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Interfacial-curvature-driven coarsening in mass-conserved reaction-diffusion systems
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Mass conservation in chemical species appears in a broad class of reaction-diffusion systems (RDSs) and is
known to cause coarsening of the pattern in chemical concentration. Recent theoretical studies on RDSs with
mass conservation (MCRDSs) have reported that the interfacial curvature between two states contributes to
the coarsening process, which is reminiscent of phase separation phenomena. However, since MCRDSs do not
presuppose a variational principle, it is largely unknown whether description of surface tension is operative.
In this paper, we numerically and theoretically explore the coarsening process of patterns in MCRDSs in two
and three dimensions. We identify the parameter regions where the homogeneous steady state becomes stable,
unstable, and metastable. In the unstable region, pattern formation is triggered by usual (type-IIs) instability,
whereas in the metastable region, nucleation-growth-type pattern formation is observed. In the later stage,
spherical droplet patterns are observed in both regions, where they obey a relation similar to the Young-Laplace
law and coarsen following the evaporation-condensation mechanism. These results demonstrate that in the
presence of a conserved variable, a physical quantity similar to surface tension is relevant to RDSs, which
provides insight into molecular self-assembly driven by chemical reactions.
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I. INTRODUCTION

Reaction-diffusion systems (RDSs) are one of the most
generic mathematical frameworks that give rise to spatiotem-
poral patterns and have been applied to various phenomena,
ranging from physics, chemistry, biology, and geology to
ecology [1–4]. The Turing mechanism explains how a ho-
mogenous initial state is destabilized to develop a spatial
structure; infinitesimally small fluctuations with a particular
range of wave number (0 <)q− < q < q+ grow exponen-
tially, which is known as type-Is instability [1]. Despite this
analysis being valid only for every early linear time regime,
the wave number with the fastest growth qm usually provides a
good estimation of the characteristic length scale �m ≡ 2π/qm

for final steady-state patterns, such as stripes or hexagonal
dots in two-dimensional (2D) systems.

Mass-conserved reaction-diffusion systems (MCRDSs) do
not follow this trend. MCRDSs were originally developed
to model molecular localization of membrane-bounded pro-
teins inside cells, specifically Rho-family GTPases, which
regulate cell polarity [5–15]. In such systems, although
the instability of a homogenous solution is evaluated via
the same linear stability analysis as in the Turing mech-
anism, the region of the unstable modes is large scale
(i.e., q− = 0; type-IIs instability [1]). Notably, after a linear
time regime, the characteristic length scale of the patterns
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easily grows beyond �m and often reaches a length scale
comparable to the system size L; coarsening of patterns occurs
even though energy variational principle is not assumed. In
the context of biomolecular self-assembly, this feature in-
dicates that proteins accumulate at one site, not spreading
over multiple sites, and is crucial to determining the unique
directionality of cells. It was also discussed that the resulting
scalability of the pattern against the system size has biological
significance in morphogenesis [16–21].

Pattern formation of MCRDSs in one dimension has been
intensively investigated in previous research. Two types of
MCRDSs were mainly studied: in the first case, referred to
as “Turing type” [11], multiple peaklike domains, illustrated
in the left panel of Fig. 1(a), appear from a homogeneous
initial state via usual (type-IIs) instability [5,6]; the second
case is “wave-pinning type” [8], where the system is bistable
with high and low chemical concentration states, and by ex-
posing a finite (not infinitesimally small) perturbation to the
homogeneous state, mesalike concentration profiles emerge
as illustrated in the right panel of Fig. 1(a). Both systems
exhibit coarsening, i.e., smaller peaks and mesas shrink and
disappear while larger ones grow. For the Turing type, both
the height and width of the peak increase, whereas for the
wave-pinning type, only the width of the mesa grows while
keeping the height [see Fig. 1(a)]. For a long timescale, the
system reaches a single isolated domain in the Turing type. On
the other side, for the wave-pinning type, the decrease in the
number of domains significantly slows down at some point,
resulting in the apparent coexistence of multiple domains.

Recent studies revealed that the above differences between
the Turing type and the wave-pinning type would be rather
superficial [11,12,14]. Chiou et al. [11] found that the peaklike
profile in Turing-type MCRDSs is owing to the unsaturation
of the peak height. That is, the peaklike pattern is transient and
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FIG. 1. Steady-state analysis of MCRDSs in one dimension. (a) Two typical concentration profiles in MCRDSs. u1 and u2 denote u
at the bistable points. Depending on whether u in the domain is saturated to the stable points or not, the concentration profile of u show
mesalike (wave-pinning type, right panel) or peaklike (Turing type, left panel) behavior. (b) Dispersion relation for the homogeneous state.
The growth rate λ is shown for various parameter values indicated by the labels corresponding to those in (g). For large scale (q → 0), λ

follows λ = −(Dv fu − Du fv )/( fu − fv )q2 + O(q4), and the sign of the prefactor of q2 determines the stability of the homogeneous state.
(c) Mapping of the steady stable points on the u-v space for two different parameter values of T . The gray curve is the nullcline for the reaction
term f . The blue and green lines represent p∞ = Duu + Dvv for T = 0.02 and 0.002, respectively. The blue and green circles represent the
stable fixed points. Note that f is independent of the choice of the model parameters in our normalization (see Appendix B). (d) Steady-front
solutions u = ufr for T = 0.02 and 0.002. (e) Function profiles of �(u, p∞) for T = 0.02 and 0.002. (f) The trajectories of the steady solutions
(u, du/dx) for three different conditions of p = 60 (left), p = p∞ ∼ 64 (middle), and p = 70 (right). Here T is set as 0.002. The black solid,
blue dotted, and brown dashed lines represent periodic, localized, and unphysical solutions, respectively. The function profiles of u(x) for
localized solutions are shown in the insets. Note that the inset of the middle panel corresponds to the steady front solution ufr . The green circle
and cross symbols represent stable and unstable fixed points, respectively, and the former corresponds to (u1, 0) and (u2, 0). (g) Phase diagram.
The blue curve represents the border of the unstable region where type-IIs instability is operative. The brown and black curves represent the set
of stable points, u1 and u2, respectively. We denote the region outside of the two curves as stable and regions that are neither stable nor unstable
as metastable. The red circle symbol is a critical point, (uc, Tc ) = (

√
3, 1/8). The red cross symbols labeled A–D represent parameter sets

with T = 0.002 and u0 = 3.94, 1.05, 0.95, 0.65, respectively. (h) A steady front solution (ufr, p∞) obtained via 1D analysis corresponds to a
solution in which two stable states are segregated by a flat interface in higher dimensions (left). For an interface with positive mean curvature
(right), p takes a larger value than p∞, which plays a central role in long-time coarsening dynamics.

it will eventually become mesalike for a sufficiently large sys-
tem size and long simulation time. Their study also discussed
that the difference in the peak heights causes a difference in
“recruitment power”, which enhances the flux of the chem-
ical component from lower peaks to higher ones (see ∇p
introduced in Sec. II). This drives faster coarsening of peaks
seen in the Turing type than the wave-pinning type. Further-
more, type-IIs instability can occur in the wave-pinning type
MCRDSs by choosing appropriate parameter values [10–12].
Taken together, it is understood that there is a quantitative but
no essential difference between long-term dynamics of two
cases. We note that the coexistence of multiple peaks can also
be induced by a slight violation of mass conservation [12,14]
or the introduction of negative feedback [12].

