̂†
j,1

)
|vac〉, k = 0, 1, . . . , 2N (21)

with total spin Stot = N are exact ground states of Ĥ . The spin-
1 pure-biquadratic chain ĤPB =∑N

j=1 g̃0P̂(0)
j, j+1(with g̃0 > 0)

is integrable, and there are numerous ground states with
Stot ranging from 0 to N − 1 that are degenerate with
(
∑

j Ŝ−
j )k|ψ(1,1,...,1)〉 [59,60,63,64]. The absence of a ferro-

magnetic phase in Fig. 2(a) can thus be understood from
such degeneracy: after adding interaction

∑
r=even gt

2P̂(2)
r (with

gt
2 > 0) that disfavors the ferromagnetic states, states with

smaller Stot are picked up as the ground states.

C. The Haldane phase

In this section we investigate the properties of the MPS
|GS〉. Let G be the symmetry group of Ĥ and Û (q) be a
symmetry operation (on the Hilbert space) corresponding to
the group element q ∈ G, i.e., [Ĥ , Û (q)] = 0. Subjected to
q, the unique ground state transforms as |GS〉 → Û (q)|GS〉,
while the matrices in Eq. (19) transform as [65]

F τ2 j−1 E τ2 j → eiφq u†
q F τ2 j−1 E τ2 j uq, (22)

where {uq}q∈G are unitary matrices which are used to classify
the 1D SPT phases [4,7,66].

The group Z2 × Z2 = {1, Û (x), Û (y), Û (z)} is a sym-
metry group of Ĥ , where Û (δ) := exp(−iπ

∑
r Ŝδ

r ) is
the spin rotation about the δ = x, y, z-axis. The Hamil-
tonian is also invariant under time-reversal Û (TR) :=
Û (y)K̂ (where K̂ is a complex conjugation operator),
space inversion Û (I ), spin rotation together with inversion
Û (zI ) := Û (z)Û (I ), and pseudospin rotation together inver-
sion Û (nI ) := exp[−iπ

∑
r (n̂r − 1)]Û (I ).

For Û (δ) and Û (TR), we can define their respective
topological indices using the corresponding unitary matri-
ces in Eq. (22) as QZ2×Z2 := Tr(uxuzu†

xu†
z )/χ and QTR :=

Tr(uTRu∗
TR)/χ , where χ is the bond dimension of the MPS

[67]. It is known that QZ2×Z2 equals −1 for the Haldane phase
protected by Z2 × Z2 symmetry while 1 for the trivial phase,
similarly for QTR [4]. When 0 < |λ| < ∞, the system has
inversion symmetry with respect to every lattice site. How-
ever, the site-centered inversion symmetry cannot protect SPT
phases. The groups {1, Û (I )}, {1, Û (zI )}, and {1, Û (nI )} can
protect SPT phases only when Û (I ) is a bond-centered inver-
sion; see also Ref. [68] and Appendix A of Ref. [69]. When
the bond-centered inversion symmetry is present, we can sim-
ilarly define QI := Tr(uIu∗

I )/χ , QzI := Tr(uzIu∗
zI )/χ , and

QnI := Tr(unIu∗
nI )/χ , which are quantized to +1 and −1 for

trivial and Haldane phases, respectively [4,5,67]. The state
|GS〉 at λ = 0 and |λ| → ∞ has bond-centered inversion
symmetry. At |λ| → ∞, |GS〉 reduces to Eq. (8). At λ = 0,
although |GSλ=0〉 is not the unique ground state of Ĥ |λ=0,

one can (in principle) always find a parent Hamiltonian that
has |GSλ=0〉 as the unique ground state [70], and hence the
state itself is still worth studying. Actually, it turns out that
|GSλ=0〉 can be viewed as a spinful generalization of the
Haldane insulator state in spinless bosons; see Appendix A.
Table I summarizes the unitary matrices {uq} with respect to
different symmetry operations on |GS〉. It is then clear that
the Haldane phase of |GS0<|λ|<∞〉 is protected by Z2 × Z2

symmetry or time-reversal symmetry. Interestingly, when the
inversion symmetry is involved, |GSλ=0〉 and |GS|λ|→∞〉 can
be in different phases. This difference originates from the
charge fluctuations in |GSλ=0〉. We claim that in general,
charge fluctuations can play a nontrivial role in the SPT orders
protected by crystalline symmetries; see Sec. III C for details.

Using the exact MPS in Eq. (19) and Eq. (20), vari-
ous quantities that characterize the Haldane phase can be
calculated analytically. For example, the spin string order
parameter Oδ := − limL→∞ limN→∞ 1

〈GS|GS〉 〈GS|(Ŝδ
r + Ŝδ

r+1)

exp[iπ
∑r+2L−1

k=r+2 Ŝδ
k ](Ŝδ

r+2L + Ŝδ
r+2L+1)|GS〉 and the charge

string order parameter C := − limL→∞ limN→∞ 1
〈GS|GS〉 〈GS|

(n̂r + n̂r+1 − 1) exp{iπ [
∑r+2L−1

k=r+2 n̂k − (L − 1)]}(n̂r+2L +
n̂r+2L+1 − 1)|GS〉 are found to be

Oδ = 16[9λ6 + (5Q + 48)λ2 + 3(Q + 11)λ4 + 24]2

Q2(3λ2 + Q + 6)2(Q + 3λ2)2
,

C = 24(3λ2 + 2)2

Q2[3λ4 + (Q + 12)λ2 + 2(Q + 5)]
,

(23)

where Q := √
9λ4 + 36λ2 + 24. It can be shown that both

string order parameters are nonzero: 4/(
√

6 + 3)2 < Oδ <

4/9 and 0 < C < 0.207. For the open boundary condition
(OBC), we can show the existence of both spin and charge
edge states; see Appendix B. It is known that the (seemingly
unrelated) spin string order and edge state are unified in the
context of hidden Z2 × Z2 symmetry breaking. In spin chains,
this can be seen with the Kennedy-Tasaki transformation
[5,7–9]. In spin- f itinerant systems ( f = integer), the
Kennedy-Tasaki transformation is also applicable; see
Appendix C.

The “hidden VBS order” is a unique feature for the
Haldane phase in systems with both spin and charge fluctu-
ations. It is closely related to both string order parameters
Oδ and C. Since vacant and doubly occupied sites have zero
spin, the “hidden VBS order” immediately implies the hidden
antiferromagnetic order measured by Oδ . On the other hand,
C measures to what extent the VBS states are diluted in the
background of vacant and doubly occupied sites.

In the presence of both translation symmetry and Z2 × Z2

symmetry, four distinct SPT phases can exist [71], and one
of them is represented by |GS〉. The other three can be real-
ized by unitary transformations of Ĥhop; see Appendix D for
details.

D. Perturbation theory

Beyond the cases where the ground state is exactly solv-
able, the phase of Ĥ can still be determined analytically when
|λ| is large enough; see Fig. 2(a). In the limit |λ| → ∞, if
we assume gb

0 and gb
2 are around the magnitude of λ2, the
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TABLE I. Unitary matrices in Eq. (22) with respect to various symmetry operations on |GS〉. In accordance with the values of QZ2×Z2 ,
QTR, QI , QzI , and QnI , the two boldfaced matrices denote trivial phases, while the other matrices denote the SPT phase. N/A means the
symmetry group cannot give an SPT/trivial classification.

Û (δ) (δ = x, y, z) Û (TR) Û (I ) Û (zI ) Û (nI )

λ = 0 uδ =
(
σ δ 0
0 σ δ

)
uTR =

(
σ y 0
0 σ y

)
uI =

( 0 −σy

σy 0

)
uzI =

( 0 −σ x

σ x 0

)
unI =

( 0 σ y

σ y 0

)
0 < |λ| < ∞ uδ =

(
σ δ 0
0 σ δ

)
uTR =

(
σ y 0
0 σ y

)
N/A N/A N/A

|λ| → ∞ uδ = σ δ uTR = σ y uI = σ y uzI = σx unI = σ y

unperturbed ground state will have each bottom site occupied
by exactly one particle. In this case, perturbation theory tells
us that the low-energy effective Hamiltonian of Ĥ is given by
ĤBLBQ in Eq. (6) with J ∝ λ−2 and

θ = arctan

(
1

3
× 3gt

0 + 4gt
0λ

2/gt
2 + 2λ2

gt
0 + 2λ2

)
� arctan

1

3
,

(24)
where J and θ are independent of gb

S . From Eq. (24), we
know that the effective model is in the Haldane phase when
0 � gt

0 < gt
2 while in the critical phase when 0 < gt

2 � gt
0. In

particular, gt
0 = 0 and gt

2 = 0 corresponds to the AKLT and
pure-quadratic point, respectively.

