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Relaxation in an extended bosonic Josephson junction
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We present a detailed analysis of the relaxation dynamics in an extended bosonic Josephson junction. We
show that stochastic classical field simulations using Gross-Pitaevskii equations in three spatial dimensions
reproduce the main experimental findings of Pigneur et al. [Phys. Rev. Lett. 120, 173601 (2018)]. We give
an analytic solution describing the short time evolution through multimode dephasing. For longer times, the
observed relaxation to a phase-locked state is caused by nonlinear dynamics beyond the sine-Gordon model,
induced by the longitudinal confinement potential and persisting even at zero temperature. Finally, we analyze
different experimentally relevant trapping geometries to mitigate these effects. Our results provide the basis for
future experimental implementations aiming to study nonlinear and quantum effects of the relaxation in extended
bosonic Josephson junctions.
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I. INTRODUCTION

The Josephson effect is a prominent example for the
manifestation of macroscopic quantum effects. Originally
formulated in the context of two weakly coupled supercon-
ductors [1] it shows a broad range of applications for systems
featuring two coupled macroscopic quantum states. As such
Josephson junctions were observed and analyzed in a variety
of systems (see, e.g., Ref. [2]). Increased interest over the last
decades has been on its application to atomic systems, where
two-body interactions enrich the dynamical behavior. This
has led to a number of ongoing theoretical and experimental
studies, from fermionic superfluids [3], macroscopic quantum
self trapping [4,5], bosonic Josephson junctions [6–11], to
different geometries [12,13] from small to extended junction
arrays.

A recent experiment [14], studying an extended bosonic
Josephson junction in an extended one-dimensional (1D) ge-
ometry with two elongated (quasi-1D) 87Rb superfluids in a
double-well potential (see Figs. 1 and 2), makes the situation
even less trivial. The observed Josephson oscillations (of the
interwell atom-number difference or of its conjugate variable,
the global phase difference) were damped after only a few
periods. More intriguing, this relaxation led to a phase-locked
state with strongly reduced fluctuations, observed experimen-
tally through the almost straight interference fringes along
the longitudinal axis of the trap (see Sec. II for details).
This implies local damping of Josephson oscillations within
each experimental realization and relaxation beyond simple
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dephasing dynamics. To date, this behavior could not be
explained by various microscopic models [12,15,16] or its
low-energy effective description, the sine-Gordon model, not
only in the semiclassical, but also in the quantum [17–20]
treatment.

Here we present a detailed numerical study of the quasi-
condensate dynamics, which explains the main results of the
experiment [14]. For the experimentally relevant harmonic
confinement we show that the system relaxes in two stages.
The short time dynamics is fully described by multimode de-
phasing, already leading to a local damping of the oscillations.
At longer times, we show that nonlinear dynamics beyond the
sine-Gordon model causes the relaxation of the system to the
observed phase-locked state. We find this effect to persist even
at zero temperature, which highlights the importance of un-
derstanding the relevance of classical nonlinear dynamics of
thermally fluctuating fields when analyzing complex quantum
many-body systems. Finally, we discuss different experimen-
tally realizable trapping geometries to mitigate these effects.

The paper is organized as follows. We start in Sec. II with
an overview of our numerical simulations for the experimen-
tal system considered in Ref. [14] and give details of the
numerical implementation and calculation of experimentally
relevant observables. In Sec. III we present numerical results,
reproducing the main findings of Ref. [14] over a wide range
of initial conditions, and discuss the observed relaxation to a
phase-locked state. Lastly, in Sec. IV, we compare our numer-
ical results to the effective one-dimensional description of the
system, determining the microscopic origin of the observed
relaxation and possibilities to mitigate the effect. We conclude
our work in Sec. V.

II. NUMERICAL MODEL AND OBSERVABLES

Our numerical simulation follows closely the experiment
in Ref. [14] where the extended bosonic Josephson junction
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FIG. 1. Schematic of the extended bosonic Josephson junction
of Ref. [14]. (a) We consider two tunnel-coupled superfluids (red and
blue ellipses) in a double-well (DW) potential (blue lines). By adjust-
ing the barrier height the tunneling coupling J can be adjusted. The
superfluids ψL,R are spatially separated and can be described in terms
of density fluctuations δρL,R around a mean density profile ρ0 and a
fluctuating phase φL,R (depicted in color). The tunneling coupling J
influences the antisymmetric phase φa and density fluctuations δρa.
Considering only the global phase � and conjugate density differ-
ence n reduces the system to a two-mode model. (b) Schematic of the
double-well potential for the experimental sequence (see also Fig. 2)
from splitting a single condensate, introducing a phase difference
(depicted in color) by applying a small tilt �E to the decoupled
DW, to the Josephson oscillation regime where the finite tunneling
coupling J leads to coherent oscillations of particles between the two
wells.

was realized through an ultracold gas of 87Rb atoms in an
adjustable double-well potential on an atom chip. The gas
was cooled well below degeneracy, such that the evolution of
the system can be described by means of the Gross-Pitaevskii
equation (GPE)

ih̄
∂

∂t
	(r, t ) =

[
− h̄2

2m
∇2 + V (r, t ) + 4π h̄2as

m
|	(r, t )|2

]
×	(r, t ). (1)

The GPE describes the evolution for the order parameter
	(r, t ) of a quasicondensate [21], capturing the contribution
of nonlinear dynamics of classical fields. Here m and as are the
atom mass and s-wave scattering length of 87Rb, respectively,
and V is the external confinement potential modeled as

V [r, ud(t ), ut (t )] = Vrf [r, ud(t )] − ut (t )x. (2)

The adiabatic radio-frequency potential Vrf (r, ud ) on an atom
chip [22] has a weak confinement along the longitudinal z
direction and can be continuously deformed from a single-
well to a double-well (DW) potential (along the x direction)
for increasing values of ud (see Fig. 1). The control param-
eter ud, also known as the (normalized) dressing amplitude,
determines the distance between the two wells, i.e., the height
of the potential barrier in the DW. By means of the second

control parameter ut it is possible to apply a small energy
difference with respect to the transverse x coordinate, leading
to a tilted DW configuration used to initialize the Josephson
oscillations in the experiment.

