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Universal constraints on selection strength in lineage trees
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We obtain general inequalities constraining the difference between the average of an arbitrary function of
a phenotypic trait, which includes the fitness landscape of the trait itself, in the presence or in the absence of
natural selection. These inequalities imply bounds on the strength of selection, which can be measured from
the statistics of trait values and divisions along lineages. The upper bound is related to recent generalizations of
linear response relations in stochastic thermodynamics, and shares common features with Fisher’s fundamental
theorem of natural selection, and with its generalization by Price, although they define different measures of
selection. The lower bound follows from recent improvements on Jensen’s inequality, and both bounds depend
on the variability of the fitness landscape. We illustrate our results using numerical simulations of growing cell
colonies and with experimental data of time-lapse microscopy experiments of bacteria cell colonies.
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I. INTRODUCTION

Quantifying the strength of selection in populations is an
essential step in any description of evolution. With the devel-
opment of single cell measurements, a large amount of data on
cell lineages is becoming available both at the genotypic and
phenotypic level. By analyzing the statistics of cell divisions
in population trees, one can measure selection more accurately
than using classical population growth rate measurements [1].
Similarly, by tracking phenotypes on cell lineages, one can
obtain statistically reliable estimations of the fitness landscape
of a given trait and of the selection strength of that trait [2]. In
addition, an optimal lineage principle can be used to infer the
population growth rate [3] or selective forces [4] from lineage
statistics. All these methods contribute to bridging the gap
between single-cell experiments at the population level and
molecular mechanisms [5].

An alternate method to infer selection in evolution focuses
on dynamical trajectories of frequency distributions [6,7]. In
these works, Mustonen et al. introduced the notion of fitness
flux to characterize the adaptation of a population by taking
inspiration from stochastic thermodynamics. In fact, ideas
from stochastic thermodynamics can be applied directly at the
level of individual cell trajectories [8]. By following this kind
of approach, we have derived general constraints on dynami-
cal quantities characterizing the cell cycle such as the average
number of divisions or the mean generation time [9,10]. These
constraints are universal because they hold independently of
the specific cell dynamic model and they are indeed verified
in experimental data. Other examples of universality in the
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context of evolution includes the identification of universal
families of distributions of selected values and the use of
methods from extreme value statistics [11,12].

Here we derive universal constraints for the average value
of a function of a trait, and for its selection strength, by
exploiting a set of recent results known under the name of
thermodynamic uncertainty relations (TUR). These relations
take the form of inequalities, which generalize fluctuation-
response relations far from equilibrium [13], and which
capture important trade-offs for thermodynamic and non-
thermodynamic systems [14] as recently reviewed in [15].
Although our results are framed in the context of cell pop-
ulation in lineage trees, they apply more broadly to general
stochastic processes defined on any branched tree.

We start in Sec. II by laying the theoretical framework
and the definitions of the forward and backward samplings of
lineages within a tree, which are at the core of the notions
of fitness landscape and selection strength. In Sec. III, we
derive a general upper bound for the difference between the
average values of an observable with respect to two different
probability distributions, which we use in Sec. IV to obtain
an upper bound for the strength of selection. That result goes
beyond the Gaussian approximation. In Sec. V we study the
case of small variability which leads to a simple expres-
sion of the strength of selection, reminiscent of the Gaussian
case. Those expressions have mathematical similarities with
Fisher’s fundamental theorem of natural selection and Price’s
equation, although they correspond to different definitions of
selection, as detailed in Sec. VI. To complement the upper
bound on the strength of selection, we use a recent sharpened
version of Jensen’s inequality to derive in Sec. VII a lower
bound for the strength of selection. Both bounds are tested
with simulations and experimental data in Sec. VIII, showing
a very good agreement with the theory. Finally, we conclude
in Sec. IX. Several Appendices (Appendix A to G) present the
details of the calculations, supplementary figures, and numer-
ical comparisons between our results and results previously
published.
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II. A FRAMEWORK FOR LINEAGE STATISTICS

A colony of cells can be represented as a branched tree,
whose branches are called lineages and whose nodes cor-
respond to cell divisions. We assume that each cell in the
population divides after a stochastic time into exactly m
daughter cells. In order to extract relevant statistics from
such a tree, one needs to sample the lineages following a
weighting scheme. The backward (or retrospective) and the
forward (or chronological) samplings have been introduced
in the context of populations of cells [2,5,16], and previously
defined in the mathematical literature [17,18]. The backward
sampling of lineages assigns a uniform weight N(t)~! to each
of the N (¢) lineages, leading to an over-representation of cells
coming from subpopulations that divided more than average.
To compensate for this bias, the forward sampling takes into
account the number of divisions K along a lineage and assigns
to the lineage a weight Ny 'm~K, where Ny is the size of the
initial population. Intuitively, a lineage is followed forward in
time from a cell in the initial population, by choosing with
uniform probability 1/m which daughter to follow among
the m daughters at each division. In this sense, the forward
sampling cancels the effect of selection because the sister cells
born from the same division have the same weight, regardless
of their reproductive successes, i.e., the sizes of the subpop-
ulations they generate. Thus, the statistics obtained with a
forward sampling of the lineages within a tree reproduces
the statistics obtained in single-lineage experiments, like in
mother-machine configuration [19].

A general phenotypic trait S then admits a for-
ward and a backward distributions, respectively defined
by pfor(s’ t) = Z;O:O I’l(S, K, Z)/(NOmK) and Pback(ss t) =
n(s,t)/N(t), where n(x, t) is the number of lineages featuring
a cell with trait value x at time t. Comparing py. (s, t) and
Poack (S, 1) offers some insight on the effect of selection on trait
S. For this purpose we define the fitness landscape as [2]

Pback (S, t)j|

1
Dror(s, 1) %

h(s) = A+ ;ln |:
where A, = In[N(¢)/Ny]/t is the population growth rate. Note
that in the classical framework of evolutionary dynamics, the
notion of fitness landscape finds its origin in Wright’s seminal
work [20], and is defined as a mapping between the values or
versions of a phenotype or a genotype, with their associated
fitnesses [21]. The notion of fitness in biology has multiple
meanings, but is often understood in this context as the repro-
ductive success, or growth rate. In contrast, this is not the case
for the fitness landscape we defined, which therefore should
not be confused with the growth rate of the subpopulation
carrying the trait value s. Indeed, the reproductive success
is defined by the comparison of the frequencies of a trait
in a population over time, whereas the fitness landscape as
we defined it compares the frequencies of a trait at the same
time but in ensembles with and without selection. Therefore,
h;(s1) > h;(sp) means that the trait value s; benefits more
from selection than s;, but not necessarily that s; has a greater
reproductive success than s,. As a consequence, cells carrying
the value s, could still be less represented in the population
than those carrying trait s,. The two points of view are linked
by simple relations as detailed in Appendix A, and we argue in

Sec. VI that this subtle difference leads to different definitions
of the effect of selection, and that the point of view which
compares chronological and retrospective distributions could
be more suitable to describe selection for certain applications.

When the statistics of trait S is unaffected by selection,
that is when there is no correlation between the number of
divisions undergone by a cell and the value s for this trait, then
Poack (S, 1) = pror(s, t) and the fitness landscape is flat, equal to
the population growth rate. Instead, if the statistics of the trait
is strongly perturbed by selection, then the fitness landscape
is more rough and exhibits important deviations from its mean
value.

