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Microdisk cavities with a Brewster notch
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In a recent paper [J. Kullig, X. Jiang, L. Yang, and J. Wiersig, Phys. Rev. Res. 2, 012072(R) (2020)], the
authors reported on an alternative concept to confine light in a microdisk cavity which is based on sequential
transmissions at Brewster’s angle. In this paper, we combine that approach with the traditional concept of
whispering-gallery microcavities which utilize total internal reflection. This allows for a notched cavity design
promoting high-Q modes which are conventionally excitable via an attached waveguide and have a considerable
fraction of the intensity confined in the notch. The interesting mode characteristics as well as the excellent
sensing capability of the Brewster notched cavity is discussed. A further enhancement in the sensitivity is
achieved via the utilization of an exceptional point.
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I. INTRODUCTION

Optical microcavities are able to confine light in a very
small volume for long times [1,2]. Based on this capability,
many interesting applications such as sensors for particles
[3–6] or temperature [7–9], gyroscopes [10], microlasers
[11–19], frequency comb generators for telecommunication
[20–22], and orbital angular momentum lasers [23] have been
developed. Additionally, optical microcavities are eminently
suited model systems to study wave chaos and non-Hermitian
physics [24] which can result in timely innovations like spa-
tiotemporal stable microlasers [25] and broadband waveguide
coupling [26].

In the standard approach, the light confinement is achieved
via total internal reflection at the cavity’s interface. Therefore,
in whispering-gallery cavities optical modes with high- and
ultrahigh-quality factors are formed [27]. However, in a recent
article [28], an alternative concept for the light confinement
was introduced: Via sequential transmissions at Brewster’s
angle, light rays can follow periodic orbits which, alternating,
leave and reenter a star-shaped cavity without loss of intensity.
Accordingly, in the wave dynamics, long-lived modes are
formed which are supported by these periodic light rays. The
advantage of the microstar is that a large fraction of the mode’s
intensity is trapped in the free space where it can interact,
e.g., with potential test particles. However, a downside is
that the scattering losses at the spikes of the microstar cavity
make an in-plane excitation with an attached waveguide rather
inefficient.
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The aim of this paper is to combine the advantages of the
microstar cavity and the in-plane excitability of modes with an
attached waveguide as commonly used for whispering-gallery
cavities. To do so, a cavity with a properly designed notch
is considered where light rays follow periodic orbits which
utilize total internal reflection as well as the transmission
at Brewster’s angle when passing the notch. Thus, in the
wave dynamics, not only modes with high-quality factors but
also with high intensities in the free space of the notch are
achieved, which makes these cavities well suited for particle
sensing application.

In addition, we show that the notched cavity can be tuned
very close to an exceptional point (EP) [29]. These are
points in parameter space of a non-Hermitian system where
at least two eigenvalues (frequencies) and simultaneously the
corresponding eigenvectors (modes) coalesce. In the recent
literature, EPs have been studied intensively due to their
interesting physics which manifests, e.g., in copropagating
and chiral modes [30–33]. In the parameter space around the
EP, the complex frequencies of the involved modes exhibit a
characteristic root topology. Therefore, EPs are of particular
interest for ultrasensitive sensors [34–37]. In this paper, we
achieve an EP by using a fully asymmetric boundary defor-
mation of the notched cavity and verify the expected sensing
improvement.

The paper is organized as follows. In Sec. II, we introduce
the cavity with a Brewster notch. In Sec. III, the sensing
capability of these cavities is discussed. The utilization of
an EP to enhance the sensing performance is presented in
Sec. IV. A summary is given in Sec. V.

