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Measurement-protected quantum phases
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We introduce a class of hybrid quantum circuits, with random unitaries and projective measurements, which
host long-range order in the area-law entanglement phase of the steady state. Our primary example is circuits
with unitaries respecting a global Ising symmetry and two competing types of measurements. The phase diagram
has an area-law phase with spin-glass order, which undergoes a direct transition to a paramagnetic phase with
volume-law entanglement, as well as a critical regime. Using mutual information diagnostics, we find that such
entanglement transitions preserving a global symmetry are in universality classes different from those without
symmetry. We analyze generalizations of such hybrid circuits to higher dimensions, which allow for coexistence
of order and volume-law entanglement, as well as topological order without any symmetry restrictions.
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I. INTRODUCTION

A major frontier of quantum many-body physics is
understanding what types of order can be stabilized in
nonequilibrium settings. Much progress has stemmed from
many-body localization [1,2], which is characterized by the
breakdown of thermalization and the restricted growth of
entanglement. Such nonequilibrium features have usually
been achieved by considering models with strong disorder,
enabling the existence of “localization-protected quantum or-
der” in highly excited states of Hamiltonians [3–5].

Recently, an alternative approach for restricting entangle-
ment growth has been proposed in hybrid quantum circuits
involving both unitary evolution and measurements [6–11].
While generic unitary evolution leads to entanglement growth
and a steady state with volume-law entanglement, measure-
ments generally disentangle degrees of freedom and lead to
area-law entangled steady states. The competition between the
two leads to a fascinating phase transition between area- and
volume-law regimes that has been vigorously explored, stim-
ulating alternative perspectives of the entanglement dynamics
[12–23].

A natural question is whether any nontrivial long-range
order can be stabilized in the area-law regime of such hybrid
circuits, and if so, how to understand phase transitions from
the ordered phase? This is motivated by not only the search for
new orders and universality classes but also the intriguing pos-
sibility of quantum effects being relevant in the brain [24,25].
It has been proposed that the binding of particular molecules
realizes projective measurements [26], and thus the possibility
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of a stable many-body quantum order may be applicable in
quantum cognition proposals.

In this work, we present a class of hybrid circuits which
hosts long-range quantum order within the area-law phase.
The basic intuition is that long-range order cannot be con-
nected to a trivial product state by a finite depth circuit [27],
and thus the order can survive up to a threshold ratio of
unitaries to measurements. A caveat is that in the circuit
architectures presented in [6–8], the basis of any measurement
is immediately randomized by a unitary, and we will need to
modify the architecture appropriately. As proof of concept, we
demonstrate the existence of long-range spin-glass order in
the area-law phase of a class of hybrid circuits with unitaries
respecting a global Z2 symmetry and two competing types
of measurements. We find a phase diagram which contains
both a direct transition between spin-glass area-law phase and
paramagnetic volume-law phase as well as a critical regime.
The mutual information at these entanglement transitions
exhibits distinct power-law scaling, indicating distinct univer-
sality classes due to the global symmetry. We also analyze
a two-dimensional version of the hybrid circuit which enables
coexistence of spin-glass order and volume-law entanglement.
We conclude by mentioning generalizations of our construc-
tion to other architectures and stabilizing topological order,
which would not require a global symmetry.

II. SETUP

We primarily focus on an ensemble of circuits C acting
on a one-dimensional chain of qubits of length L with pe-
riodic boundary conditions. The circuit architecture consists
of a brick-wall pattern of two-qubit operations (Fig. 1). Each
operation is either a measurement (M), with probability p, or a
random unitary (U), with probability 1 − p. Given that an op-
eration is a measurement, there are two types of measurements
M1 and M2, with probability r and 1 − r. For two neighboring
qubits i, i + 1, we define M1 to be the projective measurement
of ZiZi+1 and M2 to be the projective measurement of Xi.
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FIG. 1. Phase diagram of steady states of the Z2-symmetric
hybrid circuit, which consists of brick-wall two-qubit operations:
measurement or Z2-symmetric Clifford unitary with probability p
or 1 − p, respectively. Given measurement, it is either M1 = ZZ or
M2 = XI measurement with probability r or 1 − r. The central por-
tion is a critical regime, based on our (finite size L = 768) numerics,
discussed in the text.