Therefore, the variance of the fitness landscape appears as
a natural candidate to quantify the roughness of this fitness
landscape effect. However, this variance can be computed in
both the forward or backward ensembles, giving related but
different results, and it is therefore unclear which of the two
should be used. To resolve this issue, we define the strength
of selection I1s acting on the trait S as the change in mean
fitness landscape between the ensembles with and without
selection [2]:

s = (7 (9))back — (e ($))for- @

This quantity indeed reflects the roughness of the fitness land-
scape, since it is null when the fitness landscape is flat and
becomes larger as the difference between the backward and
forward statistics for trait S increases. This behavior is well
understood by writing the strength of selection as [2]

1
HS = ;j[Pback(S’ t)|pfor(s7 f)], (3)

where J is the Jeffrey’s divergence, a non-negative and sym-
metric information-theoretic distance between the two distri-
butions ppack(s, ) and pgor(s, t), defined as J[p(x)|g(x)] =
JIp(x) = g1 In[p(x)/q(x)1dx.

Let us briefly comment on two points. First, the strength of
selection defined here should not be confused with the coef-
ficient of selection, usually defined as the relative difference
in fitness associated with two values of a phenotypic trait [6].
Second, the strength of selection is a function of time, since
fitness landscapes are time dependent by definition. Only if a
steady state is reached in the long time limit, then /4, (s) tends
to a constant equal to the steady state population growth rate
A, and the strength of selection tends to 0, as expected since
selection no longer shifts trait frequencies.

In the particular case of Gaussian distributions, the strength
of selection I1s and the variance of the fitness landscape are in
fact linked by a very simple relation. More precisely, when the
forward distribution for the fitness landscape is Gaussian, and
for a bijective function #, (s), then its backward distribution is
also Gaussian, with the same standard deviation but a shifted
average value, leading to (see Appendix B)

Ms =t Var(h,), )

where the variance can be indifferently taken over the forward
or backward sampling. Note that we recover here a result
known from [2], in a more direct way and with restricted
assumptions, since in that reference the authors derived this
relation assuming that the joint distribution of %, (s) and K was
a bivariate Gaussian distribution.
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FIG. 1. Experimental fitness landscapes for size and their for-
ward distributions, computed with data from [27]. Each row of the
figure corresponds to a different experiment and the first column
shows fitness landscapes A, (x) as functions of size x. In (a) and (c),
the gray horizontal dashed lines correspond to theoretical plateaus,
equal to K In2/t, predicted when K is fully determined by the value
s of the trait. The integers K corresponding to the plateaus are indi-
cated on the right y axis. In (e), plateaus are blurred and replaced by a
smoother scatter plot in good agreement with the general shape of the
theoretical prediction, made in the case where there is no variability
in individual growth rate nor volume partition at division [10]. A
is the population growth rate and (x,) is the average size of initial
cells. In (a), (c), and (e), each dot is made of all the cells having
the same size, and the mean number of divisions among those cells
is represented by the color of the dot. This shows that dots aligning
on a plateau corresponding to a number K of divisions truly come
from cells that underwent K divisions. In (b), (d), and (f), the three
subfigures on the right represent the distribution py, (k) of the cor-
responding size fitness landscapes (i.e., on the same row) with the
forward size distribution. For (b) and (d) the fitness landscapes are
highly non-Gaussian, and the peaks in these distributions correspond
to the value of one of the plateaus.

However, the Gaussian case only covers a small portion of
realistic cases, and fitness landscapes can exhibit strong devia-
tions from Gaussian distributions. For example, in the context
of age-controlled divisions [10], it can be shown that the dis-
tribution of age fitness landscape is non-Gaussian and depends
on the shape of the division rate as a function of the age. More-
over, we now show in Fig. 1 (and in Fig. 6 in Appendix G)
experimental fitness landscapes that are non-Gaussian.

We use real data extracted from [27], which are made of
11 population trees corresponding to the growth of E. Coli in
different nutrients. We focus on the number of divisions £,
the size X, and the age A, which are easily accessible and

for which we previously studied the theoretical fitness land-
scapes [10]. Only plots for the size are presented in the main
text, and similar plots for the age can be found in Appendix G.

Fitness landscapes for three particular experimental condi-
tions are shown in Fig. 1. Each row corresponds to a particular
experiment, the first column displays the fitness landscapes as
functions of the size x, and the second column shows the dis-
tributions of the corresponding fitness landscapes, computed
with the forward size distributions. It is straightforward to
demonstrate that in the case where the number of divisions
K is completely determined by the value s of the trait, then
h(s) = h[K(s)] = K(s)In2/t [2,10]. In this case, the fitness
landscape is an ensemble of plateaus corresponding to the
values of K featured in the population at time ¢, and cells
on the same plateau have undergone the same number of
divisions, even though they have a different value s. Those
predicted plateaus are actually observed for several experi-
ments, as shown in Figs. 1(a) and 1(c). Indeed, we evaluate
the mean number of divisions for the set of cells used to
compute each point of the fitness landscape, and represent
it with a color code. We also plot the theoretical plateaus,
with the discrete number of divisions K corresponding to the
plateau on the right y axis of each plot. We see a very good
agreement between the mean number of divisions of cells
aligned on a particular plateau and the value K corresponding
to this plateau on the y axis. This suggests a strong correlation
between the value of the size and the number of divisions
on the lineage. The dots between the plateaus correspond to
sizes that have been reached by cells with different numbers of
divisions (leading to noninteger mean values), as highlighted
by the gradation from one color to another. By going from
the top experiment to the bottom one, the plateaus gradually
blur and are replaced in Fig. 1(e) by a smoother curve, in
good agreement with the logarithmic prediction we made
in [10]. This happens when lineages desynchronize because
of the cumulative effect of various noises, leading to a weaker
dependence of the number of divisions K on the final value of
the trait s.

In the right column of the figure, we see that fitness
landscapes strongly deviate from being normally distributed,
which justifies the need to go beyond the results known in
the Gaussian case. More precisely, in Figs. 1(b) and 1(d),
fitness landscapes exhibit peaks at values of & corresponding
to one of the plateaus appearing on the left-column plot. We
notice that not all three plateaus of Fig. 1(a) [two plateaus of
Fig. 1(b)] are mapped to a peak in the corresponding forward
fitness landscape distribution in Fig. 1(b) [Fig. 1(d)]. This is
because the cell size distribution tends to zero for extreme
sizes (that is 0 and 4-00), thus cells of large sizes aligning on
plateaus defined by small K and cells of small sizes aligning
on plateaus defined by large K contribute very little to the cell
size distribution and thus to the fitness landscape distribution.

In this article we derive universal relations going beyond
the Gaussian assumption, and obtain a set of upper and lower
bounds for the strength of selection, in terms of both the
forward and backward variances for the fitness landscape. To
do so, let us first derive a general inequality constraining the
difference in average value for an observable between two
probability distributions.
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III. GENERAL FLUCTUATION-RESPONSE INEQUALITY

We consider a general system described by a reference
probability distribution p,(s, t), where s is the value taken
by a state variable S. By perturbing the system, we change
the distribution of the variable S from p,(s, t) to py(s, t). We
consider an observable depending on the variable S, through
a function g, (s), and ask the question of how the mean value
of this observable is modified when the system is perturbed.

Assuming that p,(s, ) and py(s, t) have the same support,
we can define the ratio

_ po(s, 1)

q:(s) pa(s,t)'

(%)
Let us now compute the covariance between g;(s) and g¢;(s)
with respect to p,(s, t):

Cova(gr, qr) = (81G1)a — (&)algr)a = (&)b — (&)as  (6)

where we used (g;), = 1, due to the normalization of py, and
(9:81)a = (81)v.

