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Antonietta Mira ,13,14 Nicolas Laflorencie ,15 Frédéric Mila ,9 Bruce Normand ,1,9,16 Christian Rüegg ,1,2,9,17

Raivo Stern ,6 and Franziska Weickert18

1Quantum Criticality and Dynamics Group, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
2Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland

3Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
4Physikalisches Institut, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany

5Max Planck Institute for Solid-State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
6National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia

7Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
8Nanoscience Center, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

9Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
10International MegaGauss Science Laboratory, Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan

11Laboratoire National des Champs Magnétiques Intenses, LNCMI-CNRS (UPR3228), EMFL, Université Grenoble Alpes, UPS and INSA
Toulouse, Boîte Postale 166, 38042 Grenoble Cedex 9, France

12MPA-MAGLAB, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
13Institute of Computational Science, Università della Svizzera italiana, CH-6900 Lugano, Switzerland

14Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, 2210 Como, Italy
15Laboratoire de Physique Théorique, CNRS and Université de Toulouse, 31062 Toulouse, France

16Lehrstuhl für Theoretische Physik I, Technische Universität Dortmund, Otto-Hahn-Strasse 4, 44221 Dortmund, Germany
17Institute for Quantum Electronics, ETH Zürich, CH-8093 Hönggerberg, Switzerland

18National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

(Received 1 April 2021; accepted 25 April 2021; published 4 June 2021)

Classical and quantum phase transitions (QPTs), with their accompanying concepts of criticality and uni-
versality, are a cornerstone of statistical thermodynamics. An excellent example of a controlled QPT is the
field-induced ordering of a gapped quantum magnet. Although numerous “quasi-one-dimensional” coupled
spin-chain and -ladder materials are known whose ordering transition is three-dimensional (3D), quasi-two-
dimensional (2D) systems are special for multiple reasons. Motivated by the ancient pigment Han purple
(BaCuSi2O6), a quasi-2D material displaying anomalous critical properties, we present a complete analysis of
Ba0.9Sr0.1CuSi2O6. We measure the zero-field magnetic excitations by neutron spectroscopy and deduce the
spin Hamiltonian. We probe the field-induced transition by combining magnetization, specific-heat, torque, and
magnetocalorimetric measurements with nuclear magnetic resonance studies near the QPT. With a Bayesian
statistical analysis and large-scale Quantum Monte Carlo simulations, we demonstrate unambiguously that ob-
servable 3D quantum critical scaling is restored by the structural simplification arising from light Sr substitution
in Han purple.

DOI: 10.1103/PhysRevResearch.3.023177

I. INTRODUCTION

At a continuous classical or quantum phase transition
(QPT), characteristic energy scales vanish, characteristic
(“correlation”) lengths diverge, and hence the properties of
the system are dictated only by global and scale-invariant
quantities [1]. The critical properties at the transition then
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depend only on factors such as the dimensionality of the sys-
tem, the symmetry group of the order parameter, and in some
cases on topological criteria. These fundamental factors are
not all independent, but are all discrete, and as a result phase
transitions can be categorized by their “universality class.”

An instructive example of the effects of dimensionality is
found for systems where the U(1) symmetry of the order pa-
rameter is broken [2]. For free bosons, the symmetry-broken
phase is the Bose-Einstein condensate (BEC) [3,4] and, while
most familiar in three dimensions, this transition can in fact be
found in systems whose effective dimension is any real num-
ber d > 2. However, strictly in two dimensions the physics
is quite different, dependent on the binding of point vortices,
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and the system displays the Berezinskii-Kosterlitz-Thouless
(BKT) transition [5,6]. In real materials, the issue of system
dimensionality is complicated by the fact that the coupling of
different subsystems (such as clusters, chains, or planes) may
occur on different low energy scales that are only revealed
as the temperature is lowered. Strict one-dimensional (1D)
or two-dimensional (2D) behavior is avoided because, as the
critical point is approached on the low-dimensional subsys-
tem, the growing correlation length causes the subsystems to
become entangled, and the critical properties are expected to
be those associated with a three-dimensional (3D) universality
class [7,8].