As is the case in previous works, it is convenient for
scalable simulation to choose the random unitary from an
ensemble of Clifford gates, which have the property of map-
ping a string of Pauli operators to another Pauli string (in
the Heisenberg picture). This enables via the Gottesman-
Knill theorem the efficient simulation of the circuit dynamics
[28–30], as one need only track the evolution of polynomially
many Pauli strings as opposed to an exponentially large wave
function. It is important that we add an additional symmetry
criteria to this ensemble: each Clifford gate U should map
XiXi+1 to itself; this is sufficient and necessary for preserv-
ing a global Ising symmetry given by

∏L
i=1 Xi. Thus, both

unitaries and measurements in the circuit commute with the
Ising symmetry, which is clearly essential for defining any
symmetry-breaking order. Details of this ensemble and Clif-
ford/stabilizer technology can be found in Appendix A.

The initial state is the product state |ψ0〉 = ⊗|+〉, where
X |+〉 = |+〉. We are interested in the long-time steady-state
properties after the initial state has been evolved with a deep
random circuit |ψ〉 = C|ψ0〉. In our simulations, we average
target quantities over both different realizations of the circuits
and different time slices of a given realization at long time; we
hereafter refer to this as “averaging over the circuit ensemble.”
In particular, to distinguish area and volume-law scaling of en-
tanglement, we will compute the Renyi entanglement entropy
of ψ after a bipartition into A and Ā:

SA = − log Tr
(
ρ2

A

)
, (1)

averaged over the circuit ensemble. Here ρA = TrĀ|ψ〉〈ψ | and
as different Rényi entropies are identical for stabilizer states,
we have specified without loss of generality the second Rényi.

We will also compute the spin-glass order parameter

O = 1

L

L∑
i, j=1

〈ψ |ZiZ j |ψ〉2 − 〈ψ |Zi|ψ〉2〈ψ |Zj |ψ〉2, (2)

again averaged over the circuit ensemble. Given the Ising
symmetry

∏
X , the subtracted piece is always zero. This order

parameter probes long-range entanglement in the following
sense. For a product state, it is manifestly constant (unity),
and the application of finite depth circuits can only lead
to exponentially decaying correlators 〈ZiZ j〉 ≈ e−|i− j|/ξ from

Lieb-Robinson bounds [27,31]. Hence, in the trivial phase of
product-like states, this order parameter is constant (indepen-
dent of system size). On the other hand, consider an ideal
spin-glass state: a random cat or Greene-Horne-Zeilinger
(GHZ)-type state |s〉 + (

∏
X )|s〉, where s is a random spin

configuration in the z-basis; for this state the order parameter
grows linearly with L because 〈ZiZ j〉2 = 1 for every i, j. Thus,
the scaling of this order parameter with system size (constant
versus linear) can be used to identify the spin-glass phase.

After averaging, these quantities SA, O depend only on the
parameters of the circuit ensemble p, r.

III. PHASE DIAGRAM

We begin by analyzing several cross sections of the phase
diagram.

First, consider the p = 1 cross section (circuits with mea-
surement only). For r = 1 (ZZ measurement only), the final
state has random ZiZi+1 = ±1 for each pair of qubits and
is thus a random cat state described above (due to the Ising
symmetry). The other extreme r = 0 yields random param-
agnetic product states. Both spin-glass and trivial phases are
perturbatively stable to competing measurements respecting
the Ising symmetry. For example, an X measurement on a
single qubit j of a cat state will disentangle the qubit and
leave the remaining system in a cat state; this is because
the stabilizers Zj−1Zj, ZjZ j+1 become Zj−1Zj+1, Xj after the
measurement and the cat heals across j. Note that the Ising
symmetry is essential here; a Z measurement on a single qubit
of a cat state would collapse it into a product state.

This ensemble of measurement-only circuits has a du-
ality between ZZ, X measurements that is manifest after
performing a Jordan-Wigner mapping from spins to Majorana
modes. In the latter representation, each spin corresponds to
two Majorana modes, and in the resulting Majorana chain,
the two types of measurement correspond to fermion parity
measurements between pairs of Majoranas on even and odd
bonds [Fig. 2(a)]. The duality fixes a phase transition between
spin-glass and paramagnetic phases at r = 0.5, and this criti-
cal point in the Majorana representation is explicitly described
by a 2D classical loop model at its corresponding critical
point; this mapping was detailed in [32]. See Fig. 2(a) for an
example of loops arising from Majorana worldlines.