II. CAVITIES WITH A BREWSTER NOTCH

A. General setup

For quasi-two-dimensional microdisk cavities, Maxwell’s
equations can be formulated as a scalar mode equation [38],

[� + k2n2(�r)]ψ (�r) = 0, (1)
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FIG. 1. The gray shaded region indicates the (a) circular-notched
and (b) polygonal-notched microdisk. The periodic orbits are shown
as colored solid curves. A dotted curve denotes the periodic orbit’s
reflection at the dashed curve corresponding boundary without notch.

where the wave function ψ either represents the magnetic
(transverse electric [TE] polarization) or the electric field
(transverse magnetic [TM] polarization). The microdisk is
represented by the spacial-dependent effective refractive index
n(�r). To utilize Brewster’s angle, we here assume TE polar-
ization such that �H = [0, 0, Re (ψe−iωt )] with ω = ck; c is
the speed of light in vacuum. Thus, at the dielectric interface
the wave function ψ as well as the scaled normal derivative
n−2∂�υψ need to be continuous. The quality factor of a mode is
calculated from the (dimensionless) complex frequency kR by
Q = −Re (kR)/Im (2kR); R is a typical radius of the cavity.

To design a cavity with a Brewster notch, first, a periodic
orbit with ν total internal reflections in a whispering-gallery
cavity is considered. This might be either a circular cavity
or a polygonal cavity. Second, at one of the periodic orbit’s
reflection points, a notch is introduced to the cavity such that
the total internal reflection is replaced by two transmissions
as shown in Fig. 1. To remain a periodic orbit, the refractive
index of the cavity needs to be adjusted to

n = 1 + sin(π/ν)

cos(π/ν)
(2)

and an opening angle of the notch α = arctan(n) is required.
In the shown example with ν = 8, we therefore adjust n ≈
1.4966 and α = 56.25◦. This selection also ensures that both
transmissions happen at Brewster’s angle such that a ray on
the periodic orbit does not lose intensity from partial reflec-
tions. Note that in the polygonal-notched cavity, additionally
a family of period-4 orbits based on total internal reflections
exist as shown in Fig. 1(b).

Next, the modes in the notched cavity are analyzed using
the boundary element method (BEM) [39]. For the numerical
treatment, the sharp corners are smoothed on the angular scale
δ = 0.001 by a convolution of the cavity’s radius function
with the kernel jδ (φ) ∼ exp[−δ2/(δ2 − φ2)]/δ. In Fig. 2, the
modes of the circular- and polygonal-notched cavities are
shown. It is mentioned that the modes occur in pairs of even
and odd parities with respect to the symmetry axis of the
cavity. For the circular-notched cavity, a variety of long- and
short-lived modes exist. The modes with the large Q factor are
supported by a transition through the Brewster notch as shown
in Figs. 2(c) and 2(d) whereas, in the polygonal-notched cav-
ity, a few long-lived modes are well separated from the rest
of the modes with a low Q factor. Thus, there exists a gap
between long-lived and short-lived modes as indicated by the
shaded region in Fig. 2(b) which is advantageous, e.g., for
mode selection [40,41]. The modes with the large Q factor are
either supported by a transmission at Brewster’s angle [see
Fig. 2(f)] or the period-4 orbit [see Fig. 2(e)]. It is worth
mentioning that the size of the notch is much larger than
the (local) wavelength λ = 2π/k of the mode. Therefore, the
mode discrimination here is not related to the already known
effect for small local or wavelength scale boundary incisions
discussed in Refs. [42–45] and promises higher Q factors than
cavities with a full slit in the cavity [46].

B. Improving the Q factor and suppression of unwanted modes

The next goal is to selectively increase the Q factors of
only those modes supported by a transition through the notch.
Therefore, a deformation is applied to the notched cavity
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FIG. 2. Modes in the complex frequency plane of the (a) circular-notched and (b) polygonal-notched cavity. For several selected modes,
the intensity pattern |ψ |2 is shown in (c)–(f).

