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Topological nematic phase transition in Kitaev magnets under applied magnetic fields
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We propose a scenario of realizing the toric code phase, which can be potentially utilized for fault-tolerant
quantum computation, in candidate materials of Kitaev magnets. It is demonstrated that four-body interactions
among Majorana fermions in the Kitaev spin liquid state, which are induced by applied magnetic fields as well as
non-Kitaev-type exchange interactions, trigger a nematic phase transition of Majorana bonds without magnetic
orders, accompanying the change of the Chern number from ±1 to zero. This gapful spin liquid state with zero
Chern number is simply the toric code phase. Our result potentially explains the topological nematic transition
recently observed in α-RuCl3 via heat capacity measurements (O. Tanaka et al., arXiv:2007.06757).
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I. INTRODUCTION

A quantum spin liquid (QSL) is an exotic phase of matter
in which spins do not have long-range order even at zero tem-
perature. The Kitaev model [1] is an exactly solvable model
of QSLs, which is defined on the honeycomb lattice with
bond-dependent Ising interactions. A remarkable feature of
the Kitaev model is that the system is described by Majorana
fermions interacting with Z2 gauge fields, allowing the realiza-
tion of Abelian and non-Abelian anyons. For almost isotropic
bond-dependent Ising interactions, the system exhibits a chi-
ral QSL phase with non-Abelian anyons when an applied
magnetic field opens an energy gap of Majorana fermions.
On the other hand, for highly anisotropic Ising interactions,
the toric code phase with Abelian anyons is realized. It is
noted that both of these phases can be utilized for topologi-
cal quantum computation [1,2]. After Kitaev’s seminal paper,
various phenomena associated with Majorana fermions in Ki-
taev magnets were explored extensively [3–16]. Ever since
Jackeli and Khaliullin [17–22] pointed out that isotropic bond-
dependent Ising interactions arise in some honeycomb layered
materials, the experimental search for candidate materials has
been an important subject. Several materials including 4d5 or
5d5 transition metal ions with a strong spin-orbit coupling
have been proposed for Kitaev magnets, such as Na2IrO3

[23,24], α-Li2IrO3 [25], and α-RuCl3 [26]. α-RuCl3 under
an applied magnetic field is one of the best candidates for
the Kitaev magnet [27]. For this material, a signature of Ma-
jorana fermions in the chiral QSL phase is observed via the
measurement of the half-integer thermal quantum Hall effect
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[28–30]. Moreover, according to recent specific-heat mea-
surements [31], approximated threefold rotational symmetry
of the honeycomb lattice is drastically broken to obviously
twofold rotational symmetry at high fields, implying that a
nematic-type phase transition occurs [32]. Remarkably, the
nematic phase transition accompanies the disappearance of
the half-quantized thermal Hall effect [28], though experi-
mental results suggest that the system may still be in a QSL
phase. To understand these observations, we need another
ingredient missing in previous research for Kitaev magnets,
which includes various additional spin-spin interactions, such
as Heisenberg, �, and �′ terms.

In this work, we theoretically discuss the possibility of
a nematic phase transition due to many-body interactions
among itinerant Majorana fermions in Kitaev magnets. The
effects of interactions between Majorana fermions have been
studied extensively for Kitaev magnets as well as topological
superconductors [8,33–42,42–50]. However, physics arising
from Majorana interactions in real Kitaev materials is still
elusive. On the other hand, various numerical studies on the
extended Kitaev model utilizing spin representation, which
effectively include the nonperturbative effects of Majorana
interactions, have been carried out [19,51–63], and nematic-
ity has been discussed in recent studies [54,55,60–62]. Rich
phase diagrams of Kitaev magnets are obtained from these
studies based on the spin Hamiltonian, while a further the-
oretical study is needed to understand the results of the
recent specific-heat measurements mentioned above, which
we believe is from the gapped QSL phase to another QSL
phase [31].

To focus on the nature of a QSL phase in Kitaev magnets
from a different point of view, we assume the flux-free state in
our model. Although the flux-free assumption may be violated
by strong additional spin exchanges such as Heisenberg, �,
and �′ terms, it allows us not only to clarify the properties of a
QSL phase directly, but also to explore the topological phase
transition mentioned above. In addition, under the flux-free
assumption we can combine mean-field analysis and exact
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FIG. 1. (a) Phase diagram of the Kitaev model. Red arrows in-
dicate topological nematic phase transitions. (b) Configurations of
three spins in Eq. (2). (c) Configurations of four Majorana fermions
in Eqs. (3) and (5). (d) The definition of the hopping amplitude τa.
The arrows indicate the signs of the hopping terms.

diagonalization, which is impossible in the previous frame-
work of the Majorana mean-field theory (see Refs. [55,64], for
example), so that we can study rotational symmetry breaking
in the extended Kitaev model from various aspects by com-
puting the Majorana band structure, the Majorana bond order,
and the Chern number, which are hard to handle by the direct
treatment of the spin model. Furthermore, the scenario in
which Majorana four-body interactions give rise to rotational
symmetry breaking is applicable to any flux sectors, which
is described by interacting Majorana systems, and thus it is
a good starting point to focus on one flux sector. From now
on, we elucidate that the four-body interactions can induce a
nematic-type Majorana bond ordered phase that is a gapped
QSL with zero Chern number, i.e., the toric code phase.