Next, we consider the cross section with fixed r = 0.5 and
variable p. Remarkably, we find (Fig. 3) that in the range
p ∈ [0.5, 1], the entanglement scales with subsystem size
as SA = c(p) log |A|, with the coefficient increasing continu-
ously from c(p = 1) ≈ 0.27 (consistent with the loop model
prediction

√
3/2π [33]). For p < 0.5, the entanglement ex-

hibits volume-law scaling. We also compute the mutual
information I (a, b) = Sa + Sb − Sa∪b between two qubits a, b
and find that in the critical regime, I decays as a power law
with |b − a|; the power also varies continuously with p.

Another important cross section is r = 1.0 and variable
p, in which unitaries compete with exclusively ZZ measure-
ments. We find evidence of a critical point at pc ≈ 0.38, in
which there is a simultaneous transition from a spin-glass
area-law phase above pc to a paramagnetic volume-law phase
below pc. This is supported by Fig. 4, which depicts a tran-
sition of entanglement scaling from area to volume law at
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FIG. 2. (a) The two-qubit measurements are fermion parity mea-
surements (denoted by the pair of arcs) on the four corresponding
Majorana modes. The two-qubit unitary acts locally on the four
modes because it preserves fermion parity. A circuit with only mea-
surements maps to loops of Majorana worldlines, as noted in [32].
(b) A circuit with only ZZ measurements and unitaries, and the
minimal cut (blue line) for an interval with endpoint qubits (a, b).
A minimal cut in the area-law phase also mediates spin-glass corre-
lation between a, b via the ZZ measurements traversed.

pc ≈ 0.38 and a transition of spin-glass order parameter from
linear scaling with L to constant scaling at pc ≈ 0.39 (the
two points are within numerical error). It is evident from the
figures that both entanglement and order parameter exhibit
log scaling at the critical point and scaling collapse near the
critical point:

SL/4(L, p) − SL/4(L, pc) = F (p − pc)L1/νS ,

O(L, p) − O(L, pc) = G[(p − pc)L1/νO ] (3)

with νS ≈ 1.3, νO ≈ 1.5. The critical exponent νS ≈ 1.3 is
comparable to the value (4/3) expected for the percolation
transition in two dimensions.

Some intuition for this phase transition can be obtained
from the Majorana representation, in which a two-qubit uni-
tary acts locally on the four corresponding Majoranas because

FIG. 3. r = 0.5 cross section (equal probability for ZZ and X
measurements). (left) Entanglement entropy versus log of partition
size, for various p. (right) Mutual information decay in log-log plot.
Total system size is L = 768.

FIG. 4. r = 1 cross section (unitaries and only ZZ measurements
with probability p). (top) Entanglement entropy versus log of parti-
tion size for total system size L = 768 and spin-glass order parameter
versus log of system size, for various p. At pc ≈ 0.38, 0.39, the two
exhibit log scaling. (bottom) Scaling collapse of both quantities with
νS ≈ 1.3, νO ≈ 1.5.

the unitary respects the Ising symmetry (fermion parity).
In particular, the symmetric two-qubit Clifford gate is gen-
erated by (noninteracting) Majorana swap operations and
(interacting) multiplication by the local fermion parity (see
Appendix A). As suggested in [8], it is helpful to consider
a minimal cut picture which yields the final state’s zeroth
Rényi entanglement entropy for an interval with endpoints
at qubits a, b. We expect the latter to be proportional to the
minimum number of unitaries cut by a curve through the
circuit with endpoints fixed to be a, b at the final time slice
[see Fig. 2(b)]. Within this picture, the area-law S0 phase
corresponds to minimal cuts which pass through a constant
number of unitaries as |b − a| → ∞. Though the minimal cut
picture is only strictly valid for the zeroth Rényi entropy of a
circuit with Haar random unitaries, we use it as a heuristic for
understanding the transition in the Clifford circuit.

Such a minimal cut in the area-law phase also implies that
the spin-glass correlation 〈ZaZb〉2 is constant as |b − a| → ∞,
yielding a long-range spin glass. This arises from the product
of ZZs from the measurements along the minimal cut, which
is attenuated by only a constant number of unitaries traversed
by the cut. The ZZ correlation begins with the bottom two
qubits of the minimal cut, and as the next measurements
along the minimal cut are performed, the pair of qubits which
are correlated propagates outward in both directions until it
reaches a, b.

