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Maximal power for heat engines: Role of asymmetric interaction times
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The performance of endoreversible thermal machines operating at finite power constitutes one of the main
challenges of nonequilibrium classical and quantum thermodynamics, engineering, and others. We introduce
the idea of adjusting the interaction time asymmetry in order to optimize the engine performance. We consider
one of the simplest thermal machines, composed of a quantum dot interacting sequentially with two different
reservoirs of heat and particles. Distinct optimization protocols are analyzed in the framework of stochastic
thermodynamics. Results reveal that asymmetric interaction times play a fundamental role in enhancing the
power output and that maximizations can provide an increase of more than 25% compared with the symmetric
case. As an extra advantage, efficiencies at maximum power are slightly greater than the endoreversible Curzon-
Ahlborn efficiency for a broad range of reservoir temperatures.
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I. INTRODUCTION

The efficiency of any heat engine is bounded by Carnot
efficiency ηC = 1 − TC/TH, with TC and TH being the cold
and hot reservoir temperatures. It constitutes one of the main
results of thermodynamics and is one of the distinct formu-
lations of the second law. Such an ideal limit was introduced
by Carnot in 1824 [1,2] and consists of a reversible machine
composed by two isothermal and two adiabatic quasistatic
strokes. Although it is a universal upper bond valid for all
engines, irrespective of their designs, compositions, or nature,
whether classical [3,4] or quantum [5,6], such an (ideal) limit
is impractical, not only due to imperfections in the machine
construction, which increases the dissipation, but also because
its achievement would demand the machine to operate in a
fully reversible way during infinitely large times, implying its
operation at a null power (finite work divided by infinite time).

Thus it is usually desirable to build thermal machines to be
as efficient as possible operating at finite power outputs. One
of the main findings for endoreversible thermal machines is
the Curzon and Ahlborn efficiency [7], in which the efficiency
at maximum power is given by ηCA = 1 − √

TC/TH. Such a
remarkable finding has also been derived in several distinct
works (see, e.g., Refs. [8,9]), and despite not possessing the
same universal status as the Carnot efficiency, it provides a
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powerful guide as to the operation of nonequilibrium engines
under more realistic situations and sheds light on the con-
struction and performance of small-scale engines (nanoscopic
devices) working in a maximum power regime from the
tools of stochastic thermodynamics [3,4,9–24]. In this context,
single-level quantum dots have been proposed as prototype
machines, whose simplicity allows detailed investigation of
their performances at maximum power [25–27].

Collisional models, e.g., a system interacting sequentially
and repeatedly with distinct environments (instead of contin-
uous interaction with all the reservoirs), have been considered
as a suitable description of engineered reservoirs [28]. Among
the distinct situations for that, we mention the case of quantum
systems, in which the reservoir is conveniently represented
as a sequential collection of uncorrelated particles [29,30].
Additionally, the collisional approach attempts to provide re-
alistic systems interacting only with small fractions of the
environment or even those evolving under the influence of
distinct drivings over each member [31,32]. Particularly, many
aspects of a stochastic pump in which a single-level quan-
tum dot (QD) is connected sequentially and periodically to
different reservoirs have been discussed lately for symmetric
interaction times [33–35].

In this paper, we introduce the idea of adjusting the in-
teraction time asymmetry in order to optimize the engine
performance. The present approach is rather different from
some findings [10,19,36,37] exactly because we explore this
adjustment of the interaction time; that is, the interaction time
is the focus of our study. Despite the simplicity of the system,
its large applicability and richness allow its usage as heat en-
gine, refrigerator, heater, or accelerator, hence highlighting the
importance of searching for optimized protocols. As a main
finding, under suited situations, asymmetric interaction times
play an important role in the enhancement of power output.
Also, as an extra advantage, efficiencies become somewhat
greater than the endoreversible Curzon-Ahlborn efficiency.
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FIG. 1. Sketch of a quantum dot periodically and sequentially
placed in contact with a hot (during a time τH) and a cold (during a
time τ − τH) reservoir. When in contact with a reservoir, the quantum
dot receives a particle with rate ωi and donates a particle with rate ωi

(i being H for the hot reservoir and C for the cold one). When the
quantum dot is occupied, its energy increases by ε.

This paper is organized as follows: In Sec. II the model is
presented, and analytical results are provided. Section III is
devoted to the main results concerning the efficiency in differ-
ent regimes and optimized power outputs. Lastly, in Sec. IV
we draw conclusions and provide perspectives.