II. MODEL

The Hamiltonian of the pure Kitaev model is expressed as

H = −Jx

∑
〈i j〉x

σ x
i σ x

j − Jy

∑
〈i j〉y

σ
y
i σ

y
j − Jz

∑
〈i j〉z

σ z
i σ z

j , (1)

where σi represents the spin operator on the ith site, and 〈i j〉
means a nearest-neighbor (NN) bond. x, y, and z are indices
for the bond direction. The phase diagram in the parameter
space (Jx, Jy, Jz ) obtained in Kitaev’s original paper is shown
in Fig. 1(a). For strongly anisotropic Kitaev interactions, the
so-called A phase, which is the toric code phase, is realized.
On the other hand, for almost isotropic Kitaev interactions,
another phase (B phase), which possesses gapless Dirac bands
of Majorana fermions, appears. Once the time-reversal sym-
metry is broken in B phase, however, the spectrum acquires an
energy gap, leading to a chiral QSL state with the Chern num-
ber ±1. For both phases, the system is described by Majorana
fermions interacting with Z2 gauge fields. In the following,
we restrict our analysis within the vortex-free states. Then, in
the case with applied magnetic fields, from the perturbation
theory in the third order, effective interactions of three-spin
operators are obtained:

H (3)
eff ∼ −hxhyhz

J2

∑
j,k,l

σ x
j σ

y
k σ z

l , (2)

where h = (hx, hy, hz ) is an external magnetic field, and we
assume here that Jx = Jy = Jz = J . The site summation i, j, k
is taken as shown in Fig. 1(b). In the Majorana representation,

operators are rearranged to three types of terms:∑
j,k,l

σ x
j σ

y
k σ z

l → −i
∑
〈〈i j〉〉

cic j +
∑

Y

cic jckcl +
∑

Y′
cic jckcl ,

(3)

where “→” means taking the standard gauge in the 0-flux
ground state, and 〈〈i j〉〉 means a next-nearest-neighbor (NNN)
bond. The first term is an NNN hopping that gives rise to an
energy gap, leading to the Chern number ±1, and the others
are four-Majorana interactions. Here the site summation for∑

Y is taken as shown in the upper Y-shaped diagram of
Fig. 1(c), and

∑
Y′ is taken for the lower one of Fig. 1(c). In the

following, we focus on these types of Majorana interactions
for concreteness. However, we believe that our main results
are generic also for other types of neighboring four-body
interactions.

It is noted that in the case with the off-diagonal exchange
interaction, H�′ = �′ ∑

〈i j〉α,β �=α[σα
i σ

β
j + σ

β
i σα

j ], where α and
β run for x, y, and z, and the Y (Y′) -shaped interactions
also arise from the third-order perturbation terms of order
O(hx,y,z�

′2). In addition, other non-Kitaev interactions, such
as Heisenberg and � terms, contribute to bring additional NN
and NNN hoppings as shown in Appendix C. Thus, generally,
the coefficients of the second and the third terms of Eq. (3)
are different from that of the first one, and we end up with the
following Majorana Hamiltonian:

Htotal = H1 + H2 + H4, (4)

with

H1 = it
∑
〈i j〉

cic j, H2 = iκ
∑
〈〈i j〉〉

cic j,

H4 = g

(∑
Y

cic jckcl +
∑

Y′
cic jckcl

)
. (5)

We stress here again that the parameters κ and g are inde-
pendent for real candidate materials of Kitaev magnets, as
mentioned above. The Majorana operator is represented as ci

for the ith site, and the operators obey c†
i = ci and {ci, c j} =

2δi j . The hopping amplitude t = J is set to unity without loss
of generality.

III. MEAN-FIELD ANALYSIS

First, we apply the mean-field (MF) analysis to the four-
body interaction term H4. Then, the general form of the MF
Hamiltonian is

HMF =
∑

a=1,2,3

iτa

∑
〈i j〉a

ηi jcic j +
∑

a=4,5,6

iτa

∑
〈〈i j〉〉a

ηi jcic j, (6)

where the index a = 1, . . . , 6 specifies the directions of hop-
ping with the amplitude τa, as described in Fig. 1(d). The
phase factors ηi j = ±1 are necessary to make HMF antisym-
metric. The sign of ηi j is defined as illustrated in Fig. 1(d) such
that the direction of the arrow indicates the positive hopping
from the jth site to the ith site.

Utilizing the Hellmann-Feynman theorem, we can derive
self-consistent equations as follows (see Appendix A for more
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FIG. 2. (a) Plot of |φ|. (b) Plot of arg(φ) in the regions with
|φ| �= 0. arg(φ) is π/3 in most of the regions, but becomes −2π/3
in the small areas around |g| ∼ 1.5. (c) Plot of |ψ |. (d) Plot of arg(ψ )
in the regions with |ψ | �= 0. (e) The Chern number ν for each phase.

details):

τ1 = t

2
+ g�4, τ2 = t

2
+ g�5, τ3 = t

2
+ g�6,

τ4 = κ

2
+ g

2
�1, τ5 = κ

2
+ g

2
�2, τ6 = κ

2
+ g

2
�3, (7)

where the definition of bond order parameters is

�a ≡ 〈�MF|icic j |�MF〉 (a = 1, . . . , 6), (8)

with |�MF〉 being the ground state of the MF Hamiltonian.
We solve the MF Hamiltonian by numerical iteration. First,

we focus on a nematic transition. The bond order param-
eters �a (a = 1, . . . , 6) play an important role for nematic
transitions with rotational symmetry breaking. The Majorana
nematic phase considered here is defined as a phase with a
bond order in a specific direction. We define nematic order
parameters as [65]

φ ≡ �1 + e2π i/3�2 + e4π i/3�3, (9)

ψ ≡ �4 + e2π i/3�5 + e4π i/3�6. (10)

If �1 = �2 = �3 (�4 = �5 = �6), φ (ψ) must be 0 from
the definition, but otherwise it will have a nonzero value. In
other words, φ and ψ characterize breaking of the threefold
rotational symmetry.