However, since earlier studies have conducted intensive
analyses only in 1D systems, there remains a fundamen-
tal untested component in understanding the dynamics of
MCRDSs. For higher dimensions, the interfacial morphology

of patterns may be crucial to the pattern formation dynam-
ics of MCRDSs. Indeed, Refs. [11,12] reported that small
dropletlike domains tend to disappear whereas large ones tend
to grow, which reminds us of the evaporation–condensation,
or Lifshitz–Slyozov–Wagner (LSW) process in phase sepa-
ration phenomena [22–30]. The similarity in phase diagram
behaviors between MCRDSs and phase separation systems
[10,12,13] also supports this analogy. However, in MCRDSs,
the chemical reaction violates the detailed balance condition
in general. Although several studies [13,31] considered the
mapping from MCRDSs to a universal model of phase sep-
aration (i.e., the Cahn-Hilliard model), the existence of the
variational functional, which is a prerequisite for the theory
of phase separation, is not obvious. In particular, it remains
elusive whether the physical description of the surface tension,
which plays a prominent role in the LSW process, could be
rationalized for MCRDSs, because a detailed investigation of
MCRDSs in 2D and 3D has not been conducted so far.
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Motivated by the question raised above, this study ex-
plores the influence of curved interface on pattern formation
dynamics in MCRDSs. We perform extensive numerical sim-
ulations using multiple GPUs for both 2D and 3D systems.
The obtained dynamics are analyzed using methods developed
for phase separation phenomena, together with technique of
dynamical systems theory. By investigating the similarities
and differences in coarsening process between MCRDSs and
phase separation systems, we explore whether or not a concept
of surface tension is relevant to MCRDSs.

II. SYSTEM DESCRIPTION

We consider a system composed of two chemical species,
U and V , and denote their concentration fields as u(t, r)
and v(t, r), respectively. These species are interconvertible by
chemical reactions U → V and V → U , the rates of which
are kuu and kvv, respectively. Note that these two reactions
do not have to be in reverse relationship and the system may
not satisfy detailed balance. Both the transition rates ku and
kv can be dependent on the concentration states u and v,
as a result of positive feedback regulations in the chemical
reaction network. Moreover, both U and V migrate over space
by thermal diffusion. We model the time-evolution equations
for u and v as the following reaction-diffusion equations:

∂u

∂t
= Du∇2u − f (u, v), (1)

∂v

∂t
= Dv∇2v + f (u, v). (2)

Here, Du and Dv are the diffusion coefficients of U and V , re-
spectively, and we assume Du < Dv . f is the reaction term and
written as f = kuu − kvv. By adding the above two equations,
we obtain

∂s

∂t
= ∇2 p, (3)

where s = u + v and p = Duu + Dvv. Equation (3) indicates
that s is a conserved variable without material sources, and
transported from large to small p region. We show later that
p plays a role similar to that of chemical potential in the
coarsening regime.

The relevance of adopting MCRDSs to describe cellular
processes can be rationalized as follows: (i) Many subcellular
processes, such as cell polarity formation, are sufficiently
rapid (∼1 min) compared with the production and degradation
rates of the molecules (>10 min). Such processes are usu-
ally conducted only through the activation and deactivation
of molecules, such as phosphorylation and dephosphoryla-
tion. The ratio of molecules between “on” and “off” states
changes; however, the total mass of the molecule is con-
served throughout the processes. (ii) Molecular interaction
contains positive feedback loops that regulate the switching
rate between molecular states, e.g., the acceleration of phos-
phorylation is found in subcellular processes. (iii) Molecular
states are often associated with an affinity to the cellular
membrane; thus, molecules in different states are likely to
attach to or detach from the membrane. As a result, molecular
diffusion coefficients are significantly different between the
molecular states, being small on the cell membrane but large
in the cytosol. As these processes are basic, many previous

models, explicitly or implicitly, contain chemical components
that are conserved through dynamics. In Ref. [5], it was shown
that in a model with these conditions, a uniform distribution
of molecules can be destabilized by the type-IIs instability,
leading to an accumulation of molecules at one site.

To examine the generality of the results presented below,
we employ two models, following earlier works on MCRDSs,
both of which violate the detailed balance condition. Model
I employs ku = ca/(b + u2) and kv = c [5,6]. For model II,
ku = α and kv = k0 + βu2/(K2 + u2) are employed [8]. The
former and latter models correspond to the Turing type and
wave-pinning type, respectively, by the criteria mentioned
in the Introduction [11]. Because these models share many
aspects in their dynamical trends, we primarily describe the
results of model I in the main text and make comments
when there are remarkable differences in the results between
the two models. The results from model II are provided in
Appendix E.

In the results presented below, the statistical data are based
on simulations performed on 40962 and 10243 grids for 2D
and 3D systems, and have normalized units, described in Ap-
pendix B. After normalization, the governing Eqs. (1) and (2)
have two free parameters: One is associated with the reaction
term and is defined as R = a/b and α/β for models I and
II, respectively; the other is D = Dv/Du, associated with the
diffusion constants. Following Refs. [6,11], we set D = 50
and 100 for models I and II, respectively. As we will show
below, the stability of the homogeneous state is determined
by the product of these parameters T −1 ≡ RD, and the initial
chemical concentrations that determine the conserved quan-
tity in the system.

III. RESULTS

A. Phase diagram of MCRDSs

Before investigating pattern formation dynamics in
MCRDSs, we begin by identifying their parameter depen-
dencies by analyzing the initial homogeneous and eventual
bistable solutions. The results in this subsection are mainly
obtained by the analysis in 1D systems.

We first consider the stability of the homogeneous steady
solution (u0, v0). u0 and v0 are determined by the condi-
tions f (u0, v0) = 0 and s0 = u0 + v0, where s0 ≡ ∫

sdr/V
is the mean molecular concentration conserved through the
dynamics [see Eq. (3)], and V is the volume of the sys-
tem. We suppose that the fixed point (u0, v0) is linearly
stable when the diffusion terms are absent in Eqs. (1) and
(2) (otherwise the system runs to infinity). This is condi-
tioned by fv − fu < 0, where fu and fv represent ∂ f (u, v)/∂u
and ∂ f (u, v)/∂v at (u0, v0), respectively. In the presence
of the diffusion terms, the homogeneous state becomes lin-
early unstable against an infinitesimally small perturbation
with wave number q between 0 < q2 < (Du fv − Dv fu)/DuDv

when (Dv fu − Du fv )/( fu − fv ) < 0 is satisfied. Since the
denominator is positive as mentioned above, the instability
condition is simply written as

Dv fu − Du fv < 0. (4)

For this condition to hold for model I, T < Tc ≡ 1/8 is nec-
essary (see Appendix B). The dispersion relation obtained in
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the analysis is shown in Fig. 1(b), where λ(q) represents the
growth rate of the perturbation with wave number q. Note
that, owing to mass conservation, λ(q) always starts from
zero unlike the cases of typical RDSs. Thus, the condition
of Eq. (4) does not belong to the standard Turing [or type-I
stationary (Is)] or Hopf [type-III oscillatory (IIIo)] instability
but is classified as type-IIs instability [1].

Next, we explore the dynamic behavior in the long time
regime. The most significant feature in MCRDSs is the exis-
tence of a conserved variable s. The transport of s is driven
by the spatial gradient of a scalar variable p as indicated by
Eq. (3). At the steady state, p satisfies ∇2 p = 0. This implies
that p becomes a constant value in the absence of material
source. Owing to the constant nature of p, (u, v) is constrained
on a line p = Duu + Dvv which has three intersection points
with the nullcline f = 0 [see Fig. 1(c)]. Two of them, in-
dicated by (u1, v1) and (u2, v2) (u1 < u2) in the figure, are
locally stable points, to which (u, v) tends to relax. Therefore,
it is expected that the system behaves similar to a bistable
system, where the bistability is induced by the diffusion rate
asymmetry between components U and V .