E. Numerical analysis

Beyond the three special planes in Fig. 2(a) where either
exact ground states can be found or perturbation theory works,
the phase diagram of the spin-1 BHMSC can in general be
determined by numerical calculations. In the thermodynamic
limit N → ∞, we find the phase diagram in the λ = 1 plane
in Fig. 2(a) with the VUMPS algorithm [50,51]. Due to the
fact that the total number of particles and unit cells are the
same, matrices in the MPS ansatz used in the algorithm are
assumed to be block-banded [72]. Also, the maximum particle
number on each site is truncated to three. See Appendix E
for details of the MPS ansatz. Let εi := − ln |λi|, where λi

is the ith largest absolute eigenvalue of the transfer matrix,
and |λ1| is normalized to 1. When the bond dimension χ

is extrapolated to infinity, the correlation length ξ := 1/ε2

diverges for gapless phases while it converges to a finite value
for gapped phases. This fact is known to be well reflected in
the scaling relation of 1/ξ (χ ) with respect to ε3(χ ) − ε2(χ )
[73,74], as shown in Fig. 2(b). In the region of the gapped
phase in Fig. 2(a), we find that QZ2×Z2 = QTR = −1, which
suggests that the gapped phase is the Haldane phase. The
Haldane phase is characterized by an even-fold degenerate
entanglement spectrum [4]; see Fig. 2(c). The ground state
magnetization M := limN→∞〈∑2N

r=1 Ŝz
r〉/N is calculated after

adding −h
∑

r Ŝz
r to Ĥ , where h is the magnetic field; see

Fig. 2(d). In the gapless region, M grows almost linearly with
h, which suggests that the gapless phase is the critical phase
[75]. In the Haldane phase region, however, M is expected to
exhibit a zero plateau for small h [75], which is indeed the
case as in Fig. 2(d). Note that the phase boundary in the λ = 1
plane is curved; see Appendix E for numerical evidence.

F. Short summary for the spin-1 bosons on a sawtooth chain

To demonstrate how the Haldane phase emerges in short-
range interacting spinful bosons loaded on lattices with a
bottom flat band, we have used the spin-1 BHMSC as an
example. We show that this system has some deep connections
with the BLBQ model. In particular, in a special case, by an
exact mapping to the ground state of the AKLT model, we ob-
tain the exact and unique ground state of the spin-1 BHMSC.
This exact ground state turns out to serve as a representative
state of the Haldane phase. The phase diagram of this model
is obtained by perturbation theory and numerical calculations
based on the VUMPS algorithm, and we find that the Haldane
phase exists in a rather wide parameter region.

We expect that, even if the bottom band is not perfectly
flat, the nature of the many-body ground states should remain
unchanged as long as the interaction strength is sufficiently
strong. Such robustness of the ground states has been rigor-
ously proved in some classes of Hubbard models with a nearly
flat band [7,57].

III. GENERAL THEORY

The sawtooth chain is not special in the sense that there are
many other lattices possessing a bottom flat band, it is thus
natural to expect that the SPT phases can be realized with
spinful bosons loaded on these lattices. Our approach in the
previous section can be generalized. In this section, we present
a general theory for the SPT phases of spin- f bosons with a
bottom flat band. We first show in Sec. III A that the AKLT
model and VBS state can be generalized to higher spins and
higher dimensional lattices. Let |VBS f ,X ′ 〉 be the exact and
unique ground state of the spin- f AKLT model defined on
a lattice X ′. On the other hand, bottom-flat-band lattices can
be constructed systematically. Let |GS f ,X 〉 be the ground state
of N spin- f bosons on a bottom-flat-band lattice X with N
unit cells. In Sec. III B, we show that with fine-tuned param-
eters, |GS f ,X 〉 can be exactly mapped to |VBS f ,X ′ 〉, provided
that f , X , and X ′ satisfy a certain relation. This means that
|GS f ,X 〉 is the exact and unique ground state of the itinerant
spin- f model. In Sec. III C, with various f and X , we classify
the quantum phases of |GS f ,X 〉’s from the viewpoint of SPT
orders. In particular, we find that in terms of crystalline sym-
metries, not only spin fluctuations but also charge fluctuations
in |GS f ,X 〉 determine its symmetry-protected phase.
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TABLE II. Some alkali-metal isotopes and their hyperfine spins
f . These isotopes are stable or long lived (compared to typical
experimental cycle time of around 10 s) at least in lower hyperfine
levels [33].

Atom f

7Li, 23Na, 41K, 87Rb 1, 2
25Na, 79,83Rb, 131Cs 2, 3
135,137,139,141Cs 3, 4
119Cs, 207,209,211,213Fr 4, 5

A. Generalized AKLT models and VBS states

It is known that VBS states can be constructed on any
lattice in any dimensions [3,76,77]. In this article, we con-
sider only bosonic spin- f VBS states ( f = integer). Let X ′ =
(�X ′ ,BX ′ ) be a lattice (graph) where �X ′ is the set of sites
(vertices) and BX ′ is the set of bonds (edges). A bond is
defined by two sites { j, j′} with j, j′ ∈ �X ′ . We assume that
every site in X ′ is directly connected to 2 f other sites, i.e.,
|{ j′ ∈ �X ′ |{ j, j′} ∈ BX ′ }| = 2 f ,∀ j. (In other words, X ′ is a
regular graph of degree 2 f .) When there is a spin- f degree
of freedom (DOF) residing in every site of X ′, an AKLT-type
quantum spin model can be defined on X ′ as

Ĥ f ,X ′
AKLT := g̃2 f

∑
{ j, j′}∈BX ′

P̂(2 f )
j, j′ (g̃2 f > 0), (25)

where the operator P̂(2 f )
j, j′ projects the state of two spin- f ’s on

two sites j, j′ onto the state with total spin 2 f .
It has been proved that when |�X ′ | = N < ∞, Ĥ f ,X ′

AKLT has
an exact and unique ground state [7,78], known as a VBS
state:

|VBS f ,X ′ 〉 =
f∑

α1,...,αN =− f

Sα1,...,αN |ψα1,...,αN 〉, (26)

where {|ψα1,α2,...,αN 〉} is the spin Sz-basis and the coefficient
Sα1,...,αN encodes short-range entanglement between the spins.
When X ′ is the simple 1D linear chain with f = 1, Ĥ f ,X ′

AKLT
reduces to Eq. (7), and its ground state is the 1D spin-1 VBS
state in Eq. (8) and Sα1,...,αN = yα in Eq. (16). The structure
of this VBS state can be understood as follows: as shown
in Fig. 3(a), each spin-1 is viewed as a composite state of
two spin-1/2’s, and a pair of spin-1/2’s on two neighbor-
ing sites forms a spin singlet. For Ĥ f ,X ′

AKLT on a general X ′,
the ground state |VBS f ,X ′ 〉 can be constructed in the same
manner: each spin- f is regarded as a composite state of 2 f
spin-1/2’s, and a singlet is formed between two spin-1/2’s in
every bond { j, j′} ∈ BX ′ [3,76]. Some other graph represen-
tations of VBS states in two and three dimensions are given in
Figs. 3(b)–3(d).

B. Ground states of spin- f bosons with a bottom flat band

Many kinds of atoms carry integer spins, among which
alkali-metal atoms are often used in experiments [33]. Alkali-
metal atoms have two hyperfine levels, and each level carries
integer spin f ; see Table II. Due to the hyperfine interac-
tion, the level with smaller f has lower energy. Therefore,

FIG. 4. Other examples of 1D lattices that can be used to con-
struct nontrivial ground states with spin-1 bosons. Allowed hopping
process between two sites is illustrated by a bond. (a) Diamond chain.
A π flux threads each plaquette [88]. A CLS covers five sites, as
denoted by the four-pointed star. (b) Kagome ladder, an example of
the line graph construction [77,80]. A CLS is denoted by the square.
(c) Pyramid chain, an example of the cell construction [7]. A CLS is
denoted by the four-pointed star.

alkali-metal atoms stay in lower hyperfine level when they are
optically trapped without external pumping. For example, as
shown in Table II, 87Rb atoms are often regarded as spin-1
bosons, while they can indeed be spin-2 bosons if one pumps
them into the f = 2 hyperfine level [33].

We have seen that the single-particle CLSs play a crucial
role in constrcting the many-body ground state. The CLSs
exist not only in the sawtooth chain but also in all the finite-
range hopping lattices possessing a flat band [48,49]. In fact,
there are various systematic approaches to construct flat-band
lattices [7,48,55,56,79–86], among which Tasaki’s cell con-
struction [55,56] and Mielke’s line graph construction [79–81]
always yield a bottom flat band [87]. These systematic con-
structions generate infinitely many kinds of lattices in d � 1
dimensions, such as those shown in Fig. 4 for d = 1 and Fig. 5
for d = 2, 3.