As seen in Figs. 2(a) and 2(c), for large value of |g|, a ne-
matic phase with |φ| �= 0, |ψ | �= 0, characterized by twofold
rotational symmetry, appears. We also find in Fig. 2(b)
that arg(φ) is π/3 in most regions of the |φ| �= 0 area.
The argument of φ has information about the direction of
the nematic order. Since �a takes a negative value in this

calculation, arg(φ) = π/3 corresponds to the nematic or-
der with |�3| > |�1|, |�2|. On the other hand, as seen in
Fig. 2(d), arg(ψ ) = π/3 for g < 0 in most of the nematic
region, while arg(ψ ) = −2π/3 for g > 0. This is because
ψ → −ψ under time-reversal operation, while φ → φ. In
the calculations, we intentionally introduce tiny anisotropy of
bonds to obtain symmetry-breaking solutions, lifting threefold
degeneracy.

Now, we examine the topological features of the nematic
phase. For this purpose, we calculate the Chern number nu-
merically using the Fukui-Hatsugai-Suzuki method [66]. The
results are shown in Fig. 2(e). In the chiral QSL phase without
the nematic order, the Chern number ν = ±1. Remarkably,
on the other hand, in the nematic phase with |φ| �= 0 and
|ψ | �= 0, we find ν = 0. Thus, the nematic phase transition
accompanies the topological phase transition. This implies
that the nematic transition which induces strong anisotropy
of the Majorana hopping terms [τ1, τ2, and τ3 in Eq. (6)]
drives the system from B phase to A phase in the phase di-
agram shown in Fig. 1(a). In fact, in this nematic phase, since
Z2 vortices are still suppressed, the system has no magnetic
long-range order, and it is in the QSL state. Moreover, the
nematic phase is described by the quadratic Hamiltonian of
Majorana fermions Eq. (6) with an energy gap. According to
Kitaev’s argument on the 16-way of anyons composed of Z2

vortices and free fermions [1], the gapful Majorana nematic
phase with the Chern number ν = 0 is identified with the toric
code phase with Abelian anyons. It is noted that this nematic
phase transition is the first-order type with the discontinuous
changes of the order parameters φ and ψ , and hence there is
no gap closing at the transition point. We stress that although
the nonzero ψ apparently causes the anisotropy of the Ma-
jorana hopping terms, both of the two nematic orders φ and
ψ cooperatively stabilize the toric code phase, since φ and ψ

are nonlinearly coupled with each other via the MF equations.
The details are shown in Appendix B.

At the end of this section, we should mention another phase
realized in small regions with ν = ±1 inside nematic phases
shown in Fig. 2(e). Although this phase is also a nematic phase
with |φ| �= 0, arg(φ) = −2π/3 and hence |�1|, |�2| > |�3|
is realized. We call this phase the “zigzag nematic phase.”
This zigzag nematic phase is in B phase, i.e., with the Chern
number ν = ±1.

IV. EXACT DIAGONALIZATION

To confirm the results of the MF calculation, we employ
the exact diagonalization calculations. We apply the Lanczos
method to the system size up to 32 sites. First, we discuss
the case of 18 sites. When we use periodic boundary con-
ditions (PBCs), φ and ψ must be zero, because the system
completely preserves the rotational symmetry for finite-size
systems. Thus, instead, we consider the fluctuation of the
order parameters {φ, φ†}/2 and {ψ,ψ†}/2, which can have
a nonzero value even for the PBC. The calculated results are
shown in Figs. 3(a) and 3(g). There are two bright yellow re-
gions, which implies that the nematic phase transition occurs
discontinuously for large values of g. This result confirms the
MF calculation. To examine the nematic order more directly,
and to determine the direction of bond orders, we switch to
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FIG. 3. The results obtained by exact diagonalization. (a)–
(d) {φ, φ†}/2 (PBC) and |φ| (APBC) for 18 and 32 sites. The orange
and yellow regions in (c) and (d) are identified with the nematic
phases. (e),(f) arg(φ) (APBC) for 18 and 32 sites. In yellow regions,
arg(φ) has π/3, and in black regions, arg(φ) = −2π/3. (g)–(j)
{ψ, ψ†}/2 (PBC) and |ψ | (APBC) for 18 and 32 sites. (k)–(l) arg(ψ )
(APBC) for 18 and 32 sites. Color convention is the same as (e),(f).

an antiperiodic boundary condition (APBC) to intentionally
break the threefold rotational symmetry so that we can com-
pute the nonzero |φ| and |ψ |, and the arguments of φ and
ψ . The nematic phase transition is verified again as seen in
Figs. 3(c) and 3(i). Moreover, another phase boundary appears
within the nematic regions. This implies that there are two
different nematic phases. One is a nematic phase which has

one strong bond so that arg(φ) = π + 2nπ/3 (n ∈ Z), and the
other is a zigzag nematic phase with two strong bonds so that
arg(φ) = 2nπ/3 (n ∈ Z) [see Fig. 3(e)]. However, the shape
of the phase boundary between two nematic phases is quite
different from that of the MF result shown in Figs. 2(b) and
2(d). In fact, this phase boundary depends crucially on the
system size, as seen below.