Due to the tight radial confinement within each well, ν⊥ �
ν‖, the system consists of two spatially separated elongated
superfluids (see Fig. 1 and Sec. II A). If the typical energy
scales of the gas are small compared to the energy of the
first radially excited state, i.e., μ, kBT � h̄ω⊥ ≡ 2π h̄ν⊥, the
system is in the quasi-1D regime, with the dynamics along the
radial directions effectively frozen. Note that atomic repulsion
may lead to a broadening of the radial wave function, which
can be taken into account in the adiabatic limit [23]. We define
the one-dimensional antisymmetric (relative) phase

φa(z, t ) = φL(z, t ) − φR(z, t ), (3)

and conjugate 1D density difference

δρa(z, t ) = (ρL(z, t ) − ρR(z, t ))/2, (4)

with φL,R and ρL,R the longitudinal 1D phase and density pro-
file of the left and right component, respectively (cf. Fig. 1). In
the following we drop the subscript a when there is no risk of
confusion. Note that, the potential in Eq. (2) is nonseparable,
which requires additional approximations when reducing the
effective dimension of the system.

Josephson effects in bosonic systems lead to a coherent
oscillation of particles between the two sides of the DW via
tunneling of atoms through the potential barrier (see Fig. 1).
In the commonly used two-mode approximation the time evo-
lution of the system is described by the Josephson equations
(see, e.g., Refs. [4,6,7])

ṅ(t ) ≈ −2J
√

1 − n2(t ) sin[�(t )] (5)

�̇(t ) ≈ μ

h̄
n(t ) + 2J

n(t )√
1 − n2(t )

cos[�(t )], (6)

where n(t ) = [NL(t ) − NR(t )]/N and �(t ) = �L(t ) − �R(t )
are the normalized atom number difference and conjugate
relative phase difference between the two wells, respectively.
Here μ is the on-site interaction energy and 2h̄J is the
single-particle tunneling-coupling energy. In the following,
we consider the Josephson regime 1 � μ/(2h̄J ) � N2. For
small initial amplitudes the Josephson equations describe os-
cillations of the phase and particle imbalance characterized by
the plasma, or Josephson, frequency ωJ ≈ √

4Jμ/h̄.
For extended bosonic JJ the applicability of the two-mode

model strongly depends on the geometry of the system. In
strongly elongated systems dynamics within each conden-
sate may no longer be negligible, due to the high density
of states along the extended direction. This naturally leads
to a description of the system in the language of quantum
field theory, where the Josephson equations (5) and (6) are
replaced by the sine-Gordon model (see, e.g., Ref. [24]) for
the local fields φ(z, t ) and δρ(z, t ). A prominent example for
the change in dynamical behavior is the breakdown of quan-
tum self-trapping (see, e.g., Ref. [25]). Additionally, radially
excited states may contribute to the dynamics, driving the
system beyond the 1D regime. In order to reproduce the main
findings of the original experiment we therefore decided to
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FIG. 2. Schematic of the experimental sequence [14]. (a) During preparation a single condensate is coherently split [blue line shows the
normalized dressing amplitude ud(t )]. Once completely decoupled, a tilt [dashed green line shows the normalized tilt factor ut (t )] along the
transversal x coordinate introduces an energy difference between the wells resulting in the accumulation of a global phase difference �0.
Thereafter, a variable coupling is achieved by reducing the distance on a short timescale, leading to the observed Josephson oscillations.
(b) Snapshots of the wave function at different times (red stars from left to right) for a single run that samples thermal initial conditions for
temperature T ≈ 20 nK with N = 3500 particles and �0 = −1.25 rad. The 3D figures show isosurfaces of the density (0.35 of the maximum
value) with the local phase difference φ(r, t ) encoded in color. Grey lines show isolines of the external potential V (r, ud, ut ). (c) Interference
pictures after finite time of flight with the normalized density depicted in color and the integrated (along the z direction) transverse density
depicted in white. The almost straight interference fringes at t = 80 ms show relaxation to a phase-locked state.

consider a full three-dimensional classical fields simulation.
In the following, we first give an overview of the experimental
sequence before discussing in the remainder of this section
details of the numerical implementation and calculation of
observables.

A. Overview of experimental sequence

We depict in Figs. 2(a) and 2(b) a typical evolution of the
experimental system according to our numerical simulations.
The experiment starts with a single quasi-one-dimensional
condensate in thermal equilibrium. The initial trap at t = 0
has a weak harmonic confinement with frequency ν‖ = 22 Hz
along the longitudinal axis. The radial trapping frequencies
are both given by ν⊥ ≈ 3 kHz, such that the system is in the
quasi-1D regime.

The trap begins to split at t > 0 and approaches at t =
21.5 ms its double-well configuration corresponding to the
largest distance of the two halves of the quasicondensate. At
this point the barrier of the DW is sufficiently high, such
that the two 1D-BECs are completely decoupled. Unlike
Refs. [26,27], splitting is assumed to be rather close to the
adiabatic limit [28], and we end up in the situation when the
quantum fluctuations are negligible to thermal ones. There-
fore, the phase and density fluctuations after the splitting
were found to be small in the experiment [14], signaling
strong atom-number squeezing. This enables us to use finite-
temperature classical statistical numerical methods, which do
not include the quantum shot-noise, to describe the full exper-
imental splitting process.