We then consider a steady front solution u = ufr (x, t ),
where two stable states u1 and u2 are connected via a single
interface [see Fig. 1(d)]. Note that the asymptote of the front
solution ufr (x) shows exponential decay on both sides of the
interface, indicating that the width of the interface is finite and
thus well-defined. We denote the corresponding value of p as
p∞. The form expected for the front solution is ufr (x − ct );
it either translates with a constant speed c while maintaining
the concentration profile or stays at the same positions (i.e.,
c = 0) [32]. According to earlier studies [5–14], the latter
static solution is typical in MCRDSs. Indeed, in Appendix C,
we find that c = 0 is the only compatible solution. We obtain
this solution when

�(u1, p∞) = �(u2, p∞) (5)

is satisfied, where �(u, p) is defined by

�(u, p) =
∫ u

f (u, (p − Duu)/Dv )du. (6)

Here, u1 and u2 coincide with two minima of �(u, p∞) and the
condition Eq. (5) determines the value of p∞ (see Appendix
C). Hence, a front solution for the conserved variable s is
given by sfr (x) = [(Dv − Du)ufr (x) + p∞]/Dv . Examples of
�(u) at p = p∞ are shown in Fig. 1(e) for T = 0.02 and
0.002, where the two minima correspond to the bistable fixed
points u1 and u2. The figure shows that the smaller the value
of T , the larger the difference between the two points. This
increases the time duration required for saturation to the fixed
points and results in the transient peaklike profile as shown in
the left panel of Fig. 1(a). Similar patterns are also observed in
the phase separation systems where the shape of double-well
potential is highly asymmetric (for example, see Refs. [25,27–
30,33,34]).

The front solution (ufr, p∞) is a special one among the
static stationary solutions of Eqs. (1) and (2). We can obtain
a family of the static solutions by solving an ordinary dif-
ferential equation Dud2u/dx2 = f (u, (p − Duu)/Dv ), where
p is constant. Figure 1(f) shows the trajectories of the so-
lutions (u, du/dx) for three different conditions of p < p∞,

p = p∞ and p > p∞. The black solid lines represent periodic
solutions. The brown dashed lines are unphysical since u(x)
diverges for |x| → ∞. The blue dotted lines provide local-
ized solutions; for p < p∞ and p > p∞, they correspond to
homoclinic orbits in (u, du/dx) space, and have holelike and
peaklike profiles in u(x), as shown in the insets of the right
and left panels, respectively. A heteroclinic orbit exits only
when p = p∞, and yields the front solution ufr (x) (see the
inset of the middle panel). We mention that a similar structure
for a family of static solutions is found in phase separation
phenomena with an asymmetric free energy [34].

The phase diagram of the MCRDSs raised by the above
analysis is shown in Fig. 1(g). In the figure, the horizontal
and vertical axes represent the composition of u at the initial
homogeneous state and the dimensionless parameter T , re-
spectively. The region enclosed by the blue curve is obtained
using the instability condition Eq. (4); hereafter, we refer to
this region as the unstable region. The brown and black curves
represent the sets of two stable states u1 and u2, respectively.
We call the region between the two curves a metastable re-
gion. As we show later, in this region, homogeneous states
are stable in a deterministic sense; however, inclusion of
the concentration fluctuation to MCRDSs provokes pattern
formation. The phase diagram can also be determined by
�(u, p∞); the condition that the second derivative is negative,
d2�/du2 = (Dv fu − Du fv )/Dv < 0, agrees with Eq. (4), and
the two minima of � coincide with two stable states u1 and
u2. However, although � exhibits a similarity to a bulk free
energy in phase separation phenomena, MCRDSs cannot be
written in a variational form without any approximation pro-
cedures in general [13,31].

In the following subsections, we will study pattern forma-
tion dynamics of MCRDSs in 2D and 3D, separately in the
unstable and in the metastable regions. In higher dimensions,
the front solution (ufr, p∞) obtained above is for a solution in
which two stable states are segregated by a flat interface [see
the left panel of Fig. 1(h)]. We will see that ufr plays a pivotal
role in long-time coarsening dynamics; p for a curved inter-
face (see the right panel) is larger than p∞, which is responsi-
ble for material transport among dropletlike domains, leading
to the evaporation-condensation (LSW) coarsening law.

Finally, we make three remarks on the above steady-state
analysis. First, in two-component MCRDSs, coarsening of
patterns is broadly observed [5–14] when nullcline f (u, v) =
0 has two stable intersections with p = Duu + Dvv, where p
is constant. Dynamics other than coarsening such as a trav-
eling wave and a turbulent pattern are also possible in the
presence of multiple conserved variables (see Refs. [35,36],
for instance). Second, a relation equivalent to Eq. (5) and a
method to construct a phase diagram based on this relation
were proposed in a recent paper by Brauns et al. [13], in
which the reaction-term dependence of the phase diagrams
is discussed in detail. Both their and our approaches do
not require any approximations, and thus the resulting phase
diagram [Fig. 1(g)] improves on those presented in previous
studies (see, e.g., Refs. [10,12]). Third, in phase separation
systems, there exists a region inside the spinodal lines where
the growth rate for steady periodic solutions is larger than that
for steady homogenous solutions (known as the nucleation-
dominated region in Refs. [33,34,37]), which can modify the
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FIG. 2. Pattern formation in the unstable region. (a) Formation process of the droplet structure. Spatial patterns of s = u + v at t =
50, 200, 800, and 3200 are shown. The system size is 10242. (b) Growth rate measured by simulation results via a relation, Rq(t1, t2) =

1
2(t2−t1 ) ln(Sq(t2)/Sq(t1)), where Sq(t ) is a structure factor at time t . In this figure, t1 is fixed as t1 = 2, and the results for various time t2

(= 4, 8, 16, 24) are shown. The red curve represents a theoretical prediction of growth rate in the linear regime. (c) Temporal changes in
the number of droplets per unit volume, n(t ). The red line represents a power-law function with exponent 0.60. (d) Scaled structure factor
�−d S(q, t ) (where d is the spatial dimension) for various times. Here, �(t ) is a length scale determined by �d n = 1, a typical center-of-mass
distance among neighboring droplets. The red line represents a power function with exponent 4. The above data are obtained by simulations
using parameter set A indicated in Fig. 1(g).

phase diagram. In Appendix D and Fig. 6, we show that a
similar region also exists in MCRDSs.

B. Pattern formation in the unstable region

We first study the unstable region. To focus on similari-
ties and differences between pattern formation in MCRDSs
and phase separation systems, in the following section, the
time evolution of the conserved variable s is investigated.
Figure 2(a) shows 2D pattern formation process of s for pa-
rameter set A, indicated in Fig. 1(g). An initial pattern with
a characteristic length spontaneously appears everywhere in
space (t = 50). Then, elongated and branched domains are
relaxed to spherical shape (t = 200). Using linear stability
analysis, the deviation of s from the initial homogeneous
concentration s0, δs = s − s0, is expected to obey δs(q, t ) ∼
δs(q, 0) exp(−λ(q)t ), where q is the wave number. λ is the
maximum growth rate of the perturbation with the wave
number q [see also Fig. 1(b)], which can be estimated from
the simulation results via Rq(t1, t2) = 1

2(t2−t1 ) ln(Sq(t2)/Sq(t1)),
where Sq(t ) = 〈s(q, t )s(−q, t )〉 is the structure factor at time
t and the bracket represents the average over the angle. If
Rq(t1, t2) is independent of time, Rq is to be equivalent to
λ(q). Figure 2(b) shows the growth rate measured by the
simulation results, where Rq at different times collapse onto
λ(q) estimated by linear analysis (see the red curve) for a short
time. This indicates that the observed pattern formation seen
is driven by type-IIs instability.

In the later stage (t � 400), spherical dropletlike domains
coarsen over time. More specifically, the smaller droplets

tend to shrink and eventually disappear, whereas the larger
droplets tend to grow, see supplemental movie [38]. This
trend is reminiscent of the evaporation-condensation (LSW)
mechanism in phase separation phenomena as pointed out
in Refs. [11,12,14]. To qualitatively characterize this growth
behavior, we track how the number of droplets changes over
time. Figure 2(c) shows the number density of the droplets
n(t ), where n shows a power-law decay for the long time
regime. The estimated power-law exponent is approximately
0.60 [see red line in Fig. 2(c)]. Because the volume (area)
occupied by a single droplet is roughly n−1, the charac-
teristic length scale at time t is estimated as � = n−1/d (d
being spatial dimension, i.e., d = 2), we accordingly obtain
� ∝ t−0.30. This power-law exponent, often called the growth
exponent, takes a different value depending on the coarsening
mechanism. The value of 0.30 observed here is close to the
growth exponent known for the LSW mechanism (1/3). We
perform the same analysis for a 3D simulation at the same
concentration (i.e., for parameter set A in Fig. 1(f)) and the
obtained growth exponent is 0.29. These results are consistent
with the fact that the growth exponent in the LSW mechanism
is independent of dimensionality for d � 2.