The results of the 32-site calculation are shown in
Figs. 3(b), 3(d) 3(f), 3(h), 3(j), and 3(l). Although the region
of the nematic phase depicted by orange becomes narrower
compared to the 18-site calculation, the nematic phase is defi-
nitely realized for large values of |g|. We also find two types of
nematic phases as in the MF calculations and the 18-site cal-
culations. However, the shape of the phase boundary is quite
different. The region of the zigzag nematic phase with the
Chern number ν = ±1, where arg(φ) = −2π/3, arg(ψ ) =
−2π/3 [arg(φ) = −2π/3, arg(ψ ) = π/3] for g < 0 (g > 0),
becomes very small for the 32-site calculation. To clarify the
fate of the zigzag nematic phase, we need calculations for
larger system sizes. Although there is a significant finite-size
effect in the calculations, we can clearly observe the tendency
toward the nematic phase transition. In the end, small nonzero
values in non-nematic phases seen in (c), (d), (i), and (j) are
finite-size effects, and they decrease toward zero as the system
size increases.

V. DISCUSSION

Using the MF analysis and the exact diagonalization
method, we find that the topological nematic phase transition
occurs in strongly correlated regions |g| ∼ t , g ∼ κ . Since
non-Kitaev interactions such as off-diagonal exchange inter-
actions significantly renormalize t , κ , and g, it is possible to
realize this condition for the extended Kitaev model. Particu-
larly, the � term reduces the hopping amplitude t and drives
the system into strongly correlated regions. We note that
the Y (Y′) -shaped interactions of order ∼O(hx,y,z�

′2) can-
cel out for magnetic fields parallel to the honeycomb plane.
Nevertheless, other four-body interactions with different con-
figurations of Majorana fermions, which do not disappear
even for parallel magnetic fields, can be generated from the
Heisenberg exchange interaction and the other off-diagonal
exchange interaction, i.e., the � term. The details of per-
turbative calculations with respect to non-Kitaev interactions
are shown in Appendix C, and we expect that the nematic
phase transition recently observed for α-RuCl3 under parallel
magnetic fields [31] may be explained by taking into account
these contributions. To establish this scenario, we need further
theoretical and experimental investigations. It is an interesting
future issue to extend our analysis to general flux config-
urations, for which various Majorana phases are predicted
[67,68]. From an experimental standpoint, an electric probe
through the hyperfine interaction [69] may be useful for the
detection of the Majorana nematic phase.

VI. SUMMARY

We have demonstrated that, in the Kitaev spin liquid state,
four-body interactions among Majorana fermions which are
induced by applied magnetic fields and non-Kitaev exchange
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interactions give rise to the topological nematic phase transi-
tion from the chiral QSL phase to the toric code phase.
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APPENDIX A: MEAN-FIELD ANALYSIS
AND SELF-CONSISTENT EQUATIONS

In this Appendix, we reveal the relation between the MF
hopping strength τa and bond order �a. The Fourier transform
of a Majorana operator is given by

ck,λ =
√

1

2Nunit

∑
j

e−ir j ·k c j,λ (λ = A, B), (A1)

where Nunit is the total number of unit cells, and j represents
each site. λ is a position type inside the unit cell. In other
words, the inverse Fourier transform is expressed as

c j,λ =
√

2

Nunit

∑
k

eir j ·k ck,λ (A2)

to satisfy c†
k,λ

= c−k,λ and {ck,λ, c†
q,μ} = δk,qδλ,ν . Using

δ(k) = ∑
j eir j ·k/Nunit, we can calculate each term of the MF

Hamiltonian as

iτ1

∑
〈i j〉1

ηi jcic j = iτ1

∑
s

c(rs−n1, A) c(rs, B) + H.c.

= iτ1

∑
s

[√
2

Nunit

∑
q

ei(rs−n1 )·q cq,A

]

×
[√

2

Nunit

∑
k

eirs·k ck,B

]
+ H.c.

=
∑

k

ein1·kc†
k,Ack,B + H.c., (A3)

where we choose a basis (n1, n2) of the translation group used
in Ref. [1] (see Fig. 4). So the MF Hamiltonian in momentum

FIG. 4. The fundamental translation vectors.

space is obtained:

HMF =
∑

k

(c†
k,A c†

k,B)

(
4D2(k) 2D1(k)
2D1

∗(k) −4D2(k)

)(
ck,A

ck,B

)
,

(A4)

where

D1(k) = i
(
τ1ein1·k + τ2ein2·k + τ3

)
, (A5)

D2(k) = τ4 sin(−n2 · k) + τ5 sin(n1 · k)

+ τ6 sin ((n2 − n1) · k). (A6)

Then the energy spectrum and the occupied energy under the
Fermi level are written as

E (k) = ±2
√

|D1(k)|2 + 4D2(k)2, (A7)

EMF = −2
∑

k

√
|D1(k)|2 + 4D2(k)2, (A8)

where the summation
∑

k is taken over the first Brillouin zone.
Then, we evaluate the mean-field energy by using the MF

ground state |�MF〉 and the MF Hamiltonian HMF,

EMF = 〈�MF|HMF|�MF〉

=
∑

a=1,2,3

(
τa

∑
〈i j〉a

ηi j〈�MF|icic j |�MF〉
)