Next, a tilt along the transverse direction of the trap induces
an energy difference between the two wells, which leads to the
accumulation of a global phase difference �0 (see Fig. 2 for
t = 24.5 ms). The final phase difference �0 can be adjusted
by altering the maximum value of the tilt factor ut . Note that
no particle number difference accumulates due to the com-
plete decoupling of the two clouds. Experimentally the local
relative phase φ can be extracted from the interference pattern
resulting from the overlap of the wave functions after finite
time of flight. Numerical results for the interference patterns
after free expansion are depicted in Fig. 2(c). In accordance
with the experiment, the straight interference fringes at t =
24.5 ms signal a well-defined initial relative phase with neg-
ligible fluctuations along the whole condensate. This global
relative phase �(t ) can be extracted directly from the interfer-
ence pictures by integrating along the longitudinal direction
(white lines).

Lastly, within the period of t = 24.5 ms and t = 27.5 ms
the distance of the two halves of the condensate is low-
ered to its final value (ud = u

d and ut = 0), decreasing the
barrier height. Tunneling through the barrier couples the
two wells and the system starts to oscillate, realizing the
extended bosonic Josephson junction in the relative phase
φ and conjugate density difference δρ. The final poten-
tial for t � 27.5 ms has a reduced harmonic confinement
of ν‖ = 12 Hz along the longitudinal direction and, within
each well, an approximately harmonic confinement of ν⊥ ≈
1.5 kHz along the radial direction. Both frequencies ν‖ and
ν⊥ are in nice agreement with the parameters of the original
experiment [14].
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In accordance with the experiment the global Josephson
oscillation is rapidly damped and the system relaxes to a
quasistationary state with a global relative phase � ≈ 0 and
strongly reduced phase fluctuations. This so-called phase-
locked state is apparent in the stationary, almost straight
interference fringes observed at long times [see last interfer-
ence pattern in Fig. 2(c)] and signals relaxation beyond local
dephasing.

B. Numerical implementation

In order to prepare finite-temperature initial conditions for
	(r, 0) we first compute ground-state solutions of the GPE
using imaginary time propagation [29]. In this context every
wave function is normalized to a desired atom number N .
The distribution of the total atom number N is assumed to
be a normal distribution f (N ) = N (N̄, σ 2

N ) with the mean
N̄ = 3500 and standard deviation σN = 0.16 N̄ . In the original
experiment postselection further restricts the atom numbers
to the range [N̄ − δN , N̄ + δN ] with a given cutoff parame-
ter δN = 0.08 N̄ . In the numerical simulation the restricted
atom number distribution is obtained by inversely sampling
the cumulative distribution function F (N ) over the interval
[F (N̄ − δN ), F (N̄ + δN )] using an equidistant distribution of
nsr = 301 points representing the number of single runs.

Subsequently, the resulting zero-temperature ground-state
solutions are propagated using the stochastic Gross-Pitaevskii
equation (SGPE) (see, e.g., Ref. [30] and references therein)

ih̄
∂

∂t
	(r, t ) = (1 − iγ )

[
− h̄2

2m
∇2 + V (r, 0)

+ 4π h̄2as

m
|	(r, t )|2 − μ

]
	(r, t ) + η(r, t )

(7)

until a new stationary thermal state is reached. Here, μ de-
notes the chemical potential of the eigenvalue problem at zero
temperature and η is a complex random noise term. For the
simple growth SGPE considered here, the positive constant γ

can be freely tuned to improve the speed of convergence. We
keep the atom number fixed within each SGPE realization by
normalizing the wave function after each time step. This is
done to preserve the exact atom number distribution already
included in the above calculation of the ground state for each
realization. Including the fluctuations of the SGPE would,
however, only lead to a small broadening of the total atom
number distribution.

The numerical propagation of the SGPE is based on a
second-order accurate operator splitting and the spatial deriva-
tives are approximated by means of the Fourier spectral
collocation method. We note that the thermal noise term η is
assumed to be constant for the duration of every time step.
Depending on the desired temperature, several tens of thou-
sands of time steps are necessary to reach a thermal state. In
the simplest approximation, η denotes a complex, Gaussian,
white noise process with correlations

〈η∗(r, t )η(r′, t ′)〉 = 2h̄γ kBT δ(r − r′)δ(t − t ′) (8)

corresponding to a given temperature T . However, using the
noise term in form of Eq. (8) results in unrealistic excitations

of the quasicondensate along the tightly confined transverse
directions of the trap. One obvious solution to this problem
is to project the wave function onto a few of the lowest-
energy single-particle eigenstates of the harmonic trap. This
approach, which is known as the projected stochastic Gross-
Pitaevskii equation [30], is prohibitively expensive in our
three-dimensional setting. Due to the extremely strong trans-
verse confinement of the initial trap kBT � h̄ω⊥, the main
effect of radially excited single-particle states is an increase
in width of the Gaussian ground-state wave function [23].
We therefore expect the desired thermal state to be an almost
perfectly symmetric and smooth function with respect to the
transverse directions x and y.

This assumption can be taken into account in the prepara-
tion of the thermal noise η(r, t ) in Eq. (7). In this context, we
first compute a complex field 	⊥(x, y, z) = 	(x, y, z)/

√
ρ(z)

using the 1D density

ρ(z) =
∫∫

|	(x, y, z)|2 dx dy (9)

along the z direction. For the noise term we finally employ the
expression

η(x, y, z) = λ(z)	⊥(x, y, z), (10)

where λ(z) is one-dimensional Gaussian white noise with zero
mean and variance given by Eq. (8) replacing δ(r − r′) with
δ(z − z′). In the continuum limit an explicit cutoff for the
noise is necessary due to the Raleigh-Jeans divergence, lead-
ing to a smeared out δ function. We checked independence of
the cutoff for selected parameters. Convergence to the correct
thermal state was verified by further evolving the system with
the GPE after slightly disturbing the exact symmetry of the
prepared states in the x, y plane.

