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The Casimir effect arises from the zero-point energy of particles in momentum space deformed by the exis-
tence of two parallel plates. For degrees of freedom on the lattice, its energy-momentum dispersion is determined
so as to keep a periodicity within the Brillouin zone, so that its Casimir effect is modified. We study the properties
of Casimir effect for lattice fermions, such as the naive fermion, Wilson fermion, and overlap fermion based on
the Möbius domain-wall fermion formulation, in the 1 + 1-, 2 + 1-, and 3 + 1-dimensional space-time with the
periodic or antiperiodic boundary condition. An oscillatory behavior of Casimir energy between odd and even
lattice size is induced by the contribution of ultraviolet-momentum (doubler) modes, which realizes in the naive
fermion, Wilson fermion in a negative mass, and overlap fermions with a large domain-wall height. Our findings
can be experimentally observed in condensed matter systems such as topological insulators and also numerically
measured in lattice simulations.
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I. INTRODUCTION

The Casimir effect [1–4] is one of the important physical
phenomena especially for microscopic systems with spatial
boundary conditions. Although the Casimir effect was orig-
inally predicted as early as 1948 [1], the first successful
experiment was reported fifty years later [5]. The original
Casimir effect was discussed for the photon field, which
is described by quantum electrodynamics (QED), but simi-
lar concepts can be extended to any field including scalar,
fermion [6,7], and other gauge fields, which have been ac-
tively studied.

Lattice field theories have been broadly used not only
as models to study lattice systems realized in solid-state
physics but also as tools to simulate more general (quan-
tum) field theories. A lattice formulation can allow us to
investigate physical systems without loss of the nonpertur-
bative effects by using numerical methods such as Monte
Carlo simulations. Lattice simulations of quantum chro-
modynamics (QCD), which is the fundamental theory to
describe the dynamics of quarks and gluons, are successful
examples.
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So far, Casimir(-like) effects on the lattice were numer-
ically studied for scalar field theories [8] and U(1) gauge
field theory [9–11] as a simple system. As nonperturbative
field theories, the compact U(1) gauge theory [12–15] and
non-Abelian gauge theories such as SU(2) [16,17] and SU(3)
[18] gauge fields are also studied. More complicated and
interesting examples are systems with an interaction between
different fields. For example, QCD includes a strong coupling
between quarks and gluons, which leads to various nonpertur-
bative phenomena such as the confinement, chiral symmetry
breaking, and instantons. Therefore the roles of the Casimir
effects in such interacting fermionic systems will be interest-
ing (e.g., see Refs. [19–59]).

We should mention the other important context of the
Casimir effect on the lattice. The various lattice fermions such
as the staggered fermion [60,61], Wilson fermion [62,63],
and domain-wall (DW) fermion [64–66] also appear in con-
densed matter physics such as Dirac or Weyl semimetals,
topological insulators and ultra-cold atom systems. For ex-
ample, the low-energy band structure in Dirac semimetals
[67–69] is Dirac-like (or linear-like), so that it can be regarded
as a dispersion relation of relativistic lattice fermion. Also,
the mechanism of gapless surface modes induced from the
gapped bulk fermions of topological insulators is formally
the same as the chiral fermions realized in the domain-wall
fermion formulation. Our motivation is not limited to theoret-
ical interests and is devoted to future experiments for these
condensed-matter materials. If we can experimentally prepare
sufficiently small materials, the Casimir effect for Dirac-
like lattice fermions should influence the thermodynamic and
transport observables.
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In Ref. [70], we proposed an analytical definition of the
Casimir energy for lattice fermions for the first time,1 and
the various phenomena based on the Casimir energy were
investigated. As a sequential investigation, in this paper, we
focus on the following new subjects not studied in Ref. [70].

(1) Relationship between Casimir energy and dispersion
relation. We propose that the structure of energy-momentum
dispersion relation for a particle gives us a clear and intuitive
interpretation of the Casimir effect on the lattice. In particular,
we will emphasize novel phenomena induced by contributions
from the doubler modes

(2) Dependence on spatial dimensions. We investigate the
Casimir effects in the 2 + 1- and 3 + 1-dimensional space-
time while we studied only the 1 + 1 dimensions in Ref. [70].

(3) Other types of lattice fermions. For example, Wilson
fermions with a negative mass are interesting in the sense that
they are closely related to the band structures of topological
insulators.

(4) Derivation from the Abel-Plana formulas. The Abel-
Plana formula is used as a mathematical technique to derive
the Casimir effect in the continuum theory. We give a deriva-
tion of the Casimir effect on the lattice by using similar
formulas.

The theoretical construction of lattice fermions is closely
related to the Nielsen-Ninomiya no-go theorem [73,74]. This
theorem states that when we naively discretize the space,
the additional degrees of freedom which are the so-called
doubler particles appear [75]. To eliminate the contribution
from doublers in the continuum limit, we can use several
fermion formulations. The Wilson fermion [62,63], overlap
fermion [76,77], and domain-wall fermoin [64–66] are typical
examples of the fermion formulation without doublers in the
continuum limit. The Wilson fermion introduces a small but
explicit breaking term of the chiral symmetry to evade the
no-go theorem. The Wilson fermion has difficulty in physics
which strongly relates to the chiral symmetry but is useful
for other physics, and then it is broadly applied for numeri-
cal simulations of the QCD. The overlap fermion is a more
sophisticated formulation that can define the chiral symmetry
on the lattice. It also introduces small breaking terms of the
chiral symmetry, but we can discuss the details of the chiral
symmetry based on the Ginsparg-Wilson relation [78], which
represent the chiral symmetry on the lattice. The domain-wall
fermion produces a representation of the overlap fermion. The
Möbius domain-wall (MDW) fermion [79–81] is an improved
formalism of the domain-wall fermion.

This paper is organized as follows. In Sec. II, we formulate
the Casimir energy of lattice fermions, based on the definition
given by Ref. [70]. In Sec. III, we see the results for the naive
lattice fermions in the 1 + 1-, 2 + 1-, and 3 + 1-dimensional
space-time. In Sec. IV, we investigate the Wilson fermion
with a positive or negative mass. The latter corresponds to the
Casimir effect for the bulk modes of topological insulators.
Section V is devoted to the overlap fermion with the MDW
kernel operator, which corresponds to the Casimir effect for

1As early works about the Casimir effect for lattice scalar fields,
see Refs. [71,72].

FIG. 1. Two types of setup for latticized space-time, where one
spatial direction has a boundary condition. (a) The time is not latti-
cized. (b) The time is latticized.

surface modes of topological insulators. In Sec. VI, we sum-
marize our conclusion. In Appendix A, we give a derivation
of the Casimir energies for the free massless fermion in the
continuum limit with the periodic and antiperiodic boundary
conditions. In Appendices B–E, we give derivations of the
Casimir energy for the lattice fermions from the Abel-Plana
formulas.

II. DEFINITION OF CASIMIR ENERGY ON THE LATTICE

Before defining the Casimir energy for fermions on lat-
tices, we clarify our setup. In this paper, we consider a
geometry where only one spatial dimension is compactified
by a boundary condition. Then one of the spatial momen-
tum components p1 is discretized. The other momenta stay
continuous. This is the simplest geometry inducing a Casimir
energy. Besides, we have two choices to latticize the temporal
direction of the geometry or not, which are painted in (a) and
(b) in Fig. 1. (a) When the time is continuous, the temporal
component of momentum is not affected by the lattice, which
corresponds to a situation realized in a condensed matter sys-
tem with a small size. (b) In contrast, latticized time appears
in lattice QCD simulations. Then the temporal momentum is
discretized in a similar manner to the discretization of the
spatial momenta. These two setups lead to similar Casimir
effects, but the detail is slightly different. In this paper, we
focus on the geometry (a).

To define the Casimir energy, we need the energy-
momentum dispersion relation for lattice fermions. The
dispersion relation is obtained from the Dirac operator defined
in a relativistic fermion action. With nonlatticized temporal
components, the (dimensionless) energy is defined as

aE (ap) = a
√

D†D, (1)

where a is the lattice spacing, and D is the Dirac operator
that includes the spatial momenta and a few parameters such
as the mass but does not include the temporal momentum.
This expression correctly reflects the positions of poles in the
fermion propagator in momentum space.

In the space where one spatial direction is compactified,
the corresponding momentum is discretized. The discretized
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momentum under the periodic and antiperiodic boundary con-
ditions is

ap1 → apP
1(n) = 2nπ

N
, (2)

ap1 → apAP
1 (n) = (2n + 1)π

N
, (3)

respectively, and N is the lattice size. The label n is an integer
bounded by the (first) Brillouin zone: 0 � apk < 2π (BZ1)
or −π < apk � π (BZ2). Then the range of n in both the
boundary conditions is simply

0 �nP,AP < N (BZ1), (4)

−N

2
<nP,AP � N

2
(BZ2). (5)

Note that our results of the Casimir energy on the lattice
do not depend on the choice of the Brillouin zone because
the Casimir energy in this paper is defined within the first
Brillouin zone, and the momentum of fermions is periodic
within the first Brillouin zone.

With the discretized momentum, the zero-point energy (per
area) is defined as the momentum integral of the dispersion
relations:

aE0(N → ∞) = −Ncdeg

∫
BZ

d3ap

(2π )3
aE (ap)

→ aE0(N ) = −cdeg

∫
BZ

d2ap⊥
(2π )2

∑
n

aE (ap⊥, ap1(n)),

(6)

where cdeg is the degeneracy factor, including the spin degree
of freedom. For results shown in this paper, we will set cdeg =
1. The subscription BZ denotes that each integration variable
pk runs over the (first) Brillouin zone. Note that the Brillouin
zone for the upper (lower) equation is three- (two-) dimen-
sional. The negative sign in Eq. (6) is unique to fermions.
By taking account of the factor 2 from antiparticle degrees of
freedom, we drop the factor 1/2 from the zero-point energy.

Usually, in order to obtain the Casimir energy in the con-
tinuum theory, one needs to subtract the divergent zero-point
energy in infinite volume from the divergent one in finite
volume. On the other hand, in the lattice theory, both the zero-

point energies are not divergent by the lattice cutoff. In order
to get a physical quantity corresponding to the Casimir energy,
we give a definition on the lattice by subtracting aE0(N →
∞) from aE0(N ). In the 3 + 1-dimensional space-time with
one compactified spatial dimension, the Casimir energy is [70]

aE3+1D
Cas ≡ aE0(N ) − aE0(N → ∞)

= cdeg

∫
BZ

d2ap⊥
(2π )2

×
[
−

∑
n

aE (ap⊥, ap1(n)) + N
∫

BZ

dap1

2π
aE (ap)

]
.

(7)

Similarly, we define the Casimir energy in lower spatial di-
mensions, e.g., in the 1+1 dimensions [70],

aE1+1D
Cas ≡ cdeg

[
−

∑
n

aE (ap1(n)) + N
∫

BZ

dap1

2π
aE (ap)

]
.

(8)

In the following, we call the first and second terms the (nega-
tive) sum part and (positive) integral part, respectively, which
is convenient to interpret the various properties of the Casimir
energy.

III. CASIMIR ENERGY FOR NAIVE FERMION

In this section, we demonstrate the Casimir effect for the
naive lattice fermion which is one of the simplest formulations
of lattice fermions, but it contains doubler degrees of freedom.

We define the (dimensionless) Dirac operator of the naive
lattice fermion in momentum space:

aDnf ≡ i
∑

k

γk sin apk + am f , (9)

where γk is the gamma matrix with the index k, and m f is the
mass of the fermion.

From the definition (1), the dispersion relation of this
fermion is written as

a2E2
nf (ap) =

∑
k

sin2 apk + (am f )2. (10)

Using the square root of Eq. (10) and the definition (7), the
Casimir energy in the 3 + 1 dimensions is

aE3+1D,nf,P
Cas ≡ aE3+1D,nf,P

0 (N ) − aE3+1D,nf,P
0 (N → ∞)

= cdeg

∫
d2ap⊥
(2π )2

⎡
⎣−

∑
n

√
sin2 2nπ

N
+

∑
k=2,3

sin2 apk + (am f )2 + N
∫

BZ

dap1

2π

√ ∑
k=1,2,3

sin2 apk + (am f )2

⎤
⎦, (11)

aE3+1D,nf,AP
Cas ≡ aE3+1D,nf,AP

0 (N ) − aE3+1D,nf,AP
0 (N → ∞)

= cdeg

∫
d2ap⊥
(2π )2

⎡
⎣−

∑
n

√
sin2 (2n + 1)π

N
+

∑
k=2,3

sin2 apk + (am f )2 + N
∫

BZ

dap1

2π

√ ∑
k=1,2,3

sin2 apk + (am f )2

⎤
⎦,

(12)
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where the integration with respect to ap⊥ is in the range of the
first Brillouin zone. Then we can define the Casimir energy
without divergence.