023202-2



MICRODISK CAVITIES WITH A BREWSTER NOTCH PHYSICAL REVIEW RESEARCH 3, 023202 (2021)

(b) (c)
(d)

(e)

(f) (g)

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

η

Q
(a)

(b) (c)

0

max

|ψ|2

(d)

(f) (g)

(e)

FIG. 3. For several modes with Re kR ∈ [85, 115], the Q-factor
evolution with the deformation parameter η [see Eq. (3)] is shown
as gray and black curves. The (b)–(g) intensity mode patterns for the
selected modes along the black curves in (a).

which smoothly interpolates from the polygonal-notched cav-
ity to the circular-notched cavity by a parameter η ∈ [0, 1].
More precisely, the radius function of the deformed cavity is
constructed by

r(φ) = ηrcircular-notched(φ) + (1 − η)rpolygonal-notched(φ). (3)

Note that via this deformation the notch itself is not changed.
As shown in Fig. 3(a), starting from a mode in the polygonal-
notched cavity [see Fig. 2(f)] the Q factor for specific modes
supported by the Brewster notch is improved. At the same
time, the long-lived modes corresponding to the period-4 orbit
[see Fig. 2(e)] experience a suppression in their Q factors. For
several values of the deformation parameter η, the Q factor
reaches a local maximum. As can be seen in Fig. 3, the corre-
sponding modes localize along the periodic orbit passing the
notch. Note that for a wide range of the deformation parameter
η � 0.6, the long-lived modes are separated in the complex
frequency plane from the short-lived modes.
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FIG. 4. Transmission spectrum of the deformed notched mi-
crodisk with a deformation parameter η = 0.468348. For an
excitation at the left edge of the waveguide, the square modulus of the
wave function is shown in (a). The black background is the simulated
domain. The solid black curve in (b) is the result from the COMSOL

calculation for the transmission spectrum and the dashed curve is
calculated using Meep. In (c), black dots are the BEM results for the
deformed cavity without attached waveguide.

C. Waveguide excitation

In this section, we discuss the capability of the modes in the
notched microdisk to be excited with an attached waveguide.
To excite high-Q modes, the deformation parameter η is set
to η = 0.468348 corresponding to the central peak of the Q
factor in Fig. 3(a). Next to the notched cavity, a waveguide
of width hWG = 0.02R and refractive index nWG = 1.75 is
placed at a distance d = 0.015R. The transmission spectrum
from the left to the right end of the waveguide is calculated
with COMSOL MULTIPHYSICS [47] and the results are shown
as a solid curve in Fig. 4(b). The excitation pattern for the
central peak in the spectrum is shown in Fig. 4(a). In addition,
Fig. 4(c) shows the modes of the deformed notched cavity
without a waveguide in the complex frequency plane. As each
dip in the transmission spectrum corresponds to a long-lived
mode of the notched cavity, it can be concluded that a waveg-
uide excitation of the modes is feasible.

To support this claim further, we also performed finite-
difference time-domain simulations with MEEP [48]. First, an
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FIG. 5. Black dotted curves represent the evolution of the field
intensities |ψ |2 over time at several positions inside the cavity (see
dots/arrows at the right panel). The blue solid (red dashed) curve
show the field intensity in the notch at x = 0.85R (x = 0.8R) and y =
0 marked with a blue cross (red plus). The intensities are smoothed
over the fast oscillations of the fields. The curves are normalized by
the intensity excited in the center of the waveguide.

excitation at the left end of the waveguide with a Gaussian
pulse in time is simulated to back up the previous calculations
(in the frequency domain) of the transmission spectrum. As
shown by the dashed curve in Fig. 4(b), generally a nice agree-
ment to the COMSOL simulations is achieved and only a slight
shift of the transmission spectrum due to the finite discretiza-
tion is observed. In addition, the simulations with MEEP can
show the time-resolved accumulation of the field intensity in
the notch and in the cavity. Therefore, a waveguide excitation
with a continuous source is used which is gradually turned
on at t = 0. The frequency of the source is ωR/c = 110.528
in correspondence to the central peak in Fig. 4(b). As shown
in Fig. 5, the accumulated intensity strongly depends on the
position in the cavity and nicely corresponds to the excitation
pattern shown in Fig. 4(a). Especially, a considerable fraction
of intensity inside the notch is excited. In addition, via the
MEEP simulations, it is revealed that the process of intensity
accumulation inside the cavity and inside the notch happen on
the same timescale. For sensing applications, this ensures that
detection via the notch has no temporal disadvantage, e.g., in
terms of a delay, in comparison to the traditional sensing using
the evanescent fields at the cavity’s boundary.