Following the method used in [14] to derive mean-variance
trade-off bounds in horse race gambling, we use the Cauchy-
Schwarz inequality for the covariance:

Cova(gr, )* < 0280 (q), (7

with O'az the variance with respect to p,(s, t). Finally, by com-
bining Eqgs. (6) and (7), we obtain a general bound for the
difference in average values:

[{g:)b — (&:)al < 0a(g)oalqr). (®)

The inequality can be understood as an out-of-equilibrium
generalization of the fluctuation-dissipation theorem, because
it involves a comparison between a reference unperturbed dy-
namics and a perturbed dynamics. The difference between the
unperturbed and the perturbed averages of the function g, (s) is
bounded by the unperturbed fluctuations of this function, mea-
sured by 0,(g;), times o,(q,) which is a information-theoretic
distance between the two probability distributions. Indeed,
since (g:), = 1, the variance of ¢, is given by oaz(q,) =
f‘Y ds[pp(s) — pa(s)]z/pa(s), and thus the larger o,(q;), the
further away py (s, 1) and p,(s, t) are from each other.

To derive Eq. (8), we adopted the point of view of the
unperturbed statistics p,(s, t) as reference, but a similar bound
can be obtained in terms of standard deviations with respect to
the perturbed dynamics py (s, t). We consider the covariance
between g, (s) and r;(s) = 1/g;(s), with respect to py(s, t):

Covp(gs, 1) = (g1)b — (&1)as )]

Following the same steps, and using the Cauchy-Schwarz
inequality for this covariance we finally obtain

1{g)b — (81)al < 0b(81)0b(11), (10)

where the term oy(r;) is similarly interpreted as an
information-theoretic distance measure between the two dis-
tributions. Thus, combining Egs. (8) and (10), the change in
mean value of the function g; of the variable S between an
unperturbed and a perturbed statistics is bounded by

[{(g:)b — (g)al < min [04(g)0a(q;), ou(g:)on(r:)]. (11

A similar bound for |(g;), — {(g:)a| Was derived by Dechant
et al. in [13], using Jensen’s inequality. Their bound [Eq. (5)
or (11) in their text] also involves a measure of the distance
between the two probability distributions (Kullback-Leibler
divergence) and the standard deviation of the observable con-
sidered in the unperturbed dynamics. We carry out a numerical
comparison between the two bounds in Appendix C, to find
which one is the tightest of the two. This shows that the
relative performance of the two bounds depends on the shape
of the perturbed and unperturbed distributions. In any case,
our bound is easy to evaluate since it does not require an
optimization over a free parameter, as it is the case in [13]
[see Eq. (C2)].

IV. THE STRENGTH OF SELECTION IS BOUNDED BY
THE VARIABILITY IN FITNESS LANDSCAPE

The results derived in the previous section for general
distributions a and b are now used to obtain constraints on
the strength of selection. Indeed, by setting the unperturbed
distribution a to be the forward distribution of a phenotypic
trait S and the perturbed distribution b to be the backward
distribution of this trait (which is allowed since the forward
and backward distributions have the same support), the dif-
ference (g;)back — (&:)for 1S the change of mean value for g,
between an ensemble without selection (forward) and with
selection (backward), while the perturbation is measuring the
selection itself. In this context, the ratio g;(s) and the fit-
ness landscape 5, (s) are linked by the simple relation ¢, (s) =
exp{t[h (s) — A}

An important application of the above results is when the
arbitrary function g, (s) is the fitness landscape #, (s) itself. In
this case, Egs. (6) and (9) read

s = Coveor(hy, €M) e™™ (12)
= CoVpaek (hy, €M)y e (13)

These equalities generalize the linear relation [Eq. (4)] be-
tween the strength of selection and the variance of the fitness
landscape, valid in the Gaussian case. To better highlight
the role of the variability of the fitness landscape, we write
Eq. (11) in this context:

s < min [0 (A )0for (g7 ), Oback (B )Oack (17)], (14)

where the absolute values on the left-hand side (Lh.s.) can be
removed because the strength of selection is defined positive,
as deduced from Eq. (3).

Note that the L.h.s. of Eq. (14) involves averages with re-
spect to the two probability distributions, unlike what happens
in the standard TUR where only one such average is present.
The reason is that in stochastic thermodynamics, the two
relevant probability distributions correspond to a forward and
a time-reversed dynamics, and the quantity which replaces
g:(s) is a current, which changes sign under time-reversal
symmetry. Here there is no such symmetry present, hence the
two averages are not the opposite of one another.

We obtained a universal upper bound for the strength of
selection acting on trait S, which involves the information-
theoretic distances ot (g;) and op,ck(77) between the back-
ward and forward statistics, and the variances of the fitness
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landscape in both ensembles, which are in general different
from each other.

Even if the interpretation of of,(g;) as a distance in the
framework of linear-response theory is general, o, (q,;) can
also be expressed in terms of measurable quantities for cell
colonies:

O'for(elhl )
<ethl >f0r

Thus, o1, (g, ) quantifies the relative fluctuation of the quantity
exp [th,(s)], which itself represents the ratio of the expected
number of lineages ending with trait value s, rescaled by the
number Ny of initial cells, to the forward probability of this
trait value (see Appendix D). A similar interpretation can be
given for the term oy (77).

Ofor(qr) = (15)

V. A LINEAR RESPONSE EQUALITY

Let us now investigate precisely the conditions for which
the previous inequalities become saturated. It is straightfor-
ward to show that when the forward and backward statistics
are equal, inequalities Eqs. (14) and (11) are saturated. Indeed,
the Lh.s terms are O and the right-hand side (r.h.s.) terms
are null because they contain the standard deviation of the
constant quantities g;(s) = r;(s) = 1.

We now study the case where the two probability distri-
butions approach each other. One possible measure of the
distance between the two distributions is o(g;), or equiva-
lently o (Ing,) = to (k). In the limit to (k) — 0, referred to
as the small variability limit, the L.h.s. of Eq. (11) reads (see
Appendix E)

<gt)back - (gt>f0r ta:O t COV(]’Z;, gt)a (16)

and the Lh.s. of Eq. (14) when the function g, is the fitness
landscape itself reads

Ils NOtVar(h,), (17)
to—

where the variance and the covariance can be equivalently
taken over the forward or backward sampling. When comput-
ing the r.h.s. of Egs. (14) and (11), we obtain that Eq. (14)
is saturated in this limit, whereas Eq. (11) is not. The limit
can also be written 7 < o (k)" which defines a character-
istic timescale of the system. In practice, this limit can be
reached either for short times or in the case of a strong control
mechanism on the divisions, leading the lineages to stay syn-
chronized even after a finite time. It is also possible to regard
this limit as a regime of weak selection [22], since the strength
of selection is small precisely because of Eq. (14).

VI. COMPARISON WITH FISHER’S FUNDAMENTAL
THEOREM AND PRICE’S EQUATION

In this section we highlight the similarities between our
results and the relations derived by Fisher and Price, in which
the population growth rate, or fitness, associated with a trait
value s plays a similar role to our fitness landscape #,(s).
However, because these notions of fitness are distinct, as ex-
plained in Sec. II and further analyzed in Appendix A, the
interpretations of selection contained in these equations are
qualitatively different.