By using mathematical techniques such as the Abel-Plana
formulas (which are shown in Appendix B), one may get sim-
pler analytic formulas for the Casimir energy. For example,
for the naive fermion with m f = 0 in the 1 + 1-dimensional
space-time, we can derive the exact formulas for dimension-
less Casimir energies [70] (for a derivation, see Appendix C):

aE1+1D,nf,P
Cas = 2N

π
− cot

π

2N
(N = odd), (13)

aE1+1D,nf,P
Cas = 2N

π
− 2 cot

π

N
(N = even), (14)

aE1+1D,nf,AP
Cas = 2N

π
− cot

π

2N
(N = odd), (15)

aE1+1D,nf,AP
Cas = 2N

π
− 2 csc

π

N
(N = even), (16)

Here, we find that the odd lattice (N = odd) and even
lattice (N = even) exhibit different Casimir energies for both
the periodic and antiperiodic boundaries. In other words, the
Casimir energy for the naive fermion is oscillatory between
the even and odd lattices. This behavior is induced by the ex-
istence of the ultraviolet-momentum zero modes (or massless
doublers) in the naive fermion [70].

By expanding these formulas (13)–(16) by a/L or equiv-
alently 1/N , we can obtain the formulas with the small a
expansion [70]

E1+1D,nf,P
Cas = π

6L
+ π3a2

360L3
+ O(a4) (N = odd), (17)

E1+1D,nf,P
Cas = 2π

3L
+ 2π3a2

45L3
+ O(a4) (N = even), (18)

E1+1D,nf,AP
Cas = π

6L
+ π3a2

360L3
+ O(a4) (N = odd), (19)

E1+1D,nf,AP
Cas = − π

3L
− 7π3a2

180L3
+ O(a4) (N = even). (20)

Thus the terms depending on the lattice spacing a are domi-
nated by the terms with a2. From these formulas, if we take the
continuum limit a → 0, then the Casimir energies from the
odd and even lattices are different from each other. In other
words, we cannot derive the Casimir effect for the original
Dirac fermion from the continuum limit of the naive fermion
formulation. In the next sections, we will see that this situation
is different from the Wilson fermion shown in Sec. IV and the
overlap fermion in Sec. V.

In Fig. 2, we plot the Casimir energies for the massless
or positive-mass naive lattice fermions for the periodic or an-
tiperiodic boundary. In these plots, it is convenient to see two
types of dimensionless quantities. The first is aECas, which
is proportional to 1/Nd in the d + 1 dimensions for massless
particles in the continuum theory. The second is the coefficient
of Casimir energy Nd−1LECas, which is shown in the small
windows. This quantity is a constant in the continuum theory,
so that it will be useful for comparing the difference between
the lattice theory and continuum theory. Also, in Fig. 2, we can
find that there are oscillatory behaviors of the Casimir energy
in the 1 + 1, 2 + 1, and 3 + 1 dimensions.

For a better understanding, it is useful to compare the
Casimir energy and the corresponding dispersion relation. In
Fig. 3, we show the (continuous) dispersion relations of the
massless or positive-mass naive fermion in the 1 + 1 dimen-
sions, where the Brillouin zone is −π < ap1 � π . For the
massless naive fermion, we find the dispersion relation goes to
zero at ap1 = π that is the ultraviolet-momentum zero mode
as well as at ap1 = 0 that is the infrared zero mode. When a
boundary condition is imposed, the continuous energy level is
discretized into some levels living on this dispersion relation.
The Casimir energy defined as Eq. (8) is determined by the
difference between the sum part including contributions from
these discretized levels and the integral part including the
continuous level.

Furthermore, we find that the Casimir energy for the mas-
sive naive fermions is suppressed compared with that for
the massless one, which is similar to the behavior of mas-
sive degrees of freedom in the continuum theory (e.g., see
Refs. [7,82,83]), where the suppression is known to behave as
an exponential function. In fact, when we plot the logarithm of
the aECas and Nd−1LECas in Fig. 3, we obtain a linear behav-
ior in the large-lattice-size region. Therefore the exponential
damping of Casimir energies for massive fermions occurs
even on the lattice. Note that the sign of the Casimir energy for
a massive fermion does not change from that of the massless
case.

The sign of the Casimir energy is often interesting, where
positive and negative Casimir energies correspond to the
repulsive and attractive Casimir forces, respectively. In par-
ticular, this sign is related to the number of the zero modes
with aE = 0.

(1) Odd N with periodic boundary. There is one infrared
zero mode (ap1 = 0). This zero mode suppresses the contri-
bution of the negative sum part to the Casimir energy. As a
result, the Casimir energy is dominated by the positive integral
part, and its sign is positive.

(2) Even N with periodic boundary. There are two zero
modes (ap1 = 0, π ). Both the zero modes suppress the nega-
tive sum part, so that the positive Casimir energy is enhanced.

(3) Odd N with antiperiodic boundary. There is one
ultraviolet-momentum zero mode (ap1 = π ). This situation is
equivalent to the odd N with the periodic boundary, although
the momentum of the zero mode is different from each other.
Such equivalence on the odd lattice appears not only in the
1 + 1 dimensions [70] but also in the 2 + 1 and 3 + 1 dimen-
sions.

(4) Even N with antiperiodic boundary. In this case, there
is no zero mode. Then, the negative sum part of the Casimir
energy is enhanced by the higher nonzero modes, and as a
result the sign of the Casimir energy becomes negative, which
is the only situation to induce the attractive Casimir force by
using the free naive fermion.

IV. CASIMIR ENERGY FOR WILSON FERMION

In this section, we investigate the Casimir effects for Wil-
son fermions. In Sec. IV A, we study the conventional Wilson
fermion [62,63]. The results in the 1 + 1 dimensions were
studied in Ref. [70], so that, in this paper, we focus on the
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FIG. 2. Casimir energy for massless or positive-mass naive fermion in the 1 + 1-, 2 + 1-, and 3 + 1-dimensional space-time (the temporal
direction is not latticized). Small windows show the coefficients of Casimir energy. Dashed and dotted lines are the leading terms of the
expansion by a/L or equivalently 1/N , which is obtained as an asymptotic form for the massless fermion in the large lattice size N . (Left)
Periodic boundary. (Right) Antiperiodic boundary.

dependence on the spatial dimension. In Sec. IV B, we exam-
ine Wilson fermions with negative masses.

A. Wilson fermion

The (dimensionless) Dirac operator of the Wilson fermion
with the Wilson parameter r and the fermion mass m f is
defined as

aDW ≡ i
∑

k

γk sin apk + r
∑

k

(1 − cos apk ) + am f . (21)

The term proportional to r is called the Wilson term, and it is
interpreted as a momentum dependent mass term to eliminate
the doublers. From this Dirac operator, the dispersion relation
is

a2E2
W(ap) =

∑
k

sin2 apk +
[

r
∑

k

(1 − cos apk ) + am f

]2

.

(22)
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FIG. 3. Dispersion relations for naive and Wilson lattice
fermions in the 1 + 1-dimensional space-time (the temporal direction
is not latticized).

From the definitions of the Casimir energy, Eqs. (7) and (8),
we can get the Casimir energy.

For example, when we set r = 1 and m f = 0 in the 1 +
1-dimensional space-time, we obtain the exact formulas [70]
(for a derivation, see Appendix D):

aE1+1D,W,P
Cas = 4N

π
− 2 cot

π

2N
, (23)

aE1+1D,W,AP
Cas = 4N

π
− 2 csc

π

2N
. (24)

Expanding these formulas by a/L, we obtain [70]

E1+1D,W,P
Cas = π

3L
+ π3a2

180L3
+ O(a4), (25)

E1+1D,W,AP
Cas = − π

6L
− 7π3a2

1440L3
+ O(a4). (26)

Here, we find that the terms with π
3L for the periodic boundary

and − π
6L for the antiperiodic boundary agree with the Casimir

energy for the massless fermion in continuum theory, respec-
tively (for a derivation, see Appendix A):

E1+1D,cont,P
Cas = π

3L
, (27)

E1+1D,cont,AP
Cas = − π

6L
. (28)

Thus, by taking the continuum limit a → 0 of the Casimir
energy for the Wilson fermion, we can obtain that for the
continuum theory. This is because the Wilson fermion has no
doublers in contrast to the naive fermion, and also the Casimir
energy is well dominated by the infrared zero modes. On the
other hand, the terms including a2 and the higher orders are
lattice effects (or “lattice artifacts” in the context of lattice
simulations) which is related to properties in the ultraviolet
region of the dispersion relation.

In Fig. 4, we plot the Casimir energy for the massless or
positive-mass Wilson fermion at r = 1. We find that, even
for the 2 + 1- and 3 + 1-dimensional space-time, the Casimir

energies for the massless Wilson fermions are agree well with
the continuum limit:

E2+1D,cont,P
Cas = ζ (3)

πL2
, (29)

E2+1D,cont,AP
Cas = −3ζ (3)

4πL2
, (30)

E3+1D,cont,P
Cas = π2

45L3
, (31)

E3+1D,cont,AP
Cas = − 7π2

360L3
. (32)

Also, we find that the Casimir energy for the positive-mass
Wilson fermions is suppressed compared with that for the
massless one, which is similar to the behavior of massive
naive fermions in Sec. III.

Finally, we discuss the relation between the sign of the
Casimir energy and the number of the zero modes.

(1) Periodic boundary. For the massless case, there is one
infrared zero mode (ap1 = 0). This zero mode suppresses the
negative sum part to the Casimir energy, so that the Casimir
energy becomes positive. When the fermion has a positive
mass and the zero mode disappears, both the negative sum
part and positive integral part are enhanced. As a result, the
negative Casimir energy is suppressed.

(2) Antiperiodic boundary. Even for the massless case,
there is no zero mode. Then, the negative sum part of the
Casimir energy is enhanced by the higher nonzero modes, so
that the Casimir energy is negative.

B. Wilson fermions with a negative mass

Next, we study the Casimir energy for the Wilson fermions
with a negative mass, am f < 0. A negative mass in the Wilson
fermion corresponds to a negative shift of the Wilson term,
and the resultant dispersion relation is significantly modified.
This situation is distinct from the effect of a negative mass in
the continuous Dirac fermion. In the Dirac fermion, the sign of
the mass term in the Lagrangian does not affect the dispersion
relations such as E = ±

√
p2 + m2.

In realistic topological insulators, the parameter am f (and
the Wilson parameter r) is related to the strength of the
spin-orbit interaction and the original band structure without
the spin-orbit interaction, which are intrinsic to a material.
In experiments, one can tune this parameter by changing
the chemical composition of the material (for example, for
BiTl(S1−δSeδ )2, see Ref. [84]).

In the upper panels of Fig. 5, we show the numerical results
in the 1 + 1-dimensional space-time, where the spatial one di-
mension has the periodic or antiperiodic boundary condition.
The properties of the Casimir energy can be well understood
by their dispersion relations, as shown in Fig. 6. From Fig. 6,
we can see that the energy of the low-momentum mode in-
creases by a negative mass, while that of the high-momentum
mode decreases in the region of 0 < am f < −2. Here, our
findings are as follows.

(1) −1 < am f � 0. At am f = 0, we observe the Casimir
energy of massless Wilson fermions. As am f decreases,
both the Casimir energy aECas and its coefficient LECas is
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FIG. 4. Casimir energy for massless or positive-mass Wilson fermion in the 1 + 1, 2 + 1, and 3 + 1-dimensional space-time (the temporal
direction is not latticized). Small windows show the coefficients of Casimir energy. Dashed lines are the leading terms of the expansion by a/L
or equivalently 1/N , which is obtained as an asymptotic form for the massless fermion in the large lattice size N . (Left) Periodic boundary.
(Right) Antiperiodic boundary.

suppressed in larger lattice size, which is similar to that for
Wilson fermions with a positive mass. This similarity is un-
derstood from the dispersion relations shown in Fig. 6. For
example, the dispersion for the negative mass with am f =
−0.5 (the red dash-dotted curve) is similar to that for the
positive mass am f = 0.5 (the green dashed curve).

(2) am f = −1. At this parameter, we find that the Casimir
energy is equal to zero in both the periodic and antiperiodic
boundaries. This behavior can be understood as follows. The

Wilson Dirac operator at am f = −1 is written as

aD1+1D = iγ1 sin ap1 + r(− cos ap1). (33)

Then, we find that the dispersion relation is a constant, as
shown in the black dotted line of Fig. 6:

a2E2
1+1D(ap) = 1. (34)
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FIG. 5. Casimir energy for Wilson fermions with a negative mass in the 1 + 1- and 2 + 1-dimensional space-time (the temporal direction
is not latticized). Small windows show the coefficients of Casimir energy. Dashed, dotted, and dash-dotted lines are the leading terms of the
expansion by a/L or equivalently 1/N , which is obtained as an asymptotic form in the large lattice size N . (Left) Periodic boundary. (Right)
Antiperiodic boundary.

Using the definition (8), we can show that the corresponding
Casimir energy is zero:

aE1+1D
Cas = 0. (35)

FIG. 6. Negative-mass dependence of dispersion relations for
Wilson fermions in the 1 + 1-dimensional space-time (the temporal
direction is not latticized).

Thus am f = −1 is a special mass parameter for the Casimir
effect in the 1 + 1 dimensions.

The physical interpretation of this behavior is as follows.
For am f = −1, the dispersion relation of the Wilson fermion
becomes a “flat band” where the energy is independent of
the momentum (for an equivalent discussion, see Ref. [85]).
The Casimir effect originates from the difference between the
zero point energies of the finite volume and infinite volume
(or finite lattice size N �= ∞ and infinite lattice size N = ∞),
but the energy difference for the flat band is zero, which
means that the Casimir effect does not occur. As an alternative
interpretation, this flat band means that its eigenstates in real
space are wave functions “localized” on nearest-neighbor two
sites, where a particle can hop only between the two sites
and does not hop onto other sites. For such localized wave
functions, when we change the numbers of lattices, the energy
(per one site) of the systems does not change.