III. SENSING WITH THE NOTCHED CAVITY

In this section, we verify the sensing capability of the
notched cavity via the detection of a test particle in the vicin-
ity of the cavity. Such a test particle, in general, causes a
complex frequency splitting �kR = (k1 − k2)R between two
(almost) degenerate modes which refers as the signal. In par-
ticular, for the deformed notched cavity with η = 0.468348,
the two modes of even and odd parities have the almost
degenerate frequencies k1R = 110.579197 − 0.032334i and
k2R = 110.579420 − 0.031619i. Note that such a finite ini-
tial splitting is the generic case for deformed (or fabricated)
cavities [10]. If a test particle with refractive index nTP = 1.5
and radius rTP = 0.005R is moved in the notch along the x
axis, the caused frequency splitting is shown in Fig. 6(a). As
expected, the splitting is large for a test particle placed in
the middle of the notch where the modes have a considerable
fraction of their intensities. An interesting observation is that
the Q factor can be increased slightly by the test particle if it
is placed close to the periodic orbit, see Fig. 6(a). This effect,
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FIG. 6. In (a), the Q factor of the even (odd) parity mode is
shown as blue solid (red dashed) curve versus the test particle’s
position along the x axis. Their corresponding frequency splitting
modulus |�kR| is shown by black dots. The test particle’s refractive
index (radius) is nTP = 1.5 (rTP = 0.005R). (b) The frequency split-
ting modulus |�kR| versus the test particle’s refractive index nTP.
The particle’s position along the x axis is at (blue dots) x = 0.85R in
the notch and (green empty circles) at a space of d = 0.002R left to
the cavity in the evanescent part of the field. The inset shows the same
data but on a log-log scale. The same symbols show the frequency
splitting modulus |�kR| versus the test particle’s radius in (c) for
fixed nTP = 1.5. The gray solid curves are a guide to the eye and
represent a linear [quadratic] behavior in (b) [(c)]. The deformation
parameter of the notched cavity is η = 0.468348.

however, strongly depends on the test particle’s radius rTP (not
shown); as for larger rTP, modes inside the test particle itself
lead to a mode coupling effect that typically spoils the Q-
actor.

To benchmark the sensing performance, the test parti-
cle is placed at (x, y) = (0.85R, 0) and its refractive index
is changed between nTP = 1 (effectively no test particle) to
nTP = 1.5. Note that in this case, the test particle has a
distance d > 0.146R to the cavity’s boundary. As shown in
Fig. 6(b), the splitting depends roughly linearly on the re-
fractive index and saturates if nTP is close to unity since
there is already a small initial splitting in the absence of the
test particle. For comparison, in a traditional sensor based
on whispering-gallery modes, the test particle only interacts
with the evanescent leaking field of the mode. This scenario
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is captured by placing the test particle at the negative x axis
with a very narrow gap of d = 0.002R to the left side of the
cavity. The resulting change in the splitting and therefore the
sensitivity in this case is much weaker, as shown in Fig. 6(b).
For the evanescently coupled test particle, a partial reduc-
tion of the frequency splitting is observed. This is a known
effect which can occur for specific test-particle realizations
[49]. However, if the test particle’s refractive index is in-
creased further, this reduction in the splitting reverses such
that for nTP ≈ 2.4 it recurs to its initial value and increases
further from thereon [not shown in Fig. 6(b)]. An interpre-
tation of these curves within a two-mode model is given in
Appendix A 1.

In Fig. 6(c), the dependency of the frequency splitting from
the test particle’s radius is shown for fixed nTP = 1.5. Again,
for the evanescently coupled test particle, the frequency split-
ting changes only marginally whereas the particle placed in
the notch results in a generally larger splitting. For small rTP,
this splitting roughly scales with r2

TP which is consistent with
previous works on cavities at a (diabolic) degeneracy (see
Supplemental Material of Refs. [50,51]).