In phase separation phenomena, the power-law decay in
the characteristic length is a consequence of a self-similar
growth in the patterns. To examine whether this is the case
for our problem, we perform a dynamic scaling analysis for
Sq. In Fig. 2(d), we show that g ≡ �(t )−d Sq(t ) as a function of
�q. When a self-similar growth is the case, all the structure
factors at different times should be mapped onto a unique
mater curve. In this figure, we can observe that g for small q
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FIG. 3. Nucleation-growth-type pattern formation in the metastable region. (a) Formation process of droplet structure for parameter set D
(u0 = 0.65, T = 0.002). Spatial patterns of s = u + v at time t = 40, 80, 160, and 940 are shown; the system size is 12952. (b) Time series of
the maximum value of s, smax, for four independent simulations using parameter set D. The sudden increase in smax at random time indicates
that the formation of droplets is a stochastic activation process. The system size is chosen to be 1622, which is small enough to observe a single
droplet formation in homogeneously mixed space, and large enough compared to the size of the nucleus. (c) Nucleation rate under various
initial conditions. (d) Temporal changes in the number of droplets per unit volume n(t ) for parameter set (u0 = 0.70, T = 0.002). The red line
represents a power-law function with exponent 0.60.

collapses onto a single power-law function after the formation
of spherical droplets (t � 400), indicating that the distance
between center-of-mass positions of neighboring droplets are
scaled by a unique length �. On the other side, for large q,
Sq slowly shifts toward the higher-q side for intermediate
time regime (e.g., t ∼ 3200), meaning that the concentration
profile of droplets is not completely scaled by � in this time
regime. This is because s inside some droplets is not saturated
to the stable fixed point s2. We mention that such breakdown
of self-similarity originating from unsaturation is not specific
to MCRDSs, but is also observed in the phase separation
systems when the shape of double-well potential is highly
asymmetric (for example, see Refs. [25,27–30,33,34]).

For low-q, Sq is proportional to q4, which is often observed
in phase transition phenomena with a conserved order param-
eter (see, e.g., Refs. [39–41]). According to the literature, this
trend appears in the case where surface tension plays a central
role in the coarsening process rather than thermal fluctuation
[42] and the phase separating structure is statistically isotropic
[43].

C. Pattern formation in the metastable region

Next, we focus on pattern formation dynamics in the
metastable region. We confirm from simulations that the ho-
mogeneous state is destabilized for parameter sets in the
unstable region [A and B in Fig. 1(g)] but is stable in
the metastable region (C and D), which is consistent with
the analysis performed in Sec. III A. However, by choos-
ing appropriate nonhomogeneous initial conditions (while the
mean concentration is kept constant in the metastable region),
we find cases where systems relax to a bistable spatial struc-

ture. To see typical kinetics in the metastable region, in this
section we investigate how patterns develop in the presence
of concentration fluctuation. We incorporate intrinsic fluctua-
tions originating from both diffusion and chemical reactions,
referring to Ref. [44], see Appendix A for details.

Figure 3(a) shows the time evolution of conserved variable
s. In the early stage (t = 40, 80), droplets appear at random
positions and at stochastic timing. The size of the droplets
increases with time. At the intermediate time (t = 160), the
growth of the droplets significantly slows down. This is be-
cause molecules in the region surrounding the droplets are
almost exhausted, where s is in the vicinity of the minimum
stable point. For a droplet to grow further, it is necessary to
transport material from other droplets. Indeed, at the later
stage (t = 940), the growth of the droplets is accompanied
with shrinkage and eventual disappearance of small droplets.
These pattern-formation dynamics are similar to those in
the nucleation-growth-type phase separation of pure fluids,
multicomponent liquid mixtures, and alloys [45] but differs
from those in so-called stochastic Turing patterns, which are
induced by stochastic resonance [44,46–50].

As an indicator of the formation of the nucleus, we mon-
itor the time evolution of a maximum concentration value
of smax. The results obtained by four independent simula-
tions are shown in Fig. 3(b). We can see that smax initially
fluctuates around a particular value and suddenly starts to
increase. The onset time tinc clearly indicates the birth of
nucleus. From the onset time, we compute the nucleation
rate I via I = N/〈tinc〉V , where N is the number of nu-
clei at time tinc, V is the volume (area), and the bracket
represents the ensemble average. Sixteen independent simu-
lations were performed to determine I under various initial
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(b)

(c)(a)

(d) (e) (g)

(f)

FIG. 4. Evaporation-condensation process in the coarsening regime. (a) Concentration profile of conserved variable s at time t = 3200 for
parameter set A in Fig. 1(g). (b) Spatial distribution of “chemical potential” p corresponding to panel (a). The image size is 2562. (c) Mapping
the states of volume elements on the u-v space for panels (a) and (b). Different symbols indicate to which droplets the volume elements belong
[see the numbers labeled on the droplets in panel (a)]. When a volume element does not belong to any droplets, it is referred to as background.
The gray curve is the nullcline of the reaction term ( f (u, v) = 0). The green dashed line is p∞ = Duu + Dvv, where p∞ is the value of p in the
limit where the droplet size is sufficiently large (see below). (d) Droplet-size dependence of p. Mean values of p for each droplet, subtracted
by p∞, are plotted against the droplet size Sdrop. Data are sampled at three different times. p is expected to be equal to p∞ for sufficiently
large droplets (p∞ � 64 in the current parameter setting). Droplet size Sdrop = ∫

(s − s1)dr indicates an excess amount of s from the minimum
stable point s1, where the integral is taken over each droplet. The red line is a power function with exponent −1/d (where d is the spatial
dimension). (e) The relation between droplet size Sdrop and concentration profile s. For small Sdrop, the maximum value of s cannot reach to the
largest stable point s2 (top). For a sufficiently large Sdrop, most of the body elements in the droplet have a value close to s2 and the interface
connecting the inside and outside of the droplet has an almost constant width (bottom). (f) A spatial pattern obtained from a 3D simulation for
time t = 6400 for parameter set A. A contour surface with s = 20 is shown. The color is labeled according to the value of p at the contour
surface. The system size is 10243. (g) Sdrop-p mapping obtained from 3D simulation.

conditions. The results are shown in Fig. 3(c), where the
vertical axis is displayed using a logarithmic scale. The
nucleation rate I decreases significantly for a slight de-
crease in the initial concentration u0. Such a steep change
in the nucleation rate for a small change of environment is
widely observed in nucleation-growth-type phase separation
phenomena [45].

Although the driving force of pattern formation in the
early stage is entirely different between the unstable and the
metastable regions, we observe that the coarsening behavior in
the late stage is very similar for these regions; small droplets
evaporate while large ones grow. This similarity is quantita-
tively confirmed by plotting n(t ), the temporal change in the
number density of droplets [Fig. 3(d)]. We find the same trend
� ∝ t−0.30 as in Fig. 2(c), further supporting that the LSW
mechanism can be applied to MCRDSs.

D. Coarsening process in the late stage

Here, we investigate the evaporation-condensation (LSW)
process observed in both the unstable and metastable regions
in more detail [38]. Since the time evolution of the conserved

variable s proceeds following the gradient of p = Duu + Dvv

[see Eq. (3)], the variable p is responsible for the transport of
s among the droplets. Figures 4(a) and 4(b) show an enlarged
image of Fig. 2(a) at t = 3200 and the corresponding spatial
map of p, respectively. We can see that smaller droplets have
a higher p value. In this sense, we may call p the chemical
potential of s, on the analogy of phase separation phenomena
[22,23].