(3) −2 < am f < −1. In this region, we find an oscillation
of Casimir energy between the even and odd lattices, and
LECas is suppressed in larger lattice size. As shown in the cyan
dashed curve of Fig. 6, this oscillation is dominated by lower
nonzero modes around ap1 = π , and the contribution from
higher modes around ap1 = 0 is relatively suppressed.

(4) am f = −2. This is also a special parameter, but it
is distinct from am f = −1. Here, we find an oscillation of
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the Casimir energy, and LECas approaches to a constant in
larger lattice size, which implies that the Casimir energy is
dominated by massless degrees of freedom.

The Wilson Dirac operator at am f = −2 is written as

aD1+1D = iγ1 sin ap1 + r(−1 − cos ap1). (36)

Then, we find that the dispersion has a ultraviolet-momentum
zero mode (in other words, massless doubler) at ap1 = π , as
shown in the magenta solid curve of Fig. 6. Note that Fig. 6
is just a plot of continuous spectrum. Although energy levels
discretized by the existence of boundaries is not necessarily
to pick up this zero mode, which depends on the form of the
boundary condition, at least the Casimir energy is dominated
by “light” modes around this zero mode. The exact formulas
of the Casimir energies at am f = −2 and r = 1 are (for a
derivation, see Appendix E)

aE1+1D,P
Cas = 4N

π
− 2 csc

π

2N
(N = odd), (37)

aE1+1D,P
Cas = 4N

π
− 2 cot

π

2N
(N = even), (38)

aE1+1D,AP
Cas = 4N

π
− 2 cot

π

2N
(N = odd), (39)

aE1+1D,AP
Cas = 4N

π
− 2 csc

π

2N
(N = even). (40)

Here, we find that Eqs. (38) and (39) agree with Eq. (23)
for the periodic boundary at am f = 0. On the other hand,
Eqs. (37) and (40) agree with Eq. (24) for the antiperiodic
boundary at am f = 0.

Thus we find that, on the even lattice, the Casimir energies
for the am f = 0 and am f = −2 are equivalent to each other.
This is because, for the periodic boundary, the contribution
from the infrared zero mode at am f = 0 is equivalent to
that from the ultraviolet-momentum zero mode at am f = −2,
which holds also for contribution from nonzero modes. The
existence of zero modes leads to the positive Casimir energy.
For the antiperiodic boundary, the dispersion does not contain
zero modes, so that it induces negative Casimir energy.

On the odd lattice, the Casimir energy with the periodic (an-
tiperiodic) boundary at am f = −2 is equivalent to that with the
antiperiodic (periodic) boundary at am f = 0. This is because
the infrared zero mode at am f = 0 for the periodic boundary
plays an equivalent role of the ultraviolet-momentum zero
mode at am f = −2 for the antiperiodic boundary, where their
zero modes induce the positive Casimir energy. Also, the
dispersions at am f = 0 for the antiperiodic boundary and at
am f = −2 for the periodic boundary do not include zero
modes, so that it contributes to negative Casimir energy.

(5) am f < −2. In this region, we also find an oscillation
between the odd and even lattices, where LECas is suppressed
in larger lattice size. Such behavior is similar to the region of
−2 < am f < −1.

Here, we comment on the relationship between our results
and 1D topological insulators which can be described by the
Su-Schrieffer-Heeger (SSH) model [86,87] as a typical model.
While the Wilson fermion with either a positive mass am f > 0
or a large negative mass am f < −2 is a normal insulator
without nontrivial topology, systems described by the Wilson

FIG. 7. Negative-mass dependence of dispersion relations for
Wilson fermions in the 2 + 1-dimensional space-time (the temporal
direction is not latticized).

fermion with −2 < am f < 0 corresponds to a topological
insulator, where the nontrivial topology is characterized by
the Winding number ν = 1 corresponding to the mapping
S1 → S1 from momentum space to spin space. The existence
of an open boundary condition (or a finite length) induces
a gapless chiral edge mode at the zero-dimensional edge of
the insulator. The Casimir effect for bulk modes inside the
topological insulator will affect the thermodynamic properties
of the bulk modes. Note that, as shown in Eq. (34) and the
black dotted line in Fig. 6, am f = −1 is a special parameter,
which corresponds to just a flat band without any momentum
dependence.

For higher dimensions, the negative-mass dependence be-
comes more complicated. In the lower panels in Fig. 5,
we show the numerical results in the 2 + 1-dimensional
space-time, where the spatial one dimension has the peri-
odic or antiperiodic boundary condition, and another spatial
dimension has no boundary. Their corresponding dispersion
relations are shown in Fig. 7.

(1) −2 < am f � 0. At am f = 0, the Casimir energy aECas

is proportional to 1/N2 in larger lattice size, and its coefficient
NLECas is not suppressed. Such a behavior is induced by
the infrared zero mode, (ap1, ap2) = (0, 0), as shown in the
left upper panel of Fig. 7. In the region of −2 < am f < 0,
aECas is not proportional to 1/N2, and NLECas is suppressed
in larger lattice size. This behavior implies that the relevant
degrees of freedom may be massive. For example, we show
the dispersion with am f = −1 in Fig. 7. From this figure, we
see that the energies of all the modes are more than 1, and
there is no zero mode.
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(2) am f = −2. This is a special mass parameter.2 Here, we
find an oscillatory behavior of the Casimir energy between the
odd and even lattices. NLECas is not suppressed in larger lat-
tice size, which implies that the Casimir energy is dominated
by massless degrees of freedom. As shown in left middle
panel of Fig. 7, there are two zero modes, (ap1, ap2) = (0, π )
and (π, 0). Note that the other zero modes (ap1, ap2) =
(0,−π ) and (−π, 0) are outside the first Brillouin zone
(−π < apk � π ), so that they do not contribute to the Casimir
effect we showed.

(3) −4 < am f < −2. We find an oscillatory Casimir en-
ergy, where NLECas is suppressed in larger lattice size. We
show am f = −3 in the right middle panel of Fig. 7, where we
see that there is no zero mode, but there are lowest modes in
the ultraviolet-momentum region (|apk| ∼ π ). These lowest
modes contribute to the oscillation of the Casimir energy.

(4) am f = −4. We also find an oscillatory behavior of the
Casimir energy. Here, NLECas is not suppressed in larger lat-
tice size, which is a similar behavior to am f = −2. As shown
in the left lower panel of Fig. 7, we can see that there are an
ultraviolet-momentum zero mode, (ap1, ap2) = (π, π ). Note
that the other zero modes, (ap1, ap2) = (π,−π ), (−π, π ),
and (−π,−π ), are outside the first Brillouin zone, so that they
do not contribute to the Casimir effect.

(5) am f < −4. In this region, we find an oscillatory
Casimir energy. NLECas is suppressed in larger lattice size,
which is similar to the case with −4 < am f < −2. We show
am f = −5 in the right lower panel of Fig. 7. The form of the
dispersion is similar to am f = −4, but all the modes are more
than 1, and there is no zero mode.

Finally, we comment on the relationship to two-
dimensional (2D) materials in condensed matter physics.
When we consider the 2 × 2 component Wilson Dirac op-
erator, cdeg = 1, the corresponding materials are quantum
anomalous Hall insulators (or Chern insulators). These mate-
rials violate time-reversal invariance and can be described by
the Qi-Wu-Zhang model [94,95] as a typical model. Then, the
Wilson fermion with either a positive mass am f > 0 or a large
negative mass am f < −4 is a normal insulator with trivial
topology. On the other hand, systems described by the Wilson
fermion with −2 < am f < 0 or −4 < am f < −2 correspond
to quantum anomalous Hall insulators, where the nontrivial
topology is characterized by TKNN integers [96] or (first)
Chern numbers [97], C1 = 1 and C1 = −1, respectively. Thus
−2 < am f < 0 and −4 < am f < −2 are topological phases
distinguished by a different Chern number. The existence of
an open boundary condition induces a gapless chiral edge
mode along the one-dimensional edge of the insulator. The
Casimir effect for such an edge mode is not related to what
we analyzed in this section, but it will be studied in Sec. V.
The Casimir effect for the 2D bulk modes corresponds to that

2The Wilson fermion satisfying amf + dr = 0, where d is the
dimensions in Euclidean lattice space, is known as the central-branch
Wilson fermion [88–93], which is a special lattice fermion. In our
setup, the time in the 2 + 1-dimensional space-time is not on the
lattice, so that the Wilson fermion with amf = −2, studied in this
section, is (partly similar to but) different from the central-branch
Wilson fermion.

studied in this section, which will be significant if the length
of one direction of the 2D material is very short, and it can
affect thermodynamic phenomena for the bulk modes.

As another example, when we consider the 4 × 4 compo-
nent Wilson Dirac operator, cdeg = 2 (the case with Kramers
doublet such as spin degrees of freedom), the corresponding
materials are time-reversal invariant 2D topological insula-
tors, namely quantum spin Hall insulators, which are two
copies of quantum anomalous Hall insulators. Such materi-
als can be described by the Bernevig-Hughes-Zhang model
[98] and were experimentally observed in CdTe/HgTe/CdTe
quantum well [99]. Even in this case, within our setup, the
corresponding Casimir energy for the bulk fermion is qual-
itatively the same (except for the factor of the number of
the degrees of freedom, cdeg = 2) as long as the dispersion
relations of the different spin components degenerate.

V. CASIMIR ENERGY FOR OVERLAP FERMION

In this section, we study the Casimir energy for the overlap
fermion with an MDW kernel operator. In the DW fermion
formulation [64–66], a “bulk” fermion is defined in the
D + 1-dimensional Euclidean space, which becomes a kernel
operator in the D-dimensional space. This bulk fermion is pro-
jected into the chiral “surface” fermion in the D-dimensional
space. Usually, the surface fermions include information on
the finite length of the extra dimension, but for simplicity we
consider the infinite length. Then the DW fermion is equiva-
lent to the overlap fermion [76,77].

A. MDW kernel operators

Here, we define the MDW kernel operator DMDW [79–81],

aDMDW ≡ b(aDW)

2 + c(aDW)
, (41)

where b and c are called Möbius parameters. The operator at
b = 1 and c = 1 corresponds to the conventional Shamir-type
formulation [65], and that at b = 2 and c = 0 is Boriçi-type
(or Wilson-type) [100,101]. DW is the Wilson Dirac operator
with r = 1, as defined in Eq. (21), where the original fermion
mass m f is replaced by the domain-wall height am f → −M0

that plays a role as the negative mass of bulk fermions.

B. Overlap fermion with MDW kernel

Using the MDW kernel operator DMDW, we define the
overlap Dirac operator DOV with a fermion mass m f and a
Pauli-Villars mass mPV,

aDOV ≡ (2 − cM0)M0amPV

× (1 + am f ) + (1 − am f )V

(1 + amPV) + (1 − amPV)V
, (42)

with

V ≡ γ5sign(γ5aDMDW) = DMDW√
D†

MDWDMDW

. (43)

The Pauli-Villars mass mPV was introduced so as to sat-
isfy the Ginsparg-Wilson relation. The scaling factor (2 −
cM0)M0mPV with a constraint 2 − cM0 > 0 is determined so
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as to realize the dispersion relation of fermions in the con-
tinuum theory: lima→0 D†

OVDOV = p2 for m f = 0. Note that
if we consider a finite length of the extra dimension, then
the sign function in Eq. (43) is replaced by an approximate
functional form depending on the finite length.

As a result, the dispersion relation of the overlap fermion
is written as

a2E2
OV = [(2 − cM0)M0mPV]2

×2[1 + (am f )2] + [1 − (am f )2](V † + V )

2
[
1 + m2

PV

] + [
1 − m2

PV

]
(V † + V )

, (44)

where we used V †V = 1 and the commutation relation be-
tween V † + V and V . Using DW, V † + V is

V † + V = (D†
MDW + DMDW)

1√
D†

MDWDMDW

= 2(DW + D†
W + cD†

WDW)
1√

D†
WDW

× 1√
4 + 2c(D†

W + DW) + c2D†
WDW

, (45)

where we used D†
WDW > 0 and 4 + 2c(D†

W + DW) +
c2D†

WDW > 0.
Note that, in this work, the overlap Dirac operator is in-

dependent of the parameter b. The b dependence can appear
when we consider a finite length of the extra dimension. By
substituting the square root of the dispersion relation (44) into
the definitions (7) and (8), we can calculate the Casimir energy
for the overlap fermion.

C. Numerical results

In Fig. 8, we show the dependence of the Casimir energy
for the overlap fermion with the MDW kernel operator on the
domain-wall height (M0 = 0.5, 1.0, and 1.5), where c = 0 and
mPV = 1.0 are fixed. The results in the 1 + 1 dimensions are
the same as that obtained in Ref. [70], and the results in the
2 + 1 or 3 + 1 dimensions are newly obtained in this work.
In Fig. 9, we show the corresponding dispersion relations in
the 1 + 1-dimensional space-time. From this figure„ we see
that the ultraviolet part of the dispersion relations is modified
by tuning M0. Note that M0 = 1.0 in the 1 + 1 dimensions is
equivalent to the Wilson fermion at am f = 0.