IV. EXCEPTIONAL POINT BASED SENSING

A possibility to improve the sensitivity of a microcavity
sensor further is to take advantage of EPs in parameter space.
Around the EP, the splitting between the involved modes
increases with a characteristic root topology. Thus for a small
perturbation, e.g., a small test particle with a refractive index
close to unity, the splitting ensuing from the EP is expected to
be larger than at an ordinary (diabolic) degeneracy. However,
to make use of the EP-enhanced sensing, first, the system
needs to be tuned to or very close to an EP. In several works,
it has been shown that boundary deformations are a capa-
ble method to achieve an EP in whispering-gallery cavities
[52–54]. In the same spirit, here, a boundary deformation is
applied which breaks the mirror reflection symmetry of the
cavity and therefore leads to a coupling between the modes of
even and odd parities. More precisely, for the circular-notched
cavity, a deformation according to the Fourier-transformed
spiral [55] is used for angles φ ∈ [π/ν, 2π − π/ν] where ν

is again the number of reflections for the periodic orbit from
which the notched cavity is constructed. The radius of the
deformed cavity can be written in polar coordinates as

r(φ)

R
= 1 − ε

Nterms∑
j=1

(−1) j+1

j
sin( jνφ), (4)

where ε is the parameter for the deformation strength whereas
the number of terms is fixed to Nterms = 4. The notch itself re-
mains unchanged. In general, a second parameter is needed to
achieve an EP. For that purpose, a slight variation of the refrac-
tive index given by Eq. (2) is considered. In Fig. 7, it is shown
that a variation of these two parameters around n ≈ 1.496516
and ε ≈ 0.005910 reveals the characteristic square-root topol-
ogy of an EP with two coalescing modes. It is mentioned
that the system is not precisely at an EP for these parameters
since two very close frequencies k1R ≈ 90.07250 − 0.05343i
and k2R ≈ 90.07163 − 0.05280i can still be distinguished,
see the red pluses in Fig. 7. However, both modes already
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FIG. 7. The (a) real and (b) imaginary parts of the (shifted)
complex frequencies of two modes in the asymmetrically deformed
circular-notched cavity close to an EP. The cavity’s refractive index n
and the deformation parameter ε are varied. Note that the frequencies
are shown relative to the mean value kR = (k1 + k2 )R/2. The two
complex frequencies with the smallest splitting are marked by red
pluses.

show the relevant features for an EP including indistinguish-
able intensity patterns as shown in Figs. 8(a) and 8(b) and a
characteristic chirality. The latter can be seen by calculating
the current (Poynting vector)

�j ∝ Im (ψ∗∇ψ ) (5)

and from that the local angular momentum distribution via

Lz = x jy − y jx. (6)

As shown in Figs. 8(c) and 8(d), the modes are copropagating
in a clockwise (CW) direction. This finding is in good agree-
ment to previous studies on whispering-gallery cavities where
the abstract chirality around an EP [56] manifests in a physical
chirality of the fields [32,33,53,54].

Finally, this EP in the notched cavity can be utilized to
enhance the sensing performance even though the cavity is not
precisely at the EP. For a verification, again the test particle
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FIG. 8. (a), (b) Mode intensity pattern and (c), (d) angular
momentum distribution (CW for clockwise and CCW for counter-
clockwise propagation) for the deformed-notched cavity at the EP
with n ≈ 1.496516 and ε ≈ 0.005910. The complex frequencies are
(a), (c) k1R ≈ 90.07250 − 0.05343i and (b), (d) k2R ≈ 90.07163 −
0.05280i.

with rTP = 0.005R is placed at x = 0.85R inside the notch
and its refractive index nTP is varied. As a result, the com-
plex frequency splitting originated from the particle follows
a square-root behavior as shown by the blue dots in Fig. 9.
Hence, a relatively strong splitting is already observed for
test particles with a refractive index close to unity. Note that
the exact values for the splitting in Fig. 9 cannot be directly
compared to the values in Fig. 6(b) as the involved modes have
a different real part of kR.