+
∑

a=4,5,6

(
τa

∑
〈〈i j〉〉a

ηi j〈�MF|icic j |�MF〉
)

= N
∑

a=1,2,3

τa�a + 2N
∑

a=4,5,6

τa�a, (A9)

where N is the total number of sites, and we use

τ1

∑
〈i j〉1

ηi j〈�MF|icic j |�MF〉 = Nτ1�1,

τ4

∑
〈〈i j〉〉4

ηi j〈�MF|icic j |�MF〉

= τ4

∑
〈〈i j〉〉4

ηi j〈�MF|ici,Ac j,A|�MF〉

+ τ4

∑
〈〈i j〉〉4

ηi j〈�MF|ici,Bc j,B|�MF〉

= 2Nτ4�4,

respectively. Utilizing the Hellmann-Feynman theorem, we
obtain

�a = 1

N

∂EMF

∂τa
(a = 1, 2, 3), �a = 1

2N

∂EMF

∂τa
(a = 4, 5, 6).

(A10)

We can explicitly perform the derivatives using Eq. (A8) and
get a set of equations,

�1 = − 2

N

∑
k

τ1 + τ2 cos ((n2 − n1) · k) + τ3 cos(n1 · k)√
|D1(k)|2 + 4D2(k)2

,

�2 = − 2

N

∑
k

τ1 cos ((n2 − n1) · k) + τ2 + τ3 cos(n2 · k)√
|D1(k)|2 + 4D2(k)2

,
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�3 = − 2

N

∑
k

τ1 cos(n1 · k) + τ2 cos(n2 · k) + τ3√
|D1(k)|2 + 4D2(k)2

,

�4 = − 4

N

∑
k

sin(−n2 · k)D2(k)√
|D1(k)|2 + 4D2(k)2

,

�5 = − 4

N

∑
k

sin(n1 · k)D2(k)√
|D1(k)|2 + 4D2(k)2

,

�6 = − 4

N

∑
k

sin ((n2 − n1) · k)D2(k)√
|D1(k)|2 + 4D2(k)2

.

On the other hand, the total ground-state energy which we
will take variations with respect to {τa} can be easily written
as

〈Htotal〉 ≡ 〈�MF|H1 + H2 + H4|�MF〉, (A11)

and one can express the first term and the second term with
�a as

〈H1〉 = N × t

2
(�1 + �2 + �3),

〈H2〉 = N × κ (�4 + �5 + �6).

In addition, applying Wick’s theorem, the final term of
Eq. (A11) can be written as

∑
Y

〈cic jckcl〉 = N

2
(�1�4 + �2�5 + �3�6),

∑
Y′

〈cic jckcl〉 = N

2
(�1�4 + �2�5 + �3�6).

In short, the total energy density can be expressed as

〈Htotal〉
N

= t

2
(�1 + �2 + �3) + κ (�4 + �5 + �6)

+ g(�1�4 + �2�5 + �3�6). (A12)

Now, we can obtain the self-consistent equations by minimiz-
ing the energy with respect to variational parameters {τa},

∂〈Htotal〉
∂τa

= 0, (A13)

or more explicitly,( t

2
+ g�4

)∂�1

∂τa
+

( t

2
+ g�5

)∂�2

∂τa
+

( t

2
+ g�6

)∂�3

∂τa

+ (κ+ g�1)
∂�4

∂τa
+ (κ+ g�2)

∂�5

∂τa
+ (κ + g�3)

∂�6

∂τa
= 0.

(A14)

Finally, comparing Eqs. (A10) and (A14), we end up with

τ1 = t

2
+ g�4, τ2 = t

2
+ g�5, τ3 = t

2
+ g�6,

τ4 = κ

2
+ g

2
�1, τ5 = κ

2
+ g

2
�2, τ6 = κ

2
+ g

2
�3.

(A15)

APPENDIX B: NEMATIC PHASE AND ZIGZAG
NEMATIC PHASE

In this Appendix, we discuss how to distinguish between a
nematic phase and a zigzag nematic phase in strongly interact-
ing regions. Since �a (a = 1, . . . , 6) has a negative value in
most of parameter regions [see Fig. 5(b)], the nematic order of
φ is schematically expressed as shown in Fig. 5(a); arg(φ) re-
flects the direction of bond orders with |φ| �= 0. For instance,
arg(φ) = π/3 implies |�1| = |�2| < |�3|, which is a direct
signal of a nematic phase with one strong bond along the
a = 3 direction. On the other hand, if arg(φ) = −2π/3, there
are two strong bonds in the a = 1, 2 directions. In general,
arg(φ) = π + 2nπ/3 (n ∈ Z) represents a nematic phase in
a one-strong-bond order and arg(φ) = 2nπ/3 (n ∈ Z) indi-
cates a zigzag nematic phase that has two strong bonds [see
Fig. 5(c)]. Furthermore, Fig. 5(b) shows that the symmetry
breakings of φ and ψ occur at the same transition point,
where we intentionally realize anisotropy of bond orders by
substituting several patterns of initial values, and we take the
lowest energy state in each calculation.