First, we summarize the properties of the Casimir energy in
the three regions (namely, small N , intermediate N , and large
N).

(1) Suppression of Casimir energy in small N . In Fig. 8,
for M0 � 1.0, we find that the Casimir energy for the overlap
fermion is suppressed as the lattice size N decreases. Such
suppression of the Casimir energy at a small lattice size is
intuitively understood by considering the case at N = 1.

For example, for the periodic boundary in the 1 + 1 dimen-
sions, the possible momentum and energy at N = 1 are only
ap1 = 0 and aE = 0, respectively. Then the sum part of aECas

defined as Eq. (8) is zero, so that aECas is determined by only
the positive integral part. The integral part at a smaller M0

is smaller than that at a larger M0, so that the corresponding

(positive) Casimir energy at the smaller M0 is also suppressed
compared with the larger M0.

The case with the antiperiodic boundary is more com-
plicated than that with the periodic boundary. In the 1 + 1
dimensions, the possible momentum at N = 1 is only ap1 =
π which is the maximum energy level within the Brillouin
zone, and this energy level dominates the negative sum part
of aECas. The difference between the negative sum part and
positive integral part determines the negative aECas. With de-
creasing M0, both the parts are suppressed, where the negative
aECas is determined by a balance between the two parts. As a
result, aECas is also smaller. Thus a small M0 can lead to the
suppression of the Casimir energy.

(2) Enhancement of Casimir energy in intermediate N . Next
we focus on the intermediate N region. For M0 � 1.0, we find
that the Casimir energy for the overlap fermion is enhanced,
compared with that expected in the continuum theory. Such
enhancement is similar to that for the Wilson fermion at
am f = 0 in the small N region. For the periodic boundary,
this enhancement is induced by contributions from nonzero
modes (ap1 > 0) which appears at N � 2. For the antiperiodic
boundary, this is caused by contributions from lower modes
(ap1 < π ) except for the maximum mode (ap1 = π ).

(3) Good agreement with continuum theory in large N . In
the large N region, the Casimir energy for the overlap fermion
agrees well with that in the continuum theory, which is similar
to the Wilson fermion at am f = 0. Thus the Casimir energy
in the large N region is determined by the infrared part of the
dispersion relations.

Next, we summarize the domain-wall height M0 depen-
dence.

(1) No oscillation at M0 < 1.0. First, at M0 = 0, the overlap
fermion is not defined. In the region with 0 < M0 � 1.0, we
find that there is no oscillation. This is because the doublers
are sufficiently massive, so that their contributions are irrele-
vant. When M0 �= 0 is small enough, both the suppression of
Casimir energy at small N and the enhancement at intermedi-
ate N are visible.

(2) Good agreement with continuum theory at M0 = 1.0.
In the 1 + 1-dimensional space-time, the Casimir energy at
M0 = 1.0 is equivalent to that for the Wilson fermion and well
reproduces that in the continuum theory. On the other hand,
in the higher dimensions, the Casimir energy for the overlap
fermion is not equivalent to that for the Wilson fermion, but
they also well reproduce that in the continuum theory.

(3) Oscillation at M0 > 1.0. In the region with M0 > 1.0,
we find an oscillatory behavior of the Casimir energy, where
we find the enhancement on the odd lattice and suppression
on the even lattice. This oscillation is induced by the contribu-
tions from massive doublers3 which is irrelevant at M0 � 1.0.
As shown in Fig. 9, the dispersion relation at M0 = 1.5 is very
close to the linear dispersion, but the corresponding Casimir
energy in the small N region is quite different. Therefore, if
we try to reproduce the Casimir energy for the continuum

3In the domain-wall fermion formulation, the doublers with a heavy
mass still survive. We call such ultraviolet-momentum modes “mas-
sive doublers.”
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FIG. 8. Casimir energy for overlap fermions with MDW kernel operator in the 1 + 1-, 2 + 1-, and 3 + 1-dimensional space-time (the
temporal direction is not latticized). Möbius parameter c = 0 and Pauli-Villars mass mPV = 1 are fixed. Small windows show the coefficients
of Casimir energy. Dashed lines are the leading terms of the expansion by a/L or equivalently 1/N , which is obtained as an asymptotic form
for the massless fermion in the large lattice size N . (Left) Periodic boundary. (Right) Antiperiodic boundary.

Dirac fermion by using the overlap fermion, M0 ∼ 1.0 is more
suitable than larger M0.

In lattice simulations for fermions interacting with gauge
fields, a setup with M0 > 1.0 may be useful (e.g., see
Refs. [79–81,102,103]). This is because a setup with M0 >

1.0 can correct the fermion dispersion relations effectively
modified by gauge fields.

Note that a similar oscillation for the overlap fermion
with the domain-wall kernel operator was also seen in free
fermions at finite temperature [104,105] which corresponds

to the antiperiodic boundary for the temporal direction in the
Euclidean lattice.

Finally, we comment on the dependence on the Möbius
parameter c and the Pauli-Villars mass mPV as additional
tuning parameters. The results in the 1 + 1 dimensions are
shown in Ref. [70]. While the Möbius parameter c does not
induce oscillation of the Casimir energy, a large value of the
Pauli-Villars mass mPV leads to an oscillation of the Casimir
energy, which is a similar mechanism to the massive doublers
in M0 > 1.0.
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FIG. 9. Domain-wall height M0 dependence of dispersion rela-
tions for overlap fermions with MDW kernel operator in the 1 +
1-dimensional space-time (the temporal direction is not latticized).

VI. CONCLUSION AND OUTLOOK

In this paper, based on the formulation given by Ref. [70],
we investigated the Casimir energies for the free lattice
fermions in the 1 + 1-, 2 + 1-, and 3 + 1-dimensional space-
time with the one spatial direction compactified by the
periodic or antiperiodic boundary condition. In particular, the
Casimir energy for the Wilson fermion with a negative mass
was examined for the first time. The results in the 2 + 1 and
3 + 1 dimensions are almost similar to those in the 1 + 1
dimensions [70], but we also found a special property realized
only in the 1 + 1 dimensions, such as Eq. (35).

We again emphasize that the Wilson fermion with a nega-
tive mass and the domain-wall fermion correspond to the bulk
and surface fermions of topological insulators, respectively.
Therefore the Casimir effects for their lattice fermions will be
observed as the Casimir effects on the topological insulators if
the very small lattice size, such as thin films, is experimentally
realized. Then the oscillatory behavior of Casimir energy,
which we suggested, may be helpful to capture an evidence of
the Casimir effect on the lattice. Similar oscillations were sug-
gested also between localized impurities in one-dimensional
materials [106–109].

As examples of experimental observables for the Caimir
effect, we can consider an influence on the specific heat and
magnetic susceptibility of materials. The theoretical strategy
is as follows. In a standard manner, we can calculate the
thermodynamic potential of a lattice fermionic system. When
we switch on the finite-volume and finite-temperature effect,
the resultant potential depends on the temperature and system
size, and its system size dependence is related to the Casimir
effect, in principle. Since the specific heat is the temperature-
derivative of the potential, we can estimate the change of
the specific heat by the Casimir effect. Similarly, from the
second derivative of the potential with respect to the external
magnetic field, we can calculate the magnetic susceptibility.
Thus the Casimir effect, in principle, can contribute to various
physical quantities, and we can observe it if the system size is
small enough.

Here, we comment on the realistic scale of the Casimir
energy. The Casimir energy aECas in this paper is a dimen-

sionless quantity, and as a dimensional quantity, we consider
ECas ∼ h̄c/aNd in elemental particles or ECas ∼ h̄vF /aNd in
solid states, where h̄, c, and vF are the reduced Plank constant,
the speed of light, and the Fermi velocity, respectively, and
we omitted the specific coefficient depending on the types
of fermions and spatial dimensions as O(1). For example,
for Cd3As2 known as a three-dimensional Dirac semimetal
[110,111], the lattice spacing is a = 1–3 nm, and the Fermi
velocity was measured to be vF ∼ 1.5 × 106 m/s [111]. Using
these values, the Casimir energy for Cd3As2 is estimated to be
ECas ∼ 1 eV at N = 1. Therefore it will be captured by an ex-
ternal response comparable to this scale. As numerical values
of other materials, a = 0.5–1 nm and vF ∼ (1–5) × 105 m/s
[112] for Na3Bi, and a = 0.4–3 nm and vF ∼ 5 × 105 m/s
(for the surface modes) [113] for Bi2Se3.

One of the extensions is to study modification of Casimir
effects by introducing an interaction between fermions, such
as gauge interactions and four-Fermi interactions. In particu-
lar, interacting Wilson fermions with a negative mass exhibit
the spontaneous parity-broken (Aoki) phase [114]. Since the
negative-mass Casimir effect studied in this paper is just for
free fermions, its phase structure switching on an interaction
would be interesting.

Furthermore, cold-atom simulations can realize various lat-
tice fermions [115–118], so that simulations with a small size
will be a powerful tool to observe the Casimir effect on the
lattice.

In this work, we focused on only 1D chain, 2D square, or
3D cubic lattices, but other spatial geometries are possible.
For example, lattice structures such as (2D) honeycomb or
(3D) diamond lattices are also interesting. Casimir effects
on honeycomb lattices such as graphene nanoribbons4 and
carbon nanotubes,5 quantum anomalous Hall insulators de-
scribed by the Haldane model [130], and quantum spin Hall
insulators described by the Kane-Mele model [131,132] will
be experimentally measured in small-size materials. In partic-
ular, when we consider the edge of the small-size direction of
honeycomb lattice ribbons, there are two types of structures:
the armchair edge and the zigzag edge. These two types of
edges are known to lead to different band structures of bulk
modes [133], and the size dependence of observables is related
to the Casimir effect for the bulk modes. Moreover, a rolled-up
graphene sheet is a carbon nanotube, which is nothing but a
2D honeycomb lattice with the periodic boundary condition,
and electrons living on this lattice are affected by the Casimir
effect with the periodic boundary. For carbon nanotubes, there
are three types of structures: the armchair, zigzag, and chi-
ral configurations are known to exhibit different band gap

4For the electromagnetic Casimir effects induced between
graphene another material (or between two graphene sheets), there
are already many works (e.g., see Refs. [119–123]).

5Carbon nanotubes in the continuum limit can be approximated as
the cylindrically compactified space with the spatial topology R1 ×
S1 or the toroidally compactified space with the spatial topology
S1 × S1. The Casimir effect for Dirac fermions in such continuous
space-time was investigated in Refs. [124–129]. If one tries to inves-
tigate more realistic carbon nanotubes, systems with nonzero lattice
spacing should be taken into account.
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energies [134,135]. As a result, in a small-size tube, such
three structures lead to different Casimir effects, and then it
should influence transport/thermodynamic properties such as
electric/thermal conductivity and specific heat. In addition,
Casimir effects on “curved” lattice deformed by insertion of
structural defects such as lattice kirigami [136,137] are also
interesting, which is analogous to the Casimir effect in curved
space-time in continuum theory. Thus a wide range of lattice
Casimir physics is left for future work.
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APPENDIX A: DERIVATION OF CASIMIR ENERGY FOR
MASSLESS FERMIONS IN CONTINUUM LIMIT

We quickly review the derivation of the Casimir energy
for a massless fermion in D = d + 1-dimensional space-time.
The dispersion relation of the fermion is

E =
√

p2, (A1)

where p2 = p2
1 + p2

2 + · · · + p2
d . The thermodynamic poten-

tial � at zero temperature and zero chemical potential is the
integral of the dispersion relation:

�

V
= −

∫
dd p

(2π )d

√
p2, (A2)

where V is the volume of the system. It can be considered
as the sum of the zero-point energies for all momenta. The
coefficient 1/2 of the zero-point energy is canceled by the
factor 2 of the particle and antiparticle. The negative sign is
caused by the fermionic property. Notice that, for the Dirac
fermion in the 3 + 1 dimensions, the spin degeneracy factor
cdeg = 2 has to be multiplied, but we set cdeg = 1 and neglect
the spin degrees of freedom for simplicity. The thermody-
namic potential is still divergent, and usually one neglects it.
In the compactified space-time, however, we can get a finite
value by a subtraction scheme, and it modifies thermodynamic
properties.

Let us consider the spatial geometry where one spatial
dimension, x, is compactified. Then the boundary condition
is necessary. Here we limit ourselves to the periodic bound-
ary condition (PBC) and the antiperiodic boundary condition
(ABC). The momentum along the x direction is discretized
and depends on the boundary condition:

p1 = 2π

L
n (PBC), (A3)

p1 = 2π

L

(
n + 1

2

)
(ABC), (A4)

where L is the length of the x direction, and n is an integer.
We replace the integral by the sum:∫

d p1

2π
→ 1

L

∞∑
n=−∞

. (A5)

The momenta along the other direction are continuous and in-
tegral variables. We can compute the thermodynamic potential
in the anisotropic system, the so-called Casimir energy.

The derivation of the Casimir energy is based on the ana-
lyticity of the dispersion relation. The potential density

�(L)

V
= − 1

L

∞∑
n=−∞

∫
dd−1 p⊥
(2π )d−1

√
p2

⊥ + p2
1 (A6)

is still divergent, where p2
⊥ = p2

2 + · · · + p2
d . We have to ex-

tract a finite part by removing the divergence in the infinite
volume from Eq. (A6). In the massless case, it can be done by
the zeta function regularization and the analytic continuation.