Once a set of thermal initial conditions 	(r, 0) has been
prepared, the actual time evolution of all corresponding single
runs is computed using the ordinary GPE (1). Similarly to the
case of the SGPE we employ a second-order accurate opera-
tor splitting (Strang splitting) in combination with a Fourier
spectral discretization of the spatial derivatives [31,32]. It is
worth noting that the number of atoms N in every single run
is conserved throughout the whole simulation as it is expected
from the given numerical algorithm. We also checked that the
total energy E is conserved (with high precision) as long as
the two external parameters ut and ud remain unchanged (i.e.,
the Hamiltonian is time independent).

The computational effort of a classical fields simulation in
three spatial dimensions using several hundred initial states
and on the order of 100 000 time steps is significant. How-
ever, the algorithm can be nicely implemented on a graphics
processing unit (GPU) resulting in a dramatic speed up in
comparison with a CPU-based implementation on a multicore
CPU system.

C. Experimental observables

In the experiment, the evolution of the system is investi-
gated by destructive measurements after time of flight (TOF)
either looking at the interference pictures or the atom num-
ber difference between the two wells. We calculate the TOF
expansion numerically, taking atom interactions into account
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for the first millisecond of the expansion. During this time,
the system rapidly expands along the tightly confined radial
direction, diluting the gas sufficiently such that the expan-
sion becomes ballistic (i.e., noninteracting). Once the TOF
expansion has been computed, we integrate the density along
the vertical direction y to obtain the desired interference pic-
tures measured in the experiment. Additionally, to account for
the finite imaging resolution in the experiment, we include
a convolution of the numerical interference pictures with a
Gaussian point-spread function

ξ (x, z) = exp
[ − (x2 + z2)/

(
2σ 2

psf

)]
/
(
2πσ 2

psf

)
. (11)

The local relative phase φ(z, t ) can be extracted by fitting a
sinusoidal function to each pixel along the longitudinal z di-
rection. Finally, integrating along the longitudinal z direction
to obtain the profile np(x), the contrast Ctof and the global
relative phase �tof are determined using

np(x) ≈ A exp[−x2/(2σ 2)](1 + Ctof cos[kx − �tof )], (12)

where A, σ , Ctof , k, and �tof are found by solving a nonlinear
least squares problem. The contrast Ctof measures the visibil-
ity of the integrated interference fringes (cf. Fig. 2), i.e., it
takes its maximum value Ctof = 1 for negligible fluctuations
of the relative phase along the whole condensate.

The computation of the global relative phase �tof by means
of a TOF simulation and formula (12) is a time-consuming
process. Alternatively, the global relative phase can be ex-
tracted from the in situ wave function (see, e.g., Refs. [33,34])
directly via

� = arg

[ ∫ ∞

0
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz	(x, y, z)	∗(−x, y, z)

]
.

(13)

The results of both methods are practically indistinguishable
and the weighting implicitly applied in Eq. (13) reflects the
weighting involved in the procedure using the TOF images
reasonably well.

Consistently, the local phase profile φ(z, t ) can be defined
by omitting the integration over z in Eq. (13). Due to coher-
ence along the tightly confined radial direction, the results are
reasonably close to the line values

φ(z) = arg [	(x1, 0, z)	∗(x2, 0, z)]. (14)

Here, x1 and x2 are at the minimum of the radial potential in
the left and right well (i.e., at the points of maximum density),
respectively. Equivalently, the contrast C can be calculated
from the in situ phase profiles via

C = Re

[∫
dz

∫
dz′〈e−i(φ(z)−φ(z′ ))〉

]
, (15)

where we neglected the strongly suppressed density fluctua-
tions [35]. We therefore consider in the following the in situ
observables, omitting the time-of-flight expansion.

III. NUMERICAL RESULTS AND ANALYTIC ESTIMATES
FOR THE EXPERIMENT

Numerical results of the experimental procedure outlined
above are depicted in Fig. 3 for an initial global phase

FIG. 3. Results of the numerical simulation outlined in Fig. 2.
(a) Local relative phase φ(z, t ) (top panel) and global relative phase
�(t ) (bottom panel) of a selected single run using N = 3500 par-
ticles. (b) Ensemble average of the local relative phase 〈φ(z, t )〉
(top panel) and global relative phase 〈�(t )〉 using 301 realizations
including experimental fluctuations of the total number of atoms.
Dashed lines depict the standard deviation. Black lines in (a) and
(b) mark the region containing 75% of the atoms.

of �0 = −1.25 rad. As mentioned earlier, the mean atom
number amounts to N̄ = 3500. Moreover, the thermal initial
conditions correspond to a temperature of T = 20 nK.

The time evolution of the local relative phase φ(z, t ) of
a selected (N = 3500) single run is shown in the top panel
of Fig. 3(a). The corresponding time evolution of the global
relative phase �(t ) is shown in the bottom panel. In the real
experiment it is impossible to observe the time evolution of
the relative phase in a selected single run. Instead the ex-
periment is repeated many times until meaningful statistical
values can be extracted. We therefore depict in the top and
bottom panel of Fig. 3(b) the ensemble average of the local
relative phase 〈φ(z, t )〉 and the global relative phase 〈�(t )〉,
respectively. We would like to recall that 〈. . . 〉 denotes the
ensemble average over nsr = 301 independent realizations,
where we additionally take into account fluctuations of the
total atom number N in accordance with the experiment.
As the atom number difference is the canonical conjugate
variable of the phase difference its time evolution does not
provide any new information and will therefore be omitted for
brevity.