Fisher’s fundamental theorem of natural selection states
that the time derivative of the mean fitness of a population
is equal to the variance of the fitness across the popula-
tion [23,24]: dA,/dt = Varp,e[Ai(s, t)], where A;(s, 1) =
[dn(s,t)/dt]/n(s,t) is the instantaneous growth rate, or
instantaneous fitness, of the subpopulation of size n(s, t) car-
rying the trait value s. The variance is computed with respect
to the backward distribution, which puts equal weights on
individuals, and therefore is the natural distribution to con-
sider. The r.h.s. of both Egs. (17) and (4) and Fisher’s theorem
involve the variance of a certain kind of fitness within the
population. In contrast, the Lh.s. in Fisher’s theorem is a
measure of evolution of the population, while the Lh.s. in
our result is a trait-dependent measure of selection. Moreover,
some well-known limitations of Fisher’s theorem lie in the
implicit assumption that natural selection is the only possible
phenomenon leading to a change in the gene frequencies [24].
This assumption neglects many important phenomena such as
mutations and recombination events [22], random drift due to
finite population size, and specific features of seascapes [7].
In contrast, our result does not suffer from any of these limita-
tions, since it only requires the population to be represented
as a branched tree, and is completely independent of the
dynamics that generates the tree.

Price’s equation [24] predicts the time evolution of the
mean value of a trait, and involves two terms: a covariance
term representing the selection effect, and the “environment
change term”, or dynamic effect, which accounts for all the
other sources of variability leading to a change in the mean
value of the trait. The part of the evolution of (s)pack Over a
time t that is due to the separate effect of natural selection,
in Price’s sense which we denote with the superscript NS, can
then be written as

1
Alshype = o Covbaerls, A(S)], (18)

where  A(s)ioy = [($)back(t + T) — (Dpack OIS, A(s) =
n(s,t +1)/n(s,t), and A = (A(S))pack- We can draw a
parallel between this equation and Eq. (16), as their r.h.s. both
involve the covariance of the trait subjected to selection and
a fitness associated with it. Note that there is no environment
change term in Eq. (16) because the strength of selection
is defined precisely in such a way as to isolate the effect of
selection from other potential sources of variability.

Price’s equation should be viewed as a way to separate
the effect of selection from the effect of the environment,
rather than as a predictive or quantitative formula to compute
them, as remarked in [25]. The same can be said of all our
results, where the strength of selection and the covariance
between a trait value and its associated fitness landscape value
can be viewed as two possible definitions of selection. These
two notions of natural selection are different because of the
distinction between growth rate and fitness landscape: one is
concerned by the change in the frequencies of the trait values
over time, and is computed by counting individuals, while
the other one represents the shift in the frequencies of the
trait values at snapshot time ¢ between situations with and
without selection, and is based on the comparison between
chronological and retrospective samplings of the lineages.
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FIG. 2. Population tree where cells can have only two values s =
1 and s = 2 for the phenotypic trait S. Cells with phenotype 1 divide
more often than cells with phenotype 2, and phenotypic switching
from 1 to 2 occurs randomly at division. These two phenomena
balance so that the frequencies of s = 1 and s = 2 are the same at
t = 0 and at . However, the fitness landscapes for s = 1 and s = 2
are different, and are computed using the backward and forward
weights of each lineage, leading to tI1s = In (5/3)/8. The strength
of selection is nonzero while the measure of selection proposed by
Price, namely A (s), is null.

Let us give a minimal example for which the strength of
selection is nonzero while the mean value of the trait S is
unchanged, because of the balance between heterogeneity in
reproductive success and phenotypic switching at division.
This case is illustrated in Fig. 2 for a trait S taking only
two values: s =1 and s = 2. Individuals with trait value 1
reproduce typically twice as fast as those carrying trait value
2, but they can also switch to trait value 2 randomly at di-
vision. For simplicity, the values 1 and 2 of the trait cannot
change themselves over time, in other words there is no en-
vironment effect here. The average value of trait S is the
same at time t+ = (0 and at time ¢, the covariance term in
Price’s equation is zero, and there is no selection in Price’s
sense. Therefore, from this point of view, there is no dif-
ference between this situation and the situation where both
values 1 and 2 reproduce at the same rate, without phenotypic
switching at division. One the other hand, individuals with
trait value 1 are over-represented in the backward statistics
as compared to the forward statistics, while the opposite is
true for trait value 2, meaning that the fitness landscapes
for s =1 and s = 2 are different. Indeed, pp,k(s = 1,1) =
Poack(s = 2,1) = 1/2, pror(s = 1,1) =3/8, pror(s = 2,1) =
5/8, which leads to th,(s = 1) =1In(4/3) +t A, and th(s =
2) =1In(4/5) + tA;, with t A, = In 3, using Eq. (1). This dif-
ference in fitness landscape results in a nonzero strength of
selection #I1s = In (5/3)/8 using Eq. (2). We argue that the
strength of selection [1s may be a more appropriate way to
define selection, since it gives a nonzero measure of selection
for the example discussed above, and thus is more representa-
tive of the selection occurring in the population.

VII. A LOWER BOUND FOR THE STRENGTH
OF SELECTION

We showed how the equality between the strength of se-
lection and the variance of the fitness landscape distribution,
which holds in the Gaussian case, becomes an inequality in

general. To complement the upper bound on the strength of
selection given by Eq. (14), we now derive a nontrivial lower
bound, which presents an interest to quantify the minimal
effect of selection on a particular trait.

Using a property of the Jeffrey’s divergence, the strength
of selection can be decomposed as a sum of two Kullback-
Leibler (KL) divergences: j(pbacklpfor) = DKL(pbacklpfor) +
DKL(Pror| Phack), Where Dxr(plg) = [ p(x) In[p(x)/q(x)]dx.
The positivity of both KL divergences, ensured by Jensen’s
inequality, gives A; — (h;(8))for > 0 and (A (s))pack — A =
0. By combining these two inequalities, we recover that the
strength of selection is a positive quantity.

We can therefore improve the trivial bound on the strength
of selection, which is 0, by improving the two inequalities
separately, using a sharpened version of Jensen’s inequality,
derived in [26]. Let us now detail how this works in our
problem.

We define the convex functions @g(x) = €™, @pack(x) =
¢~ and the function

A
X —V

o) — ()
W(ﬁo,xs V) - (x _ U)2

where ¢’ stands for the derivative of ¢. The sharpened version
of Jensen’s inequality reads

(€ Yior = €M = 0 () inf Y (Pron, By idrer), (20)

, 19)

and is used to improve upon the inequality A; — (h;($))for =
0. A similar improvement is obtained for (%, (s))pack — A; = 0
by considering ¢p,cx instead of ¢g,,. Combining the two results
gives (see Appendix F)

1T o2 (h)
2 R Ty hminv h T

: [exp(tA,) ¥ (@10 (ht)tor)

atyzack(hf)

exp(—tA;) W (Pback: Fmax <ht)back)i|» 21

which shows that the lower bound depends on the forward and
backward variances of the fitness landscape, as well as on its
average values and on the minimal (maximal) values of these
distributions denoted /iy (Amax). When the fitness landscape
is a monotonic function of the value of the trait, which is the
case for cell age and size [10], or for the number of divisions,
these extreme values are given by the extreme values of the
trait itself.

Several weaker but simpler forms of this inequality, this
time independent of the average fitness landscape values, or
independent of the extreme values, or independent of the two,
are derived in Appendix F. In any of those cases, the lower
bound is a linear combination of the forward and backward
variances of the fitness landscape.

VIII. TESTS OF THE LINEAR RESPONSE RELATIONS

We now illustrate the various bounds for growing cell
populations, using both simulations and time-lapse video-
microscopy experimental data [27].