Let us move on to the derivation of the Casimir energy.
By using the well-known formula for a d-dimensional integral
with respect to k, for parameters l and �,∫

dd k

(2π )d
(k2 + �)−l = 1

(4π )d/2

	
(
l − d

2

)
	(l )

�
d
2 −l , (A7)

and with the replacement
√

p2
⊥ + p2

1 → (p2
⊥ + p2

1)−s with a
new parameter s, we can integrate the potential density:

�(L; s)

V
= − 1

L

∞∑
n=−∞

∫
dd−1 p⊥
(2π )d−1

(
p2

⊥ + p2
1

)−s
(A8)

= − 1

L

∞∑
n=−∞

1

(4π )(d−1)/2

	
(
s − d−1

2

)
	(s)

|p1|d−1−2s.

(A9)

For the PBC, the sum of p1 can be replaced by the zeta
function through the analytic continuation:

1

L

∞∑
n=−∞

|p1|d−1−2s = 2

L

∞∑
n=1

(
2π

L
n

)d−1−2s

= 2

L

(
2π

L

)d−1−2s

ζ (2s − d + 1). (A10)

Then the potential can be the simpler form

�(L; s)

V
= − 2

L

1

(4π )(d−1)/2

	
(
s − d−1

2

)
	(s)

(
2π

L

)d−1−2s

× ζ (2s − d + 1) (A11)

= − 2

L

1

(4π )(d−1)/2

π−1/2	
(

d−2s
2

)
ζ (d − 2s)

	(s)

2d−1−2s

Ld−1−2s
,

(A12)

where, in order to avoid the divergence of 	(−1) at d = 2 in
the limit s → −1/2, we have applied the reflection formula

	(z/2)ζ (z) = π z−1/2	

(
1 − z

2

)
ζ (1 − z). (A13)
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Equation (A12) is already finite even in the limit s → −1/2,
and the final form is

�(L)

V
= 2

(L
√

π )d+1
	

(
d + 1

2

)
ζ (d + 1). (A14)

We show the results in d = 1, 2, 3:

�(L)

V
= π

3L2
(d = 1), (A15)

�(L)

V
= ζ (3)

πL3
(d = 2), (A16)

�(L)

V
= π2

45L4
(d = 3). (A17)

By multiplying these formulas by L, we can obtain ECas dis-
cussed in the main text.

For the ABC, we just have to replace the zeta func-
tion ζ (2s − d + 1) by the Hurwitz zeta function ζ (2s − d +
1, 1/2) in Eq. (A11). This function can be rewritten in terms of
the Riemann zeta function through ζ (z, 1/2) = (2z − 1)ζ (z).
Then, we can take the limit s → −1/2 in the same way.

Finally, the resulting expression is

�(L)

V
= −2d − 1

2d

2

(L
√

π )d+1
	

(
d + 1

2

)
ζ (d + 1). (A18)

We also show the expressions in d = 1, 2, 3:

�(L)

V
= − π

6L2
(d = 1), (A19)

�(L)

V
= −3ζ (3)

4πL3
(d = 2), (A20)

�(L)

V
= − 7π2

360L4
(d = 3). (A21)

APPENDIX B: ABEL-PLANA FORMULAS
IN FINITE RANGE

The Abel-Plana formula (APF) is a conventional and pow-
erful tool to study the Casimir effect (for early works, see
Refs. [7,138–141]). Usually, this formula is used to calcu-
late the finite Casimir energy from an infinite integral and
an infinite sum. For lattice fermions, the momentum of a
fermion has a periodicity within a Brillouin zone, and then
the momentum space can be restricted to the first Brillouin
zone. Therefore the APF should also be modified as that in a
finite range. In this Appendix, we derive the APF in a finite
range. Our derivation is based on the following formula (see,
Refs. [142,143]):

∫ b

a
f (x)dx = R[ f (z), g(z)] − 1

2

∫ +i∞

−i∞
[g(u) + σ (z) f (u)]u=b+z

u=a+zdz, σ (z) ≡ sgn(Im z), (B1)

where f (z) and g(z) with z = x + iy are meromorphic functions for a � x � b and satisfy

lim
h→0

∫ b±ih

a±ih
[g(z) ± f (z)]dz = 0. (B2)

The residue part is

R[ f (z), g(z)] = π i

[∑
k

Res
z=zg,k

g(z) +
∑

k

σ (z f ,k ) Res
z=z f ,k

f (z)

]
. (B3)

z f ,k and zg,k stand for the poles of f (z) and g(z), respectively. In the following, we assume f (z) is regular in a < x < b, and then
the second term of Eq. (B3) vanishes.

1. Integer

First, we consider the APF for f (n), where n ∈ Z is the index of summation. We set g(z) = −i cot(πz) f (z), where the residue
of g(z) at z = n is −i f (n)/π . Then, Eq. (B1) is


b�∑
n=�a

f (n) −
∫ b

a
dx f (x) −

(
1

2
f (a) + 1

2
f (b) if a, b ∈ Z

)

= 1

2

∫ +i∞

−i∞
[σ (z) − i cot(πu)] f (u)|u=b+z

u=a+zdz

= 1

2

∫ +i∞

0
[+1 − i cot(πu)] f (u)|u=b+z

u=a+zdz + 1

2

∫ 0

−i∞
[−1 − i cot(πu)] f (u)|u=b+z

u=a+zdz, (B4)

where �x and 
x� are the ceiling function and the floor function, respectively. If z = a and/or z = b are poles of g(z), we have
to avoid the poles on the integral path. When we avoid the poles along a small semicircle, we obtain − 1

2 f (a) and/or − 1
2 f (b).
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By using the exponential form of ±1 − i cot(πu),

±1 − i cot(πu) = ±eiπu − e−iπu

eiπu − e−iπu
+ eiπu + e−iπu

eiπu − e−iπu
= 2e±iπu

eiπu − e−iπu
= ∓2

e∓2iπu − 1
, (B5)

the right-hand side of Eq. (B4) is written as

+ 1

2

∫ +i∞

0
dz

[ −2 f (u)

e−2iπu − 1

]u=b+z

u=a+z

+ 1

2

∫ 0

−i∞
dz

[
2 f (u)

e2iπu − 1

]u=a+z

u=b+z

= +i
∫ ∞

0
dy

[ − f (u)

e−2iπu − 1

]u=b+iy

u=a+iy

− i
∫ 0

∞
dy

[
f (u)

e2iπu − 1

]u=b−iy

u=a−iy

= i
∫ ∞

0
dy

f (a + iy)

e2π (y−ia) − 1
− i

∫ ∞

0
dy

f (a − iy)

e2π (y+ia) − 1
− i

∫ ∞

0
dy

f (b + iy)

e2π (y−ib) − 1
+ i

∫ ∞

0
dy

f (b − iy)

e2π (y+ib) − 1
. (B6)

Finally, we obtain the APF for f (n):


b�∑
n=�a

f (n) −
∫ b

a
dx f (x) −

(
1

2
f (a) + 1

2
f (b) if a, b ∈ Z

)

= i
∫ ∞

0
dy

f (a + iy)

e2π (y−ia) − 1
− i

∫ ∞

0
dy

f (a − iy)

e2π (y+ia) − 1
− i

∫ ∞

0
dy

f (b + iy)

e2π (y−ib) − 1
+ i

∫ ∞

0
dy

f (b − iy)

e2π (y+ib) − 1
. (B7)

2. Half-integer

Next, we consider the APF for f (n + 1/2), where n + 1/2 (n ∈ Z). We set g(z) = i tan(πz) f (z), where the residue of g(z) at
z = n + 1/2 is −i f (n + 1/2)/π . Then, Eq. (B1) is


b−1/2�∑
n=�a−1/2

f (n + 1/2) −
∫ b

a
dx f (x) −

(
1

2
f (a) + 1

2
f (b) if a − 1

2
, b − 1

2
∈ Z

)

= 1

2

∫ +i∞

0
[+1 + i tan(πu)] f (u)|u=b+z

u=a+zdz + 1

2

∫ 0

−i∞
[−1 + i tan(πu)] f (u)|u=b+z

u=a+zdz. (B8)

By using the exponential forms of ±1 + i tan(πu),

±1 + i tan(πu) = ±eiπu + e−iπu

eiπu + e−iπu
+ eiπu − e−iπu

eiπu + e−iπu
= ±2e±iπu

eiπu + e−iπu
= ±2

e∓2iπu + 1
, (B9)

the right-hand side of Eq. (B8) is

1

2

∫ +i∞

0
[+1 + i tan(πu)] f (u)|u=b+z

u=a+zdz + 1

2

∫ 0

−i∞
[−1 + i tan(πu)] f (u)|u=b+z

u=a+zdz

=
∫ +i∞

0

[
f (u)

e−2iπu + 1

]u=b+z

u=a+z

dz −
∫ 0

−i∞

[
f (u)

e+2iπu + 1

]u=b+z

u=a+z

dz

= i
∫ ∞

0

[
f (u)

e−2iπu + 1

]u=b+iy

u=a+iy

dy − i
∫ ∞

0

[
f (u)

e+2iπu + 1

]u=b−iy

u=a−iy

dy

= −i
∫ ∞

0

f (a + iy)

e2π (y−ia) + 1
dy + i

∫ ∞

0

f (a − iy)

e2π (y+ia) + 1
dy + i

∫ ∞

0

f (b + iy)

e2π (y−ib) + 1
dy − i

∫ ∞

0

f (b − iy)

e2π (y+ib) + 1
dy. (B10)

Finally, we obtain the APF for f (n + 1/2):


b−1/2�∑
n=�a−1/2

f (n + 1/2) −
∫ b

a
dx f (x) −

(
1

2
f (a) + 1

2
f (b) if a − 1

2
, b − 1

2
∈ Z

)

= −i
∫ ∞

0

f (a + iy)

e2π (y−ia) + 1
dy + i

∫ ∞

0

f (a − iy)

e2π (y+ia) + 1
dy + i

∫ ∞

0

f (b + iy)

e2π (y−ib) + 1
dy − i

∫ ∞

0

f (b − iy)

e2π (y+ib) + 1
dy. (B11)
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APPENDIX C: DERIVATION FOR NAIVE LATTICE FERMION

In this Appendix, we derive the Casimir energy for massless naive lattice fermions from the APFs in finite range such as
Eqs. (B7) and (B11). From the Dirac operator (9) at am f = 0, the dispersion relation in the 1 + 1-dimensional space-time is

a
√

D†
nf Dnf =

√
sin2 ap1(n), (C1)

where the momenta for the periodic and antiperiodic boundaries are ap1(n) = 2πn/N and ap1(n) = 2π (n + 1/2)/N , respec-
tively.

After the analytic continuation (n → z for the periodic boundary and n + 1/2 → z for the antiperiodic boundary), the
resulting complex function f (z = x + iy) =

√
sin2(2πz/N ) has branch cuts along the y direction at x = 0, x = N/2, and x = N .

Therefore, to avoid the branch cut, we separately apply the APF to the two regions, 0 � x < N/2 and N/2 < x < N (when the
Brillouin zone is defined as 0 � ap1 < 2π ). For example, we consider a path along the branch cut at x = N/2, where the path is
shifted by an infinitesimal parameter ε → +0 from the cut. Then f (z) on this path is (if y > 0)

sin2

(
2π

N

(
N

2
+ ε ± iy

))
�

(
∓i sinh

(
2πy

N

)
− ε

)2

� − sinh2

(
2πy

N

)
± iε, (C2)√

sin2

(
2π

N

(
N

2
+ ε ± iy

))
� e±iπ/2 sinh

(
2πy

N

)
= ±i sinh

(
2πy

N

)
. (C3)

Similarly, f (z) on the paths at x = N/2 − ε, x = 0 + ε, and x = N − ε are√
sin2

(
2π

N

(N

2
− ε ± iy

))
� ∓i sinh

(
2πy

N

)
, (C4)√

sin2

(
2π

N
(0 + ε ± iy)

)
� ±i sinh

(
2πy

N

)
, (C5)√

sin2

(
2π

N
(N − ε ± iy)

)
� ∓i sinh

(
2πy

N

)
. (C6)

In the following, these expressions will be used for evaluating integrals.

1. Periodic boundary

For the periodic boundary, we substitute f (z) =
√

sin2(2πz/N ) into the APF for integers, Eq. (B7). We put (a, b) = (0 +
ε, N/2 − ε) in the first region and (a, b) = (N/2 + ε, N − ε) in the second region, and then

aE1+1D,nf,P
Cas = −i

∫ ∞

0

dy

e2πy − 1

(
f (z)|z=ε+iy

z=ε−iy − f (z)|z=N−ε+iy
z=N−ε−iy

) + i
∫ ∞

0

dy

e2π (y+iN/2) − 1

(
f (z)|z=N/2−ε+iy

z=N/2−ε−iy − f (z)|z=N/2+ε+iy
z=N/2+ε−iy

)
= 4

∫ ∞

0

dy sinh(2πy/N )

e2πy − 1
+ 4

∫ ∞

0

dy sinh(2πy/N )

e2π (y+iN/2) − 1
. (C7)

For e2π (y±iN/2) of the denominator in the APF, we used e+iNπ = e−iNπ for a integer N . The contributions from the semicircles in
the APF are zero because f (0) = f (N/2) = f (N ) = 0. Here, the integrations are performed:∫ ∞

0
dy

sinh(2πy/N )

e2πy − 1
= + N

4π
− 1

4
cot

(
π

N

)
, (C8)∫ ∞

0
dy

sinh(2πy/N )

e2πy + 1
= − N

4π
+ 1

4
csc

(
π

N

)
. (C9)

Finally,

aE1+1D,nf,P
Cas =

{
2N
π

− cot π
2N (N = odd)

2N
π

− 2 cot π
N (N = even)

. (C10)

For N = odd, we used cot(x) + csc(x) = cot(x/2).