Let X = (�X ,BX ) be a bottom-flat-band lattice where �X

is the set of sites and BX is the set of bonds. A bond is defined
by two sites {r, r′} with r, r′ ∈ �X . Let Ĥ f ,X

hop be a single-body
Hamiltonian for spin- f bosons on X :

Ĥ f ,X
hop = −

∑
{r,r′}∈BX

f∑
α=− f

tr,r′ â†
r,α âr′,α +

∑
r∈�X

Vrn̂r, (27)

where â†
r,α creates a boson with magnetic sublevel α at

site r. Let N be the total number of unit cells in X . The
assumption that X has a bottom flat band means that the
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FIG. 5. Examples of higher dimensional lattices X with a bottom
flat band (left column) and their corresponding lattices X ′ where the
AKLT models are defined (right column). In X , allowed hopping
processes are illustrated by bonds. In X ′, a bond represents inter-
action between two spins. (a) 2D Tasaki lattice (left), an example
of the cell construction [55,56]. A CLS is localized on five sites, as
pictured by the square. All the CLSs are related to each other by
lattice translation vectors. Every CLS overlaps with four other CLSs,
thus f should be 4/2 = 2. The corresponding AKLT model lives on
a square lattice (right). We symbolize the 2D Tasaki lattice as and
the square lattice as �. (b) Kagome lattice (left), an example of the
line graph construction [80]. A CLS is localized on a hexagon. Every
CLS overlaps with 2 f = 6 other CLSs, and the corresponding AKLT
model lives on a triangular lattice (right). We symbolize the kagome
lattice as and the triangular lattice as �. An optical kagome lattice
has been realized experimentally [89]. (c) 3D Tasaki lattice (left),
another example of the cell construction [55,56]. A CLS is localized
on seven sites, as covered by the octahedron. Every CLS overlaps
with 2 f = 6 other CLSs, the corresponding AKLT model thus lives
on a cubic lattice (right). We symbolize the cubic lattice as .

single-particle ground state degeneracy of Ĥ f ,X
hop is N (2 f +

1). The corresponding CLSs are localized on N different
positions and are related to each other by lattice transla-
tion vectors [90]. The shapes of some CLSs are shown in
Fig. 4 and Fig. 5. Let (B̂ f ,X

j,α )† be the creation operator of
a CLS, where j = 1, 2, . . . , N labels different positions. A
fully packed state (FPS) on X is defined as a product of N
CLSs: (B̂ f ,X

1,α1
)†(B̂ f ,X

2,α2
)† · · · (B̂ f ,X

N,αN
)†|vac〉. In an FPS, the lattice

is “fully packed” by N particles. For example, |β〉 in Eq. (12)
is an FPS in the sawtooth chain.

We now consider another lattice X ′ = (�X ′ ,BX ′ ) with
|�X ′ | = N , and each site j ∈ �X ′ represents a CLS in the
FPS of X . Two sites in X ′ are directly connected iff the
two corresponding CLSs in the FPS (partially) overlap. For
example, as shown in Fig. 5, if X is the 2D (3D) Tasaki lattice,
X ′ will be the square (cubic) lattice, while if X is the kagome
lattice, X ′ will then be the triangular lattice. In the following,
we require that f and X are chosen such that X ′ satisfies the
condition |{ j′ ∈ �X ′ |{ j, j′} ∈ BX ′ }| = 2 f ,∀ j ∈ �X ′ . Define
�

[k]
X ⊂ �X as a set of sites where k CLSs in the FPS overlap.

For example, in the sawtooth chain �X = �
[1]
X ∪ �

[2]
X , where

�
[1]
X is the set of all the bottom sites and �

[2]
X is all the top

sites. We further require that every site r ∈ �X is shared by
no more than two CLSs in the FPS, i.e., �

[k]
X = ∅ for k > 2.

We then define the spin model Ĥ f ,X ′
AKLT on X ′, as introduced in

Sec. III A.
The s-wave interaction between two spin- f bosons at

position r is given by
∑

S=0,2,...,2 f gS,r P̂(S)
r , where the

SO(3)-invariant operator P̂(S)
r projects the state onto to-

tal spin S = even and satisfies the “completeness relation”∑
S P̂(S)

r = n̂r(n̂r − 1)/2 [33]. (For interaction between alkali-
metal atoms, it is sufficient to consider the short-range s-wave
scattering [33].) Spin- f bosons in optical lattices are described
by the spin- f Bose-Hubbard model. On the lattice X , the
model is given by

Ĥ f ,X := Ĥ f ,X
hop + Ĥ f ,X

int ,

Ĥ f ,X
int :=

∑
r∈�X

∑
S=0,2,...,2 f

gS,r P̂(S)
r .

(28)

The s-wave scattering Hamiltonian is reminiscent of the
AKLT Hamiltonians. If N spin- f bosons are loaded on X and
g2 f ,r > 0 and gS<2 f ,r = 0 for all r ∈ �

[2]
X , following Sec. II B,

the zero-energy ground states of Ĥ f ,X in Eq. (28) and Ĥ f ,X ′
AKLT

in Eq. (25) can thus be exactly mapped to each other, just as
in Eq. (15). See Appendix F for discussions of the uniqueness
of the ground state of Ĥ f ,X .

Let us see some concrete examples. In d = 1 dimension,
besides the sawtooth chain, spin-1 bosons can be loaded on
the lattices in Fig. 4 as well. In d = 2, the 2D Tasaki lattice
matches spin-2 bosons, and the corresponding spin-2 AKLT
model lives on a square lattice with the VBS ground state in
Fig. 3(b). The kagome lattice is suitable for spin-3 bosons,
while the corresponding AKLT model has the spin-3 VBS
ground state on a triangular lattice as shown in Fig. 3(c). On
the other hand, spin-3 bosons are also compatible with the 3D
Tasaki lattice, which corresponds to a 3D spin-3 VBS state in
Fig. 3(d). In fact, the Tasaki lattice can be constructed in any
dimension, and the sawtooth chain can actually be regarded
as the 1D Tasaki lattice [55,56]. In general, the d-dimensional
Tasaki lattice matches spin-d bosons, and the corresponding
AKLT model lives on a d-dimensional hypercubic lattice.
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FIG. 6. Components of |GS2,
〉, the exact ground state of spin-2

bosons on the 2D Tasaki lattice. (a) Visualization of Eq. (30) with
a typical choice of α1, . . . , αN . The five possible values of α j are
represented by five different colors. Equation (30) is a fully packed
state (FPS). (b) Visualization of Eq. (31) with a typical choice of
r1, . . . , rN . The state exhibits “hidden VBS order”: if we ignore all
two-body spin singlets, the remaining particles form a VBS state.
The ground state can be viewed as a linear combination of such states
with different charge configurations.

Let |GS f ,X 〉 be the exact and unique ground state of Ĥ f ,X .
In terms of the Fock basis, |GS f ,X 〉 reads

|GS f ,X 〉 =
f∑

α1,...,αN =− f

Sα1,...,αN

∑
r1,...,rN

Cr1,...,rN

× â†
r1,α1

· · · â†
rN ,αN

|vac〉,
(29)

where Sα1,...,αN and Cr1,...,rN are coefficients that correspond
to different spin and charge configurations, respectively.
Summing over the charge DOF first gives an FPS:∑

r1,...,rN

Cr1,...,rN â†
r1,α1

· · · â†
rN ,αN

|vac〉

= (B̂ f ,X
1,α1

)†(
B̂ f ,X

2,α2

)† · · · (B̂ f ,X
N,αN

)†|vac〉. (30)

|GS f ,X 〉 is a linear combination of FPSs with different spin
configurations, and the coefficients Sα1,...,αN in Eq. (29) and
Eq. (26) are identical. However, if we sum over the spin DOF
first:

f∑
α1,...,αN =− f

Sα1,...,αN â†
r1,α1

· · · â†
rN ,αN

|vac〉, (31)

we will get a state with “hidden VBS order.” |GS f ,X 〉 can
then be alternatively viewed as a linear combination of such
states with different charge configurations. The above analysis
suggests that the FPS and “hidden VBS order” are two differ-
ent but equivalent pictures of understanding the structure of
the ground states, and they together reflect spin and charge
fluctuations at zero temperature. Figure 6 gives examples of
an FPS and a state with “hidden VBS order” of spin-2 bosons
on the 2D Tasaki lattice.

Let us note that although an exact ground state |GS f ,X 〉
is a result of fine-tuned interactions, one can readily believe
the quantum phase represented by |GS f ,X 〉 (to be discussed

in Sec. III C) exists in rather broad parameter regions, as
supported by the evidences shown in Sec. II D and II E for
the sawtooth chain.

C. Classifying the ground states from the viewpoint
of SPT phases

As the unique ground state, |GS f ,X 〉 preserves all the
symmetries of the system. One can always think of |GS f ,X 〉
as a representative state of a certain disordered, gapped,
short-range entangled, and symmetry-protected quantum
phase. In order to classify the phases represented by |GS f ,X 〉
with various f and X , there are two main questions that we
need to answer. First, what is the phase of the corresponding
VBS state |VBS f ,X ′ 〉? Second, are the two states |GS f ,X 〉 and
|VBS f ,X ′ 〉 in exactly the same phase?

Recall that for f = 1 and X being the sawtooth chain, the
answers to the two questions have been completely listed in
Table I. The two states Eq. (19) and Eq. (8) are in the same
phase except when the inversion symmetry is involved. In
d > 1 dimensions, however, regarding the first question, given
an arbitrary f and X ′, there is so far no complete answer
about the phase of |VBS f ,X ′ 〉 in terms of all of its symmetry
groups. Nevertheless, it has been known that with on-site
symmetry [91] alone, |VBS f ,X ′ 〉 always represents a trivial
phase in d > 1 dimensions, while the combination of certain
on-site and spatial symmetry can give an SPT/trivial classifi-
cation, as will be discussed in Sec. IIIC3. In addition, we will
show in Sec. IIIC2 that crystalline symmetries alone can also
give an SPT/trivial classification for |VBS f ,X ′ 〉. Regarding the
second question, we claim that |GS f ,X 〉 and |VBS f ,X ′ 〉 are
always in the same phase protected by on-site symmetry alone
or the combination of on-site and translation symmetry; see
Sec. IIIC1. However, their phases should be investigated on
a case-by-case basis when crystalline symmetries come into
play; see Secs. IIIC2 and IIIC3. In particular, we find that
the charge fluctuations in |GS f ,X 〉 can play a nontrivial role
in the SPT orders protected by crystalline symmetries. In the
following, for simplicity, we focus only on several concrete
examples. The analysis, however, applies to general cases.