The coherent splitting of a single condensate leads to the
excitation of a common breathing mode, due to the halving
of the atom number within each well. This breathing mode
can be easily seen in Fig. 3 by the pair of black lines marking
the region containing 75% of all particles. We note that the
observed period Tb ≈ 48 ms for ν‖ = 12 Hz agrees perfectly
with the theoretical prediction νb = √

3 ν‖ for the breathing
mode of a one-dimensional condensate. For the time scales
considered, we find the breathing mode to be sufficiently
decoupled from the Josephson oscillation dynamics.
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A. Local density approximation and dephasing

A first insight into the evolution of the system can be
gained considering the local density approximation (LDA).
In the Thomas-Fermi approximation the mean-field density
profile is given by an inverted parabola ρ0(z) = n0(1 − z̄2).
Here n0 is the peak density and we defined the dimensionless
spatial coordinate z̄ = z/R, where R is the Thomas-Fermi ra-
dius. Defining the local chemical potential μ(z) = gρ(z) leads
to a spatially dependent Josephson frequency

ωJ (z) =
√

1 − z̄2ωJ0, (16)

with ωJ0 = √
4Jn0/h̄. The resulting phase profile

φ(z, t ) = �0 cos(
√

1 − z̄2ωJ0t ) (17)

describes an assembly of independent undamped Josephson
junctions along the weakly confined longitudinal direction.
The breathing of the condensate leads to a minor slow time
dependence of ωJ0, which can be taken into account but does
not significantly alter the results. We therefore in the following
neglect the influence of the breathing for brevity.

The spatial dependence of the Josephson frequency, de-
creasing towards the edges of the condensate, is clearly visible
in Fig. 3(a) through the bending of the local phase difference.
Note that we are not in the self-trapped regime [36]. There-
fore, different parts of the condensate exhibit local dephasing.
This leads to a damping of the global phase difference

�(t ) = 1

2

∫ 1

−1
dz̄ �0 cos(

√
1 − z̄2ωJ0t )

= �0
π

2
H−1(ωJ0t ), (18)

even in the absence of dynamics along the longitudinal di-
rection. Here Hα (τ ) is the Struve function of the order α,
predicting a power-law decay for the amplitude of the global
Josephson oscillation [37].

B. Atom number fluctuations

The damping of the local and global relative phase in
case of the ensemble averages is even stronger. Atom number
fluctuations contribute to an additional dephasing between
different realizations due to the dependence of the Josephson
frequency ωJ0 on the total particle number N . The most simple
model Eq. (16) for the case of a harmonic longitudinal con-
finement yields ωJ0 ∝ Nκ with κ = 1/3. However, by fitting
a whole series of 3D simulations covering a wide range of
atom numbers, we find κ ≈ 0.43 (see Fig. 4), indicating an
interwell tunneling that depends on the local density of the
quasicondensates (cf., e.g., Ref. [38]). Note that we chose
the power-law dependence here based on the functional form
predicted by Eq. (16) and do not expect this relation to hold for
notably smaller or larger atom numbers N . This also increases
the influence of trivial dephasing caused by atom number
fluctuations. Equation (18) can be extended to include such
fluctuations of the Josephson frequency. Assuming a uniform
distribution in ωJ0 on the interval [ω̄J0(1 − η), ω̄J0(1 + η)]

FIG. 4. Dependence of the tunneling coupling on the mean-field
density. The Josephson frequency ωJ0 shows additional dependence
on the atom number N (κ > 1/3) due to the correction F in Eq. (22).

with η � 1 this leads to

〈�(t )〉N = 1

2ηω̄J0

∫ ω̄J0(1+η)

ω̄J0(1−η)
dω �0

π

2
H−1(ωt )

= �0
π

2

H0[ω̄J0t (1 + η)] − H0[ω̄J0t (1 − η)]

2ηω̄J0t
. (19)

It is worth pointing out that fitting Eq. (19) to the ensemble
average 〈�(t )〉 of our full numerical simulations, we find η

to be reasonably close (within ≈10%) to its expected value
η = κ δN/N̄ with κ ≈ 0.43.

C. Relaxation beyond dephasing

Despite being a good approximation for the evolution of
〈�(t )〉, these effects alone do not correctly describe the ob-
served relaxation of the system to a phase-locked state. First,
the small variance of 〈�(t )〉 at late times [see Fig. 3(b)]
shows that dephasing due to total atom number fluctuations
is not the dominant effect for the damping. Equivalently, this
implies damping of the Josephson oscillations within each
realization. Second, while damping of �(t ) is expected from
Eq. (18), the observed local damping signals the breakdown
of the LDA, which would predict an undamped oscillation
for fixed position z [cf. Fig. 3(a)]. This difference can be
clearly seen in the time evolution of the contrast C(t ) de-
picted in Fig. 5, which increases at late times back close to
its initial value. This, consistent with Ref. [14], is a clear
indication for the relaxation to a phase-locked state with small
fluctuations of the relative phase along the whole condensate.
Contrary, considering only local and atom number dephasing

FIG. 5. Time evolution of the contrast C(t ) for the GPE simu-
lation (black line) reveals relaxation beyond local and atom number
dephasing (blue dashed line) towards a phase-locked state.
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FIG. 6. Numerical results of a comprehensive simulation study
illustrating the dependence of the damping time τ on the (a) ini-
tial relative phase �0, (b) tunneling strength J , and (c) mean atom
number N̄ . The final dressing amplitude u

d determines the tunneling
coupling (decreasing for larger u

d). If not explicitly depicted in the
subfigure, the remaining constant parameters are N̄ = 3500, u

d =
0.56, and �0 = −1.25, respectively. In all simulations the thermal
initial conditions correspond to a temperature of T = 20 nK and
the atom number distribution is characterized by the parameters
σN = 0.16N̄ and δN = 0.08N̄ (see Sec. II B for details). Error bars
depict the standard deviation.

C(t ) remains small despite the strongly damped global phase
oscillations. Note that atom number fluctuations have only a
minor influence on the evolution of the contrast C(t ), as it is
independent of the global phase �(t ).