023201-17



ISHIKAWA, NAKAYAMA, AND SUZUKI PHYSICAL REVIEW RESEARCH 3, 023201 (2021)

2. Antiperiodic boundary

For the antiperiodic boundary, we substitute f (z) =
√

sin2(2πz/N ) into the APF for half-integers, Eq. (B11):

aE1+1D,nf,AP
Cas = i

∫ ∞

0

dy

e2πy + 1

(
f (z)|z=ε+iy

z=ε−iy − f (z)|z=N−ε+iy
z=N−ε−iy

) − i
∫ ∞

0

dy

e2π (y+iN/2) + 1

(
f (z)|z=N/2−ε+iy

z=N/2−ε−iy − f (z)|z=N/2+ε+iy
z=N/2+ε−iy

)

= −4
∫ ∞

0

dy sinh(2πy/N )

e2πy + 1
− 4

∫ ∞

0

dy sinh(2πy/N )

e2π (y+iN/2) + 1
=

{ 2N
π

− cot π
2N (N = odd)

2N
π

− 2 csc π
N (N = even)

. (C11)

For the third equality, we used Eqs. (C8) and (C9).

APPENDIX D: DERIVATION FOR MASSLESS WILSON FERMION

From the Dirac operator (21) at r = 1 and am f = 0, the dispersion relations of massless Wilson fermion in the 1 + 1-
dimensional space-time is

a
√

D†
WDW =

√
2 − 2 cos ap1(n) = 2

√
sin2

(
ap1(n)

2

)
, (D1)

where the momenta for the periodic and antiperiodic boundaries are ap1(n) = 2πn/N and ap1(n) = 2π (n + 1/2)/N , respec-
tively.

In the dispersion relations after the analytic continuation, f (z = x + iy) = 2
√

sin2(πz/N ) has a branch cut along the y
direction at x = 0 and x = N . f (z) on paths along the branch cuts at x = 0 and x = N are (if ε → +0, y > 0)

sin2

(
π

N

(
0 + ε ± iy

))
� − sinh2

(
πy

N

)
± iε, (D2)√

sin2

(
π

N

(
0 + ε ± iy

))
� ±i sinh

(
πy

N

)
, (D3)

sin2

(
π

N

(
N − ε ± iy

))
� − sinh2

(
πy

N

)
∓ iε, (D4)√

sin2

(
π

N

(
N − ε ± iy

))
� ∓i sinh

(
πy

N

)
. (D5)

1. Periodic boundary

For the periodic boundary, we substitute f (z) = 2
√

sin2(πz/N ) into the APF (B7). We put (a, b) = (0 + ε, N − ε), and then

aE1+1D,W,P
Cas = −i

∫ ∞

0

dy

e2πy − 1

(
f (z)|z=ε+iy

z=ε−iy − f (z)|z=N−ε+iy
z=N−ε−iy

)
(D6)

= 8
∫ ∞

0

dy sinh(πy/N )

e2πy − 1
= 4N

π
− 2 cot

π

2N
, (D7)

where the contributions from the semicircles in the APF are zero because f (0) = f (N ) = 0.

2. Antiperiodic boundary

For the antiperiodic boundary, we substitute f (z) = 2
√

sin2(πz/N ) into the APF (B11),

aE1+1D,W,AP
Cas = i

∫ ∞

0

dy

e2πy + 1

(
f (z)|z=ε+iy

z=ε−iy − f (z)|z=N−ε+iy
z=N−ε−iy

)
(D8)

= −8
∫ ∞

0

dy sinh(πy/N )

e2πy + 1
= 4N

π
− 2 csc

π

2N
. (D9)

APPENDIX E: DERIVATION FOR WILSON FERMION WITH NEGATIVE MASS amf = −2

The dispersion relations of the Wilson fermion at r = 1 and am f = −2 in the 1 + 1-dimensional space-time is

a
√

D†D(am f = −2) =
√

2 + 2 cos ap1(n) = 2

√
cos2

(
ap1(n)

2

)
, (E1)
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where the momenta for the periodic and antiperiodic boundaries are ap1(n) = 2πn/N and ap1(n) = 2π (n + 1/2)/N ,
respectively.

In the dispersion relations after the analytic continuation, f (z = x + iy) = 2
√

cos2(πz/N ) has a branch cut along the y
direction at x = N/2. Therefore, to avoid the branch cut, we separately apply the APF to the two regions, 0 � x < N/2 and N/2 <

x < N (when the Brillouin zone is defined as 0 � ap1 < 2π ). For 0 � x < N/2, the first and second terms in the right-hand side
of the APF are zero because of f (0 + iy) − f (0 − iy) = 0, and the third and fourth terms are nonzero. For N/2 < x < N , the
first and second terms are nonzero, and the third and fourth terms are zero because of f (N + iy) − f (N − iy) = 0. Note that
these situations are different from the procedures shown for naive fermion and massless Wilson fermion since these fermions
have the branch cuts at x = 0 and x = N .

f (z) on paths along the branch cut at x = N/2 are (if ε → +0, y > 0)

cos2

(
π

N

(
N

2
+ ε ± iy

))
� − sinh2

(
πy

N

)
± iε, (E2)√

cos2

(
π

N

(
N

2
+ ε ± iy

))
� ±i sinh

(
πy

N

)
, (E3)

cos2

(
π

N

(
N

2
− ε ± iy

))
� − sinh2

(
πy

N

)
∓ iε, (E4)√

cos2

(
π

N

(
N

2
− ε ± iy

))
� ∓i sinh

(
πy

N

)
. (E5)

1. Periodic boundary

For the periodic boundary, we substitute f (z) = 2
√

cos2(πz/N ) into the APF for integers, Eq. (B7). We put (a, b) = (0 +
ε, N/2 − ε) in the first region and (a, b) = (N/2 + ε, N − ε) in the second region, and then

aE1+1D,P
Cas (am f = −2) = −i

∫ ∞

0

dy

e2π (y+iN/2) − 1

(
f (z)|z=N/2+ε+iy

z=N/2+ε−iy − f (z)|z=N/2−ε+iy
z=N/2−ε−iy

)
(E6)

= 8
∫ ∞

0

dy sinh
(

πy
N

)
e2π (y+iN/2) − 1

=
{ 4N

π
− 2 csc π

2N (N = odd)
4N
π

− 2 cot π
2N (N = even)

. (E7)

The contributions from the semicircles around z = 0 and z = N , namely, the third term in the left-hand side of the APF (B7),
is 1

2 f (0) + 1
2 f (N ). The Casimir energy is defined as

∑N−1
n=0 − ∫ N

0 dx f (x) where the Brillouin zone is defined as 0 � ap < 2π ,

while the APF is now defined as
∑N

n=0 f (n) − ∫ N
0 dx f (x). Therefore we have to subtract f (N ) from the APF in order to obtain the

Casimir energy. After we subtract f (N ) from 1
2 f (0) + 1

2 f (N ), we get 1
2 f (0) − 1

2 f (N ) = 0. On the other hand, the contribution
from the semicircles around z = N/2 (N = even) disappears due to f (N/2) = 0.

2. Antiperiodic boundary

For the antiperiodic boundary, we substitute f (z) = 2
√

cos2(πz/N ) into the APF for half-integers, Eq. (B11),

aE1+1D,AP
Cas (am f = −2) = i

∫ ∞

0

dy

e2π (y+iN/2) + 1

(
f (z)|z=N/2+ε+iy

z=N/2+ε−iy − f (z)|z=N/2−ε+iy
z=N/2−ε−iy

)
(E8)

= −8
∫ ∞

0

dy sinh
(

πy
N

)
e2π (y+iN/2) + 1

=
{ 4N

π
− 2 cot π

2N (N = odd)
4N
π

− 2 csc π
2N (N = even)

. (E9)

The contributions from the semicircles around z = N/2 (N = odd) are zero because f (z = N/2) = 0.

[1] H. B. G. Casimir, On the attraction between two perfectly
conducting plates, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

[2] V. M. Mostepanenko and N. N. Trunov, The Casimir effect
and its applications, Sov. Phys. Usp. 31, 965 (1988).

[3] M. Bordag, U. Mohideen, and V. M. Mostepanenko, New
developments in the Casimir effect, Phys. Rept. 353, 1
(2001).

[4] K. A. Milton, The Casimir Effect: Physical Manifestations of
Zero-Point Energy (World Scientific, Singapore, 2001).

[5] S. K. Lamoreaux, Demonstration of the Casimir Force in the
0.6 to 6 μm Range, Phys. Rev. Lett. 78, 5 (1997); 81, 5475(E)
(1998).

[6] K. Johnson, The M.I.T. Bag Model, Acta Phys. Pol. B 6, 865
(1975).

[7] S. G. Mamaev and N. N. Trunov, Vacuum expectation values
of the energy-momentum tensor of quantized fields on mani-
folds with different topologies and geometries. III, Sov. Phys.
J. 23, 551 (1980).

023201-19

https://doi.org/10.1070/PU1988v031n11ABEH005641
https://doi.org/10.1016/S0370-1573(01)00015-1
https://doi.org/10.1103/PhysRevLett.78.5
https://doi.org/10.1103/PhysRevLett.81.5475
https://doi.org/10.1007/BF00891938


ISHIKAWA, NAKAYAMA, AND SUZUKI PHYSICAL REVIEW RESEARCH 3, 023201 (2021)

[8] M. N. Chernodub, H. Erbin, I. V. Grishmanovskii, V. A. Goy,
and A. V. Molochkov, Casimir effect with machine learning,
Phys. Rev. Research 2, 033375 (2020).

[9] O. Pavlovsky and M. Ulybyshev, Casimir energy calculations
within the formalism of the noncompact lattice QED, Int. J.
Mod. Phys. A 25, 2457 (2010).

[10] O. V. Pavlovsky and M. V. Ulybyshev, Casimir energy in
noncompact lattice electrodynamics, Theor. Math. Phys. 164,
1051 (2010); Teor. Mat. Fiz. 164, 262 (2010).

[11] O. Pavlovsky and M. Ulybyshev, Monte Carlo calculation of
the lateral Casimir forces between rectangular gratings within
the formalism of lattice quantum field theory, Int. J. Mod.
Phys. A 26, 2743 (2011).

[12] O. Pavlovsky and M. Ulybyshev, Casimir energy in the com-
pact QED on the lattice, arXiv:0901.1960 [hep-lat].

[13] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Casimir
effect on the lattice: U(1) gauge theory in two spatial dimen-
sions, Phys. Rev. D 94, 094504 (2016).

[14] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Non-
perturbative Casimir effect and monopoles: Compact Abelian
gauge theory in two spatial dimensions, Phys. Rev. D 95,
074511 (2017).

[15] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Casimir
effect and deconfinement phase transition, Phys. Rev. D 96,
094507 (2017).

[16] M. N. Chernodub, V. A. Goy, A. V. Molochkov, and H. H.
Nguyen, Casimir Effect in Yang-Mills Theory in D = 2 + 1,
Phys. Rev. Lett. 121, 191601 (2018).

[17] M. N. Chernodub, V. A. Goy, and A. V. Molochkov, Phase
structure of lattice Yang-Mills theory on T 2 × R2, Phys. Rev.
D 99, 074021 (2019).

[18] M. Kitazawa, S. Mogliacci, I. Kolbé, and W. A. Horowitz,
Anisotropic pressure induced by finite-size effects in SU(3)
Yang-Mills theory, Phys. Rev. D 99, 094507 (2019).

[19] S. K. Kim, W. Namgung, K. S. Soh, and J. H. Yee, Dynamical
symmetry breaking and space-time topology, Phys. Rev. D 36,
3172 (1987).

[20] D. Y. Song and J. K. Kim, Dynamical symmetry break-
ings on a nontrivial topology, Phys. Rev. D 41, 3165
(1990).

[21] D. Y. Song, Four-fermion interaction model on R2 × S1: A
dynamical dimensional reduction, Phys. Rev. D 48, 3925
(1993).

[22] D. K. Kim, Y. D. Han, and I. G. Koh, Chiral symmetry break-
ing in a finite volume, Phys. Rev. D 49, 6943 (1994).

[23] A. S. Vshivtsev, B. V. Magnitskiı̆, and K. G. Klimenko, Tricrit-
ical point in the Gross-Neveu model with a chemical potential
and a nontrivial topology of the space, JETP Lett. 61, 871
(1995) [Pisma Zh. Eksp. Teor. Fiz. 61, 847 (1995)].