1. Smooth path argument

In terms of the combination of SO(3) spin rotation
and translation symmetry [denote the symmetry group as
SO(3)×trn], the spin-2 VBS state on a square lattice |VBS2,�〉
is in an SPT phase [92], while the spin-3 VBS state on a tri-
angular lattice |VBS3,�〉 represents a trivial phase [93]. A key
observation is that |GS f ,X 〉 can always be smoothly deformed
to |VBS f ,X ′ 〉 without breaking the SO(3) × trn symmetry.
Therefore, the two states are in the same phase. For example,

let B̂3,
1,α be one of the CLS operators on the kagome lattice,

whose exact form is given by

B̂3,
1,α = 1√

6

6∑
x=1

(−1)xâx,α, (32)
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FIG. 7. A CLS in the kagome lattice. Sign of the amplitude
alternates from site 1 to 6.

where the six sites labeled by x form vertices of a hexagon, as
shown in Fig. 7. We then define a λ-deformed CLS operator as

B̂3,
1,α (λ) = 1√

λ2 + 5

(
5∑

x=1

(−1)xâx,α + λâ6,α

)
, (33)

which satisfies B̂3,
1,α (1) = B̂3,

1,α and limλ→∞ B̂3,
1,α (λ) = â6,α .

By applying lattice translation vectors, we can get all the

other B̂3,
j,α (λ) with j = 2, . . ., N . Now consider the state

defined on the kagome lattice

|GS3,
(λ)〉 =

3∑
α1,...,αN =−3

Sα1,...,αN

N∏
j=1

(
B̂3,

j,α j
(λ)
)†

|vac〉, (34)

where {Sα1,...,αN } are chosen such that |GS3,
(1)〉 = |GS3,

〉
is the original ground state of Ĥ3, . One can then easily
see that limλ→∞ |GS3,

(∞)〉 = |VBS3,�〉 and the state
|GS3,

(λ)〉 remains SO(3) × trn symmetric and short-range
entangled for 1 < λ < ∞. Therefore, |GS3,

〉 and |VBS3,�〉
are smoothly connected and are in the same trivial phase
protected by SO(3) × trn. For an arbitrary f and X , a smooth
path between |GS f ,X 〉 and |VBS f ,X ′ 〉 can always be explicitly
constructed by smoothly deforming every CLS in X to
one single site while preserving the SO(3) or SO(3) × trn
symmetry, and thus the two states always represent the same
phase protected by the symmetry. Let |GS2, 〉 be the exact
ground state of spin-2 bosons in the 2D Tasaki lattice; for
the above reason, |GS2, 〉 and |VBS2,�〉 are in the same SPT
phase protected by SO(3) × trn.

Table III summarizes current results. The purpose of this
section (Sec. IIIC1) is to demonstrate the smooth path ar-

TABLE III. In terms of on-site symmetry or on-site×trn symme-
try, |GS f ,X 〉 and |VBS f ,X ′ 〉 are always in the same phase.

SO(3) SO(3) × trn

|VBS2,�〉
Trivial SPT|GS2,

〉
|VBS3,�〉

Trivial Trivial|GS
3,

〉

FIG. 8. (a) A direction can be assigned to each singlet bond. Two
opposite directions differ by a minus sign. (b) |VBS2,�〉 is invariant
under reflections about mirror planes σ1 and σ2. We assume the
symmetry center lies in a plaquette. (c) |VBS3,�〉 is invariant under
reflections about mirror planes σ1 and σ2. (d) |VBS2,�〉 results in a
trivial representation of D2 = {id, σ1, σ2, σ1σ2} (plaquette-centered),
while |VBS3,�〉 results in a nontrivial representation of D2 (bond-
centered).

gument. Details behind the on-site×trn symmetry will be
discussed later (see Sec. IIIC3 and Appendix G).

2. SPT/trivial phases protected by crystalline symmetries alone

For general crystalline symmetries, however, the smooth
path argument does not always apply. For simplicity, we con-
sider only point group symmetries in d = 2 dimension in this
article. Let G be a point group of a Hamiltonian with a unique
gapped ground state |�〉. Let Û (q) be the symmetry operation
(on the Hilbert space) corresponding to the group element
q ∈ G. Subjected to q, the unique ground state transforms as

|�〉 → Û (q)|�〉 = eiθq |�〉, (35)

where the phase factors {eiθq}q∈G form a 1D representation
of G, and different 1D representations label different phases
protected by the point group G [94]. When {eiθq}q∈G is a trivial
representation, that is, eiθq = 1 for all q ∈ G, |�〉 is in a trivial
phase. On the other hand, |�〉 is in an SPT phase if {eiθq}q∈G

is a nontrivial representation [69,95,96]. It is important to
be aware that for point group symmetries alone in d < 3 di-
mensions, the SPT/trivial classifications become meaningless
when there are microscopic DOF lying precisely at symmetry
centers. See Sec. I B of Ref. [95] or Appendix A of Ref. [69]
for details. In other words, it is only legal to put the symmetry
centers in vacuum.

In the graph representation of VBS states, we can assign
an arbitrary direction to each singlet bond, because a singlet
state is antisymmetric. Reversing the direction of a singlet
bond is equivalent to adding a minus sign; see Fig. 8(a). Let us
consider the point group D2 as a simple example. Elements of
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D2 are generated by two perpendicular mirror planes σ1 and
σ2, as shown in Figs. 8(b)–8(c). Consider the states |VBS2,�〉
and |VBS3,�〉 in the thermodynamic limit. |VBS2,�〉 is D2-
symmetric around the center of a plaquette, the center of a
bond, or a site. |VBS3,�〉 is D2-symmetric around the center
of a bond or a site. As emphasized above, to classify their
phases, it is illegal to put the symmetry center on a site. For
|VBS2,�〉 with a plaquette-centered D2 symmetry, there are an
even number [97] of singlet bonds being reversed by a mirror
reflection [see Fig. 8(b)], thus Û (q)|VBS2,�〉 = |VBS2,�〉,
∀q ∈ D2. However, for a bond-centered D2 symmetry, with
respect to the mirror plane perpendicular to the central bond,
there are an odd number of singlet bonds being reversed,
which results in a nontrivial representation of D2. We see
that in this example, the phase depends on the position of
the symmetry center [98]. For some reason that will be clear
later, we consider only the plaquette-centered symmetry for
|VBS2,�〉 in the remnant of this article. For |VBS3,�〉, the
bond-centered symmetry is the only legal choice. As shown in
Fig. 8(c), the mirror reflection σ2 reverses an odd number of
bonds, we thus have Û (σ2)|VBS3,�〉 = −|VBS3,�〉. As listed
in Fig. 8(d), |VBS2,�〉 results in a trivial representation of
plaquette-centered D2 and is therefore in a trivial phase, while
|VBS3,�〉 is in an SPT phase protected by D2. Note that from
the above discussion, one might naively think that one single
mirror plane alone (point group D1 = ZP

2 ) is sufficient to
distinguish the SPT from the trivial phase, which is indeed
true in d = 1, 3 dimensions [5,69]. However, in the d = 2
dimension, D1 symmetry alone can give only a trivial phase;
see Ref. [95].

In general, a smooth path between |GS f ,X 〉 and |VBS f ,X ′ 〉
that preserve on-site×trn symmetry may or may not break
crystalline symmetries. For example, by smoothly deforming
every CLS into the single site at its center, |GS2, 〉 reduces
to |VBS2,�〉 while preserving the plaquette-centered D2 sym-
metry; see Fig. 6(a). (Though |GS2, 〉 also has site-centered
D2 symmetry, such symmetry does not give a phase classi-
fication.) For |GS3,

〉, however, the smooth path described
by Eq. (34) breaks the D2 symmetry. In general, when we
are not able to find a path that is both crystalline-symmetry-
preserving and smooth, such a path either is too complicated
to be explicitly found or simply does not exist. Nevertheless,
it is always possible to investigate the crystalline-symmetry-
protected phase of |GS f ,X 〉 case-by-case. We again use
|GS3,

〉 as an example. As shown in Fig. 9(a), we put the sym-
metry center at the geometric center of a hexagonal plaquette.
A CLS in the kagome lattice can actually be regarded as a
zero-dimensional SPT phase protected by D2, because, for ex-

ample, according to Eq. (32) and Fig. 7, Û (σ2)B̂3,
1,α Û (σ2) =

−B̂3,
1,α . The many-body ground state |GS3,

〉 is a fully pack-
ing of CLSs with entangled spin DOF. The spin configurations
of |GS3,

〉, which is inherited from |VBS3,�〉, transforms
trivially, as shown in Figs. 9(b) and 9(c). [Note that Fig. 9(b)
does not imply that |VBS3,�〉 is in a trivial phase protected by
D2, as the symmetry is site-centered.] Nevertheless, |GS3,

〉
yields a nontrivial representation of D2 thanks to how CLSs
transform. We thus see that |GS3,

〉 is in an SPT phase
protected by D2; the SPT phase is purely a result of charge
fluctuations at zero temperature, as the spin DOF contribute

FIG. 9. (a) An FPS on the kagome lattice. (|GS
3,

〉 is D2

symmetric, and it is a superposition of FPSs with different spin
configurations.) We require that the symmetry center of D2 lies at
the geometric center of a hexagon. (b) For |VBS3,�〉, the symmetry
center should lie at a site (spin) in order to be compatible with (a).
(c) 1D representations of D2 associated with |GS

3,
〉 and |VBS3,�〉.