II. MODEL AND EXACT SOLUTION

The model consists of a two-level system sequentially
and periodically (with period τ ) placed in contact with a
hot (H) and a cold (C) reservoir during the time intervals
τH and τ − τH, respectively, as depicted in Fig. 1. More
specifically, the QD interacts with one reservoir during a
certain time. Afterwards, one turns off this interaction, and
then the QD is placed in contact with the second reservoir.
The switching time is assumed to be instantaneous or, at
least, much faster than any other relevant time scales. The
energy of the QD is null (ε) when it is empty (occupied
by one electron). Each interaction can be modeled accord-
ing to the transition rates ωi and ωi, whether the system
receives or delivers a particle, respectively, with i ∈ {H, C}.
Giving that the system placed in contact with a single reser-
voir evolves to the equilibrium distribution, the connection
between transition rates and macroscopic quantities can be
performed by assuming that the probability of occupation at
equilibrium peq

i ≡ ωi/(ωi + ωi ) obeys the Fermi-Dirac dis-

tribution peq
i = [e(ε−μi )/Ti + 1]−1, where, for each reservoir,

Ti is the temperature, μi is the chemical potential, and the
Boltzmann constant is set to 1. The assumption above is
equivalent to the local detailed balance condition ωi/ωi =
e−(ε−μi )/Ti , and therefore the temperature of each reservoir is
given by

Ti = μi − ε

ln ωi/ωi
. (1)

As long as the reservoirs are different, the system will evolve
to a periodic and time asymmetric nonequilibrium steady state
(NESS), in which time reversal means exchanging the order of
the reservoirs. An important quantity is the ratio of the transi-
tion rates ωi/ωi, which quantifies the reservoir willingness to
concede a particle to the QD, equilibrium being reached for
ωH/ωH = ωC/ωC.

We start the analysis of this system by considering a
Markov chain whose discrete time is given by t ≡ nh, where
n = 0, 1, 2, . . . and h is the time step. When the system is
placed in contact with reservoir i, the transition matrix is given
by

Wi ≡
(−ωi ωi

ωi −ωi

)
. (2)

The probability distribution obeys the relation �Pi(t + nh) =
(I + hWi )n �Pi(t ), where I is the 2 × 2 identity matrix and
�Pi(t ) ≡ {1 − pi(t ), pi(t )} is the vector of probabilities of
emptiness and occupation. Hence pi(t + nh) can be written
as

pi(t + nh) = peq
i + [1 − hωi(1 + ωi/ωi )]

n
(
pi(t ) − peq

i

)
. (3)

Since pi(t ) is continuous, one has the boundary conditions
pH(τH) = pC(τH). Furthermore, the periodicity of the system
ensures that it returns to the initial state after a complete
period for long enough times such that pH(0) = pC(τ ). The
occupation probability can be exactly obtained considering
these boundary conditions and solving Eq. (3). Hereafter we
consider the NESS regime, for which such boundary condi-
tions are valid.

The NESS particle flux at a given time interval h is given by
Ji(nh) ≡ [pi((n + 1)h) − pi(nh)]/h, which is positive when-
ever more particles leave the reservoir i towards the QD on
average, and negative otherwise. By averaging Ji(nh) over a
full cycle we have that JH = (1/τ )

∑τH/h−1
n=0 JH(nh)h and JC =

(1/τ )
∑τ/h−1

m=τH/h JC(mh)h, for i ∈ {H, C}. Since no electron ac-
cumulation in the QD is possible, all particles leaving a given
reservoir must go to the other one, such that JH + JC = 0. By
considering the master equation regime, h → 0 and n → ∞
with nh = t held fixed, the above probabilities and currents in
the NESS become

pH(t ) = ωH

ωH + ωH
− e−(ωH+ωH )t [1 − e−(ωC+ωC )(τ−τH )]

1 − e−(ωH+ωH )τH−(ωC+ωC )(τ−τH )

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
, t = [0, τH] (mod τ ), (4)

pC(t ) = ωC

ωC + ωC
− e−(ωC+ωC )(t−τH )[1 − e−(ωH+ωH )τH ]

1 − e−(ωH+ωH )τH−(ωC+ωC )(τ−τH )

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
, t = [τH, τ ] (mod τ ), (5)

JH = −JC = 1

τ

(1 − e−(ωH+ωH )τH )(1 − e−(ωC+ωC )(τ−τH ) )

1 − e−(ωH+ωH )τH−(ωC+ωC )(τ−τH )