First, we test Eq. (8) for the number of divisions X, and for
the linear function g,(K) = K, so that the inequality bounds
(K)back — (K)for- We simulate lineage trees starting from one
cell, for a particular agent-based model in which cells are
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FIG. 3. Points of 0o (K)0ior(qr )/ ({K)back — (K)for) against A,
for many tree simulations using a size-controlled model. Each dot
corresponds to a single tree, the two sets of data have the same
parameters except for the final times of the simulation, which are
t = 3 (blue) and ¢ = 6 (orange). The black horizontal dashed line
at y = 1 represents the point where the inequality of Eq. (8) is
saturated.

described by their sizes. Cell sizes continuously increase
at constant rate between divisions, and cells divide after a
stochastic time only depending on their sizes. Each simulation
of such a tree yields a single point on the scatter plot of Fig. 3,
which shows the ratio of o (K)0tor(q:) t0 (K)back — (K)for
versus the population growth rate A,. Two sets of points are
presented, which only differ in the final time of the simulation.
As expected from Eq. (8), all points in both sets are above 1.
When the duration of the simulation is small (+ = 3), the final
population is small, around N ~ 20, therefore for a given tree
the lineages do not have time to differentiate significantly and
the variability in the number of divisions among the lineages is
small. In that case, simulations points are approaching the hor-
izontal dashed line at y = 1 corresponding to the saturation of
the inequality. The final population N fluctuates significantly
from one simulation to the next, because the simulation time
is short and all simulations start with a single cell with random
initial size. As a result, the dispersion of values of A, is large.

Now, when doubling the duration of the simulation, the
cloud of scattered points is considerably reduced in both
directions. The horizontal dispersion reduces because as ¢
increases, the state of the system at the final time becomes less
and less affected by the initial condition. On the vertical axis
there is a gap between the lower part of the scatter plot and the
horizontal line at y = 1 due to the increase of heterogeneity in
the number of divisions in the lineages with the simulation
time.

Second, we test the upper and lower bounds on the strength
of selection acting on cell size using experimental data from
[27]. We show in Fig. 4 the upper bound Uy given by Eq. (14)
and the lower bound Ly given by Eq. (21), normalized
by the strength of selection ITy. The x axis labels in no
particular order the colonies which have grown in different
nutrient medium [27]. As expected, points representing the
upper bound and those representing the lower bound are,
respectively, above and below the horizontal dashed line at

o
e O () ()
1.0f=mmmmm-n e._.® o _______ o _eo__@e____
0.81
[ J Z/[;\g/HX
Ly/Tly
0.6- ; . . . :
2 4 6 8 10
Exp

FIG. 4. Upper bound Uy (blue dots) and lower bound L (or-
ange triangles) for the strength of selection acting on size Iy,
normalized by the latter. The x axis represents the 11 colonies in
different growth conditions from [27], in no particular order.

y = 1. Experiments for which the normalized upper bound
approaches 1 indicate that cell cycles are almost synchronized
and thus that there is small variability in terms of number of
divisions among the lineages.

Note that Nozoe et al. also proved [2] that the strength
of selection for the division bounds the strength of selection
acting on any trait: 0 < I1s < IIx. This bound is typically
not as tight as Eq. (14) (see Appendix G for comparison). To
improve upon it, one can use S = K in Eq. (14) to obtain a
bound for Ik itself.

IX. DISCUSSION

The general idea of comparing the response of a system
in the presence of a perturbation to its fluctuations in the
absence of the perturbation lies at the heart of the fluctuation-
dissipation theorem, which has a long history in physics,
with some applications to evolution [1,28]. Remarkably, the
present framework with forward (unperturbed) and back-
ward (perturbed) dynamics can be conveniently applied to
population dynamics without having to perform additional
experiments, since both probabilities can be calculated with
the same lineage tree. Our main result is a set of inequalities
for the average of an arbitrary function of a trait or for its
fitness landscape, valid beyond the Gaussian assumption, and
which constrain the strength of selection in population dynam-
ics even in the presence of time-dependent selection pressures.

These inequalities are universal because they only rely on
the branching structure of the population tree and are com-
pletely independent of the dynamics of the tree, which is the
ensemble of rules governing the division of the branches. In
the context of cell populations, this means for instance that our
results are valid for any control strategy (sizer, timer, adder,
etc.) and in the presence of any source of noise (variability
in single cell growth rate or size at division, asymmetry in
resource partitioning between sister cells, etc.) [5], in the
presence of possible mutations, and regardless of the nature
of the cell (bacteria, yeast, stem cell, etc.). Although we
illustrated our results with cell populations, they apply to

023187-7



ARTHUR GENTHON AND DAVID LACOSTE

PHYSICAL REVIEW RESEARCH 3, 023187 (2021)

any stochastic process defined on a branched tree. In par-
ticular, they could be insightful in the context of ecology,
where such trees are used to represent phylogeny [29]. In
this case, each lineage could represent a species or a version
of a gene, instead of an individual, and the divisions would
represent speciations or mutations, respectively. The notions
of fitness landscape and selection strength appear meaningful
in this setting, as a quantification of the correlations between
a feature of a species/genetic information and the number of
speciations/mutations its phylogenetic lineage underwent.

For applications, we focused on phenotypic traits, like cell
size or age, and in these cases, we found our upper bound on
the strength of selection to be tight. In future work, it would be
interesting to apply this framework to genotypic traits instead
of phenotypic ones [22] and possibly exploit recent methods
of lineage tracking [30]. This could open new perspectives
to address a number of important problems like antibiotic
resistance [4], the differentiation of stem cells [31], or virus
evolution.

The search for universal principles in evolution is an active
field of research [28,32]. An important step in this endeavor
was made by Fisher, who boldly compared his theorem to the
second law of thermodynamics. While the theorem turned out
not to be as general as expected, Fisher had nevertheless the
correct intuition about its importance for evolutionary biology,
and he was also correct in expecting that such a general
principle should be related to thermodynamics.
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APPENDIX A: PHENOTYPIC FITNESS LANDSCAPE
AND GROWTH RATE ASSOCIATED WITH THE
VALUE s OF A TRAIT &

The fitness landscape /4, (s) of trait S defined in Eq. (1)
should not be confused with the fitness associated with the
value s of the trait, which can be identified with the growth
rate of the subpopulation carrying that trait. However, they
are linked by a simple relation. In line with the definition of
the population growth rate, we define the growth rate of the
subpopulation carrying the value s of the trait S as

[n(s,t)} A+l |:pback(sat)
n(s, 0) ! Phack (5, 0)

t

where n(s,t) = ppack(s, 1)N(¢) is the number of cells with
trait value s at time ¢. Of course, defining this quantity only
makes sense between two times ¢ = 0 and ¢ for which the
value s is present in the population, otherwise the expression
in undefined.

By comparing Egs. (1) and (A1), we can link the growth
rate associated with a trait value s to the fitness landscape of
this trait value:

1
A(s) = —1In

; ] (A1)

B~ A(s) = In [pbk_@m] Ly [pfm(s, 0)

= . (A2
Dior(s, 1) Dior(s, 1) i| A2

The last equality follows from the fact that, at + = 0, the
cells have not divided yet and so the forward and backward
samplings of the population are identical.

Finally, we see that the three quantities A,, A,(s), and
h, (s) are different but intimately linked. In the long time limit,
for which equilibrium distributions do not depend on time
anymore, they all become equal to the steady-state population
growth rate A,

lim A; = lim A;(s) = lim A, (s) = A. (A3)
=00 —00 —00
Moreover, as we already noted, Eq. (1) indicates

that the sign of h,(s) — A; informs us of the comparison
between the backward and forward probabilities of trait value
s in the population at time 7, or in other words, if the trait
value s is over-represented in the population as compared to
a situation without selection. Thus, 4, (s) — A, quantifies the
separate effect of selection.