We also note symmetrical properties of φ and ψ un-
der time-reversal operation. Since time-reversal operation for
Majorana operators depends on the sublattice degrees of free-
dom, �a for a = 1, 2, 3 preserves the time-reversal symmetry,
while �a for a = 4, 5, 6 changes its sign under time-reversal
operation. Therefore, the time-reversal operation acts on φ

and ψ as described below:

φ → φ′ = φ, ψ → ψ ′ = −ψ. (B1)

Because of these symmetrical properties, arg(φ) is not
changed by the transformation g → −g and κ → −κ , which
correspond to the time-reversal operation, while arg(ψ )
changes its value as π/3 ↔ −2π/3 under this transformation,
as seen in Figs. 2 and 3 in the main text. In short, for g < 0, the
region with arg(ψ ) = π/3 [arg(ψ ) = −2π/3] corresponds to
�4 = �5 < �6 (�4 = �5 > �6), and for g > 0, the region

FIG. 5. (a) A schematic view of the nematic order parameter φ.
The left figure corresponds to the case of �1 = �2 = �3 so that φ

is 0. On the other hand, φ has a nonzero value when the rotational
symmetry is broken, as shown in the right figure. (b) �a vs g for
the case of κ = 1.0. All �a change discontinuously at the transition
point. (c) Schematic views of a nematic phase with one strong bond
order (left) and a zigzag nematic phase which has strong bonds in
two directions (right). (d) The clusters used in exact diagonalization
with 18 sites. The threefold rotational symmetry is preserved when
the periodic boundary condition is applied.
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with arg(ψ ) = −2π/3 [arg(ψ ) = π/3] corresponds to �4 =
�5 < �6 (�4 = �5 > �6).

APPENDIX C: DERIVATION OF FOUR-MAJORANA
INTERACTIONS ARISING FROM NON-KITAEV

INTERACTIONS

In this Appendix, we present the details of the derivation
of the four-Majorana interactions caused by non-Kitaev in-
teractions on the basis of perturbative calculations. In these
calculations, we need to evaluate matrix elements of per-
turbation terms for the eigenstates of Z2 vortices. For this
purpose, first we examine the operation of spin operators
on the eigenstate, and then we explore for nonzero matrix
elements of perturbation terms generated by symmetric off-
diagonal exchange interactions, i.e., the � term and the �′
term, and also by the Heisenberg exchange interaction. It is
found that the Y-shaped four-Majorana interactions are gen-
erated by the �′ term combined with the Zeeman term. On
the other hand, the � term and the Heisenberg interaction
give rise to armchair-shaped interaction and zigzag-shaped
interactions, respectively (see below). Up to the third-order
perturbation, this analysis exhausts all four-body interactions
among neighboring Majorana fermions generated by the com-
bination of applied magnetic fields and the Heisenberg or the
symmetric off-diagonal exchange interactions.

1. Flip of Z2 gauge fields due to the operation of spin operators

In the following, we use the Majorana representation of
s = 1/2 spin operators introduced by Kitaev [1], σ x

j = ibx
jc j ,

σ
y
j = iby

jc j , σ z
j = ibz

jc j . The pure Kitaev model is expressed
in terms of itinerant Majorana fields c j interacting with Z2

gauge fields ûα
jk = ibα

j b
α
k on α-bonds (α = x, y, z). Here, we

consider the effects of the operation of spin operators on the
eigenstate of flux operators, ŵ,

σ z
j |�w〉 = �k

1 + Dk

2
|φ〉 , (C1)

|�w〉 ≡ �k
1 + Dk

2
|�u〉 , (C2)

|φ〉 ≡ σ j
z |�u〉 . (C3)

where |�w〉 and |�u〉 are, respectively, the eigenstates of flux
operators and that of Z2 gauge fields û, and Dk = bx

kby
kbz

kck .
We also define a state |φ〉 that is an excited state with a flipped
Z2 gauge field. Note that the following relations hold:

[σ z, D] = [ibzc, bxbybzc] = 0, (C4)[
σi

α, ûβ

kl

] = [
ibi

αci, ibk
βbl

β
]

= −2δαβδikbl
αci + 2δαβδil bk

αci. (C5)

Using these relations, one can see that |φ〉 is actually a state
with a flipped eigenvalue of ûz:

ûz
jk |φ〉 = ûz

jkσ j
z |�u〉 = −σ j

zûz
jk |�u〉 = (−uz

jk

) |φ〉 . (C6)

This means that the sign of the eigenvalue of the Z2 gauge
field for the |φ〉 state is opposite to that of the |�u〉 state. The

flip of the Z2 gauge field occurs also in the case that the spin
operator σ z acts on the other site of the z-bond,

|φ′〉 ≡ σk
z |�u〉 , (C7)

ûz
jk|φ′〉 = ûz

jkσk
z |�u〉 = −σk

zûz
jk |�u〉 = (−uz

jk

)|φ′〉. (C8)

2. Perturbative calculations with respect
to non-Kitaev interactions

We start with the following Hamiltonian for candidate ma-
terials of the Kitaev magnet on a honeycomb lattice such as
α-RuCl3 and Na2IrO3 [18,19,21,70]:

H = HK + HJH + H� + H�′ , (C9)

HK = −J
∑
〈i j〉α

σ α
i σα

j , (C10)

HJH = JH

∑
〈i j〉

σ i · σ j, (C11)

H� = �
∑
〈i j〉α

β, γ �=α

[
σ

β
i σ

γ
j + σ

γ
i σ

β
j

]
, (C12)