ωHωC − ωHωC

(ωH + ωH)(ωC + ωC)
. (6)
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We pause to make a few comments: First, such results recover
the findings from Refs. [33,38] for symmetric interaction
times (τH = τ/2). Second, for both discrete and continuous
cases, the hot reservoir is “more willing” to concede particles
than the cold reservoir when ωH/ωH > ωC/ωC, implying that
JH > 0 and JC < 0, which is consistent with the fact that J i
points from reservoir i to the QD. Third, the period τ only
gives the time scale of the model in the sense that rescaling the
fluxes, transition rates, and the time the system stays in contact
with each reservoir by τ keeps Eq. (6) unchanged; hence,
from now on, τ is kept fixed and reads τ = 1. Fourth and last,
the present system can operate as a heat engine, refrigerator,
heater, or accelerator, provided that the parameters ωi and ωi

(or equivalently, ε, μi, and Ti) are conveniently adjusted. In
this paper we shall address the heat engine regime, which
is set by the conditions {ωC/ωC < ωH/ωH < 1, μH < μC <

ε}, ensuring the positiveness of temperatures (with TH > TC),
power output, and the heat extracted from the hot reservoir.

III. THERMODYNAMICS

Once the probability distribution and the suited heat en-
gine regime in terms of the model parameters have been
obtained, we are in a position to obtain the thermodynamic
properties (exchanged heat and work) and efficiency through
the framework of stochastic thermodynamics [11,39]. Re-
markable quantities averaged over a complete cycle are the
exchanged heat and the chemical work given by Q̇i ≡ (ε −
μi )Ji and Ẇ

chem

i ≡ μiJ i, respectively, for i = {C, H}. It is
worth mentioning that they obey the first law of thermody-

namics, in such a way that Q̇C + Q̇H + Ẇ
chem

C + Ẇ
chem

H = 0.
For the engine regime, the efficiency is typically a measure
of “what you get and what you give,” represented here by the

ratio between the power output P ≡ −(Ẇ
chem

H + Ẇ
chem

C ) and

the heat received from the hot reservoir Q̇H, resulting in

η ≡ P

Q̇H

= 1 − TC ln ωC/ωC

TH ln ωH/ωH
. (7)

The relation above can also be expressed in terms of the
macroscopic properties of the reservoirs and the QD

η = 1 − μC − ε

μH − ε
= μC − μH

ε − μH
, (8)

where we used Eq. (1). We pause again to make some
comments: First, the system will reach an equilibrium state
when ωH/ωH = ωC/ωC, consistent with the (maximum)
Carnot efficiency. Second, the engine regime stated above,
(ωC/ωC < ωH/ωH < 1), (μH < μC < ε), ensures the posi-
tiveness of the power output and the heat delivered from
the hot reservoir. Additionally, it is also consistent with
heat flowing from the QD to the cold reservoir: Q̇C < 0.
Third and last, since the right-hand side of Eq. (8) does
not depend on τH and τ , η is independent of the protocol.
Conversely, the power output P depends on τH and τ , in
such a way that it can be conveniently adjusted, together
with the other parameters {ωH, ωH, ωC, ωC, TH, TC}, in order
to optimize the extracted power. Here, we are concerned

with the maximization of power under different physical
setups.

In order to exploit distinct possibilities of optimizing the
extracted power, the next sections will be devoted to its
maximization with respect to the protocol asymmetry and its
complete maximization (also taking into account the transi-
tion rates). Since the extracted power increases monotonically
with the ratio between temperatures, the analysis will be car-
ried out for finite fixed ratios TC/TH.

A. Best protocol

An interesting way of obtaining some insight into the sys-
tem is to look at the power output as a function of the fraction
of time spent in contact with the hot reservoir τH and the
ratio between the duration of the cycle and the characteristic
time tchar [defined as the largest of characteristic times tH

char ≡
1/(ωH + ω̄H) and tC

char ≡ 1/(ωC + ω̄C), which represent the
typical relaxation time to the thermal state that each reservoir
imposes] as exemplified in Fig. 2, for some representative
parameter values. In all cases, the chemical potentials and the
energy are held fixed providing η = 1/3 [see Eq. (8) and the
caption of Fig. 2 for the values used]. A common trait of all
panels is that the power output (and also the extracted heat)
vanishes for τH/τ near 1 or 0. This is expected since in such
a situation the QD is mostly in contact with a single reservoir
and almost no work can be extracted. It is also noteworthy
that the value of τH for which the power is maximum barely
changes with the ratio τ/tchar but its value is extremely de-
pendent on the other parameters of the model. Furthermore,
even for a constant value of τ/tchar, the power output can be
noticeably different.