To verify the validity of this physical interpretation in a
quantitative manner, we divide the image into 642 equal-size
square sections and map the states of the sections onto the u-v
space. The results are shown in Fig. 4(c). Each point in this
figure corresponds to the state of each section. The symbols of
the points represent the droplets to which the sections belong
[see the number labeled on the droplets in Fig. 4(a)]. When
a section is located outside the droplets, we use a red cross
symbol (see the points labeled as background in Fig. 4(c)). We
determine whether a section is inside or outside of the droplets
by whether s at that section is above or below a threshold value
sth = 2.2, which is slightly higher than the smaller stable point
s1. In this figure, we can see that points in the same droplet are
distributed on a line with constant p, and smaller droplets have
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higher p. This result indicates that the chemical-potential-like
variable p is uniquely determined by the morphology of the
droplet, which is suggestive of the existence of the surface
tension. We also confirm similar results for the 3D simulation
and 2D simulation of model II [see Fig. 4(f) and Appendix E,
Figs. 8 and 9, respectively].

To analyze these results in further detail, in Fig. 4(d) we
show the simultaneous distribution of droplet size, Sdrop =∫

(s − s1)dr (the integral is taken within each droplet) and
the value of p in the droplets. The data are sampled at three
different points in time (t = 800, 3200, and 12800). The re-
sults clearly show that there is a one-to-one correspondence
between Sdrop and p. Furthermore, for the large Sdrop region
we find the relation (p − p∞) ∝ S−1/d

drop where d is the spatial
dimension [see Fig. 4(d)]. This asymptotic behavior can be
understood as follows: when Sdrop is large, s in the droplet
saturates to the larger stable point s2 and is connected to
the outside of the droplet via the interface, the width of
which is almost constant and independent of the droplet size
[see the bottom panel of Fig 4(e)]. In this situation, Sdrop

can be approximated as Sdrop ∼ (s2 − s1)Vdrop, where Vdrop is
the volume (area) of the droplet. Since the droplets have a
spherical shape, by denoting the radius as R, we can obtain
the relationship (p − p∞) ∝ 1/R. This is the same form as
the Young–Laplace equation, where the proportionality con-
stant is expected to be associated with the surface tension in
MCRDSs and will be evaluated in the subsequent section.
Note that p coincides with p∞ for a large curvature limit
(R → ∞), a situation in which two stable states are segregated
by a flat interface [see Sec. III A and Fig. 1(h)]. The same
relationship is confirmed for the 3D simulation [see Fig. 4(g)]
and a 2D simulation with a different reaction term [model
II, see Appendix E, Fig. 9(c)]. When Sdrop is small, s in the
droplets is far from s2 and the above approximation does not
hold [see the top panel of Fig. 4(e)], leading to a deviation
of p − p∞ from ∝ S−1/d

drop . The reason why the concentration
profile of the droplets changes depending on the droplet size
is that initial concentration s0 is very far from the stable fixed
point s2; thus, it takes long time for s to saturate to s2 while
retaining the mass conservation law for s. We note again that
such a trend is not a feature specific to MCRDSs but is also
seen in phase separation phenomena with a highly asymmetric
shape in the free energy [25,27–30,33,34].

E. Evaluation of the surface tension

As discussed above, p − p∞ for spherical (circular)
droplets observed in coarsening regime is inversely propor-
tional to the droplet radius R. Here, we derive the relationship
and determine the proportionality coefficient. The governing
equation for p is given by

∂ p

∂t
= (Du + Dv )∇2 p − DuDv∇2s + (−Du + Dv ) f , (7)

which, together with Eq. (3), provides a closed form of time
evolution equations for a MCRDS. Consider a situation in
which an isolated droplet with radius R exists in infinite space
under steady-state condition. The concentration profile is ap-
proximated as s(r) = sfr (ζ ) (see Fig. 5(a)), where sfr (x) =
((Dv − Du)ufr (x) + p∞)/Dv is the front solution discussed in

2D 3D

2D 3D

(b)(a)

(c)

(d)

FIG. 5. Comparison with LSW theory. (a) Top: The function
profile of the steady front solution sfr . Bottom: Concentration profile
of s(r) for a spherical droplet. Interface of a droplet is shown by the
dashed line. s(r) is approximated by sfr (ζ ), where ζ is coordinate
along radial direction of the droplet. (b) Relation between droplet
radius R and chemical-potential-like variable p. The data shown here
is from those in Figs. 4(d) and 4(g). Radius R is evaluated using
Stot = (s2 − s1)Vdrop, where Vdrop is the volume of sphere with radius
R. The red line represents theoretical relationship given by Eq. (8).
(c) Droplet-size distribution ρ(R, t ) for 2D (left) and 3D (right)
systems, respectively. (d) Dynamic scaling of ρ in 2D (left) and
3D (right) systems. The symbol shows the same simulation results
as in (c). The green solid and red dashed lines represent theoretical
predictions for the scaled distribution N (R/Rc ) for a dilute volume
fraction limit (the original LSW theory) and a finite volume fraction
(φ = 8.5% and 6% for 2D and 3D) [26], respectively. N (x) is nor-
malized to satisfy

∫
N (x)dx = 1. The results shown in (b)–(d) are

obtained from simulations for parameter set A [see Fig. 1(g)], for
which the volume fraction is φ = 9.1%.

Sec. III A. The coordinate ζ represents a radial distance of a
point r from the interface of the droplet, i.e., ζ ≡ r − R where
r = |r| is distance of a point r from the center of the droplet.
Laplacian under d-dimensional spherically symmetry is writ-
ten as ∇2s = s′′

fr + [(d − 1)/r]s′
fr, where s′

fr and s′′
fr stand for

dsfr/dζ and d2sfr/dζ 2, respectively. As we consider a steady
state, p is constant but deviates from p∞ owing to the curved
interface [see the inset of Fig. 4(c)]. We denote the difference
as p ≡ p − p∞. Then, insertion of the approximated steady
solution (s, p) = (sfr (ζ ), p∞ + p) into Eq. (7) yields a rela-
tionship DuDv (d − 1)s′

fr/r � (Dv − Du) fp(sfr, p∞)p. With
the expansion of the left-hand side as 1/r = 1/(R + ζ ) =
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1/R − ζ/R2 + · · · , and by multiplying both sides of the above
relation by s′

fr and integrating over ζ , we obtain the following
relationship between p and (d − 1)/R:

p � DuDv

∫
s′2

fr dζ

(Dv − Du)
∫

fp(sfr, p∞)s′
frdζ

(d − 1)

R
, (8)

where p is evaluated in the order of O(1/R) and the higher
order terms are ignored. Here, we used the fact that s′

fr (ζ ) is
a localized function in the vicinity of interface (r = R) with
exponential decay and thus integration range is extended to
−∞ < ζ < ∞.

Equation (8) is a relationship analogous to the Young-
Laplace’s law [22,23], in which the coefficient defines
“surface tension” γ . Note that this definition does not rely
on variational structure; although the concept of effective
surface tension is well established in some RDSs such as one-
component bistable RDSs where the governing equations can
be rewritten into variational form (see, e.g., Refs. [51–53]),
the existence of variational structure in MCRDSs is under
debate [13,31]. Using the front solution sfr (x) [see Fig. 1(d)],
we calculate γ � 146. In Fig. 5(b), we replot p − p∞(= p)
in Figs. 4(d) and 4(e) against R/(d − 1), where R is evalu-
ated from the volume (area) of the droplet Vdrop. All the data
in different times and dimensions are mapped onto a single
master curve, which asymptotically obeys Eq. (8) for large R
[see the red curve Fig. 5(b)]. The similar results are confirmed
for model II [see Appendix E and Fig. 9(d)]. These results
further indicate that surface-tension-like quantity is relevant
to the coarsening process in MCRDSs.