Alternatively, the test particle is placed at the left side of the
cavity, where it can only interact with the evanescent leaking
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FIG. 9. The frequency splitting |�kR| is shown as a function
of the test particle’s (TP’s) refractive index nTP for the asymmet-
ric notched cavity very close to the EP (n ≈ 1.496516 and ε ≈
0.005910). The blue dots (green empty circles) are the results for
a test particle at x = 0.85R (d = 0.002R left to the cavity). The inset
shows the same data on a log-log scale. A dashed (dotted) curve
indicates the square root (linear) behavior as a guide to the eye.

fields. In this case, the result is twofold. On the one hand, the
splitting is still enhanced in comparison to a linear behavior
due to the presence of an EP. This can be seen best in the inset
of Fig. 9, which clearly indicates the square-root dependency.
On the other hand, the overall splitting induced by the test par-
ticle is smaller, which again displays the superior sensitivity
via the notch in comparison to the sensing with the evanescent
fields.

In Appendix A 2, we also discuss the behavior of the fre-
quency splitting for a cavity close to an EP within a two-mode
model.

V. SUMMARY

In this paper, we introduced a cavity with a properly
designed notch that combines two concepts for the confine-
ment of light: total internal reflection and perfect transmission
at Brewster’s angle. Consequently, long-lived optical modes
exist that are excitable via an attached waveguide and that
have a considerable fraction of intensity in the free space of
the notch. Via a boundary deformation, the Q factor of the
modes can be increased further. We also designed a fully
asymmetric deformed notched cavity that exhibits an EP. This
setup promises new advantages in the sensing performance
of microcavities as it combines the sensitivity enhancement
from EPs with the strong light-matter interaction of the modes
inside the notch.

ACKNOWLEDGMENT

The authors acknowledge fruitful discussions with X. Jiang
and L. Yang.

APPENDIX A: TWO-MODE MODEL FOR THE
FREQUENCY SPLITTING INDUCED BY A TEST

PARTICLE

In this Appendix, we discuss the behavior of the frequency
splitting induced by a test particle within the scope of a
two-mode approximation. Therefore, we reduce the mode
equation (1) to an eigenvalue problem of a 2 × 2 matrix
(Hamiltonian),

H = Hcavity + HTP, (A1)

where Hcavity (HTP) describe the notched cavity (test particle).

1. Microcavity with a mirror reflection symmetry

First, we focus on a cavity with a mirror reflection sym-
metry as in Sec. III. Therefore, the Hamiltonian is written in
a standing wave basis of the two modes with even and odd
parities. In the model, we assume the modes have a small
initial splitting 2δ ∈ C in their complex frequencies ω ± δ due
to the noncircular shape of the cavity. As the test particle is
placed along the axis y = 0, it preserves the mirror-reflection
symmetry and does not couple the two parity classes. In ad-
dition, we assume the particle being sufficiently small such
that its impact on the mode with odd parity, that has node
line along y = 0, can be neglected. Note that this assumption
is well supported by Fig. 6(a) where it is shown that the Q
factor of the odd-parity mode is almost independent from the
test particle’s position in the notch. Hence, we can write the
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FIG. 10. Frequency splitting for the two-mode model close to
a diabolic degeneracy for two different realizations [see Eq. (A2)]
with (a) φ = 1.35π and (b) φ = 1.9π is shown as solid curves in
a log - log plot. The red dashed curves show the behavior of the
corresponding diabolic degeneracy (δ = 0).