Dimerized quantum spin systems, composed of strongly
coupled pairs of spin-1/2 ions, constitute a particularly valu-
able class of materials for the study of quantum criticality. For
sufficiently strong dimerization, the zero-field ground state of
local singlets is always gapped, with the excitations taking the
form of propagating local triplet quasiparticles (“triplons”).
In an applied magnetic field, this system undergoes a QPT
at which the gap is closed and the new ground state has
field-induced transverse magnetic order, which can be de-
scribed as a triplon condensate [9–12]. This is a 3D QPT
from a quantum disordered phase with U(1) (or XY ) sym-
metry to a BEC phase, whose emerging long-range magnetic
order breaks the U(1) symmetry. This QPT has been stud-
ied extensively in materials where the interdimer coupling
is similar in all three spatial dimensions [11,13]. In gapped
quasi-1D materials (dimerized chains, Haldane chains, two-
leg ladders), fields exceeding the gap reveal the physics of
the Tomonaga-Luttinger liquid at higher temperatures, but 3D
scaling behavior is restored in the quantum critical regime
around the QPT [14–19]. However, 2D systems with contin-
uous symmetry are special because of the Mermin-Wagner
theorem [20], and extra-special because of BKT physics [5,6],
which has recently been argued to give rise to behavior at
the dimensional crossover that is radically different from the
zero-dimensional and 1D cases [21]. Thus the question arises
as to whether the “conventional” emergence of 3D physics
can really be expected at the field-induced QPT in a quasi-2D
material.

Unfortunately the list of candidate quasi-2D spin-dimer
compounds suitable for answering this question is rather
short. One well-studied material is SrCu2(BO3)2 [22], which
displays a wealth of fascinating physics as a consequence of
its ideally frustrated Shastry-Sutherland geometry [23]. While
this includes magnetization plateaus [24–26] and topological
phases [27] in an applied field, first-order QPTs to plaque-
tte [28,29] and antiferromagnetic (AF) phases under applied
pressure [30–34], proliferating bound-state excitations, and
anomalous thermodynamics [35], it does not include the type
of physics we discuss. The compound (C4H12N2)Cu2Cl6 was
also an early candidate due to its well-separated planes of
Cl-coordinated Cu dimers, but was found to possess com-
plicated and frustrated 3D coupling [36] and to display an
unexpected breakdown of triplon excitations due to strong
mutual scattering [37]. The chromate compounds Ba3Cr2O8

[38–40] and Sr3Cr2O8 [41,42] form S = 1/2 dimer units in a
triangular geometry and show 3D scaling at the field-induced
QPT, but structural distortion and magnetic frustration effects
leave their dominant dimensionality (2D or 1D) unconfirmed.

A further prominent material, which does actually real-
ize 2D square lattices of dimers and a field-induced triplon
condensation at μ0Hc1 � 23.5 T, is the ancient pigment Han
purple (BaCuSi2O6) [43,44]. In this compound the stacked
dimer bilayers have a body-centered offset, leading to the
expectation of an exact frustration of AF coupling between
successive bilayers, and further to the interpretation of ther-
modynamic measurements showing apparent 2D scaling close
to the QPT [45] as a frustration-induced “dimensional reduc-
tion” quite different from 3D critical properties. However, it
was shown subsequently that the weakly orthorhombic struc-
ture of this material below 90 K [46–48] contains three types
of structurally [49] and magnetically [50–52] inequivalent
bilayers, and later that the interbilayer coupling is not in
fact frustrated [53,54]. These properties lead ultimately to a
regime of anomalous effective scaling in the experimentally
accessible parameter space [54], with the 3D critical behavior
remaining unobservable.