Hence, the minimal cut links the area-law phase and spin-
glass order, at least for r = 1. A minimal cut through only a
constant number of unitaries is no longer possible when the
unitary cluster percolates. Hence, we expect that the area-law
spin glass is destroyed near the site percolation threshold
of the square lattice 0.59. Our numerical results indicates
1 − pc ≈ 0.62, which is close to the value 0.59 given by the
minimum cut picture.
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FIG. 5. (left) Antipodal geometry. Intervals A and B are of the
same size and centered on two antipodal points of the periodic qubit
chain of length L. (right) Simulated mutual information I (A, B) as a
function of the ratio |A|/L at critical points corresponding to r = 0
(Z2-Clifford unitaries + X measurement) and r = 1 (Z2-Clifford
unitaries + ZZ measurement).

A useful probe of the critical point is the mutual informa-
tion between two antipodal intervals A, B of equal size |A|
(see Fig. 5). In previous studies without a global symmetry,
including both Haar and Clifford random circuits, the mutual
information scales as IA,B ∝ (|A|/L)4 [7,8] in the regime of
(|A|/L) � 1. In contrast, in our symmetric hybrid circuit, at
the spin-glass area-law to paramagnetic volume-law transition
described above, we find IA,B ∝ (|A|/L)1.4. Moreover, in the
r = 0 cross section (which involves X measurement only),
there is a direct transition between paramagnetic area law and
paramagnetic volume law, at which we find IA,B ∝ (|A|/L)2.7

(Fig. 5). These indicate that the entanglement transitions in
the presence of a global symmetry are in distinct universality
classes than those without symmetry.

The full phase diagram is presented in Fig. 1 and obtained
from both cross sections presented above and additional ones
in Appendix C (r = 0.25, 0.75 and p = 0.75). The shaded
central portion is a critical regime including the segment of
the r = 0.5 cross section discussed earlier, with logarithmic
entanglement scaling in our current system sizes. One pos-
sibility is that the segment at r = 0.5 closely borders two
phase boundaries and thus appears critical in finite systems.
However, both the large range of the log scaling observed (p ∈
[0.5, 1]) as well as the sharp transition from log to volume-law
scaling (Fig. 3) (as opposed to a smooth crossover) are sur-
prising. In short, the critical phase in the thermodynamic limit
either (1) persists as a critical phase (2) disappears, resulting
in two critical lines separating volume law from paramagnetic
and spin glass or (3) disappears, resulting in three critical lines
meeting at a point.

For understanding the critical regime, one may consider
loop models with crossings [34–41] as toy models for our
hybrid circuit. As mentioned, the r = 0.5, p = 1 critical point
is described by nonintersecting loops, and loop crossings
represent unitaries which swap Majoranas; these serve as
bottlenecks in the circuit/loop configuration which lengthen
the minimal cut and increase entanglement. Interestingly, for
finite crossing probability, loop models have a critical “Gold-
stone phase” [34–41], referring to a sigma model description
in the continuum. Indeed, the phase diagram in [34] bears
much similarity to ours, and it would be interesting to under-
stand in detail the connection. This Goldstone phase has also

FIG. 6. (left) A cross section of the (2 + 1)D circuit architecture.
Black dots are qubits, and each colored square denotes an operation
acting on qubits within the square. An operation is either a random
Ising-symmetric four-qubit Clifford gate (yellow) or a series of three
two-qubit measurements Z1Z2, Z2Z3, Z3Z4 (blue), with probability
1 − p or p. The circuit alternates between the background and fore-
ground, which consist of two distinct partitions into sets of four.
(right) The two order parameters O(L, p) and SA(L, p) as functions
of p. For the simulation of SA(L, p) the total system size is fixed to
be L = (Lx, Ly ) = (60, 20).

been discussed in the context of entanglement transitions in
random tensor networks [42].

IV. HIGHER DIMENSIONS

In contrast to one dimension, higher-dimensional circuit
architectures allow for the possibility that both measurement
and unitary clusters can percolate in a parameter range. In
such a range, the final state consists of an extensive subset of
spins connected in the past by a measurement cluster, enabling
spin-glass order. On the other hand, the percolating unitary
cluster may intersect a minimal surface an extensive number
of times, leading to volume-law entanglement scaling.

This can be verified by simulating a generalization of
our architecture to a two-dimensional system using the
generalized order parameter

O2d (L, p) = 1

LxLy

∑
i, j

〈ψ |ZiZ j |ψ〉2 − 〈ψ |Zi|ψ〉2〈ψ |Z j |ψ〉2.