Hamiltonian for the cavity and the test particle as [32]

Hcavity =
(

ω + δ 0
0 ω − δ

)
, HTP = ε

(
0 0
0 eiφ

)
, (A2)

where ε > 0 determines the perturbation strength and φ ∈
[π, 2π ] describes the frequency shift and the induced losses.
Both quantities, in general, depend on the test particle’s po-
sition, its refractive index, its radius, and also on the mode’s
intensity at the particle’s position. Hence, the frequency split-
ting due to the test particle is

�ω = 2δ − εeiφ, (A3)

which leads to

|�ω| =
√

4|δ|2 − 4εRe (δe−iφ ) + ε2. (A4)

In particular, for |δ| 	 ε it follows that

|�ω| = ε (A5)

as the leading order term. For simplicity, we select randomly
chosen values φ = 1.35π and φ = 1.9π for 104δ ≈ −1.1 −
3.6i in Fig. 10 to discuss possible scenarios. First, for both
realizations, the splitting shows the expected linear scaling for
ε 
 |δ| and saturates to the initial splitting for ε 	 |δ|. How-
ever, in the intermediate regime the behavior is different, i.e.,
in Fig. 10(a) a partial cancellation of the splitting occurs while
the transition to a linear splitting in Fig. 10(b) is a monotone
function of the perturbation strength. Both scenarios can now
be identified in Fig. 6(b), where the perturbation strength is
encoded in the refractive index of the test particle. However,
it needs to be kept in mind that an evanescently coupled test
particle is a much weaker perturbation to the system than a
test particle inside the notch where the mode’s intensity is
high, i.e., εevanescent 	 εnotch for the same nTP. Therefore, the
refractive index variation nTP ∈ [1, 1.5] for the evanescently
coupled test particle can only cover the regime of very small
perturbation strengths ε, where the reduction of the splitting
is observed.

2. Microcavity at an exceptional point

In this part of the Appendix, we discuss the frequency
splitting behavior in a cavity with asymmetric backscatter-
ing between CW and counter-clockwise (CCW) propagating
modes as observed in Sec. IV. The cavity is close to an EP so
its Hamiltonian in the traveling wave basis [(1,0) for CCW

√
ε

ε

10−5 10−3 10−1 101

10−2

100

102

ε

|Δω|
(a)

√
ε

ε

10−5 10−3 10−1 101
ε

(b)

FIG. 11. The solid curves show the frequency splitting for the
two-mode model close to an EP for two different realization of HTP

in (a) and (b), respectively, in a log - log plot. The dashed curves
illustrate the frequency splitting exactly at the EP with b = 0. The
dotted lines serve as a guide to the eye and indicate a linear and
square-root behavior.

propagation and (0,1) for CW propagation] can be written
with a, b, ω ∈ C as [32]

Hcavity =
(

ω a
b ω

)
, (A6)

where |b| 	 |a| indicates that scattering from CW to CCW
is preferred over the reversed process. For b = 0 and a �= 0,
the system would be exactly at the EP. However, we assume
a finite but small b such that the modes in the cavity with-
out test particles have the initial frequencies ω ± √

ab. The
Hamiltonian for the coupling to the particle can be written in
the traveling-wave basis as [32]

HTP =
(

α α

α α

)
, (A7)

with α = ε exp(iφ)/2 which leads to a splitting

�ω = 2
√

(a + α)(b + α). (A8)

For simplicity, we again select two sets of random numbers
for these matrices to illustrate characteristic behaviors of the
frequency splitting in Fig. 11. Here, three domains can be
identified: (i) For extremely small ε, the splitting is domi-
nated by a saturation to the initial splitting. Therefore, in a
log-log plot, clear differences to the behavior associated with
an (ideal) EP are present. (ii) A regime where the splitting
scales with a square root. This can be seen by approximating
Eq. (A8) for small |b|, ε 	 |a|, which yields

�ω ≈ 2
√

a(b + εeiφ/2), (A9)

from which we can identify the leading term for the splitting
modulus as

|�ω| =
√

2|a|√ε. (A10)

For applications, this is the interesting regime as the beneficial
square-root scaling can be utilized even though the EP is not
achieved exactly. This is also the regime mainly shown in
Fig. 9. (iii) The regime of large perturbations where linear
terms lead to a scaling comparable to a diabolic point. For
applications, this is again the uninteresting regime where EP
enhanced sensing is not present (and not necessary). In gen-
eral, for such large perturbations, effects beyond a two-mode
model are likely, e.g., (avoided) crossings with modes inside
the test particle or other modes within the notched cavity.
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