Note that the latter state transforms trivially, but this does not mean
that it is in a trivial phase.

trivially. Similarly, with the symmetry center in Fig. 9(a), one
can also show that |GS3,

〉 represents an SPT phase protected
by point group D3 or D6, while D3 and D6 are not a proper
symmetries for the phase of |VBS3,�〉, since the VBS state
is D3 or D6 invariant only about a site. Once again, the SPT
phase of |GS3,

〉 protected by D3 or D6 originates from the
charge fluctuations of each CLS. Results of the current section
are summarized in Table IV.

For a specific symmetry, to identify the phase of |GS f ,X 〉,
we can first try to find a both symmetry-preserving and
smooth path that connects |GS f ,X 〉 to |VBS f ,X ′ 〉, provided
that the phase of |VBS f ,X ′ 〉 is already known. (For point
group symmetries, we require that there are no microscopic
DOF lying at the symmetry center all along the path [99].)
When such a path cannot be explicitly found, it is either too
complicated to be found or simply absent. Nevertheless, for
point group symmetries, based on Eq. (35), one can always
classify the phase of |GS f ,X 〉 without the help of the smooth
path argument.

TABLE IV. Classifying the phases of 2D bosonic states in terms
of point group symmetries. Symmetry centers of the points groups
are placed in vacuum. In addition, D2 and D4 are assumed to be
plaquette-centered symmetries for |VBS2,�〉. N/A means either that
the state does not have such symmetry or that the symmetry can only
be site-centered.

|VBS2,�〉 |GS2,
〉 |VBS3,�〉 |GS3,

〉
D1 Trivial Trivial Trivial Trivial
D2 Trivial Trivial SPT SPT
D3 N/A N/A N/A SPT
D4 Trivial Trivial N/A N/A
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TABLE V. Classifying the phases of 2D and 3D bosonic states
in terms of some on-site × crystalline symmetries. D1 = ZP

2 refers
to mirror reflection symmetry along an array of sites. All the SPT
phases are a result of LSM theorems. The spin-3 VBS state on a cubic
lattice |VBS

3,
〉 represents a trivial phase in terms of Z2 × Z2 × D1

or TR × D1, because the surface state can be trivially gapped out
without breaking these two symmetries. |GS3,3DTas〉 refers to the
exact ground state of spin-3 bosons on the 3D Tasaki lattice, and
it is smoothly connected to |VBS

3,
〉 while preserving the four

symmetries.

|VBS2,�〉 |GS2,
〉 |VBS

3,
〉 |GS3,3DTas〉

Z2 × Z2 × trn SPT SPT SPT SPT
TR × trn SPT SPT SPT SPT
Z2 × Z2 × D1 SPT SPT Trivial Trivial
TR × D1 SPT SPT Trivial Trivial

We would like to mention some related research. The
“fragile Mott insulator” studied in Ref. [100] can be under-
stood as SPT phases protected by point group symmetries. In
contrast, the “featureless Mott insulator” of spinless bosons
studied in Refs. [101,102] should be classified into trivial
phases protected by point group symmetries.

3. SPT phases protected by on-site × crystalline symmetries:
A result of the Lieb-Schultz-Mattis (LSM) theorems

There can also be nontrivial interplay between on-site
and crystalline symmetries. For instance, the SO(3) × trn
symmetry introduced in Sec. IIIC1 is one such example. In
fact, SO(3) × trn is sufficient but not necessary to protect
the SPT phase of |VBS2,�〉: the subgroup Z2 × Z2 × trn is
enough. Besides, |VBS2,�〉 is in an SPT phase protected
by the combination of time-reversal (TR) and site-centered
mirror reflection (= point group D1 = ZP

2 ) symmetry. Other
such symmetries include TR × trn, Z2 × Z2 × D1, and so
on; see Table V. In fact, the reason why certain on-site ×
spatial symmetries can give SPT/trivial classifications in d >

1 dimensions is closely related to the LSM theorems; see
Appendix G for details.

As explained in Sec. IIIC1, |GS f ,X 〉 is always smoothly
connected to |VBS f ,X ′ 〉 while preserving on-site × trn
symmetries. However, for on-site × point group or on-site ×
space group symmetries, a symmetry-preserving smooth path
may not exist. (Luckily, for Z2 × Z2 × D1 and TR × D1,
|GS2, 〉 and |GS3,3DTas〉 are smoothly connected to their
corresponding VBS states.) In the case where a symmetry-
preserving smooth path cannot be found, the phase of |GS f ,X 〉
can always be judged by examining that if one can trivially
gap out the edge state without out breaking the symmetry:
|GS f ,X 〉 is in an SPT phase if its edge state cannot be trivially
gapped out.

IV. DISCUSSION

We show that the SPT phases can be realized with
short-range interacting spinful bosons that are loaded on the
lattices with a bottom flat band. Such systems are described
by the spinful Bose-Hubbard models. The ground states of
such systems have both spin and charge fluctuations. The

single-body eigenstates of a flat band can usually be chosen
to be strictly localized on finite number of sites, known as
compact localized states (CLSs). When N spin- f bosons are
loaded on a bottom-flat-band lattice X with N unit cells, at
low temperatures, the particles’ wave functions tend to avoid
overlapping each other in order to minimize the system’s
energy. In particular, when the interaction strength between
spin- f bosons is fine-tuned, in the ground state |GS f ,X 〉, N
bosons exactly occupy N CLSs on different patches. We make
use of the analogy between the Hamiltonian that describes the
s-wave collision among spin- f bosons and the spin- f AKLT
Hamiltonian. This analogy enables us to exactly map |GS f ,X 〉
onto |VBS f ,X ′ 〉, where the latter state is the spin- f VBS state
on the lattice X ′. This implies that |GS f ,X 〉 is the exact and
unique many-body ground state of the spin- f Bose-Hubbard
model. The choice of f and X ′ is determined by the geometry
of X . Note that bottom-flat-band lattices X can be constructed
systematically; see Sec. III B.

Over the years, exact results have proved to be highly
valuable in quantum and statistical physics. Our work fea-
tures the exact many-body ground states |GS f ,X 〉 of spinful
itinerant systems. The spin fluctuations of |GS f ,X 〉 is inherited
from |VBS f ,X ′ 〉. Therefore, with respect to the spin rota-
tion symmetry or the spin rotation × translation symmetry,
the symmetry-protected phase of |GS f ,X 〉 is identical to that
of |VBS f ,X ′ 〉. However, unlike |VBS f ,X ′ 〉, the state |GS f ,X 〉
also possesses nonvanishing charge fluctuations, and in terms
of crystalline symmetries, both spin and charge fluctuations
in |GS f ,X 〉 together determine its symmetry-protected phase.
Hence, as explained in Sec. IIIC2, one cannot simply conclude
that the crystalline-symmetry-protected phase of |GS f ,X 〉 is
also inherited from |VBS f ,X ′ 〉, because charge fluctuations
may play a nontrivial role in the former state, which is indeed
the case for spin-3 bosons in the kagome lattice. Although our
analysis in d > 1 dimensions is based on the exact ground
states |GS f ,X 〉 (as a consequence of fine-tuned parameters),
we expect that just like what has been shown in the spin-1
BHMSC, the SPT phases survive in wider parameter regions,
and |GS f ,X 〉 just serves as a representative state of the phases.

We having been ignoring the long-range dipole-dipole in-
teraction (DDI), and this can be justified in many alkali-metal
atom experiments. In fact, several kinds of transition-metal
atoms can also be regarded as spinful bosons, such as 52Cr
(spin-3), 164Dy (spin-8), and 168Er (spin-6) [33]. Interestingly,
these transition-metal atoms have very strong magnetic DDI
[103–105]. It is also known that even for bosonic alkali-
metal atoms, the magnetic DDI can have a significant effect
in certain cases [33]. When taking the DDI into account
(in addition to the short-range s-wave collision), it is proba-
bly impossible to exactly write down the many-body ground
states. Nevertheless, we expect that the DDI induces new
phases, such as charge density wave and supersolid, due to
its long-range nature. Hunting new phases, including the SPT
phases, in itinerant spinful bosonic systems with DDI will
be an interesting future direction. Note that systems with
magnetic DDI no longer have spin rotation symmetry. Instead,
the magnetic DDI is invariant under simultaneous rotation in
both spin and real spaces V̂ δ (θ ) := exp[−iθ

∑
r(Ŝ

δ
r + L̂δ

r )],
where L̂δ

r is the orbital angular momentum operator in the
δ(= x, y, z)-direction for particles at position r [33,106]. In
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other words, such systems conserve total angular momentum
in free space. When constrained on a lattice, the systems can
still preserve some discrete rotation symmetries, though such
rotation symmetries are not on-site. In the future studies, it
is worth investigating how such symmetries classify the SPT
phases.

Finally, we would like to make some remarks about the
flat band. The flat band has been gaining much attention these
years because it was found to give rise to various collective
phenomena, such as ferromagnetism [56,61] and supercon-
ductivity [86,107], in quantum many-body systems. In this
paper, we discover that the flat band can also be an origin of
interacting SPT phases. We believe this work stimulates future
research on the relation between flat bands and topological
quantum physics.