D. Comparison to the experiment

Finally, in a comprehensive simulation study we investi-
gated the dependence of the damping time τ on the initial
relative phase �0, the tunneling strength J and the mean atom
number N̄ (see Fig. 6). In this context the damping time τ was
determined by fitting the results of the numerical simulations
using the model for a damped Josephson junction presented
in Ref. [14], where a phenomenological damping term was
added to Eq. (5) (see, e.g., Ref. [39]). Due to the large num-
ber of different parameters it was necessary to reduce the
number of single runs to nsr = 21. However, convergence of
the extracted values was verified by (selected) computations
using larger values of nsr. In all cases we found our results
to be compatible with the experiment [14]. This includes a
relatively weak dependence of τ on the initial global rela-
tive phase �0, a plateau-shaped dependence on the effective
tunnel coupling strength J , and approximately τ ∼ N−0.5.
Note, however, that for the latter we find a slight additional
dependence of the exponent on the single-particle tunneling
coupling J .

IV. MULTIMODE DEPHASING AND NONLINEAR
RELAXATION

In order to study the fundamental mechanisms leading to
the rapid local damping of the Josephson oscillations, we
consider in the following a zero-temperature (T = 0) state

with fixed particle number N = 3500. We further omit the
preparation phase to mitigate the effect of a common breath-
ing excitation and imprint the phase difference �0 directly
in the final trap configuration. These simplifications preserve
the observed main results of rapid global and local damping
of Josephson oscillations and enable us to compare results
of the full 3D simulations with a tractable linearized, one-
dimensional model (see, e.g., Refs. [38,40]).

A. Effective one-dimensional description

We first proceed with the common dimensional reduction,
reducing the system to two one-dimensional coupled quantum
wires by integrating over the tightly confined transverse direc-
tions [23,41]. Regaining the dominant terms in the expansion,
the system of two coupled 1D GPE equations can be described
by the Hamiltonian

H1D =
∫

dz
∑

i=L,R

[ψ†
i (z)UGP[ψi]ψi(z)]

−ψ
†
LJ [ψL, ψR]ψR + H.c.. (20)

The uncoupled evolution of the fields ψL,R in the left (right)
well of the double-well potential is described by

UGP[ψi] = − h̄2

2m
∂2

z + V (z) + g1D

2
|ψi(z)|2, (21)

where g1D ≈ 2h̄asω⊥ is the effective 1D interaction constant.
The tunneling coupling is given by

J [ψL, ψR] = h̄J + h̄F

2
[|ψL|2 + |ψR|2], (22)

where we included the dominant nonlinear density depen-
dence (see, e.g., Ref. [38] for details). In general we have
|J| � |F max[ρ0]|. Note, in particular, that also J can show
an explicit density dependence due to radial swelling of the
condensate [23]. We find the dominant effect of the nonlinear
density dependence to be a moderate shift of ωJ0 depending on
the total atom number N (see Fig. 4). We therefore neglect in
the following linearized model the nonlinear terms in Eq. (22),
i.e., F = 0, and treat J as a free parameter to be determined
from our 3D simulations.

Next, writing the fields in the Madelung representation
ψL,R = √

ρ0 + δρL,R eiφL,R , we expand in powers of the small
density perturbations δρ and phase gradients |∂zφ| (where
| . . . | denotes the typical value) [42]. The Hamiltonian to
quadratic order separates into a weakly coupled sum H ≈
Hs + Ha for the symmetric (s) and antisymmetric (a) degrees
of freedom (DoF), defined as

φs = 1
2 (φ1 + φ2) φa = φ1 − φ2 (23)

δρs = δρ1 + δρ2 δρa = 1
2 (δρ1 − δρ2). (24)

The Hamiltonians Hs,a are given by

Hi =
∫

dz

{
− h̄2

4m

[
ζ 2

i (∂zδρi )
2+ ρ2

0

ζ 2
i

(∂zφi)
2

]
+ ζ 2

i g1Dδρ2
i

− δia

[
h̄Jρ0(cos(φa) − 1) + h̄Jδρ2

a

2ρ0
cos(φa)

]}
, (25)
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FIG. 7. (a) Frequencies ωn for the first 16 eigenmodes of the
linearized model Eq. (26) as a function of the tunneling coupling ωJ0.
Even (odd) modes are depicted with solid (dashed) lines. (b) Quasi-
particle occupations |bn| for an initial global phase difference �0.
Due to symmetry only even modes (solid markers) are occupied, their
occupation decreasing rapidly for n � 15.

where i = s, a and we suppressed the spatial and temporal
dependence of the fields δρ(z, t ), φ(z, t ), and ρ0(z) for sim-
plicity. Here ζs(a) = 0.5 (1) for the symmetric (antisymmetric)
DoF, δia is the Kronecker δ, and we included the quantum
pressure and minor coupling correction (first and last term,
respectively) for completeness. If neglected, the symmetric
and antisymmetric DoF are described by the Luttinger-Liquid
(HLL) and sine-Gordon (HsG) model, respectively [24]. Note,
in particular, that while second order in the small parameters
δρ and |∂zφa| the sine-Gordon model is an interacting (quan-
tum) field theory with HsG including terms with an arbitrary
(even) number of fields φa.

B. Analytic solutions for harmonically trapped systems

Within the framework of the sine-Gordon model the re-
laxation of Josephson oscillations in a homogeneous system,
ρ0 = const., was studied in Refs. [18–20]. This was, how-
ever, insufficient to describe the observed fast damping in
the experiment [14]. Here, to investigate the influence of the
longitudinal confinement, we present an analytic solution to
the linearized equations of motion for a harmonically trapped
system.