In order for the reservoir to effectively act upon the QD
state it needs to interact during a period comparable with its
characteristic time. Therefore characteristic times provide a
notion of how long a good engine will interact with each
reservoir; for example, if tH

char � tC
char, the hot reservoir needs

to interact very briefly compared with the cold one, so we can
expect that a good protocol will present a small τH/τ . Hence
it is reasonable that good performance protocols will present
interaction times around the characteristic times of each reser-
voir. This is exemplified in Fig. 2, where tH

char/(tH
char + tC

char)
gives approximately 0.7, 0.1, 0.9, and 0.4 for Figs. 2(a), 2(b),
2(c), and 2(d), respectively, in fair agreement with the best
value of τH/τ observed in the plots. As a rule of thumb
we should choose τ as small as possible, in agreement with
Refs. [40,41], and maximize the power output with respect
to τH. Although small, it is worth mentioning that the period
τ should be sufficiently larger than the time necessary for
switching the interaction of the QD from one reservoir to the
other one, in similarity with the symmetric case [33,35,35].

The unique value of τH that maximizes P for a given
value of τ and the other parameters can be easily found by
numerically solving the transcendental equation

(ωH + ωH)

(ωC + ωC)

e−(ωH+ωH )τH [1 − e−(ωC+ωC )(τ−τH )]2

e−(ωC+ωC )(τ−τH )[1 − e−(ωH+ωH )τH ]2
= 1, (9)

whose values are shown in Fig. 2, represented by the white
dashed curves.
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FIG. 2. (a)–(d) Power outputs vs τ/tchar and τH/τ for distinct control parameters. Each dashed black curve represents an increment of 10−4

in the value of the power, and the white dashed curves represent the value of τH/τ that maximizes the power for each value of τ/tchar. For all
panels, we set μH = 0.4, μC = 0.6, and energy ε = 1.

An interesting question that may be raised about this best
protocol procedure is, How much do we gain by tuning τH
instead of just letting the QD be half of the time in contact with
each reservoir (symmetric case)? In Fig. 3, we show the den-
sity plots of the ratio of the power output for τH to the power
output for the symmetric case P̄(τH)/P̄(τ/2) as a function of
both τH/τ and TC/TH. As the temperature is changed (with
ω̄i’s, ε, and the chemical potentials held fixed), tchar changes
according to Eq. (1). Hence comparisons between Figs. 2 and
3 should take this change into account.

Here, we used the same values of chemical potentials
and energy as in Fig. 2. As can be seen, by properly tun-
ing τH one can increase the power output more than 25%
[Figs. 3(a) and 3(e)]. However, in order for the tuning be
more effective, the transition rates ω̄H and ω̄C must be distinct,
adding an asymmetry to the system: Figs. 3(c) and 3(d) reveal
that the ratio P̄(τH)/P̄(τ/2) is less than or equal to 1 for
ω̄H = ω̄C. Finally, by comparing Fig. 3(a) with Fig. 3(b) and
Fig. 3(e) with Fig. 3(f) we notice that the tuning of τH can
increase the power output for ω̄H either greater or smaller
than ω̄C, but it is for ω̄H > ω̄C that the region of larger
gain corresponds to the larger efficiencies and power outputs
(small TC/TH).

B. Complete maximization of power

In this section, the complete maximization of the power,
not only with respect to τH (as in the previous section) but
also taking into account the transition rates, is undertaken.
Physically, this means that we are optimizing the physical
properties (transition rates) as well as the machine protocol
(time spent in contact with each reservoir). Some remarkable
features are depicted in Fig. 4, in which the parameters τH/τ ,
ωH, and ωC that maximize the power output are considered as
a function of the ratio TC/TH. That is, the optimization of the
power output (with respect to τH, ωH, and ωC) is undertaken
for all values of ω̄H and ω̄C in a square grid (from 0.1 to 2 in
steps of 0.05). The maximum, mean, and minimum values of
these quantities are then shown in Fig. 4. Although the ratios
ωH/ω̄H and ωC/ω̄C vary slightly with the choice of the rates
ω̄H and ω̄C, an opposite trend is verified for τH, which is very
sensitive to the choice of transition rates or grids. This sug-
gests that the choice of the time fraction which the QD spends
in contact with each reservoir is the most important parameter
for the power maximization. Such a finding is reinforced by
examining the behavior of output powers in Fig. 5 in which,
in addition to the optimal choices of ωH and ωC, one also
takes “reliable” estimates for them and only the optimization
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FIG. 3. (a)–(f) Density plots of the power as a function of τH and TC/TH normalized by the power for τH = τ/2. Each dashed black curve
represents an increment of 0.1 in the value of the power, and the white dashed curves represent the value of τH that maximizes the power for
each value of TC/TH. For all panels, we set τ = 1, μH = 0.4, μC = 0.6, and ε = 1.