Following the intuitive understanding of the growth rate
associated with a trait value s, Eq. (A1) means that the sign of
A¢(s) — A; informs us of the comparison between the back-
ward statistics of the trait value s at time ¢ and at time 0. A trait
value is favored by the population dynamics, which includes
all phenomena leading to changes in trait value frequencies, if
its growth rate is larger than the population growth rate, which
corresponds to an increase of the frequency of that trait value
in the population as time grows.

The last relation, Eq. (A2), provides a new insight: the
sign of h:(s) — A,(s) is linked to the comparison between
the forward probability of trait value s at time O and time
t. The forward statistics is constructed to balance the effect
of selection occurring in tree-structured data. However, it is
affected by all the other sources of variability, as for example
mutations. Therefore, the sign of A,(s) — A,(s) indicates the
evolution of the frequency of the value s of trait S as time
grows, due to every phenomenon but selection.

Equation (1) can be written in the form of a fluctuation rela-
tion [2,10], with an exponential bias between the forward and
backward probabilities, similar to Crooks fluctuation relation
for work in stochastic thermodynamics. The same can be done
with Egs. (A1) and (A2), however, unlike Eq. (1), these new
fluctuation relations both link two probability distributions
that may not have the same support.

APPENDIX B: GAUSSIAN CASE

We show in this Appendix that a linear relation between the
strength of selection and the variance of the fitness landscape
holds in the case where the fitness landscape is normally
distributed. To do so, let us first derive a very useful result: by
isolating ppack (s, ¢) in Eq. (1), and integrating over s using the
normalization of py,cx, the population growth rate is expressed
as a forward average

A/ —_— hl
¢t = (et )or- (B1)
We can do the same but isolating py(s,?) this time,
leading to
eitAr = (eizht )back-

(B2)

We now assume that %, (s) can be accounted for by a con-
tinuous probability distribution, even though the trait S may
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be discrete, as in the case for the number of divisions. We set
a Gaussian forward distribution with mean (4, )¢, and vari-
ance oo (h)? for the fitness landscape A, (s), then exp[th, (s)]
follows a log-normal distribution of mean
(€Y or = o ) or-Hlt 0t ()1 /2 (B3)

This relation shows that for a given forward average fitness
landscape, the growth rate is positively affected by the vari-
ability between the lineages.

The backward average of the fitness landscape is given by
the forward average of a biased fitness landscape:

e = €™ / h()E™ pro(s, ds. (B4

We make the hypothesis that the fitness landscape is a bijec-
tive function of the trait value and use the conservation of
the probability: pro(s, t)ds = pror(h)dh, leading to a solvable
Gaussian integral

e—ZA,

<ht)back =
V 271 0o (y )2

— 2
= 7 M () sor + 1010r () Je! o BTS2 (BS)

e o= =0 /o)) gy

Finally, combining Egs. (B1), (B3), and (B5), we obtain

<ht )back = <ht )for + thor(ht )2’ (B6)

and thus

Ms = totor (). (B7)

Moreover, combining Eqgs. (B3) and (B7) we deduce that
(h)for and (M )pack are not only respectively smaller and
greater than A,, as discussed in Sec. VII, but they are actually
symmetrical around this value (4 )pack — Ar = Ay — () for =
t at%r(h,) /2. In other words, in this particular case, the KL di-
vergence is symmetrical: Dk (Ptor| Poack) = DKL (Pback | Pror)-

In the case where %, (s) follows a Gaussian distribution in
the forward statistics, it also follows a Gaussian distribution
in the backward statistics because the bias of the fluctu-
ation relation between pp,x and pgor is exponential in 4.
Since h, follows a Gaussian distribution of mean (/;)pacx and
standard deviation o,k (%) in the backward statistics, then
exp [—th,(s)] follows a log-normal distribution of mean

—th, t<ht)hack+[tahuck(ht)]2/2.

(€™ Jpack = €~ (B3)
We now take the inverse of this formula and use Egs. (B2)
and (B6) to replace the backward average:

N — ot [+t ]l ()P /2

(B9)
By comparing Egs. (B3) and (B9), it follows that op,ck(#;) =
otor(hy). Finally, the standard deviation in Eq. (B7) can be
taken indifferently with respect to both statistics and we omit
the index to write the general version of Eq. (B7):

IMs = tVar(h,). (B10)
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FIG. 5. Comparison between the upper bounds Ug,. [Eq. (C1)]
and Ups derived in [13] [Eq. (C2)], for beta distributions p,(s) =
f(s,a, B) and py(s) = f(s,3,3). Parameters o and B are varied
between 2 and 4. First row: Difference between the upper bounds and
[(s}p, — (s)a|, (a) for our bound, and (b) for Dechant-Sasa’s bound,
showing that all points are indeed above 0. (c) Exact difference
($)ob — (s)a, in agreement with the theoretical value (s), — (s), =
1/2 —a/(o + B). (d) Comparison between Ug,. and Ups, blue re-
gions indicate where our bound is tighter, i.e., smaller, and red
regions indicate where Dechant-Sasa’s bound is tighter. For all four
plots, the grid is 41 x 41, and numerical values are rounded to 1075
to avoid python floats precision errors.

Ucr, — Ups

(s)p = ($)a

APPENDIX C: UPPER BOUNDS NUMERICAL
COMPARISON

In this Appendix we compare numerically the upper bound
UgL obtained in Eq. (11):

UgL = min [0,(g;)0a(q:), 0b(8:)op (1:)], (CDH

to the upper bound Ups derived by Dechant and Sasa (Eq. (5)
in [13]):

Ups = igt(“)[Kg’,(ya) —y0(g)a+ DxL(polpa)].  (C2)
where o = sgn((g:)b — (g:)a) and K (y) = In(exp (yg:))a
the cumulant-generating function of g,. Both quantities Ugr,
and Upg bound the difference |(g;), — (g:)a| between the av-
erage values of a function g; of a variable S with respect to
probability distributions p, and pj,.

To compare them, we took beta distributions for p, and p,
having the same support [0,1] so that both bounds are defined.
Beta-distributed variables admit a probability density function
(pdf) of the form f(s, &, B) = B(a, B)s*~'(1 — 5)#~!, where
B(a, B) is a normalization constant, and their mean is given
by (s) = /(¢ + B). We fix the pdf in the ensemble b to
pu(s) = f(s, 3, 3), whose bell shape is reminiscent of a Gaus-
sian distribution, on a finite interval. The pdf in the ensemble
a is taken as p,(s) = f(s, «, B), where o and § are varied in
[2,4]. We choose the simple function g;(s) = s.

Results are shown in Fig. 5. The first row of figures
shows the difference between the upper bound and the actual
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difference |(s), — (s)al|, for our bound Ugy. [Fig. 5(a)], and for
Dechant-Sasa’s bound Upg [Fig. 5(b)]. As expected, all points
on these two plots are positive. We plot in Fig. 5(c) the real
difference (s)p — (s),, which is in complete agreement with
the theory: (s)p — (s)s = 1/2 — a/( + B). Finally, Fig. 5(d)
shows a comparison between our bound and Dechant-Sasa’s
bound: blue regions represent sets of parameters (¢, 8) where
our bound is numerically tighter, and the opposite is true in
red regions. We note that, if the blue region is larger than
the red region, on the other hand the advantage of one bound
over the other |Ugr — Ups|, is generally larger in the red
region. Therefore, the answer to the question “Which bound is
tighter?’ depends on the actual distributions p,(s) and p;(s).
However, we note that our bound is easier to compute since it
does not require the optimization over an external parameter,
which is the case for Upg in [13] [parameter y in Eq. (C2)].
Note that this optimization can be bypassed by choosing a
specific value y in Eq. (C2), but then the corresponding bound
is less tight than the version with the infimum.