(4)

The left panel of Fig. 6 shows a temporal cross section of
our (2 + 1)D circuit; the circuit alternates between the back-
ground and foreground, which involve two distinct partitions
into sets of four-qubit operations. Each operation is, with
probability 1 − p or p, either a random four-qubit Clifford
gate commuting with X1X2X3X4, or three consecutive mea-
surements in bases Z1Z2, Z2Z3 and Z3Z4. Our result (right
panel of Fig. 6) shows that the entanglement transition and the
spin-glass transition, respectively, happen at pc,S ≈ 0.5 and
pc,O ≈ 0.25. The parameter range between them corresponds
to a volume-law, spin-glass-ordered phase. See Appendix E
for more details.

V. OTHER ARCHITECTURES

We expect that replacing symmetric Clifford with sym-
metric Haar random unitaries will not change the qualitative
aspects of the phase diagrams. The stability of the ordered
phase derives from the inability of finite depth circuits to

023200-4



MEASUREMENT-PROTECTED QUANTUM PHASES PHYSICAL REVIEW RESEARCH 3, 023200 (2021)

FIG. 7. Alternative class of circuits with Z2-symmetric random
unitaries always applied in brick-wall fashion, with in-between lay-
ers of M1 = ZiZi+1 measurements for every i, each applied with
probability p. The phase diagram has a paramagnetic volume-law
phase, a critical regime, and a spin-glass area-law phase. pc,S ≈ 0.52,

pc,O ≈ 0.58 (see Appendix D for details).

destroy the order, and this holds for any symmetric unitary
circuit.

Furthermore, the hybrid circuits considered in the literature
can also support spin-glass order, after a small but important
modification. Such circuits are brick walls of operations that
have probability 1 − p of being a random unitary and prob-
ability p of being a projective measurement followed by a
random unitary, and previous work has considered this setup
with ZZ measurements as the projective measurement [6].
However, both the fact that a unitary is always applied, even
after a measurement is made, and the fact that each measure-
ment layer was restricted to either even bonds or odd bonds of
qubits [6] imply that the measurement basis is irrelevant and
no spin-glass order can exist.

Consider a very similar setup in which random unitaries are
always applied in a brick-wall pattern, but between each layer
of unitaries, ZZ measurements on any neighboring qubits
are performed with probability p (see Fig. 7). In this case,
for large p, connected clusters of ZZ measurements are per-
formed, and the subsequent (single) layer of unitaries cannot
destroy the spin-glass order as long as the Lieb-Robinson
length is shorter than the typical measurement cluster size.
As before, it is essential that each random unitary respect the
global Ising symmetry.

We find that the volume-law phase persists up to p ≈ 0.52
and the spin-glass order begins at p ≈ 0.58 (see Appendix D
for data). Based on our numerics, the interval between these
points appears to be critical (entanglement scaling is not
strictly area or volume law), but we cannot rule out finite-size
effects masking a direct transition between the two phases.
Nonetheless, the existence of the spin-glass phase is unam-
biguous.

VI. TOPOLOGICAL ORDER AND BEYOND

The measurements in the hybrid circuit can be general-
ized to stabilize other types of quantum order. For example,

measurements of the (commuting Pauli) operators in the toric
code Hamiltonian [43] would stabilize a random topologically
ordered state. One could use the same type of order parameter
as Eq. (2), with the Z operator replaced by a string operator
(one of the Wilson lines). In contrast to the spin-glass order,
the unitaries in this hybrid circuit need not respect any global
symmetry for the stability of topological order.

The use of measurements to protect against random opera-
tions also forms the basis of active quantum error correction.
An important difference is that active quantum error correc-
tion seeks to reverse errors by applying operations depending
on the error syndromes are obtained. In contrast, in our setup,
while the measurement operations are essential, their out-
comes are not important (our scheme has no feedback). This
is because the protocol does not preserve a particular quan-
tum state but instead a particular long-range entanglement
structure. Hence the name measurement-protected quantum
phases.

Nonetheless, it would be interesting to incorporate con-
ditioning on measurements. More generally, can the hybrid
unitary and measurement circuits lead to new quantum orders
beyond the critical points? And how can these new univer-
sality classes with symmetry be understood? We leave these
explorations for the future.