with respect to τH is carried out. Although the power output
strongly depends on the choices of rates or grids ω̄H and ω̄C
(see, e.g., the lowest and largest Pmax curves), the difference
between power outputs coming from the optimization of ωi
and their mean values is very small (not visible in the scale
of Fig. 5). Finally, the difference between the lowest and

largest Pmax is due to its monotonic increasing by raising the
transition rates.

Lastly, the efficiency at maximal power ηMP is compared
with the well-established Curzon-Ahlborn and Carnot ones in
Figs. 6 and 7, respectively, for different temperatures. Just as
in Figs. 4 and 5, the optimization is carried out for all values
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FIG. 4. Values of τH/τ (red dashed curves), ωH/ω̄H (black solid
curves), and ωC/ω̄C (blue dashed curve) after the maximization of
power for fixed temperatures and τ = 1. The maximum, medium,
and minimum values for each quantity are presented, and the high-
lighted areas between the three curves represent the possible values
of each parameter after the optimization of the power for a grid of
values of ω̄H and ω̄C ranging from 0.1 to 2 in steps of 0.05.

of ω̄H and ω̄C over a grid. Except for some specific choices
of ωH and ωC in a small range of TC/TH between 0.4 and 1,
the maximization provides an efficiency slightly larger than
the Curzon-Ahlborn one. As for Carnot and Curzon-Ahlborn
efficiencies, Eqs. (1) and (7) show that ηMP solely depends
on the ratio of the temperatures and not on the specific value
of TH.

Finally, ηMP is always (as it must be) lower than ηC (see,
e.g., Fig. 7) for all of the set of optimized parameters. Further-
more, when TC/TH → 0 and 1, all efficiencies collapse at the
asymptotic values 1 and 0, respectively.

FIG. 5. Maximum power output Pmax vs TC/TH for τ = 1 and
the same grid used in Fig. 4, where maximum (black), mean (blue),
and minimum (red) values of maximum power are displayed. Solid
curves account for the maximization in terms of τH only, while
dashed curves represent the maximization in terms of τH, ωH/ωH,
and ωC/ωC.

FIG. 6. Ratio between the efficiency at maximum power ηMP

and the Curzon-Ahlborn efficiency ηCA vs TC/TH for ε = 1 and
τ = 1. The curves represent the loci of maximum (black solid curve),
mean (blue dashed curve), and minimum (red dashed curve) values
obtained for the same grid used in Fig. 4.

IV. DISCUSSION

In this paper, we analyzed the role of asymmetric in-
teraction times for optimizing the power output in thermal
machines composed of a quantum dot stochastic pump. Our
findings showed that a suited power output optimization can
lead to a gain in the power larger than 25% when compared
with the symmetrical case, in which the system is equally
placed in contact with each reservoir.

A very remarkable point regarding the importance of the
present analysis is that the fine-tuning of the interaction time
is expected to be easier to implement than an improved design
of the machine itself. Therefore the present (exact) results
may shed some light on the role of the time protocol in the
effectiveness of obtaining optimized power outputs. In fact,
the choice of a “good” (instead of optimal) quantum dot

FIG. 7. Ratio between efficiency at maximum power ηMP and
Carnot ηC vs TC/TH for ε = 1 and τ = 1. The curves represent the
loci of maximum (black solid curve), mean (blue dashed curve), and
minimum (red dashed curve) values obtained for the same grid used
in Fig. 4.
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together with optimized time provides a reliable recipe for
obtaining an almost optimal (power output) machine, whose
associate efficiencies are usually somewhat larger than the
Curzon-Ahlborn one, but much larger than the symmetric
case.

Further investigations of this model could explore other
regimes (e.g., as a refrigerator or a heater engine) and/or the
modulation of the QD’s energy to obtain mechanical work on
top of the pumping of electrons.
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