F. Droplet-size distribution by LSW analysis

The distribution of droplet size is an important univer-
sal characteristics of coarsening processes that can be rather
easily observed. Figure 5(c) shows droplet-size distribution
in 2D and 3D systems at various times. Using the surface-
tension-like quantity γ obtained above, here we evaluate the
droplet-size distribution in MCRDSs by employing the LSW
theory (a mean-field theory for a droplet-size distribution)
[23,24,26].

First, let us consider the growth (or shrinkage) rate of a
droplet with radius R(t ). Due to mass conservation, the time
variation in R occurs only through diffusion as represented
by Eq. (3). By substituting the concentration profile of a
droplet s(r) = sfr (r − R(t )) into Eq. (3) and taking an inte-
gral along radial coordinate across the interface, we obtain
an equation (s2 − s1)dR/dt � pr (R − ε) − pr (R + ε), where
pr ≡ ∂ p/∂r and ε is a value sufficiently larger than the in-
terfacial width. Spatial profile of p is evaluated as follows;
because spatial dependence of p is small [in the order of
O(1/R)], the time evolution of R(t ) is sufficiently slow and
the time dependence of p is subject to R. Hence, p obeys the
Poisson equation ∇2 p = 0 for given value of R(t ). At d = 3,
the compatible solution with Eq. (8) is

p − p∞ =
{
γ d−1

R (r < R)
pm + (

γ d−1
R − pm

)
R
r (r > R),

where p∞ + pm is a mean-field value of p in the background
region, which is determined by the distribution of droplets.
By putting the above arguments together, the growth rate of a

droplet is derived as

j ≡ dR

dt
= α

R

(
1

Rc
− 1

R

)
, (9)

where α = 2γ /(s2 − s1) and Rc = pm/2γ . Rc represents a
critical radius; droplets with radius larger than Rc will grow,
while those with smaller radius will shrink. For 2D systems,
by logarithmic correction of time, the same form of equation
as Eq. (9) is derived [23,24,26].

Then, we consider the droplet-size distribution ρ(R, t ),
where ρ(R, t )dR represents the number of droplet per unit
volume with radius between R and R + dR at time t . Time
evolution of ρ(R, t ) is governed by a continuity equation
∂tρ + ∂R( jρ) = 0, where j is provided by Eq. (9). Note that
because pm depends on the droplet distribution, ρ(R, t )
must be solved in a self-consistent manner. By assuming that
the droplet-size distribution is self-similar, i.e., ρ(R, t ) is in
the form of ρ(R, t ) ∝ N (R/Rc(t )), the LSW theory predicts
that the critical radius is

Rc(t ) = (cαt )1/3, (10)

as well as the function form of N (x) [23,24,26]. In the original
LSW theory, the volume fraction of the minority phase φ was
assumed to be infinitesimally small (dilute limit), whereby c
was estimated as c = 4/9 for a 3D system. Below, we will
compare our data in Fig. 5(c) with the LSW theory of zero-
and finite-volume fraction; for the latter, we refer to Yao et al.
[26].

In our MCRDS (model I at parameter set A), the volume
fraction is φ = (s2 − s0)/(s2 − s1) � 9.1%. c at this volume
fraction is approximately 0.6 and 0.9 for 2D and 3D cases,
respectively, while α is given by α = (d − 1)γ /(s2 − s1) [26].
Equation (10) predicts Rc = 17.3, 21.9, and 27.5 at time t =
3200, 6400, and 12800, respectively, for 2D. For 3D, Rc =
19.9, 25.0, and 31.5 at t = 1600, 3200, and 6400, respectively.
These values agree with the mean value of the distribution
obtained from our simulations [see Fig. 5(c)]. Further, as
shown in Fig. 5(d), in each 2D and 3D system, the normalized
distributions of radius scaled by Rc at different times collapse
to a single curve, which agrees well with a theoretical predic-
tion for finite volume fraction (see the red dashed line; we also
show those estimated for φ → 0 by the green solid line). Here,
we used the results by Yao et al. [26] at φ = 8.5% for 2D
and 6.0% for 3D. Note that the function form of N (x) almost
unchanged above these volume fractions [24]. In summary,
our data support that the evaporation-condensation process in
MCRDSs well follows the LSW theory under our definition
of surface tension Eq. (8).

IV. CONCLUSION

In conclusion, we found that the pattern dynamics in
MCRDSs, starting from a uniform state toward an eventual
single isolated domain, are classified into two types, similar
to phase separation phenomena (see also Ref. [13]). One is
triggered by the instability of the initial uniform state and
the other goes through a nucleation and growth process. This
classification is systematically addressed via a phase dia-
gram, which can be constructed by the instability condition
[Eq. (4)] and the relation for the bistable states [Eq. (5)].
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We performed large-scale numerical simulations in both two
and three dimensions. We confirmed that in the late stage,
droplet patterns appearing both in stable and metastable re-
gions obey a relation similar to the Young-Laplace equation
[Eq. (8)] and coarsen with the same growth exponent as
in the evaporation-condensation (or LSW) mechanism. Fur-
thermore, we derived a Young-Laplace-like relation from the
MCRD equations and defined the proportionality coefficient
as surface tension. Based on this quantity, we extended the
LSW theory to MCRDSs and found that the droplet-size dis-
tribution obtained from simulations shows good agreement
with the theoretical prediction. These results suggest that a
surface-tension-like quantity is relevant to MCRDSs and plays
a key role in the coarsening dynamics, which provides insight
into molecular self-assembly driven by chemical reactions.

In the present paper, we derived “surface tension” from
a Young-Laplace-like relation [Eq. (8)] and found it is rel-
evant to the coarsening. While the coarsening behaviors in
MCRDSs are similar to those in classical phase separation
systems which have variational form, in general, phase sep-
aration systems including nonvariational terms tend to show
suppression of the coarsening [54,55]. Thus, we expect that
the physical origin of the surface tension in MCRDSs could be
further clarified through possible variational structures, as in
one-component nonequilibrium systems such as autocatalytic
[51–53] or self-propelled particles [56,57]. In this context, it is
notable that Chan-Hilliard-like equations have recently been
derived from MCRDSs via a weakly nonlinear analysis by
focusing on bifurcation points [13,31], and that violation of
mass conservation in RDSs can suppress coarsening processes
[12,14]. This knowledge could contribute further to our un-
derstanding of MCRDSs, including its energetic description
based on variational structures.

MCRDSs were originally introduced and have been
discussed as models for molecular localization such as
membrane-bounded GTPases which are responsible for the
formation of cell polarity [5–14] and neuron dendrites [58]
and phosphoinositide lipids [59]. Recently, MCRDSs have
been also applied to various systems such as oscillatory mo-
tion in Min-protein [35] and chemical turbulence [36], by
which the importance of MCRDSs for pattern formation in
biological systems is further recognized. Although the de-
tails of chemical reactions are significantly different among
the systems, MCRDSs show universal dynamics and can be
relevant for many existing systems. One interesting possible
application of MCRDSs is for liquid-liquid phase separation
observed inside cells [60–63]. Liquid droplets found in cells
contain many chemical components that regulate each other;
thus, some droplets may be formed by chemical reactions
consuming cellular energy rather than nonmolecular specific
physical interactions among proteins. MCRDSs can provide
a natural framework to model and understand the general
mechanism of such phenomena.
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APPENDIX A: MCRDS WITH FLUCTUATIONS

The mass-conserved reaction-diffusion equation including
fluctuations is given as follows:

∂t u = Du∇2u − f (u, v) + ∇ · ju − ηr, (A1)

∂tv = Dv∇2v + f (u, v) + ∇ · jv + ηr . (A2)

Here Du and Dv are the diffusion coefficients of chemical
species, U and V , and we assume Du < Dv . f is the reaction
term. ju and jv are fluctuations accompanying with diffusion
of U and V , respectively, satisfying the below statistics:

〈 ju,α (t, r) ju,β (t ′, r′)〉 = 2Duuδ(t − t ′)δ(r − r′)δα,β,

〈 jv,α (t, r) jv,β (t ′, r′)〉 = 2Dvvδ(t − t ′)δ(r − r′)δα,β .