Note added in proof. Recently we noticed a related work
[44] which was done independently and in parallel with re-
spect to the present manuscript.
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APPENDIX A: CLIFFORD CIRCUITS WITH SYMMETRY

A stabilizer state over N qubits |ψS〉 is defined to be the
unique simultaneous +1 eigen-state of a set of stabilizer S:

s |ψS〉 = |ψS〉 ∀s ∈ S, (A1)

where S = {s1, . . . , sN } is a set of mutually commuting and
independent (under multiplication) Pauli string operators. The
algorithm for obtaining entanglement entropy from S was
introduced in [7].

Since any nonidentity Pauli string operator s ∈ S has
spectrum {1,−1}, 1

2 (s + 1) is a projector to the s ’s posi-
tive eigenspace. Further the density matrix of |ψS〉 can be
explicitly written as

ρS = |ψS〉 〈ψS | =
∏

i

(
1 + si

2

)
= 1

2N

∑
g∈G

g. (A2)
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Here GS = {sb1
1 , . . . , sbN

N |bi ∈ {0, 1} ∀i} is the finite Abelian
group spanned by S under multiplication, named the stabilizer
group of |ψS〉.

A stabilizer state |ψS〉 can be efficiently stored in memory
by only keeping track of S , which takes O(N2) bytes. One can
also obtain quantities involving |ψS〉 by only referring to S .
A method for calculating bipartite entanglement entropy from
S was introduced in [7]. For the spin-glass order parameter 2,
the two-point correlation square term can be expressed as

〈ψS |ZiZ j |ψS〉2

= Tr(ρSZiZ jρSZiZ j )

= 1

22N
Tr

[∏
k

(1 + sk )ZiZ j

∏
l

(1 + sl )ZiZ j

]

= 1

22N
Tr

[∏
k

(1 + sk )(1 + ckick jsk )

]

= 1

22N
Tr

[∏
k

(1 + sk )(1 + ckick j )

]

= 1

22N
Tr

[∏
k

(1 + sk )

] ∏
l

(1 + clicl j )

= 1

2N

∏
l

(1 + clicl j )

=
∏

l

1[clicl j = 1], (A3)

where c is a {1,−1} valued matrix such that Zisk = ckiskZi.
The one-point square term can similarly be obtained as

〈ψS |Zi|ψS〉2 =
∏

l

1[cli = 1]. (A4)

Clifford gates over N qubits Cn are a class of unitary gates
with the property of always mapping one Pauli string operator
to another. The action of Clifford gate U ∈ CN on a stabilizer
state |ψS〉 is given by

U † |ψS〉 〈ψS |U =
∏

i

(
1 + U †siU

2

)
= |ψSU 〉 〈ψSU | , (A5)

where SU = {sU
1 , . . . , sU

N } = {U †s1U, . . . ,U †sNU } is still a
valid set of stabilizers. So the Clifford group also leaves the
set of stabilizer states invariant.

A N-qubit Clifford gate is completely decided by its
action on single-site Pauli operators {Xi, Zi}i∈[N]. Clearly
the mapping must preserve the commutation relation within
{Xi, Zi}i∈[N]. Moreover, it can be shown that any mapping
that maps {Xi, Zi}i∈[N] to the set of Pauli string operators and
preserves their commutation relations uniquely (up to a phase
factor) determines a U ∈ CN .

In the main text we focused on a subset of CN that re-
spects the Ising symmetry, namely, the Z2 symmetric Clifford
gates Csym

N . Such gates can be characterized by their defining
property of leaving the global flipping operator T = ∏

i Xi

invariant:

Csym
N = {U ∈ CN |U †TU = T }. (A6)

Similar to generic Clifford gates, Csym
N as a finite discrete

group can be generated by a much smaller set of one- and
two-qubit gates. The description of this set is more clear in the
Majorana picture through the Jordan-Wigner transformation:

γ2i−1 =
( ∏

j<i

Xj

)
Yi,

γ2i =
( ∏

j<i

Xj

)
Zi. (A7)

Because the transformation always maps a Pauli string
operator to a Majorana one and vise versa, we can conclude
that in the Majorana picture a Clifford gate always maps one
Majorana string operator to another (up to some phase factor).
The Z2 symmetry constraint guarantees that the action of
U ∈ Csym

N preserves the Majorana parity and is local in both
spin and Majorana picture.