[24] M. A. Vdovichenko and A. K. Klimenko, Oscillation phe-
nomena in polyacetylene: R1 × S1 Gross-Neveu model with
a chemical potential, JETP Lett. 68, 460 (1998); Pisma Zh.
Eksp. Teor. Fiz. 68, 431 (1998).

[25] A. S. Vshivtsev, M. A. Vdovichenko, and K. G. Klimenko,
Oscillatory phenomena in cold matter with four-fermion inter-
action, J. Exp. Theor. Phys. 87, 229 (1998); Zh. Eksp. Teor.
Fiz. 114, 418 (1998).

[26] J. Braun, B. Klein, and H. J. Pirner, Volume dependence of the
pion mass in the quark-meson model, Phys. Rev. D 71, 014032
(2005).

[27] J. Braun, B. Klein, and H. J. Pirner, Influence of quark bound-
ary conditions on the pion mass in finite volume, Phys. Rev. D
72, 034017 (2005).

[28] J. Braun, B. Klein, H. J. Pirner, and A. H. Rezaeian, Volume
and quark mass dependence of the chiral phase transition,
Phys. Rev. D 73, 074010 (2006).

[29] L. M. Abreu, M. Gomes, and A. J. da Silva, Finite-size effects
on the phase structure of the Nambu–Jona-Lasinio model,
Phys. Lett. B 642, 551 (2006).

[30] D. Ebert, K. G. Klimenko, A. V. Tyukov, and V. Ch.
Zhukovsky, Finite size effects in the Gross-Neveu model
with isospin chemical potential, Phys. Rev. D 78, 045008
(2008).

[31] L. F. Palhares, E. S. Fraga, and T. Kodama, Chiral transi-
tion in a finite system and possible use of finite-size scaling
in relativistic heavy ion collisions, J. Phys. G 38, 085101
(2011).

[32] L. M. Abreu, A. P. C. Malbouisson, J. M. C. Malbouisson, and
A. E. Santana, Finite-size effects on the chiral phase diagram
of four-fermion models in four dimensions, Nucl. Phys. B 819,
127 (2009).

[33] L. M. Abreu, A. P. C. Malbouisson, and J. M. C. Malbouisson,
Phase structure of difermion condensates in the Nambu–Jona-
Lasinio model: The size-dependent properties, Europhys. Lett.
90, 11001 (2010).

[34] M. Hayashi and T. Inagaki, Curvature and topological effects
on dynamical symmetry breaking in a four- and eight-fermion
interaction model, Int. J. Mod. Phys. A 25, 3353 (2010).

[35] D. Ebert and K. G. Klimenko, Cooper pairing and finite-size
effects in a Nambu–Jona-Lasinio-type four-fermion model,
Phys. Rev. D 82, 025018 (2010).

[36] J. Braun, B. Klein, and P. Piasecki, On the scaling behavior of
the chiral phase transition in QCD in finite and infinite volume,
Eur. Phys. J. C 71, 1576 (2011).

[37] L. M. Abreu, A. P. C. Malbouisson, and J. M. C. Malbouisson,
Nambu-Jona-Lasinio model in a magnetic background: Size-
dependent effects, Phys. Rev. D 84, 065036 (2011).

[38] D. Ebert, T. G. Khunjua, K. G. Klimenko, and V. Ch.
Zhukovsky, Charged pion condensation phenomenon of dense
baryonic matter induced by finite volume: The NJL2 model
consideration, Int. J. Mod. Phys. A 27, 1250162 (2012).

[39] J. Braun, B. Klein, and B.-J. Schaefer, On the phase structure
of QCD in a finite volume, Phys. Lett. B 713, 216 (2012).

[40] A. Flachi, Interacting fermions, boundaries, and finite size
effects, Phys. Rev. D 86, 104047 (2012).

[41] A. Flachi, Strongly Interacting Fermions and Phases of the
Casimir Effect, Phys. Rev. Lett. 110, 060401 (2013).

[42] B. C. Tiburzi, Chiral symmetry restoration from a boundary,
Phys. Rev. D 88, 034027 (2013).

[43] R.-A. Tripolt, J. Braun, B. Klein, and B.-J. Schaefer, Effect of
fluctuations on the QCD critical point in a finite volume, Phys.
Rev. D 90, 054012 (2014).

[44] T. H. Phat and N. V. Thu, Finite-size effects of linear sigma
model in compactified space-time, Int. J. Mod. Phys. A 29,
1450078 (2014).

[45] D. Ebert, T. G. Khunjua, K. G. Klimenko, and V. Ch.
Zhukovsky, Interplay between superconductivity and chiral
symmetry breaking in a (2 + 1)-dimensional model with a
compactified spatial coordinate, Phys. Rev. D 91, 105024
(2015).

023201-20

https://doi.org/10.1103/PhysRevResearch.2.033375
https://doi.org/10.1142/S0217751X10048378
https://doi.org/10.1007/s11232-010-0084-5
https://doi.org/10.1142/S0217751X11053559
http://arxiv.org/abs/arXiv:0901.1960
https://doi.org/10.1103/PhysRevD.94.094504
https://doi.org/10.1103/PhysRevD.95.074511
https://doi.org/10.1103/PhysRevD.96.094507
https://doi.org/10.1103/PhysRevLett.121.191601
https://doi.org/10.1103/PhysRevD.99.074021
https://doi.org/10.1103/PhysRevD.99.094507
https://doi.org/10.1103/PhysRevD.36.3172
https://doi.org/10.1103/PhysRevD.41.3165
https://doi.org/10.1103/PhysRevD.48.3925
https://doi.org/10.1103/PhysRevD.49.6943
http://jetpletters.ru/ps/1209/article_18281.pdf
https://doi.org/10.1134/1.567890
https://doi.org/10.1134/1.558650
https://doi.org/10.1103/PhysRevD.71.014032
https://doi.org/10.1103/PhysRevD.72.034017
https://doi.org/10.1103/PhysRevD.73.074010
https://doi.org/10.1016/j.physletb.2006.10.015
https://doi.org/10.1103/PhysRevD.78.045008
https://doi.org/10.1088/0954-3899/38/8/085101
https://doi.org/10.1016/j.nuclphysb.2009.04.012
https://doi.org/10.1209/0295-5075/90/11001
https://doi.org/10.1142/S0217751X10049426
https://doi.org/10.1103/PhysRevD.82.025018
https://doi.org/10.1140/epjc/s10052-011-1576-7
https://doi.org/10.1103/PhysRevD.84.065036
https://doi.org/10.1142/S0217751X1250162X
https://doi.org/10.1016/j.physletb.2012.05.053
https://doi.org/10.1103/PhysRevD.86.104047
https://doi.org/10.1103/PhysRevLett.110.060401
https://doi.org/10.1103/PhysRevD.88.034027
https://doi.org/10.1103/PhysRevD.90.054012
https://doi.org/10.1142/S0217751X1450078X
https://doi.org/10.1103/PhysRevD.91.105024


LATTICE-FERMIONIC CASIMIR EFFECT … PHYSICAL REVIEW RESEARCH 3, 023201 (2021)

[46] G. A. Almasi, R. D. Pisarski, and V. V. Skokov, Volume de-
pendence of baryon number cumulants and their ratios, Phys.
Rev. D 95, 056015 (2017).

[47] A. Flachi, M. Nitta, S. Takada, and R. Yoshii, Sign Flip in
the Casimir Force for Interacting Fermion Systems, Phys. Rev.
Lett. 119, 031601 (2017).

[48] M. Nitta and R. Yoshii, Self-consistent large-N analytical
solutions of inhomogeneous condensates in quantum CPN−1

model, J. High Energy Phys. 12 (2017) 145.
[49] L. M. Abreu and E. S. Nery, Finite-size effects on the phase

structure of the Walecka model, Phys. Rev. C 96, 055204
(2017).

[50] Q.-W. Wang, Y. Xia, and H.-S. Zong, Finite volume ef-
fects with stationary wave solution from Nambu–Jona-Lasinio
model, arXiv:1802.00258 [hep-ph].

[51] Q. Wang, Y. Xiq, and H. Zong, Nambu–Jona-Lasinio model
with proper time regularization in a finite volume, Mod. Phys.
Lett. A 33, 1850232 (2018).

[52] T. Ishikawa, K. Nakayama, and K. Suzuki, Casimir ef-
fect for nucleon parity doublets, Phys. Rev. D 99, 054010
(2019).

[53] T. Inagaki, Y. Matsuo, and H. Shimoji, Four-Fermion Interac-
tion Model on MD−1 ⊗ S1, Symmetry 11, 451 (2019).

[54] K. Xu and M. Huang, Zero-mode contribution and quantized
first-order apparent phase transition in a droplet quark matter,
Phys. Rev. D 101, 074001 (2020).

[55] L. M. Abreu, E. B. S. Corrêa, C. A. Linhares, and A. P. C.
Malbouisson, Finite-volume and magnetic effects on the phase
structure of the three-flavor Nambu—Jona-Lasinio model,
Phys. Rev. D 99, 076001 (2019).

[56] T. Ishikawa, K. Nakayama, D. Suenaga, and K. Suzuki, D
mesons as a probe of Casimir effect for chiral symmetry break-
ing, Phys. Rev. D 100, 034016 (2019).

[57] L. M. Abreu and E. S. Nery, Critical behaviour of an effec-
tive relativistic mean field model in the presence of magnetic
background and boundaries, Eur. Phys. J. A 55, 108 (2019).

[58] L. M. Abreu, E. S. Nery, and E. B. S. Corrêa, Boundary
effects on constituent quark masses and on chiral susceptibility
in a four-fermion interaction model, Physica A 572, 125885
(2021).

[59] S.-S. Wan, D. Li, B. Zhang, and M. Ruggieri, Finite Size
Effects on the Chiral Phase Transition of Quantum Chromo-
dynamics, arXiv:2012.05734 [hep-ph].

[60] J. Kogut and L. Susskind, Hamiltonian formulation of Wil-
son’s lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[61] L. Susskind, Lattice fermions, Phys. Rev. D 16, 3031
(1977).

[62] K. G. Wilson, Gauge Theories and Modern Field Theory (MIT
Press, Cambridge, 1975).

[63] K. G. Wilson, New Phenomena in Subnuclear Physics, Part A
(Plenum Press, New York, 1977), p. 69.

[64] D. B. Kaplan, A method for simulating chiral fermions on the
lattice, Phys. Lett. B 288, 342 (1992).

[65] Y. Shamir, Chiral fermions from lattice boundaries, Nucl.
Phys. B 406, 90 (1993).

[66] V. Furman and Y. Shamir, Axial symmetries in lat-
tice QCD with Kaplan fermions, Nucl. Phys. B 439, 54
(1995).

[67] S. Murakami, Phase transition between the quantum spin Hall
and insulator phases in 3D: Emergence of a topological gap-
less phase, New J. Phys. 9, 356 (2007).

[68] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Dirac Semimetal in Three Dimensions,
Phys. Rev. Lett. 108, 140405 (2012).

[69] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[70] T. Ishikawa, K. Nakayama, and K. Suzuki, Casimir effect for
lattice fermions, Phys. Lett. B 809, 135713 (2020).

[71] A. Actor, I. Bender, and J. Reingruber, Casimir effect on a
finite lattice, Fortsch. Phys. 48, 303 (2000).

[72] M. Pawellek, Finite-sites corrections to the Casimir energy on
a periodic lattice, arXiv:1303.4708 [hep-th].

[73] H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice: (I). Proof by homotopy theory, Nucl. Phys. B 185, 20
(1981) [Erratum: 195, 541 (1982)].

[74] H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice: (II). Intuitive topological proof, Nucl. Phys. B 193, 173
(1981).

[75] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445
(1974).

[76] H. Neuberger, Exactly massless quarks on the lattice, Phys.
Lett. B 417, 141 (1998).

[77] H. Neuberger, More about exactly massless quarks on the
lattice, Phys. Lett. B 427, 353 (1998).

[78] P. H. Ginsparg and K. G. Wilson, A remnant of chiral symme-
try on the lattice, Phys. Rev. D 25, 2649 (1982).

[79] R. C. Brower, H. Neff, and K. Orginos, Möbius fermions: Im-
proved domain wall chiral fermions, Nucl. Phys. Proc. Suppl.
140, 686 (2005).

[80] R. C. Brower, H. Neff, and K. Orginos, Möbius fermions,
Nucl. Phys. B Proc. Suppl. 153, 191 (2006).

[81] R. C. Brower, H. Neff, and K. Orginos, The Möbius do-
main wall fermion algorithm, Comput. Phys. Commun. 220,
1 (2017).

[82] P. Hays, Vacuum fluctuations of a confined massive field in
two dimensions, Ann. Phys. 121, 32 (1979).

[83] J. Ambjørn and S. Wolfram, Properties of the vacuum. I.
Mechanical and thermodynamic, Ann. Phys. 147, 1 (1983).

[84] S.-Y. Xu, Y. Xia, L. A. Wray, D. Qian, S. Jia, J. H. Dil,
F. Meier, J. Osterwalder, B. Slomski, H. Lin, R. J. Cava,
and M. Z. Hasan, Topological phase transition and texture
inversion in a tunable topological insulator, Science 332, 560
(2011).

[85] J. Jünemann, A. Piga, S. J. Ran, M. Lewenstein, M. Rizzi, and
A. Bermudez, Exploring Interacting Topological Insulators
with Ultracold Atoms: The Synthetic Creutz-Hubbard Model,
Phys. Rev. X 7, 031057 (2017).