H�′ = �′ ∑
〈i j〉α
β �=α

[
σα

i σ
β
j + σ

β
i σα

j

]
, (C13)

where σα
i is an α = x, y, z component of an s = 1/2 spin

operator at a site i. HK is the Kitaev interaction, HJH is
the Heisenberg exchange interaction between the nearest-
neighbor sites, and H� and H�′ are symmetric off-diagonal
exchange interactions. Here, 〈i j〉α denotes that the ith site
and the jth site are connected via a nearest-neighbor α-bond
on the honeycomb lattice. We note that the definitions of
JH , �, and �′ are different from conventional ones used in
first-principles calculations [19,21,70] by a factor 1/4. We
also take into account the Zeeman term due to an external
magnetic field h = (hx, hy, hz ),

HZ = −
∑

i

[
hxσ

x
i + hyσ

y
i + hzσ

x
i

]
. (C14)

Putting V ′ = HJH + H� + H�′ + HZ , we carry out the
perturbative expansions with respect to V ′ around the vortex-
free ground state in the same spirit as Kitaev’s paper [1].
In this perturbation analysis, intermediate excited states have
vortex excitations (visons) with finite energy gaps. On the
basis of the results derived in the previous section, we examine
nonzero matrix elements in each perturbation term, which
generates four-Majorana interactions.

We first consider the Y-shaped interaction, which is derived
from the third-order perturbation with respect to the �′ term,
H�′ , and the Zeeman term HZ . To be concrete, we show
an example of the perturbation processes in Fig. 6. In this
example of the third-order perturbations, the operations of
�′σ z

1σ x
2 and �′σ x

2 σ
y
3 and hxσ

x
4 on the vortex-free ground state

result in the final state, which is also the vortex-free ground
state. Thus, these perturbation processes are allowed within
the ground-state sector. On the other hand, H� and HJH do not
give the perturbation processes within the ground-state sector
which result in the Y-shaped interaction. Thus, here we omit
these two terms in V ′. Then, the third-order perturbation term
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FIG. 6. The operation of �′σ x
2 σ z

1 on the vortex-free ground state
shown in (a) flips the Z2 gauge fields on the bonds denoted by
red shown in (b), and generates two visons (yellow hexagons). The
operation of �′σ x

2 σ
y
3 on the state shown in (b) results in the excited

state with two visons as shown in (c). The operation of hxσ
x
4 on the

state shown in (c) results in the vortex-free ground state shown in (d).
(e) An example of the configuration of the Y-shaped interaction.

which leads to the Y-shaped interaction is given by

H(3)
Y = �0V

′G′
0(E )V ′G′

0(E )V ′�0,

= −3�′2

�2

∑
α = x, y, z

β �= α

γ �= β, α

∑
〈i j〉α
〈 jl〉γ
〈 jk〉β

�0σ
α
i σ

γ

l σ
β

k (hβ + hγ )�0, (C15)

where α, β, γ = x, y, z, and �0 is a projection to the vortex-
free spin liquid state. Also, � is the energy gap of two visons,
which is given by � ∼ 0.26J [1] for the configurations shown
in Figs. 6(b) and 6(c). To analyze this term more precisely, we
use the fact that in the Majorana fermion representation of the
Kitaev spin liquid state, gauge Majorana fields bα

i should be
paired on the α-bond connecting two sites i and j to form Z2

gauge fields ûα
i j = ibα

i bα
j , since the Kitaev spin liquid state is

expressed by the eigenstate of the Z2 gauge fields. Then in the
case of α = x, Eq. (C15) is recast into

H(3)
Y = �0

⎡
⎢⎢⎢⎢⎢⎣

∑
〈i j〉x

〈 jl〉y

〈 jk〉z

(
−6�′2(hy + hz )

�2

)
cicl ckc j û

x
i j û

y
l j û

z
k j

⎤
⎥⎥⎥⎥⎥⎦�0.

This amounts to the Y-shaped interaction of four itin-
erant Majorana fermions on the sites i, j, k, l shown
in Fig. 6(e).

Secondly, we consider the armchair-shaped interaction,
which is generated by the third-order perturbation with re-
spect to the � term and the Zeeman term. An example of
the perturbation processes is shown in Fig. 7. In this example
of the third-order perturbations, the operations of �σ x

1 σ
y
2 and

hyσ
y
3 and hxσ

x
4 on the vortex-free ground state generate the

final state, which is also the vortex-free ground state. Thus,
these perturbation processes are allowed within the ground-
state sector. On the other hand, H�′ and HJH do not generate
perturbation processes which lead to the armchair-shaped in-
teraction satisfying the above condition. Thus, we omit H�′

and HJH in V ′ in this perturbative calculation. Then, the third-

FIG. 7. The operation of �σ x
1 σ

y
2 on the vortex-free ground state

shown in (a) flips the Z2 gauge fields on the bonds denoted by red
shown in (b) and generates two visons. The operation of hyσ

y
3 on

the state shown in (b) results in the excited state with two visons as
shown in (c). The operation of hxσ

x
4 on the state shown in (c) results

in the vortex-free ground state shown in (d). (e) An example of the
configuration of the armchair-shaped interaction.

order perturbation term is given by

H(3)
armchair = �0V

′G′
0(E )V ′G′

0(E )V ′�0,

= 3�

��′
∑

α = x, y, z
β �= α

γ �= β, α

∑
〈kl〉α
〈 jk〉β
〈 jl〉γ

�0hβhγ σ
β
i σ

γ
j σ

β

k σ
γ

l �0, (C16)

where �′ ∼ 0.23J is the energy gap of two visons for the
configuration shown in Fig. 7(b) [1]. In the Majorana repre-
sentation, Eq. (C16) is recast into

H(3)
armchair = �0

⎡
⎢⎢⎢⎢⎢⎣

∑
〈kl〉α
〈ik〉β
〈 jl〉γ

(
−3�hβhγ

J2

)
cickclc j û

β

ik ûγ

l j

⎤
⎥⎥⎥⎥⎥⎦�0.