Interestingly, there exists many kinds of lattices where the
flat band appears in the middle or top of the band structure
[48,82–84]. One can certainly follow the scheme in this paper
to construct the many-body eigenstates in these lattices with
the help of the CLSs of the flat bands. The resulting many-
body eigenstates, due to their short-range entangled nature,
are actually quantum many-body scars [108–112], which lead
to weak ergodicity breaking of the systems. Exploring quan-
tum many-body scars in spinful atoms with a flat band will be
another intriguing future direction.
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APPENDIX A: THE HALDANE INSULATOR PHASE

Spinless bosons in optical lattices with dipole-dipole
interaction are described by the extended Bose-Hubbard
model. The nature of the Haldane insulator phase in the
1D extended Bose-Hubbard model can be captured by the
following state [13]:

|�HI〉 =
∏

j

(â†
j + â†

j+1)|vac〉, (A1)

where â†
j creates a spinless boson at site j; see Fig. 10(a).

The state |�HI〉 represents a trivial phase in the sense of
inversion symmetry, but it represents a Haldane phase
protected by the combination of pseudospin rotation and
the inversion symmetry, i.e., the group {1, Û (nI )} with
Û (nI ) := exp[−iπ

∑
r (n̂r − 1)]Û (I ). This is the same for

|GSλ=0〉; see Table I. In addition, the Haldane phase of
|GSλ=0〉 is protected by other symmetries related to the spin
DOF. In this sense, we can say the state |GSλ=0〉 represents
a spinful Haldane insulator phase. Note that both |�HI〉 and
|GSλ=0〉 exhibit perfect hidden charge order, i.e., vacant sites

FIG. 10. (a) The Haldane insulator phase in the 1D system of
spinless bosons. Every ellipse represents a single particle. (b) The
state |GS〉 at λ = 0. Three different colors denote three different
spin states, and all allowed spin configurations are summed up (with
coefficients).

and doubly occupied sites appear alternatively if we ignore
all the singly occupied sites.

APPENDIX B: SPIN AND CHARGE EDGE STATES

For spin-1 BHMSC with OBC, gt
0 = 0 and gt

2 > 0, there
are four degenerate ground states |GS↑↑〉, |GS↑↓〉, |GS↓↑〉,
and |GS↓↓〉, which correspond to four independent edge
spin-1/2 states. The analytical forms of 〈GS↑↑|Ŝδ

r |GS↑↑〉,
〈GS↑↑|n̂r |GS↑↑〉, etc. are rather complicated and will not be
presented. Instead, their plots are shown in Fig. 11. The spin

FIG. 11. Spin and charge edge states. We have assumed that the
sawtooth chain ends with bottom sites at both ends and taken N =
100 and λ = 1.
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FIG. 12. The reduced edge particle number N̄edge as a function
of λ.

edge state decays more slowly than the charge one, because
the spin correlation length is longer than the charge correlation
length:

ξspin =
(

ln
3λ2 + √

9λ4 + 36λ2 + 24 + 6

λ2 + √
λ4 + 4λ2 + 24 + 2

)−1

,

ξcharge =
(

ln
3λ2 + √

9λ4 + 36λ2 + 24 + 6

3λ2 − √
9λ4 + 36λ2 + 24 + 6

)−1

. (B1)

There is always a spin-1/2 localized at each edge.
We define the reduced edge particle number as N̄edge :=∑∞

r=1(limN→∞〈GS↑↑|n̂r |GS↑↑〉 − 1/2). N̄edge is a function of
λ, and N̄edge = 1/2 at λ = 0. See Fig. 12. Note that N̄edge is
independent of the four degenerate ground states.

Let us note that for crystalline-symmetry-protected topo-
logical phases in d < 3 dimensions, there are no anomalous
edge states [4,95]. For example, both |GS3,

〉 and |VBS3,�〉
are protected by D2 symmetry (see Sec. III), and they do not
have anomalous edge states.

APPENDIX C: KENNEDY-TASAKI TRANSFORMATION
FOR INTEGER-SPIN ITINERANT SYSTEMS

The Kennedy-Tasaki transformation is a nonlocal unitary
transformation defined on an open chain of length L as
[5,7–9]

ÛKT :=
L∏

j=1

exp

[
iπ

(
j−1∑
i=1

Ŝz
i

)
Ŝx

j

]
, (C1)

and it is Hermitian: Û †
KT = ÛKT. ÛKT is also invariant under

Z2 × Z2 spin rotation. For an arbitrary integer-spin chain, let
ĥ j be a local Hamiltonian, and the sufficient and necessary
condition for ÛKTĥ jÛKT also to be local is that ĥ j is Z2 × Z2

invariant [4,9]. This statement can be extended to integer-
spin itinerant systems. For example, the spin-1 Bose-Hubbard
model has SO(3) spin rotation symmetry, and the on-site inter-
action P̂(S)

r is invariant under ÛKT, while the SO(3)-invariant
hopping transforms as

ÛKT

( ∑
α=0,±1

â†
i,α â j,α + H.c.

)
ÛKT

= e
iπ

j−1∑
v=i

Ŝz
v

a†
i,0â j,0 + H.c.

TABLE VI. Four different 1D representations of Z2 × Z2.

φ1 φx φy φz

γ = 1 +1 +1 +1 +1
γ = x +1 +1 −1 −1
γ = y +1 −1 +1 −1
γ = z +1 −1 −1 +1

+ 1

2
e

iπ
j∑

v=i+1
Ŝx

v

[(
e

iπ
j−1∑
u=i

Ŝz
u + 1
)

(a†
i,+â j,+ + a†

i,−â j,−)

+
(

e
iπ

j−1∑
u=i

Ŝz
u − 1
)

(â†
i,+a j,− + â†

i,−â j,+)

]
+ H.c. (C2)

We can see that the transformed hopping has Z2 × Z2 sym-
metry and is still local if the original hopping is local.

APPENDIX D: TRANSLATION SYMMETRY AND THE
HALDANE PHASES

In the presence of both translation symmetry and Z2 × Z2

symmetry, {φq}q∈Z2×Z2 in Eq. (22) forms a 1D representation
of the group Z2 × Z2. In this case, all the phases of gapped
states that do not break the two symmetries are classified
by a pair of indices (ω, γ ) where ω ∈ QZ2×Z2 and γ labels
different 1D representations of Z2 × Z2 [71]; see Table VI.
Let us again use the sawtooth chain as an example. It is easy
to see that the state |GS〉 in Eq. (19) corresponds to the row
γ = 1 in Table VI. We now show that other three SPT phases
labeled by (ω = −1, γ = x, y, z) can be obtained by slightly
modifying Ĥhop. Define

Ŵ γ :=
N/4∏
k=1

e−iπ (Ŝγ

4k−1+Ŝγ

4k ), γ = x, y, z. (D1)

The operator Ŵ γ acts on the red sites pictured in Fig. 13. In-
teraction Ĥint is invariant under Ŵ γ , thus Ĥγ := Ŵ γ ĤŴ γ =
Ŵ γ ĤhopŴ γ + Ĥint. The transformation does not break the
translation symmetry. The unique ground state of Ĥγ is given
by

|GSγ 〉 = Ŵ γ |GS〉

=
3∑

τ1,...,τ2N =−1

Tr(F τ1 E τ2�γ F τ3 E τ4�γ · · · )

×
(

2N∏
r=1

d̂†
r,τr

)
|vac〉, (D2)

FIG. 13. Hopping constant tr,r′ for magnetic sublevel ±1 in
Ŵ γ ĤhopŴ γ when γ = z. Operator Ŵ γ acts on the red sites. One can
see that the transformation Ŵ γ preserves the translation symmetry.
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where �γ := diag(σγ , σ γ ). Under the Z2 × Z2 spin rotation,
matrices in |GSγ 〉 transforms as

F τ2 j−1 E τ2 j �γ → eiφq u†
q F τ2 j−1 E τ2 j �γ uq. (D3)

Unitary matrices {uq} above are also given in Table I. Explicit
calculation yields the other three different 1D representations
of Z2 × Z2 in Table VI. We thus have the desired SPT phases.

APPENDIX E: MPS ANSATZ FOR NUMERICAL
CALCULATIONS

The MPS ansatz used in our numerical calculation can be
regarded as a generalization of Eq. (19). For the matrices in
Eq. (19), we can assign a pair of quantum numbers to each
block as

F :=
√

λ2 + 2
3∑

τ=−1

F τ d̂†
r,τ

= 1/2
3/2

0 1(
I2 −λ

∑
α Mα â†

r,α
0 I2

)
,

E :=
3∑

τ=−1

E τ d̂†
r,τ = 0

1

1/2 3/2( ∑
α Mα â†

r,α

√
6b̂†

r I2

I2
∑

α Mα â†
r,α

)
.

(E1)

The quantum numbers are assigned by the following rule:

n + m − 1/2

↑ (E2)

n → a nonzero block that creates m particles.

For example, the upper right block of E creates two particles,
thus the block is labeled by (0, 3/2). For the product of 2N
matrices, we replace 1/2 in the above rule with 2N/2 = N ,
such that

EFEF . . . EF︸ ︷︷ ︸
2N

= 0
1

0 1(
X11 X12

X21 X22

)
,

(E3)

where X11 and X22 are 2 × 2 blocks which create N particles,
while X12 and X21 create N + 1 and N − 1 particles, respec-
tively. In the thermodynamic limit N → ∞, Eq. (E3) gives
an MPS where the particle number equals the number of unit
cells.