Within the Majorana picture, Csym
N is generated by two

kinds of gates: the two-Majorana swap gate U s= exp( π
4 γ1γ2):

(U s)† γ1 U s = γ2,

(U s)† γ2 U s = −γ1, (A8)

and the four-Majorana “parity gate” (acting like a mul-
tiplication by the local fermion parity operator) U p =
exp( iπ

4 γ1γ2γ3γ4):

(U p)† γ1 U p = iγ2γ3γ4,

(U p)† γ2 U p = −iγ1γ3γ4,

(U p)† γ3 U p = iγ1γ2γ4,

(U p)† γ4 U p = −iγ1γ2γ3. (A9)

To numerically sample an element U from Csym
2 , first a

random element is picked in P2 − {I1I2, X1X2} as XU
1 (P2

is the set of two Pauli operators), then XU
2 is automatically

determined through XU
1 XU

2 = X1X2. Z1 is sampled from a
subset of P2 − {I1I2, X1X2, XU

1 , XU
2 } that commutes with XU

2
and anticommutes with XU

1 . Finally ZU
2 can be sampled in a

similar manner.

APPENDIX B: DETAILS OF SAMPLING PROCEDURE

In the main text, we are mainly concerned about properties
of the ensemble of late-time steady states produced by some
given circuit architecture. In this section we explain how we
sample states from this ensemble numerically.

For a given random realization of circuit with size L, we
first evolve the initial state (which is typically chosen to be a
product state) for τL steps so that it reaches the equilibrium,
then sample the evolving state every 	t steps. By increasing
	t , one can reduce the correlation between two adjacent
sampled states and increase the convergence speed of target
quantities. In our simulations 	t is fixed to be 32. The selec-
tion of τ is usually simulation-wise as τL needs to be larger
than the time required for the system to reach equilibrium, and
the latter is usually architecture and parameter dependent. To
decide τ one can plot the quantity of interest as a function
of time steps, then take any time after which the quantity

023200-6
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FIG. 8. Spin-glass order parameter O as a function of time for a
system of 512 spins at r = 1, p = pc = 0.39.

saturates divided by L as τ . As an example, Fig. 8 shows the
transient behavior of O(L = 512, p = 0.39, t ) at r = 1.

APPENDIX C: ENTANGLEMENT ENTROPY
ON OTHER CROSS SECTIONS

We obtain entanglement entropy scaling for three addi-
tional cross sections of the phase diagram: r = 0.25, 0.75
(Fig. 9) and p = 0.75 (Fig. 10).

FIG. 9. Entanglement entropy versus log of partition size near
the critical points at r = 0.25 (top) and r = 0.75 (bottom). L = 768.

FIG. 10. Entanglement entropy versus log of partition size near
the critical points at p = 0.75, two figures for two different ranges of
r. L = 768.

APPENDIX D: DATA FOR ALTERNATIVE
ARCHITECTURE

For the alternative architecture (Fig. 7), we present the
entanglement entropy scaling and spin-glass order parameter
data in Figs. 11 and 12. Based on the data, we conclude that

FIG. 11. Entanglement entropy versus log of partition size, for
various p, for the alternative architecture.

023200-7
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FIG. 12. Spin-glass order parameter versus log of system size,
for various p, for the alternative architecture.

the volume-law phase is destroyed at pc,S ≈ 0.52 and the spin-
glass order onsets at pc,O ≈ 0.58. The intermediate regime has
spin-glass correlation and entanglement scaling that is neither
clearly area or volume law. These could be due to finite-size
effects and requires larger systems for further study.

APPENDIX E: FURTHER DATA FOR (2+1)D
CIRCUIT AT P = 0.3

Figures 13 and 14 present the behaviors of SA(L, p) and
O(L, p) at p = 0.3 in (2+1)D circuit (see Fig. 6). Our re-
sult shows that SA(L, p)/O(L, p) scales linearly with partition
size/system size when p = 0.3.

FIG. 13. Simulated bipartite entanglement entropy SA(L, p) at
p = 0.3 in (2+1)D circuit with varying partition size A = (Ax, Ay ).
The total system size L = (Lx, Ly ) = (60, 20) and Ay = 20 are fixed
while Ax is varying. For dashed line (aS, bS ) = (4.87, 35.85).

FIG. 14. Simulated spin-glass order parameter O(L, p) at p =
0.3 in (2+1)D circuit with Ly = 20 fixed and Lx varying. For dashed
line (aO, bO) = (0.33, 0.67).
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