Under the assumption of (i) the Thomas-Fermi approxi-
mation (∂zρ0)/ρ0 � 1, (ii) neglecting the nonlinear density
dependence of the tunneling coupling, and (iii) small tunnel-
ing energy compared to the chemical potential h̄J/μ � 1 the
linearized equations of motion for the relative phase field obey
the eigenvalue equation

∂z̄[(1 − z̄2) ∂z̄φ] + [
λ2

0n − γ 2(1 − z̄2)
]
φ = 0, (26)

where we assumed φ(t ) ∼ eiωnt and defined the dimensionless
eigenvalue λ0n = √

2ωn/ω‖ and Josephson frequency γ =√
2ωJ0/ω‖. We recall the definition of the dimensionless spa-

tial coordinate z̄ = z/R, where R is the Thomas-Fermi radius.
The dominant correction beyond the LDA is given by the
kinetic energy, first term in Eq. (26). If neglected, we recover
the previous model of an assembly of undamped, uncoupled
Josephson junctions with spatially dependent frequency. The
kinetic energy term couples these oscillators, damping the
rapid growth of the phase gradient caused by local dephasing.

Exact solutions to Eq. (26) are given by the angular oblate
spheroidal wave functions Smn for m = 0 [37]. The eigenfre-
quencies ωn are depicted in Fig. 7(a), featuring an increasing

FIG. 8. (a) Comparison of the phase difference φ(z, t ) from the
full 3D-GPE simulations (top panel) to the 1D model Eq. (27)
(middle panel). The system parameters are N = 3500, T = 0 nK,
�0 = −1.25 rad, and ωJ0 ≈ 235 s−1. In (b), the normalized energy
in the symmetric (blue line) and antisymmetric (red line) degrees of
freedom and the k = 0 mode (black dashed line) reveal multimode
dynamics and relaxation beyond the SG model (see main text for
details). Note that, while the GPE obeys energy conservation, the
depicted energies are calculated using Eq. (25) and hence are not
strictly conserved.

energy gap and twofold degeneracy of the spectrum for larger
tunneling coupling J (cf. [38]). For vanishing tunneling cou-
pling, γ = 0, Eq. (26) reduces to the Legendre differential
equation, leading to the known spectrum for the excitations
of the inhomogeneous Luttinger-Liquid model for a har-
monically trapped quasicondensate [43]. Imposing canonical
commutation relations for δρa and φa determines the normal-
ization of the mode functions and leads to the mode expansion
of the phase and density quadratures

φa =
∑

n

√
(2n + 1)μ

2RTF h̄ωnρ0
S0n(z̄) bn eiωnt +H.c. (27)

δρa =
∑

n

√
(2n + 1)h̄ωnρ0

2RTFμ
S0n(z̄) bn eiωnt +H.c. (28)

In Fig. 7(b) we show the occupation numbers |bn|, calculated
for an initial constant phase difference φ(z) ≡ �0 by pro-
jecting onto the quasiparticle basis, Eq. (27). In contrast to
the spatially homogeneous system, where a constant global
phase difference �0 only has nonvanishing overlap with a
single (k = 0) mode, here multiple modes are populated. Due
to symmetry only even modes are occupied. Their amplitude
decreases rapidly for n > 15, such that only the ten lowest-
energy modes show significant population.

We compare in Fig. 8(a) predictions of our analytic model
to the evolution of the local relative phase φ(z, t ) obtained
from the full 3D-GPE simulation. As previously mentioned,
we consider a fixed particle number N = 3500, zero temper-
ature T = 0, and omit the preparation phase to suppress the
common breathing mode. While, e.g., the damping time τ

depends on details of the initial state, these simplifications
qualitatively preserve the main features of the relaxation (cf.
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Fig. 3). In particular, the system still exhibits fast local damp-
ing of the Josephson oscillation and relaxes to a phase-locked
state on long timescales.

The time evolution in the harmonic approximation is given
by the undamped oscillations between density and phase
quadratures of the initially populated free quasiparticle modes
[Eq. (27)]. Each mode oscillates with its distinct eigenfre-
quency ωn = λ0nω‖/

√
2, where we treated the Josephson

frequency ωJ0 as a free parameter in Eq. (26), determined
from the GPE simulations. The resulting multimode dephas-
ing leads to a rapid initial damping of the global Josephson
oscillation, similar to the previous local dephasing. Most no-
tably, however, the dephasing of free quasiparticle modes
already leads to a local damping of oscillations. At early
times, we find excellent agreement between the full numerical
simulation and the analytic predictions. For later times the
linearized theory shows oscillations increasing again in am-
plitude, which propagate inwards from the boundaries. These
are caused by (partial) rephasing dynamics as a result of the
limited number of quasiparticle modes with significant popu-
lation [44].

The absence of rephasing in the full 3D simulations sig-
nals the breakdown of the linearized model, either through
nonlinear terms in the SG model or coupling of the symmetric
and antisymmetric DoF. For the former the Hamiltonian of the
system is still given by H ≈ Hs + Ha, such that the symmetric
DoF can be neglected. Higher-order corrections couple the
symmetric and antisymmetric DoF leading to a transfer of en-
ergy between the two sectors, ultimately leading to complete
equilibration of the system. This signals a definite breakdown
for the effective description of the extended Josephson junc-
tion through the sine-Gordon model.

We quantify the coupling in Fig. 8(b), showing the time
evolution of the energies Ei(t ) within each sector Hs,a given
by Eq. (25) at each instant of time. In addition, we dis-
play the energy of the zero-momentum (k = 0) mode of the
antisymmetric DoF determining the spatially independent,
global Josephson oscillation. Therefore, the initial energy E0

is completely given by this zero-momentum mode. At early
times the energies are approximately conserved within each
sector, validating a description of the antisymmetric DoF in
terms of the sine-Gordon model. For the parameters con-
sidered the linearized model [Eq. (26)] constitutes a good
approximation in this regime, signaling that nonlinearities
of the sine-Gordon model only lead to minor corrections.
The rapid decline of the k = 0 mode is caused by the de-
phasing of quasiparticle modes, transferring energy to higher
momentum states within the antisymmetric sector. Note that
quasiparticle dephasing here leads to transport in momen-
tum space since plane waves are not the eigenstates of the
system.