ηr is fluctuation accompanying with reaction and satisfies

〈ηr (t, r)ηr (t ′, r′)〉 =
∑

i

|Reactioni|δ(t − t ′)δ(r − r′).

In our study, we use a reaction term of the form f = f+ − f−
where f+ = kuu and f− = kvv. In this case,

∑
i |Reactioni| =

f+ + f−.

APPENDIX B: NONDIMENSIONALIZATION

By denoting the time and space units as τ and �, respec-
tively, and taking the units for u, v and f as u0, v0 and f0,
respectively, we can rewrite Eqs. (A1) and (A2) as

∂

∂ t̃
ũ = ∇̃2ũ − R f̃ + √

Rσ ∇̃ · j̃u − Rσ η̃r, (B1)

∂

∂ t̃
ṽ = D∇̃2ṽ + f̃ + √

Dσ ∇̃ · j̃v + σ η̃r, (B2)

where we define R = v0/u0, D = Dv/Du, σ = 1/
√

v0�d ,
� = √

Duτ , and τ = v0/ f0. Ã represents scaled vari-
able of A. The statistics of the noise terms are then
given as 〈 j̃u,α (t̃, r̃) j̃u,β (t̃ ′, r̃′)〉 = 2ũδ(t̃ − t̃ ′)δ(r − r′)δα,β ,
〈 j̃v,α (t̃, r̃) j̃v,β (t̃ ′, r̃′)〉 = 2ṽδ(t̃ − t̃ ′)δ(r̃ − r̃′)δα,β and
〈η̃r (t̃, r̃)η̃r (t̃ ′, r̃′)〉 = ( f̃+ + f̃−)δ(t̃ − t̃ ′)δ(r̃ − r̃′)δα,β .

We chose u0 and v0 independently such that the scaled
reaction term f̃ (ũ, ṽ) becomes parameter-free, which has ad-
vantages in constructing phase diagram; the condition for
type-IIs instability Eq. (4) is scaled as f̃ũ − f̃ṽ/RD < 0. On
the other side, bistable points in the steady-state solution, (ũ1,
ṽ1) and (ũ2, ṽ2), are obtained using two equalities f̃ (ũ, ṽ) = 0
and ũ + RDṽ = p̃∞ [see Fig. 1(c)], where we use Duu0 as
the unit for p. Because f̃ is parameter-free, the existence of
such a solution depends solely on RD ≡ 1/T as shown in
Fig. 1(g). For model I (ku = ca/(b + u2), kv = c), we set u0 =√

b, v0 = a/
√

b and f0 = ac/
√

b, and the resulting reaction
term is f̃ = ũ/(1 + ũ2) − ṽ. For model II (ku = α, kv = k0 +
βu2/(K2 + u2)), we set u0 = K , v0 = αK/β, f0 = αK , and
k0 = 0, and the resulting reaction term is f̃ =ũ − ũ2ṽ/(1+ũ2).
For model I, T < 1/8 (≡ Tc) is necessary for the condition for
type-IIs instability and Tc is the value of T at the vertex of a
parabolic function shown in Fig. 1(g). Such an upper bound
does not exist for model II [see Fig. 7(b)].

From Eqs. (B1) and (B2), we can immediately obtain the
time evolution equation for the conserved variable s̃ = ũ + Rṽ
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(6)

(b)(a)

(c)

FIG. 6. Linear stability of steady periodic solutions. (a) Periodic
solutions with fixed conserved quantity. The label indicates the am-
plitude of each solution [i.e., difference between the maximum and
minimum of u(x)] at (u0, T ) = (3.94, 0.002). (b) Comparison of
the growth rate between homogeneous (black) and periodic (brown)
solutions at (u0, T ) = (3.94, 0.002) and (4.5, 0.002) (top and bot-
tom panels, respectively). The horizontal axis represents the period
of solutions. (c) Phase diagram where the linear stability of peri-
odic solutions is taken into consideration. Regions (1) and (2) are
equivalent to the unstable and metastable regions in Fig. 1(g). (3)
and (4) indicate the regions where the maximum growth rate for
homogeneous solutions is larger and less than that for periodic ones,
respectively. In region (5), no periodic solution has positive growth
rate. The green squares and yellow circles represent the borders
between regions (3) and (4), and (4) and (5), respectively, which are
determined numerically. Region (6) indicates parameter set in which
the homogeneous solution is unstable (see the second paragraph of
Sec. III A for details). See Fig. 1(g) for the definitions of the other
symbols.

(b)(a)

FIG. 7. Steady-state analysis for model II. (a) Mapping of the
steady stable points on the u-v space for T = 1. The gray curve is
the nullcline for the reaction term f . The green dashed line represents
p∞ = Duu + Dvv. The green circles indicate the stable fixed points.
(b) Phase diagram. The blue curve represents the border of the
unstable region where type-IIs instability is operative. The black and
gray curves are the set composed of the steady stable points, u1 and
u2, respectively [see the green circles in (a)]. Here we focus on the
pattern formation process at the red cross point (u0 = 0.125, T = 1).

as

∂̃t s̃ = ∇̃2 p̃ + √
Rσ ∇̃ · j̃ p, (B3)

where p̃ = ũ + RDṽ. Here we use u0 and Duu0 as units for s
and p, respectively. The last term on the right-hand side repre-
sents the diffusion noise that satisfies 〈 j̃p,α (t̃, r̃) j̃p,β (t̃ ′, r̃′)〉 =
2 p̃δ(t̃ − t̃ ′)δ(r̃ − r̃′)δα,β .

All the data presented in the figures are normalized by the
units introduced here.

APPENDIX C: DERIVATION OF EQ. (5)

We consider a solution for MCRDSs in one dimension,
where (u, v) approaches (u1, v1) and (u2, v2) for x → −∞
and +∞, respectively. In a steady condition, Eq. (3) becomes
∇2 p = 0 and the general solution is given by p = Ax + B,
where A and B are constants. If A is nonzero, p (and thus,
at least one of u or v) diverges for x → ±∞, which is un-
physical. Thus, p has a constant value, which we denote as
p∞. As discussed in the main text, we consider a solution
that propagates with a constant velocity c [32]. Substituting
u(x, t ) = u(x − ct ) into Eq. (1), we obtain the following rela-
tionship:

−c
du

dz
= Du

d2u

dz2
− f

(
u,

p∞ − Duu

Dv

)
, (C1)

where z = x − ct is a moving coordinate at speed c. By mul-
tiplying the above equation by du/dz and taking integral over
the entire space, we obtain

−c
∫ ∞

−∞

(
du

dz

)2

dz =
∫ u2

u1

Du

2

d

dz

(
du

dz

)2

du

−
∫ u2

u1

f

(
u,

p∞ − Duu

Dv

)
du.

(C2)

The first term on the right-hand side vanishes because
du/dz = 0 for z = ±∞. Therefore, c is related to u(z) as
follows:

c = [�(u2, p∞) − �(u1, p∞)]/
∫ ∞

−∞

(
du

dz

)2

dz. (C3)

Here, � is an integral of f with respect to u introduced
in Eq. (6). At the stationary state where c = 0, two stable
states are related by �(u2, p∞) = �(u1, p∞). This equality
determines a position-independent value of p = p∞. Note
also that u1 and u2 are two minima of �(u, p∞), satisfy-
ing d�(u, p∞)/du = f (u, (p∞ − Duu)/Dv ) = 0. In the main
text, p∞ is evaluated by assuming the periodic boundary con-
ditions for which the system size L is sufficiently large.