[86] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Poly-
acetylene, Phys. Rev. Lett. 42, 1698 (1979).

[87] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton excitations
in polyacetylene, Phys. Rev. B 22, 2099 (1980); 28, 1138(E)
(1983).

[88] M. Creutz, T. Kimura, and T. Misumi, Aoki phases in the
lattice Gross-Neveu model with flavored mass terms, Phys.
Rev. D 83, 094506 (2011).

023201-21

https://doi.org/10.1103/PhysRevD.95.056015
https://doi.org/10.1103/PhysRevLett.119.031601
https://doi.org/10.1007/JHEP12(2017)145
https://doi.org/10.1103/PhysRevC.96.055204
http://arxiv.org/abs/arXiv:1802.00258
https://doi.org/10.1142/S0217732318502322
https://doi.org/10.1103/PhysRevD.99.054010
https://doi.org/10.3390/sym11040451
https://doi.org/10.1103/PhysRevD.101.074001
https://doi.org/10.1103/PhysRevD.99.076001
https://doi.org/10.1103/PhysRevD.100.034016
https://doi.org/10.1140/epja/i2019-12793-3
https://doi.org/10.1016/j.physa.2021.125885
http://arxiv.org/abs/arXiv:2012.05734
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevD.16.3031
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/0550-3213(93)90162-I
https://doi.org/10.1016/0550-3213(95)00031-M
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1016/j.physletb.2020.135713
https://doi.org/10.1002/(SICI)1521-3978(200004)48:4<303::AID-PROP303>3.0.CO;2-J
http://arxiv.org/abs/arXiv:1303.4708
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(82)90011-6
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/S0370-2693(98)00355-4
https://doi.org/10.1103/PhysRevD.25.2649
https://doi.org/10.1016/j.nuclphysbps.2004.11.180
https://doi.org/10.1016/j.nuclphysbps.2006.01.047
https://doi.org/10.1016/j.cpc.2017.01.024
https://doi.org/10.1016/0003-4916(79)90090-3
https://doi.org/10.1016/0003-4916(83)90065-9
https://doi.org/10.1126/science.1201607
https://doi.org/10.1103/PhysRevX.7.031057
https://doi.org/10.1103/PhysRevLett.42.1698
https://doi.org/10.1103/PhysRevB.22.2099
https://doi.org/10.1103/PhysRevB.28.1138
https://doi.org/10.1103/PhysRevD.83.094506


ISHIKAWA, NAKAYAMA, AND SUZUKI PHYSICAL REVIEW RESEARCH 3, 023201 (2021)

[89] T. Kimura, S. Komatsu, T. Misumi, T. Noumi, S. Torii, and S.
Aoki, Revisiting symmetries of lattice fermions via spin-flavor
representation, J. High Energy Phys. 01 (2012) 048.

[90] T. Misumi, New fermion discretizations and their applications,
Proceedings, 30th International Symposium on Lattice Field
Theory (Lattice 2012): Cairns, Australia, June 24-29, 2012,
PoS LATTICE2012, 005 (2012).

[91] A. Chowdhury, A. Harindranath, J. Maiti, and S. Mondal,
Many avatars of the Wilson fermion: A perturbative analysis,
J. High Energy Phys. 02 (2013) 037.

[92] T. Misumi and Y. Tanizaki, Lattice gauge theory for Haldane
conjecture and central-branch Wilson fermion, PTEP 2020,
033B03 (2020).

[93] T. Misumi and J. Yumoto, Varieties and properties of central-
branch Wilson fermions, Phys. Rev. D 102, 034516 (2020).

[94] X.-L. Qi, Y.-S. Wu, and S.-C. Zhang, Topological quantiza-
tion of the spin Hall effect in two-dimensional paramagnetic
semiconductors, Phys. Rev. B 74, 085308 (2006).

[95] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Topological field
theory of time-reversal invariant insulators, Phys. Rev. B 78,
195424 (2008).

[96] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall Conductance in a Two-Dimensional Pe-
riodic Potential, Phys. Rev. Lett. 49, 405 (1982).

[97] M. Kohmoto, Topological invariant and the quantization of the
Hall conductance, Ann. Phys. 160, 343 (1985).

[98] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Quantum spin
Hall effect and topological phase transition in HgTe quantum
wells, Science 314, 1757 (2006).

[99] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin
Hall insulator state in HgTe quantum wells, Science 318, 766
(2007).

[100] A. Boriçi, Truncated overlap fermions, Nucl. Phys. B, Proc.
Suppl. 83, 771 (2000).

[101] A. Boriçi, Truncated overlap fermions: The link between over-
lap and domain wall fermions, NATO Sci. Ser. C 553, 41
(2000).

[102] T. Blum, P. Chen, N. Christ, C. Cristian, C. Dawson, G.
Fleming, A. Kaehler, X. Liao, G. Liu, C. Malureanu, R.
Mawhinney, S. Ohta, G. Siegert, A. Soni, C. Sui, P. Vranas,
M. Wingate, L. Wu, and Y. Zhestkov, Quenched lattice QCD
with domain wall fermions and the chiral limit, Phys. Rev. D
69, 074502 (2004).

[103] Y. Aoki et al., Domain wall fermions with improved gauge
actions, Phys. Rev. D 69, 074504 (2004).

[104] D. Banerjee, R. V. Gavai, and S. Sharma, Thermodynamics of
the ideal overlap quarks on the lattice, Phys. Rev. D 78, 014506
(2008).

[105] R. V. Gavai and S. Sharma, Thermodynamics of free domain
wall fermions, Phys. Rev. D 79, 074502 (2009).

[106] J. N. Fuchs, A. Recati, and W. Zwerger, Oscillating Casimir
force between impurities in one-dimensional Fermi liquids,
Phys. Rev. A 75, 043615 (2007).

[107] P. Wächter, V. Meden, and K. Schönhammer, Indirect forces
between impurities in one-dimensional quantum liquids, Phys.
Rev. B 76, 045123 (2007).

[108] E. B. Kolomeisky, J. P. Straley, and M. Timmins, Casimir
effect in a one-dimensional gas of free fermions, Phys. Rev.
A 78, 022104 (2008).

[109] D. Zhabinskaya and E. J. Mele, Casimir interactions between
scatterers in metallic carbon nanotubes, Phys. Rev. B 80,
155405 (2009).

[110] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-
dimensional Dirac semimetal and quantum transport in
Cd3As2, Phys. Rev. B 88, 125427 (2013).

[111] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C.
Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil,
F. Chou, and M. Z. Hasan, Observation of a three-dimensional
topological Dirac semimetal phase in high-mobility Cd3As2,
Nat. Commun. 5, 3786 (2014).

[112] Z. K. Liu, B. Zhou, Z. J. Wang, H. M. Weng, D. Prabhakaran,
S.-K. Mo, Y. Zhang, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain,
and Y. L. Chen, Discovery of a three-dimensional topological
Dirac semimetal, Na3Bi, Science 343, 864 (2014).

[113] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,
D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation
of a large-gap topological-insulator class with a single Dirac
cone on the surface, Nat. Phys. 5, 398 (2009).

[114] S. Aoki, New phase structure for lattice QCD with Wilson
fermions, Phys. Rev. D 30, 2653 (1984).

[115] A. Bermudez, L. Mazza, M. Rizzi, N. Goldman, M.
Lewenstein, and M. A. Martin-Delgado, Wilson Fermions and
Axion Electrodynamics in Optical Lattices, Phys. Rev. Lett.
105, 190404 (2010).

[116] L. Mazza, A. Bermudez, N. Goldman, M. Rizzi, M. A.
Martin-Delgado, and M. Lewenstein, An optical-lattice-based
quantum simulator for relativistic field theories and topologi-
cal insulators, New J. Phys. 14, 015007 (2012).

[117] Y. Kuno, I. Ichinose, and Y. Takahashi, Generalized lattice
Wilson-Dirac fermions in (1+1) dimensions for atomic quan-
tum simulation and topological phases, Sci. Rep. 8, 10699
(2018).

[118] T. V. Zache, F. Hebenstreit, F. Jendrzejewski, M. K.
Oberthaler, J. Berges, and P. Hauke, Quantum simulation of
lattice gauge theories using Wilson fermions, Sci. Technol. 3,
034010 (2018).

[119] M. Bordag, I. V. Fialkovsky, D. M. Gitman, and D. V.
Vassilevich, Casimir interaction between a perfect conductor
and graphene described by the Dirac model, Phys. Rev. B 80,
245406 (2009).

[120] G. Gómez-Santos, Thermal van der Waals interaction between
graphene layers, Phys. Rev. B 80, 245424 (2009).

[121] D. Drosdoff and L. M. Woods, Casimir forces and graphene
sheets, Phys. Rev. B 82, 155459 (2010).

[122] I. V. Fialkovsky, V. N. Marachevsky, and D. V. Vassilevich,
Finite-temperature Casimir effect for graphene, Phys. Rev. B
84, 035446 (2011).

[123] B. E. Sernelius, Casimir interactions in graphene systems,
Europhys. Lett. 95, 57003 (2011).

[124] S. Bellucci and A. A. Saharian, Fermionic Casimir densities in
toroidally compactified spacetimes with applications to nan-
otubes, Phys. Rev. D 79, 085019 (2009).

[125] S. Bellucci and A. A. Saharian, Fermionic Casimir effect for
parallel plates in the presence of compact dimensions with
applications to nanotubes, Phys. Rev. D 80, 105003 (2009).

[126] S. Bellucci, A. A. Saharian, and V. M. Bardeghyan, Induced
fermionic current in toroidally compactified spacetimes with
applications to cylindrical and toroidal nanotubes, Phys. Rev.
D 82, 065011 (2010).

023201-22

https://doi.org/10.1007/JHEP01(2012)048
https://doi.org/10.22323/1.164.0005
https://doi.org/10.1007/JHEP02(2013)037
https://doi.org/10.1093/ptep/ptaa003
https://doi.org/10.1103/PhysRevD.102.034516
https://doi.org/10.1103/PhysRevB.74.085308
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1016/S0920-5632(00)00417-5
https://doi.org/10.1103/PhysRevD.69.074502
https://doi.org/10.1103/PhysRevD.69.074504
https://doi.org/10.1103/PhysRevD.78.014506
https://doi.org/10.1103/PhysRevD.79.074502
https://doi.org/10.1103/PhysRevA.75.043615
https://doi.org/10.1103/PhysRevB.76.045123
https://doi.org/10.1103/PhysRevA.78.022104
https://doi.org/10.1103/PhysRevB.80.155405
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1038/ncomms4786
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/nphys1274
https://doi.org/10.1103/PhysRevD.30.2653
https://doi.org/10.1103/PhysRevLett.105.190404
https://doi.org/10.1088/1367-2630/14/1/015007
https://doi.org/10.1038/s41598-018-29143-w
https://doi.org/10.1088/2058-9565/aac33b
https://doi.org/10.1103/PhysRevB.80.245406
https://doi.org/10.1103/PhysRevB.80.245424
https://doi.org/10.1103/PhysRevB.82.155459
https://doi.org/10.1103/PhysRevB.84.035446
https://doi.org/10.1209/0295-5075/95/57003
https://doi.org/10.1103/PhysRevD.79.085019
https://doi.org/10.1103/PhysRevD.80.105003
https://doi.org/10.1103/PhysRevD.82.065011


LATTICE-FERMIONIC CASIMIR EFFECT … PHYSICAL REVIEW RESEARCH 3, 023201 (2021)

[127] E. Elizalde, S. D. Odintsov, and A. A. Saharian, Fermionic
condensate and Casimir densities in the presence of compact
dimensions with applications to nanotubes, Phys. Rev. D 83,
105023 (2011).

[128] S. Bellucci and A. A. Saharian, Fermionic current from topol-
ogy and boundaries with applications to higher-dimensional
models and nanophysics, Phys. Rev. D 87, 025005 (2013).

[129] S. Bellucci, E. R. Bezerra de Mello, and A. A. Saharian,
Finite temperature fermionic condensate and currents in
topologically nontrivial spaces, Phys. Rev. D 89, 085002
(2014).

[130] F. D. M. Haldane, Model for a Quantum Hall Effect without
Landau Levels: Condensed-Matter Realization of the “Parity
Anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[131] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[132] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).

[133] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe,
Peculiar localized state at zigzag graphite edge, J. Phys. Soc.
Jpn. 65, 1920 (1996).

[134] N. Hamada, S.-i. Sawada, and A. Oshiyama, New one-
dimensional conductors: Graphitic microtubules, Phys. Rev.
Lett. 68, 1579 (1992).

[135] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus,
Electronic structure of chiral graphene tubules, Appl. Phys.
Lett. 60, 2204 (1992).

[136] E. V. Castro, A. Flachi, P. Ribeiro, and V. Vitagliano, Sym-
metry Breaking and Lattice Kirigami, Phys. Rev. Lett. 121,
221601 (2018).

[137] A. Flachi and V. Vitagliano, Symmetry breaking and lattice
kirigami: Finite temperature effects, Phys. Rev. D 99, 125010
(2019).

[138] S. G. Mamaev, V. M. Mostepanenko, and A. A. Starobinskiĭ,
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