APPENDIX D: INFORMATION-THEORETIC-DISTANCE
o(q) BETWEEN PERTURBED AND UNPERTURBED
DYNAMICS IN TERMS OF MEASURABLE QUANTITIES

We show in this Appendix how the information-theoretic-
distance oy(q;) is linked to measurable quantities in cell
colonies, for a general trait S, and for the particular case
of age models. Combining Egs. (1) and (5) gives the ratio
q:(s) = exp [l (s) — A,], which combined with Eq. (B1) leads
to Eq. (15) in the main text. Thus, oy (q; ) is the coefficient of
variation in the forward statistics of the quantity

etht(s) — e[A, pback(sa t) — N(t) pback(sa t)
Dror(s, 1) No  pror(s, 1)
_ n(s,t) 1
B Ny Pt‘or(S, 1) '
where n(s, t) = N(t)pPvack (S, t) is the number of cells with the
value s of trait S at time .

In the case where S is the number of divisions, the fitness
landscape is called the lineage fitness and is given by h,;(K) =

J

(D1)

K Inm/t. Therefore, oior(q;) = O1or(mX)/(mX )i is the rel-
ative fluctuation of quantity mX, representing the expected
number of lineages that underwent K divisions, normalized by
the initial population Ny, divided by the forward probability
of K.

For age models, where the division is only controlled by
the age of the cell, we know a fluctuation relation linking
the forward and backward distributions of generation times
7, defined as the time between two consecutive divisions on
the same lineage [33]

fback(r) = Mfror(T) eXP[—AT]~

This relation can be understood as a version of the fluctuation
relation on the number of divisions [2,10] at the scale of the
cell cycle. However, let us note two differences: first, unlike
the one for the number of divisions, Eq. (D2) is only true
in the long time limit, when the population is growing at a
constant steady state growth rate A; and second, the distribu-
tions fpack and fror are not snapshot distributions at time ¢, but
distributions of generation times computed along the weighted
lineages.

We define q(t) = foack(T)/ ftor(t) in the same way, and
following the same steps for a general function g(7) we derive

(D2)

|<g(f)>back - (g(f))for|
g min{afor[g(r)]Ufor[q(f)]a Uback[g(f)]aback[r(r)]}-
(D3)

From Eq. (D2) we express the information-theoretic-distance
term as

ror(e” ")

(é‘ AT >f0r
which is the relative fluctuation in the forward sampling of the
quantity exp [—AT] = foack(T)/m fror(T). We know from [34]
that the backward distribution is also the generation time
distribution of the direct ancestor cells. Therefore, exp [—AT]
represents the ratio of the probability for the ancestor cell to
divide at age 7 to the expected number of daughter cells born
from that division that divide at age 7.

ororlg(T)] = s (D4)

APPENDIX E: SMALL VARIABILITY LIMIT

In this Appendix we study the two sides of the fluctuation-response inequality for an arbitrary function g; of a phenotypic
trait S [Eq. (11)] in the limit where the forward and backward distributions approach each other, and show that they are
mathematically equivalent in this limit in the case where the function g, is the fitness landscape /,. The difference between the two
distributions is captured by the “distance” term o [g;(s)], or equivalently o [In g,(s)] = o {In[ppack (s, 1)/ Ptor (s, 1)1} = to[h(s)],
where the standard deviations can be taken either in the backward or forward statistics. From now on, we refer to the limit where
the forward and backward distributions are close to each other as the small variability limit, defined by ro [, (s)] — O.

We first use this limit in the forward statistics: too[/;(s)] — 0. Starting from Eq. (1) we isolate ppack(s, ), multiply both
sides by g,(s) and integrate over s, leading to the expression of the backward average of function g, as the forward average of a
biased version of the same function:

<gt>back — et((ht>for7A1)/gt(S)etlht(5)7<ht)fnrIpfor(s’ t)ds. (ED)

In order to expand the exponential, we assume that for any s, [, (s) — (h;)tor] is small, which corresponds to o, (/) small
because oy (4, ) is the characteristic distance to the mean. Therefore,

(8#)back ta:O er«hl)fm_[\l) / & ({1 +t[hi (8) — (h)tor]} Pror(s, t)ds ~ et((h/)fm_AI)Hgt)for + t({ghi)for — (&) for(hi)for)],  (E2)
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where (g/h; ) tor — (8¢ )or (B ) or = Covior(hy, g¢) s the covariance of A, and g, with respect to the forward probability. The term
in the bracket is a first-order correction to (g;)sr in t0or(h;). Now we need to compute the prefactor exp[—z A,], starting with
Eq. (B1) and using the same expansion

, \ 1
et = (ethl)for = /eZh’(S)pfor(s’ t)ds m’:() ¢! hior / |:1 + t[h: (8) — (s )gor] + E[ht(s) - <ht>f0r]2:|pfor(sv t)ds

~ et(h,)for 1 + [to'for(ht )]2 (E3)
2 9
which is a second-order correction to exp(# (h;)tor] in ?Ofor (hy ).
Combining Egs. (E2) and (E3) we find at first order
(8¢ )back — (&) for m:O t Covior(hy, g1)- (E4)

As mentioned at the beginning of this Appendix, we can use the backward point of view, with a first-order expansion in

tOpack [ ()] instead. In this case,

(81 tor = /et / & (@) M Olp (s, 0ds ~ eI (g ) pgek — 1COVhack (B 8- (ES)

o—>

The prefactor is computed with the same expansion starting from Eq. (B2):

2
R T e / [1 1L )back = ()] + = [k = ht(S)]z} Poack(s. 1)ds
~ ez<h,>m[1 i [mback(hf)]z} (E6)
2 b
which is a second order correction in # oy, (5, ). Combining Egs. (E5) and (E6), we find
(81 )back — (&1 )for ta:O t Covpaek (y, g1)- (E7)

When comparing Eqs. (E4) and (E7), we conclude that the covariance can be taken equivalently in the forward or backward

statistics.

Let us now turn to the r.h.s. of inequality Eq. (11). Using the expression of oy(g;) as the forward coefficient of variation
of the quantity exp[th,(s)] [Eq. (15)] (oback(7:) as the backward coefficient of variation of the quantity exp[—th,(s)]), it is
straightforward to show from the same kind of Taylor expansion that

Ofor (gt )Ufor(Qt ) ta:O 1 Ofor (ht )Ufor (gt )a (E8)

Oback (&1 )0back (77) ta:O tOback (M )Oback (81)- (E9)

Thus, the inequality Eq. (11) does not get necessarily saturated in this limit. However, in the particular case where g;(s) is the

fitness landscape 7, (s), then Eq. (E4) reads

I[ls ~ t Var(h),
to—0

and thus the inequality Eq. (14) is saturated in this limit.

APPENDIX F: A LOWER BOUND FOR THE
STRENGTH OF SELECTION

The trivial lower bound on the strength of selection [1s >
0 comes from the positivity of KL divergences Dky (Psor| Pback )
and DKL(pback|pf0r)’ giVng, respeCtive])’» At - (ht>f0r 2 0
and (h;)pack — Ar = 0. The positivity of KL divergence itself
relies on Jensen’s inequality. In order to improve upon this
bound, we proceed in two steps, using a sharpened version of
Jensen’s inequality [26] to both inequalities. First, seeking a
positive lower bound for A; — (A )for, the sharpened version
of Jensen’s inequality reads

(ethr)for - et<hr>f0r 2 O—f%)r(ht) lef w(q’for’ hv (ht>f0r)v (Fl)

(E10)

(

where functions v, ¢, and @pacx have been defined in the
main text. The r.h.s. involves the minimum of the function v
when varying & on its support at time . We then divide this
expression by exp(f A, ):

2
_ - o2 (h) .
(e =By — el =h0) > ZIUL nf o (por, By (i Ytor),
exp(tA;) h

(F2)

The first term is 1 because of the normalization of the proba-
bility distribution ppack. Finally the enhanced bound reads

A= i > — 2 In I—Minfl/f( B, (hy)ror)
t t lfor = / CXp(tAt) " @fors 1, (Nt ) for .