For 30 ms � t � 60 ms energy transfer from the antisym-
metric to the symmetric DoF becomes dominant, revealing
the breakdown of the SG model. At later times the system
reaches equipartition of energy. This does, however, not imply
complete thermalization of the system. We like to highlight
that significant coupling already occurs at zero temperature
due to the spatially inhomogeneous Josephson frequency. This
is the dominant effect leading to the fast relaxation of the
system to a phase-locked state as observed in Ref. [14].

FIG. 9. Relaxation in flat-bottom potentials. Results of 3D-GPE
simulations for parameters as in Fig. 8 for a box-shaped potential
(a) and a ring-shaped potential (b) in the longitudinal z direction. We
adjusted the particle number N requiring equal Josephson frequen-
cies ωJ (z=0) for all trapping potentials. In neither case the system
relaxes to a phase-locked state since coupling of symmetric and
antisymmetric degrees of freedom is highly suppressed. For (b) the
Josephson oscillation completely decouples.

C. Flat-bottom potentials

The rapid equipartition of energy greatly impedes experi-
mental studies of, e.g., the influence of quantum corrections or
the long time evolution of extended bosonic Josephson junc-
tions and the sine-Gordon model. Based on recent progress
in shaping arbitrary trapping potentials [45,46] we now give
an outlook on the possibilities for mitigating these effects in
cold-atom experiments.

We show in Fig. 9(a) the time evolution of φ(z, t ) and
the normalized energies for a box-shaped potential, which is
known to violate the system integrability, even if the potential
is flat between the walls [47]. In accordance with typical
experimental capabilities, we model the z dependence of Vrf

in Eq. (2) as

V (z) = h̄V0

2

[
tanh

( |z| − L/2

σw

)
+ 1

]
, (29)

with V0 ≈ 15 kHz � μ, length L = 100 μm, and finite wall
width σw = 2 μm. Spatial dependence of the Josephson fre-
quency is limited to the edges of the condensate leading to
disturbances emanating from the boundaries. Once propa-
gated inwards these disturbances lead to a rapid decline of
the k = 0 mode caused by multimode dephasing. In contrast
to the harmonic confinement, however, global Josephson os-
cillations prevail within the central region of the box (for t �
20 ms). In particular, the amplitude of local phase oscillations
remains high. Therefore, the contrast C(t ) after its initial de-
crease remains small at longer times, i.e., the system does not
relax to a phase-locked state. Consistently, coupling between
the symmetric and antisymmetric DoF is highly suppressed,
with only ≈16% of the energy being transferred at t = 80 ms.
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Therefore, while the antisymmetric DoF shows multimode
dynamics, decoupling from the symmetric DoF constitutes a
good approximation.

Ring-shaped potentials further eliminate the influence of
the boundaries, leading to undamped global Josephson os-
cillations at zero temperature [see Fig. 9(b)]. In accordance,
we find the total energy to remain in the k = 0 mode, with
negligible coupling between the symmetric and antisymmetric
DoF. Here, dephasing due to atom number fluctuations will
dominate ensemble averages at late times, which can be miti-
gated through appropriate postselection. Naturally, this is the
ideal setting to study the nonlinear dynamics and the influence
of thermal and/or quantum fluctuations.

V. CONCLUSION

We gave a detailed discussion of the rich nonlinear dynam-
ics in inhomogeneous extended bosonic Josephson junctions.
We found our results for the full 3D-GPE simulations at finite
temperature to reproduce the experimental findings [14] over
a wide range of parameters.

A detailed analysis for the zero-temperature case allowed
us to distinguish two stages of the relaxation dynamics. The
short time behavior was well described through the sine-
Gordon model, i.e., the low-energy effective theory for the
antisymmetric degrees of freedom of two tunnel-coupled one-
dimensional superfluids. For the parameters considered, we
found reasonable agreement with an analytic solution in the
harmonic approximation. In contrast to the local density ap-
proximation, these solutions already predict the local damping
of Josephson oscillations (in addition to the spatially depen-
dent Josephson frequency). At later times, we explained the
relaxation to a phase-locked state, as observed in Ref. [14],
through the breakdown of the sine-Gordon model description
by coupling of the symmetric and antisymmetric degrees of
freedom. Induced by the harmonic confinement, this coupling
dominates the long time behavior of the system, even at zero
temperature. Lastly, we showed that this coupling can be

greatly reduced for box- or ring-shaped potentials along the
longitudinal direction.

Our study is a crucial step when investigating the influ-
ence of thermal or quantum fluctuations on the relaxation
dynamics in bosonic Josephson junctions. Our simulations
provide, e.g., the relevant maximum timescale during which
comparison to the sine-Gordon model is sensible. A de-
tailed comparison to other microscopic models, such as the
self-consistent time-dependent Hartree-Fock approximation
presented in Ref. [16], would be interesting but is hindered by
the different regimes of applicability. Therein, results are pre-
sented in the small particle number regime N � 200, wherein
deviations of classical statistical simulations are expected to
become relevant. Intriguingly, the behavior in Ref. [16] is
similar to our harmonic 1D model, including local damping
and recurrences of phase oscillations for harmonic confine-
ments, and the absence of relaxation to a phase-locked state.
This, consistent with the considered small atom number limit,
suggests that interactions play a less significant role in the
regime of Ref. [16].

Our results highlight the importance of understanding the
classical nonlinear dynamics, even at zero temperature, before
comparing results to sophisticated quantum models. Our work
outlines the experimental possibilities and steps necessary to
study relaxation in extended bosonic Josephson junctions and
the (quantum) sine-Gordon model out of equilibrium.
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