This results in the armchair-shaped interaction of four neigh-
boring Majorana fermions on the sites i, j, k, l shown
in Fig. 8(e).

Finally, we consider the zigzag-shaped interaction, which
is generated by the third-order perturbation with respect to
the Heisenberg term HJH and the Zeeman term HZ . An ex-
ample of the perturbation processes is shown in Fig. 8. In
this example of the third-order perturbations, the operations
of JHσ x

1 σ x
2 and hxσ

x
3 and hxσ

x
4 on the vortex-free ground state

generate the final state, which is also the vortex-free ground
state. Thus, these perturbation processes are allowed within
the ground-state sector. On the other hand, H� and H�′ do not
contribute to the generation of the zigzag-shaped interaction,
and they are omitted in the following calculations. Then, the
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FIG. 8. The operation of JHσ x
1 σ x

2 on the vortex-free ground state
shown in (a) flips the Z2 gauge fields on the bonds denoted by red
shown in (b) and generates four visons. The operation of hxσ

x
3 on

the state shown in (b) results in the excited state with two visons as
shown in (c). The operation of hxσ

x
4 on the state shown in (c) results

in the vortex-free ground state shown in (d). (e) Examples of the
configuration of the zigzag-shaped interaction.

third-order perturbation term is given by

H(3)
zigzag = �0V

′G′
0(E )V ′G′

0(E )V ′�0

= 3

��′′
∑

α = x, y, z
β �= α

∑
〈i j〉α
〈ik〉β
〈 jl〉β

�0hβ
2σ

β

k JHσ
β
i σ

β
j σ

β

l �0,

(C17)

where �′′ represents the energy gap of four visons as illus-
trated in Fig. 8(b). In the Majorana representation, Eq. (C17)
is recast into

H(3)
zigzag = �0

⎡
⎢⎢⎢⎢⎢⎣

∑
〈i j〉α
〈ik〉β
〈 jl〉β

(
−3JH hβ

2

��′′

)
ckcic jcl û

β

kiû
β

jl

⎤
⎥⎥⎥⎥⎥⎦�0.

This amounts to the zigzag-shaped interaction of four neigh-
boring Majorana fermions on the sites i, j, k, l shown in
Fig. 8(e).

We stress here again that up to the third-order perturba-
tions, the above analysis exhausts all four-body interactions
among neighboring Majorana fermions which are generated
by the combination of applied magnetic fields and the Heisen-
berg or symmetric off-diagonal exchange interactions.

We also take into account the renormalization of the
nearest-neighbor and next-nearest-neighbor hopping ampli-
tudes of itinerant Majorana fermions due to non-Kitaev
interactions and magnetic fields. Then, finally, we obtain the

effective Hamiltonian for itinerant Majorana fermions up to
the third-order perturbation,

Heff =
∑

a=1,2,3

ta
∑
〈 jk〉a

ic jck +
∑

a=4,5,6

ta
∑
〈〈 jk〉〉a

ic jck

+ g

[∑
Y

c jckclcm +
∑

Y′
c jckcl cm

]

+H(3)
armchair + H(3)

zigzag, (C18)

where the definitions of the indices of the hopping amplitudes,
a = 1–6, are similar to those shown in Fig. 4(b), and 〈〈 jk〉〉a

means an a-bond connecting next-nearest-neighbor sites j and
k, and

t1 = J − 2JH
2

�′ − 12�3

�′2 + 2hx
2

�
, (C19)

t2 = J − 2JH
2

�′ − 12�3

�′2 + 2hy
2

�
, (C20)

t3 = J − 2JH
2

�′ − 12�3

�′2 + 2hz
2

�
, (C21)

t4 = κ ′ − 2�′(hy + hz )

�
+ 6�′2hx

�2
+ 6��′

��′ (2hx + hy + hz ),

(C22)

t5 = κ ′ − 2�′(hz + hx )

�
+ 6�′2hy

�2
+ 6��′

��′ (hx + 2hy + hz ),

(C23)

t6 = κ ′ − 2�′(hx + hy)

�
+ 6�′2hz

�2
+ 6��′

��′ (hx + hy + 2hz ),

(C24)

g = −κ ′ − 6�′2(hx + hy + hz )

�2
, (C25)

with κ ′ ≡ 6hxhyhz/�
2. In the main text, we set t1 = t2 = t3 =

t and t4 = t5 = t6 = κ to highlight spontaneous rotational-
symmetry breaking due to four-Majorana interactions. It is
worth mentioning that, as seen in Eqs. (C19)–(C21), the nor-
malization due to the Heisenberg interaction and the � term
with � > 0 reduces the nearest-neighbor hopping amplitudes
in the case of the ferromagnetic Kitaev interaction, J > 0.
This remarkable feature implies that for real candidate ma-
terials such as α-RuCl3, where the magnitudes of � and J
are in the same order, the bandwidth of itinerant Majorana
fermions is substantially reduced, and thus the systems may
be in strongly correlated regions with g ∼ t in Eq. (5) of the
main text, for which the nematic transition occurs.
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