The exact ground state given by Eq. (E3) has bond dimen-
sion χ = 4. In general, however, we need to use an MPS with
larger bond dimension to better approximate the true ground
state. We can thus generalize Eq. (E1) to a block-banded
form:

F̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · m m + 1 · · · n − 1
1/2 X (1)

[0] · · · X (1)
[m] 0 · · · 0

3/2 0 . . .
. . .

. . .
...

...
...

. . .
. . .

. . . 0
...

...
. . .

. . . X (n−m)
[m]

...
...

. . .
. . .

...

n − 1

2
0 · · · · · · · · · 0 X (n)

[0]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ẽ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 · · · m − 1
2 m + 1

2 · · · n − 1
2

0 Y (1)
[1] · · · Y (1)

[m] 0 · · · 0

1 Y (1)
[0]

. . .
. . .

. . .
...

2 0 . . .
. . .

. . . 0
...

...
. . .

. . .
. . . Y (n−m+1)

[m]
...

...
. . .

. . .
. . .

...

n − 1 0 · · · · · · 0 Y (n−1)
[0] Y (n)

[1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(E4)

where X[k] and Y[k] denote d × d blocks that create k particles,
and the maximum particle number on each site is truncated to
m. The bond dimension is χ = dn. The MPS |�(Ẽ, F̃ )〉 :=
Tr(· · · ẼF̃ ẼF̃ · · · )|vac〉 is called a symmetric uniform MPS
(suMPS) [72]. In our numerical calculations, we fix m = 3,
n = 4 and vary d . We optimize the suMPS by minimizing its
energy expectation value, and the optimization is done by the
VUMPS algorithm.

Now we justify the particle number truncation m = 3. The
energy variance of the MPS |�(Ẽ, F̃ )〉 is measured by

σ 2 := 1

N
(〈�(Ẽ, F̃ )|Ĥ2|�(Ẽ, F̃ )〉 − 〈�(Ẽ, F̃ )|Ĥ |�(Ẽ, F̃ )〉2)

= 1

N
〈�(Ẽ, F̃ )|Ĥ (1 − P̂Ẽ,F̃ )Ĥ |�(Ẽ, F̃ )〉, (E5)

where P̂Ẽ,F̃ := |�(Ẽ, F̃ )〉〈�(Ẽ, F̃ )|. Let

H�m
r = span

({
1∏

α=−1

(â†
r,α )nα |vac〉r

∣∣∣∣∣∑
α

nα � m

})
(E6)

be the local truncated Hilbert space and P̂∀�m be the projec-
tion operator onto the total truncated Hilbert space H∀�m :=⊗2N

i=r H
�m
r . The Hamiltonian in H∀�m reads Ĥ∀�m :=

P̂∀�mĤP̂∀�m. Equation (E5) can thus be rewritten as

σ 2 = 1

N
〈�(Ẽ, F̃ )|Ĥ∀�m(1 − P̂Ẽ,F̃ )Ĥ∀�m|�(Ẽ, F̃ )〉

+ 1

N
〈�(Ẽ, F̃ )|Ĥ (1 − P̂∀�m)Ĥ |�(Ẽ, F̃ )〉. (E7)

The first term above can be viewed as the variance in H∀�m,
and it quantifies the effect of finite bond dimension. Similar
to spin or fermion systems, the first term can be calculated
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TABLE VII. Examples of the actual values of the first and second
terms in Eq. (E7) with m = 3, d = 100, λ = 1, and R = 1. The
Haldane-critical phase transition happens between ϕ = 6/36 and
7/36; see Fig. 2(b).

ϕ/π First Second

1/36 1.144 × 10−4 8.082 × 10−5

2/36 3.463 × 10−4 1.190 × 10−4

3/36 9.122 × 10−4 1.267 × 10−4

4/36 1.957 × 10−3 1.142 × 10−4

5/36 3.543 × 10−3 9.620 × 10−5

6/36 5.702 × 10−3 7.819 × 10−5

7/36 7.348 × 10−3 6.284 × 10−5

8/36 8.614 × 10−3 5.209 × 10−5

9/36 8.956 × 10−3 4.874 × 10−5

efficiently [50,113]. On the other hand, the second term
quantifies the effect of truncation. Note that although Ĥ (1 −
P̂∀�m)Ĥ contains O(N2) nonlocal terms, only O(N ) local
terms return nonzero values when sandwiched by |�(Ẽ, F̃ )〉.
Table VII shows that for m = 3, at least near the Haldane-
critical phase transition point, the effect of particle number
truncation is about 100 times smaller than the effect of finite
bond dimension.

Finally, we provide further numerical evidence that de-
termines the shape of the phase boundary in the λ = 1
plane in Fig. 2(a). The transfer matrix is defined as the sum
of Kronecker products

∑
τ,τ ′ Ẽ τ F̃ τ ′ ⊗ Ẽ τ F̃ τ ′

, where Ẽ τ :=
〈τ |Ẽ |vac〉 and F̃ τ := 〈τ |F̃ |vac〉 with {|τ 〉} being a basis in the
Fock space. Let εi = − ln |λi|, where λi is the ith largest abso-
lute eigenvalue of the transfer matrix, and |λ1| is normalized to
1. As we change the bond dimension χ , we calculate the scal-
ing of the inverse correlation length 1/ξ := ε2 with respect to
ε3 − ε2 along the path parameterized by (R sin ϕ, R cos ϕ, 1);
see Fig. 14. We find that, as R grows, the phase transition
occurs at smaller ϕ, which indicates that the phase boundary
is curved instead of straight.

APPENDIX F: UNIQUENESS OF THE GROUND
STATE OF Ĥ f ,X

Mathematically, the uniqueness of the ground state of
Ĥ f ,X can be proved with additional assumptions: �

[1]
X �= ∅

and gS,r > 0 for ∀S and ∀r ∈ �
[1]
X . With the “completeness

relation”
∑

S P̂(S)
r = n̂r(n̂r − 1)/2 in mind and following the

deduction in Eq. (10), one can show that the ground state
can only be a linear combination of FPSs. The uniqueness of
the ground state of Ĥ f ,X then follows from the uniqueness
of |VBS f ,X ′ 〉. The assumption �

[1]
X �= ∅ is always satisfied in

lattices generated by the cell construction; see, for example,
Fig. 4(b) and Fig. 5(a). However, for the kagome lattice shown
in Fig. 5(b), �[1]

X = ∅. Nevertheless, we propose the following
conjecture: even in lattice X with �

[1]
X = ∅, the exact ground

state of ĤX is unique when X ′ is not a bipartite lattice. For the
kagome lattice, X ′ is a triangular lattice which is not bipartite.
Note that if X ′ is bipartite and �

[1]
X = ∅, the ground state of

Ĥ f ,X will be degenerate. For example, for the Creutz ladder in

FIG. 14. Scaling of the inverse correlation length 1/ξ := ε2 with
respect to ε3 − ε2. Numbers near the data points denote the corre-
sponding bond dimensions d of each block. Along the path with
R = 2

√
2, we see that a quantum phase transition occurs between

ϕ = 4π/36 and 5π/36. On the other hand, along the path with
R = 3

√
2, a phase transition occurs between ϕ = 3π/36 and 4π/36.

FIG. 15. A “nontrivial” ground state is degenerated with product
states, if �

[1]
X = ∅ and the corresponding quantum spin model lives

on a bipartite lattice. (a) Spin-1 bosons on a Creutz ladder. Each
colored square denotes a CLS with spin degree of freedom. Note that
the ground stats are superpositions of all allowed spin configurations.
(b) Spin-2 bosons on a checkerboard lattice. X ′ in this case is a square
lattice.
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FIG. 16. (a) A CLS in the checkerboard lattice. Sign of the am-
plitude alternates from site 1 to 4. (b) An FPS on the checkerboard
lattice. (|GS2,

〉 is D2 symmetric, and it is a superposition of FPSs
with different spin configurations.) We require that the symmetry
center of D2 lies at the geometric center of a CLS and the two mirror
planes are placed as in the figure. (c) For |VBS2,�〉, the symmetry
center should lie at a site (spin) in order to be compatible with (b).
(d) 1D representations of D2 associated with |GS2,

〉 and |VBS2,�〉.
The former state yields a nontrivial representation and is thus in an
SPT phase.

Fig. 15(a); let (B̂1,�
j,β j

)† create a CLS of spin-1 boson, it is easy
to see that the following two states both have zero energy:

Tr
N∏

j=1

[∑
β j

Mβ j
(
B̂1,�

j,β j

)†]|vac〉, (F1a)

N/2∏
=1

[(
B̂1,�

2,0

)†(
B̂1,�

2,0

)† − 2
(
B̂1,�

2,1

)†(
B̂1,�

2,−1

)†]|vac〉. (F1b)

These two states are depicted in Fig. 15(a). The first “non-
trivial” state is a linear combination of FPSs, while the second
state is a product state. A similar thing happens in spin-2
bosons loaded on the checkerboard lattice; see Fig. 15(b).
In such cases, though the Hamiltonians Ĥ f ,X do not exhibit
any nontrivial phases due to the degeneracy, the “nontrivial”
ground state (= the state which is a linear combination of
FPSs) can always be regarded as the unique ground states of
some other (usually more complicated) parent Hamiltonians
[70], and hence the classification of such “nontrivial” states
from the viewpoint of SPT phases still makes sense. For
example, let |GS2, 〉 be the “nontrivial” ground state of spin-2
bosons on the checkerboard lattice. Following the discussion
in Sec. III C, by properly chosing the symmetry center and the
mirror planes, one can show that |GS2, 〉 is in an SPT phase
protected by D2; see Fig. 16.