The existence of the static stationary solution can be
confirmed by introducing a functional defined as E [u, p] ≡∫

dr[�(u, p) + Du
2 |∇u|2]. The functional derivative of E with

respect to u relates to the time derivative of u as ∂u/∂t =
−δE /δu. Under the condition of constant p = p∞, E [u, p∞]
acts as a Lyapunov function because

dE [u, p∞]

dt
= −

∫ (
∂u

∂t

)2

dr � 0. (C4)

If we assume a traveling solution of the form u(x − ct ),
dE [u, p∞]/dt = −c2

∫
(du/dz)2dz and c = 0 is the only
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compatible solution at the stationary state. It is worth men-
tioning that when reaction rates are in the form of ku = ku(u)
and kv = const as in model I, E works as Lyapunov function
commonly for u and p [64].

APPENDIX D: LINEAR STABILITY ANALYSIS
OF STEADY PERIODIC SOLUTIONS

We evaluate the linear stability of periodic steady so-
lutions in MCRDSs, which is known to modulate the
short-time evolution of patterns in spinodal-type phase sep-
aration [33,34,37]. First, for a given parameter set of (u0, T ),
we numerically search a family of periodic steady solutions
(u∗(x), p∗). Examples of the periodic solutions at (u0, T ) =
(3.94, 0.002) [parameter set A, see Fig. 1(g)] are shown in
Fig. 6(a). These solutions have the same conserved quantity
s0 but different spatial periods. Next, we evaluate the linear
stability of these solutions. By denoting (u, p) = (u∗(x) +
δu(x), p∗ + δp(x)), a linear equation with respect to w ≡
(δu, δp)T is obtained as ∂tw = Lw, where L is a linear op-
erator given by

L =
(

Du∇2 − fu − fp

(Dv − Du)(−Du∇2 + fu) Dv∇2 + (Dv − Du) fp

)
.

Here, fu and fp represent ∂ f (u, p)/∂u and ∂ f (u, p)/∂ p at
(u, p) = (u∗, p∗), respectively. The maximum eigenspectrums
of L obtained for various (u∗, p∗) yield the growth rate of
the periodic solutions, which is a quantity characterizing the
stability of the solutions. Figure 6(b) (brown lines) shows the
linear growth rate plotted against the period of the solutions
at parameter set (u0, T ) = (3.94, 0.002) and (4.5, 0.002). In
this figure, the growth rates for homogeneous solution are
also shown, which are obtained simply by plotting λ with
respect to 2π/q in Fig. 1(b). The positive growth rate of
the periodic solution indicates that finite perturbation to the
initial homogeneous state can cause amplification of unstable
modes that are missing in the linear stability analysis at the
homogeneous state.

Figure 6(c) shows phase diagram where the linear stabil-
ity of periodic solutions are taken into consideration. The
unstable region shown in Fig. 1(g) is subdivided into three:
In regions (3) and (4), there exist periodic solutions with
positive growth rates whose maximum value is larger and
smaller than those for homogeneous state, respectively. In
region (3), the unstable periodic mode nucleated by the fi-
nite perturbation would dominate the early dynamics, termed
nucleation-dominated [33,34,37]). On the other side, unstable
modes associated with homogeneous solution are more pre-
dominant in region (4). In region (5), no periodic solution
has positive growth rate. In other words, in regions (3) and
(4) the primary bifurcation is subcritical while in region (5)
it is supercritical. These results imply that in the presence of
noise, there is no clear-cut distinction for early dynamics be-
tween unstable and metastable regions. Although these phases
are similar to those for phase separation systems [33,34,37],
in MCRDSs, there exists an additional region [region (6)]
where a homogeneous solution (u0, v0) is unstable without
diffusion terms (i.e., fv − fu > 0; see the second paragraph of
Sec. III A), which makes phase diagrams more complicated
than those in phase separation systems.

APPENDIX E: ANALYSIS RESULTS FOR MODEL II

In the main text, we investigated the pattern formation
process for model I. To examine model dependence of the
results obtained there, in this section we analyze model II
and compare it with model I. By performing the steady state
analysis explained in the main text, we obtain results cor-
responding to Figs. 1(c) and 1(e), presented in Figs. 7(a)
and 7(b), respectively. Unlike the case of model I, the phase
diagram for model II does not have an upper bound of unstable
and metastable regions about T (≡ 1/RD). This is primarily
because the nullcline of the reaction term f (u, v) = 0 has two
branches that extend to infinitely large v, and always crosses
with the line p∞ = Duu + Dvv at two points for any large
value T [see Fig. 7(b)]. Note that we have set k0 = 0 here,

t=2.0x10 7.0x104 3.0x10 1.2x105 5 6

(b)

(a)

FIG. 8. Temporal change of the pattern at (u0, T ) = (0.125, 1). (a) and (b) show the temporal changes in the field variables s and p,
respectively. The side length of the images is 10 240. The minimum value of the color bar for p is set to p = p∞ ∼ 3.04.
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(b)(a) (c) (d)

FIG. 9. Analysis of the coarsening process at (u0, T ) = (0.125, 1). (a) Temporal changes of the number of droplets per unit volume n(t ).
The red line represents a power-law function with a slope of 0.60. (b) Scaled structure factor �−d S(q, t ) (where d is the spatial dimension)
at various time. �(t ) is a length scale determined by �d n = 1, which approximately corresponds to a typical distance between neighboring
droplets. The red line represents a power function with a slope of 4. (c) Droplet size (Sdrop) dependence of chemical-potential-like variable p.
The red line is a power function with an exponent of −1/d (d being the spatial dimension; d = 2 in the current case). (d) p − p∞ as a function
of R/(d − 1). Here, droplet radius R is obtained from Sdrop in the same manner as in Fig. 5(b). The red line represents p − p∞ = γ (d − 1)/R.
The coefficient γ = 1.53 is calculated through Eq. (8) using the steady front solution sfr (see the inset) as the input.

and drawing the full phase diagram for model II requires an
additional axis representing k0.

Below we present the results of coarsening dynamics in
2D at point (u0, T ) = (0.125, 1) [see the red cross symbol in
Fig. 7(b)]. Figure 8(a) shows the temporal change of pattern
(the concentration field of s), where dropletlike patterns form
in the early time (t = 2.0 × 104) and coarsen over time. Fig-
ure 9(a) shows the temporal change of the number density of
the droplets n(t ), which asymptotically approaches a power-
law function with exponent −0.60 (red line). Thus, the growth
rate is 0.60/d = 0.30 (d = 2), which is coincident with the
results for model I [Figs. 2(c) and 3(d)].

Figure 9(b) shows the scaled structure factor, where we can
see that the structure factors at different times are scaled for
both small and large q after the system reaches the coarsening
regime where n(t ) shows a power-law decay. In Fig. 2(d), we
have seen that the scalability for large q in intermediate time
regime does not hold for model I. This difference is ascribed
to whether the concentration inside the droplets is saturated

to the stable fixed point s2 [see Fig. 1(a)]. For the current
parameter choice for model II, the values of the bistable steady
solution s1 and s2 are not so far from that of the initial ho-
mogeneous state. The concentration inside the droplets easily
saturates to the stable points, and as a result, the system shows
a self-similar coarsening.

Figure 8(b) shows the map of p at the same spatial region
and time as Fig. 8(a), where we can see a trend similar to
Fig. 4(b). This similarity, together with the growth exponent
0.30, indicates that the evaporation-condensation mechanism
also works in model II. In Fig. 9(c), a power-law relationship
between p − p∞ and the droplet size with exponent −1/d
is confirmed as in model I [see Fig. 4(d) and 4(g)]. More-
over, as shown in Fig. 9(d), the relationship Eq. (8) between
droplet radius R and p − p∞ is also confirmed. These results
indicate that a surface-tension-like quantity generally exists
in MCRDSs without depending on details of the reaction
terms, and plays a crucial role in the coarsening process of
the patterns.
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