(F3)
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Similarly, we find

(ht )back - At

1 Ot (1)
2 ——1 1 - —back f ack s ]’l, h ac .
; n( exp(—tA)) inf  (@back, 1, (e k))

(F4)

Liao et al. proved [26] that when ¢’(x) is a convex (concave)
function, then ¥ (¢, x, v) is an increasing (decreasing) func-
tion of x, and thus the infimum of function (¢, x, v) on x is
reached for x = X (X = Xmax)-

Because of the convexity of ¢f (x) =t exp [tx], the min-
imum of i is reached when evaluating ¢ at the minimum
value hp, of the fitness landscape A, (s). At finite time, the
support of &, (s) is finite and so is its minimum value. Simi-
larly, because of the concavity of ¢[, , (x) = —t exp [—tx], the
minimum of i is reached when evaluating v at the maximum
value hp,y. Finally, we use the relation —In(1 — x) > x valid
for any real number x and we combine the two inequalities to
obtain

1] o (h)
> —|:t0—l Y (@for> Pmin» {fe) for)

“ ¢ exp(tA;)

szack (hl)

eXP(—tA,) 1/f(¢back, hmaXs <ht)back):|. (FS)

Note that the rh.s. of Eqgs. (F3) and (F4) are both pos-
itive numbers due to the convexity and concavity of ¢
and ¢ ., respectively. As a result, their sum is also pos-
itive and therefore the r.h.s. of Eq. (F5) does represent an
improvement with respect to the trivial bound which would
be 0.

Liao et al. also proposed another lower bound, looser but
simpler than the one involving the function 1. Indeed, one can
replace inf, ¥ (@sor, 11, (B )sor) by infy @f (h)/2 in Eq. (F1).
Moreover, inf}, ¢f (h)/2 = ¢, (hmin)/2 since @f, (h) is an in-
creasing function of 4. The same goes for the other inequality,
and combining the two leads to

2
Oback (hf ) "

P (hnin) + xp(—1Ay) Dpack

e s [ O ()

= Z m (hmax )i| .

(Fo6)

We notice that this version of the bound does not depend on
the average values of the fitness landscape, unlike Eq. (F5).

Let us mention that if no information is known on the
support of the fitness landscape, hni, can still be taken equal
to 0, in both Eqgs. (F5) and (F6), because fitness landscapes
are positive functions. Indeed, the fitness landscape can be
expressed as [2] th,(s) = In[>_, m¥ R (K|s)], in terms of
the conditional forward probability Ry (K|s) of the number
of divisions. Since m > 1 and K > 0, this relation implies
that the fitness landscape is a positive quantity. In this case,
Eq. (F5) [Eq. (F6)] gives a nontrivial bound based on the
first two moments (second moment) of the forward fitness
landscape distribution.

The simplest bound is thus obtained when considering
Eq. (F6) with hyi, = 0 and hnax = +00, which cancels the

(a) (b)

x10~2 x10%

-- Kln2/t
8.5 3
2.2 .
= - - @ 0 - - - - 8 W80T §= 2
20 75 1
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a h x1072
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7 86 =
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= 84 K
s
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%1073 x10°
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O ° - =
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FIG. 6. Experimental fitness landscapes for age and their forward
distributions, computed with data from [27]. Each line corresponds to
a different experiment and the first column shows fitness landscapes
h;(a) as functions of size a. In (a) and (c), the gray horizontal dashed
lines correspond to theoretical plateaus, equal to K In2/z, predicted
when K is fully determined by the value s of the trait. The integers K
corresponding to the plateaus are indicated on the right y axis. In (e),
the plateaus are blurred and replaced by a smoother scatter plot in
good agreement with the general shape of the theoretical prediction,
made in the case of an age-controlled model in steady state [10].
A 1is the population growth rate and the constant C was adjusted to
fit the scatter plot. In (a), (c), and (e), each dot is made of all the
cells having the same age, and the mean number of divisions among
those cells is represented by the color of the dot. This shows that dots
aligning on a plateau corresponding to a number K of divisions truly
come from cells that underwent K divisions. In (b), (d), and (f), the
three subfigures on the right represent the distribution py,, () of the
corresponding age fitness landscapes (i.e., on the same line) with the
forward age distribution. For all three rows, the fitness landscapes
are highly non-Gaussian, and for (b) and (d) the peaks in these
distributions correspond to the values of some of the plateaus.

second term in the bracket

t o2 (h
> - M (F7)
2 exp(tA;)
APPENDIX G: FURTHER TESTS ON EXPERIMENTAL
DATA FROM [27]

In Fig. 1 in Sec. II we showed the size fitness landscapes
h;(x) as a function of the cell size x, and the distribution
Pior(h) of size fitness landscape computed with the forward
cell size distribution, for 3 of the 11 experiments from [27].
We now show the corresponding plots when choosing the age
A of the cell as the phenotypic trait S. The experiment on
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FIG. 7. Upper bound U4 (blue dots) and lower bound L 4 (or-
ange triangles) for the strength of selection acting on size Il 4,
normalized by the latter. The x axis represents the 11 colonies in
different growth conditions from [27], in the same order as in Fig. 4.

line i in Fig. 6 is the same as the experiment on line i in
Fig. 1. By comparing the two figures, we see that for the first
two rows the theoretical plateaus at # = K In 2/t are the same
for h;(a) and for h,(x), which is logical since it is the same
cells, and both the age and the size are highly correlated to the
number of divisions. In Fig. 6(e), as for the size in Fig. 1(e),
the plateaus start to blur to give rise to a smoother scatter
plot, whose shape matches the linear prediction we made for
age-controlled models in steady state [10]. Similarly to the
case of the cell size, distributions of fitness landscapes shown
in the second column are highly non-Gaussian.

Then we test the upper and lower bounds on the strength
of selection acting on cell age using the same data. We show
in Fig. 7 the upper bound {/4 given by Eq. (14) and the
lower bound £ 4 given by Eq. (21), normalized by the strength
of selection IT, acting on age. The x axis numbers the
colonies which have grown in different nutrient media [27].
As expected, points representing the upper bound and those
representing the lower bound are, respectively, above and
below the horizontal dashed line at y = 1.

Nozoe et al. proved that the strength of selection acting on
any trait S is bounded by the strength of selection acting on
the number of divisions IC [2]: VS, T1s < ITx. We obtained in

15

101

/Uy

2.001

100 pmmm=mmmmmmmmmmm oo oo

FIG. 8. Ratio of the general bound ITx to our upper bound Uy
for size (top plot) and U/ 4 for age (bottom plot) for the 11 exper-
iments from [27], in no particular order. All points are above the
black horizontal dashed line at y = 1, which indicates that our upper
bound is always smaller and thus better than ITx.

this paper a trait-dependent bound, which highlights the role
of fluctuations of fitness landscape of that particular trait for
the strength of selection, and which is often tighter than 1.
We show in Fig. 8 the ratio of Ilx to the upper bound Uy for
the size (top plot) and U/ 4 for the age (bottom plot). All points
are indeed above 1.
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