FIG. 17. LSM theorems as a special case of constraints at the
boundaries of SPT phases: a gapless or degenerate edge state ensured
by certain symmetry in the boundary implies an SPT phase protected
by the same symmetry in the bulk. The translation group trn is
generated by Tx , while the group D1 is generated by the site-centered
reflection σ . (a) A spin-1/2 simple linear chain can be regarded as
the edge of |VBS2,�〉. (b) A spin-1/2 system on a square lattice can
be regarded as the surface of |VBS

3,
〉.

APPENDIX G: LIEB-SCHULTZ-MATTIS (LSM)
THEOREMS AND SPT PHASES

LSM theorems are a class of no-go theorems on the “in-
gappability” of certain quantum systems. These theorems
ensure that a spin system with a half-odd-integer spin per unit
cell can never have a unique gapped ground state, if certain
on-site × spatial symmetry is present. The original LSM the-
orem [114,115] is about 1D systems with the combination of
SO(3) and translation symmetry [denote the symmetry group
as SO(3) × trn]. The theorem is then extended to higher di-
mensions [116–118].

Recently, more symmetries other than SO(3) × trn have
been found to render the ingappability [66,119–125]. For
example, it is now known that the combination of time-
reversal (TR) and site-centered reflection symmetry (denote
the symmetry group as TR × D1) in 1D systems with a
half-odd-integer spin per unit cell also guarantees the ingappa-
bility [119,122,123]. Other such symmetries in one dimension
include Z2 × Z2 × trn, Z2 × Z2 × D1, TR×trn, and so on
[119,122,123]. In fact, Z2 × Z2 × trn and TR × trn apply to
any d � 1 dimensions [124].

The boundary (edge state) of an SPT phase is usually
gapless or degenerate [126], coincident with the statements of
the LSM theorems. Indeed, the LSM theorems are, in a precise
sense, a special case of constraints at the boundaries of SPT
phases [127]. In other words, a gapless or degenerate edge
state ensured by certain symmetry in the boundary implies an
SPT phase protected by the same symmetry in the bulk, which
is known as the bulk-boundary correspondence. For example,
a spin-1/2 simple linear chain can be thought of as the edge of
|VBS2,�〉, the spin-2 VBS state on a square lattice. Similarly,
a spin-1/2 system on a square lattice can be regarded as the
surface of |VBS3,

〉, the spin-3 VBS state on a cubic lattice;
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see Fig. 17. The ingappability of a spin-1/2 simple linear
chain due to the TR × D1 or Z2 × Z2 × D1 symmetry implies
that |VBS2,�〉 is in an SPT phase protected by TR × D1 or
Z2 × Z2 × D1. Similarly, one can also show that |VBS2,�〉

and |VBS3,
〉 are in an SPT phase protected by Z2 × Z2 × trn

and TR × trn, as summarized in Table V. Note that the edge
of |VBS3,�〉 is a spin-1 chain, so that the LSM theorems do
not apply.
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Z. Papić, Weak ergodicity breaking from quantum many-body
scars, Nat. Phys. 14, 745 (2018).

[109] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Periodic
Orbits, Entanglement, and Quantum Many-Body Scars in
Constrained Models: Matrix Product State Approach, Phys.
Rev. Lett. 122, 040603 (2019).

[110] Y. Kuno, T. Mizoguchi, and Y. Hatsugai, Flat band quantum
scar, Phys. Rev. B 102, 241115(R) (2020).

[111] O. Hart, G. De Tomasi, and C. Castelnovo, From compact
localized states to many-body scars in the random quantum
comb, Phys. Rev. Res. 2, 043267 (2020).

[112] N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s Scars in
Disordered Spin Chains, Phys. Rev. Lett. 124, 180604 (2020).

[113] C. Hubig, J. Haegeman, and U. Schollwöck, Error estimates
for extrapolations with matrix-product states, Phys. Rev. B 97,
045125 (2018).

[114] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[115] I. Affleck and E. H. Lieb, A proof of part of Haldane’s conjec-
ture on spin chains, Lett. Math. Phys. 12, 57 (1986).

[116] M. Oshikawa, Commensurability, Excitation Gap, and Topol-
ogy in Quantum Many-Particle Systems on a Periodic Lattice,
Phys. Rev. Lett. 84, 1535 (2000).

[117] M. B. Hastings, Lieb-Schultz-Mattis in higher dimensions,
Phys. Rev. B 69, 104431 (2004).

[118] Y. Yao and M. Oshikawa, Generalized Boundary Condi-
tion Applied to Lieb-Schultz-Mattis-Type Ingappabilities and
Many-Body Chern Numbers, Phys. Rev. X 10, 031008
(2020).

[119] Y. Fuji, Effective field theory for one-dimensional valence-
bond-solid phases and their symmetry protection, Phys. Rev.
B 93, 104425 (2016).

[120] S. A. Parameswaran, A. M. Turner, D. P. Arovas, and A.
Vishwanath, Topological order and absence of band insulators
at integer filling in non-symmorphic crystals, Nat. Phys. 9, 299
(2013).

[121] H. Watanabe, H. C. Po, A. Vishwanath, and M. Zaletel, Filling
constraints for spin-orbit coupled insulators in symmorphic
and nonsymmorphic crystals, Proc. Natl. Acad. Sci. USA 112,
14551 (2015).

[122] Y. Ogata and H. Tasaki, Lieb-Schultz-Mattis type theorems for
quantum spin chains without continuous symmetry, Commun.
Math. Phys. 372, 951 (2019).

[123] Y. Ogata, Y. Tachikawa, and H. Tasaki, General Lieb-
Schultz-Mattis type theorems for quantum spin chains,
arXiv:2004.06458 (2020).

[124] Y. Yao and M. Oshikawa, Twisted Boundary Condition and
Lieb-Schultz-Mattis Ingappability for Discrete Symmetries,
Phys. Rev. Lett. 126, 217201 (2021).

[125] T. Hirano, H. Katsura, and Y. Hatsugai, Degeneracy and con-
sistency condition for Berry phases: Gap closing under a local
gauge twist, Phys. Rev. B 78, 054431 (2008).

[126] As already noted in Appendix B, for SPT phases protected by
crystalline symmetry alone in d < 3 dimensions, there are no
anomalous edge states [4,95].

[127] M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath, and P.
Bonderson, Translational Symmetry and Microscopic Con-
straints on Symmetry-Enriched Topological Phases: A View
from the Surface, Phys. Rev. X 6, 041068 (2016).

[128] D. Pérez-García, M. M. Wolf, M. Sanz, F. Verstraete, and J. I.
Cirac, String Order and Symmetries in Quantum Spin Lattices,
Phys. Rev. Lett. 100, 167202 (2008).

[129] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
Matrix product state representations, Quantum Inf. Comput.
7, 401 (2007).

[130] M. Fannes, B. Nachtergaele, and R. F. Werner, Finitely cor-
related states on quantum spin chains, Commun. Math. Phys.
144, 443 (1992).

[131] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Symmetry
protected topological orders and the group cohomology of
their symmetry group, Phys. Rev. B 87, 155114 (2013).

[132] X. Chen, Z.-X. Liu, and X.-G. Wen, Two-dimensional
symmetry-protected topological orders and their protected
gapless edge excitations, Phys. Rev. B 84, 235141
(2011).

[133] S. Takayoshi, P. Pujol, and A. Tanaka, Field theory of
symmetry-protected valence bond solid states in (2+1) dimen-
sions, Phys. Rev. B 94, 235159 (2016).

023210-22

https://doi.org/10.1103/PhysRevLett.105.166402
https://doi.org/10.1103/PhysRevLett.110.125301
https://doi.org/10.1073/pnas.1307245110
https://doi.org/10.1103/PhysRevLett.94.160401
https://doi.org/10.1103/PhysRevLett.107.190401
https://doi.org/10.1103/PhysRevLett.108.210401
https://doi.org/10.1103/PhysRevLett.96.080405
https://doi.org/10.1038/nature26160
https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevLett.122.040603
https://doi.org/10.1103/PhysRevB.102.241115
https://doi.org/10.1103/PhysRevResearch.2.043267
https://doi.org/10.1103/PhysRevLett.124.180604
https://doi.org/10.1103/PhysRevB.97.045125
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1007/BF00400304
https://doi.org/10.1103/PhysRevLett.84.1535
https://doi.org/10.1103/PhysRevB.69.104431
https://doi.org/10.1103/PhysRevX.10.031008
https://doi.org/10.1103/PhysRevB.93.104425
https://doi.org/10.1038/nphys2600
https://doi.org/10.1073/pnas.1514665112
https://doi.org/10.1007/s00220-019-03343-5
http://arxiv.org/abs/arXiv:2004.06458
https://doi.org/10.1103/PhysRevLett.126.217201
https://doi.org/10.1103/PhysRevB.78.054431
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevLett.100.167202
https://doi.org/10.26421/QIC7.5-6-1
https://doi.org/10.1007/BF02099178
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.84.235141
https://doi.org/10.1103/PhysRevB.94.235159