At room temperature, BaCuSi2O6 has a tetragonal struc-
ture (space group I41/acd) in which all dimer bilayers are
equivalent. Thus a possible route to the ideal quasi-2D ma-
terial would be to suppress the orthorhombic transition. In
pursuing this program, a number of stoichiometric substitu-
tions have been tested on the nonmagnetic Ba site, and it
was reported [55] that even a 5% Sr substitution is sufficient
to stabilize the tetragonal structure, represented in Fig. 1(a),
down to the lowest temperatures. However, it is a significant
challenge to grow single crystals of the substituted material
[56], and particularly to grow large single crystals suitable
for inelastic neutron scattering (INS) experiments [57]. We
have solved these problems, enabling the detailed study of the
ground state, excitations, and field-temperature phase diagram
of Ba0.9Sr0.1CuSi2O6 that we present.

The structure of our contribution is as follows. In Sec. II
we detail our crystal-growth procedures, experimental meth-
ods, and numerical simulations. In Sec. III we report INS
experiments at zero magnetic field, which demonstrate that
this compound contains only one type of dimer bilayer, and
hence one triplon excitation branch. We determine the mini-
mal spin Hamiltonian, showing that it contains only the three
Heisenberg interactions of Fig. 1(b), which form a clear hi-
erarchy of intradimer (J), intrabilayer (J ′), and interbilayer
(J ′′) coupling strengths. Turning to high magnetic fields, in
Sec. IV we perform magnetization, magnetic torque, specific-
heat, magnetocaloric effect (MCE), and nuclear magnetic
resonance (NMR) measurements to obtain a comprehensive
experimental picture of the field-temperature phase boundary
to the magnetically ordered state. In Sec. V we combine
state-of-the-art statistical data analysis and quantum Monte
Carlo (QMC) simulations based on the INS parameters to
interpret our results as demonstrating complete consistency
with 3D scaling in the quantum critical region. In Sec. VI
we discuss the context of these results, particularly regarding
possible magnetic disorder effects, and conclude in Sec. VII
that the structural consequences of weak chemical substitution
by nonmagnetic ions are sufficient to realize the simplicity and
elegance of the model originally envisaged for Han purple,
namely, a quasi-2D spin-dimer material displaying observable
3D quantum critical behavior.
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FIG. 1. Structure and inelastic neutron spectrum of Ba0.9Sr0.1CuSi2O6: (a) Tetragonal crystallographic structure of Ba0.9Sr0.1CuSi2O6

[55]. (b) Representation of the minimal magnetic unit cell, indicating the relevant Heisenberg interaction parameters between dimers on
the two bilayers, which are structurally equivalent with body-centered geometry. (â, b̂, ĉ) and (â′, b̂′, ĉ′) denote respectively the axes of the
crystallographic and minimal magnetic unit cells [54]. Dotted gray lines indicate the correspondence between Cu2+ ion positions in the two
cells. (c, d) Neutron scattering spectra measured on CAMEA at 1.5 K for two high-symmetry �Q-space directions; �Q is indexed in reciprocal
lattice units (r.l.u.) of the crystallographic unit cell. (e, f) Spectra modeled using the interaction parameters and line widths extracted from the
data collected on both CAMEA and TASP (Fig. 2).

II. MATERIAL AND METHODS

A. Crystal growth

Single-crystal growth of BaCuSi2O6 poses a challenge be-
cause the starting CuO component decays before the reagents
and compound melt. This decay has been suppressed by in-
creasing the oxygen partial pressure in optical floating-zone
growth [43] and by using oxygen-donating LiBO2 flux [45].
However, the latter method cannot be applied to the substi-
tuted system, Ba0.9Sr0.1CuSi2O6, because the metaborate flux
reacts with the SrO reagent [56]. Thus two methods were
employed to grow the single crystals used in the present
work. All of the high-field experiments were performed us-
ing small single crystals (sizes of order 10 mg) grown from
the congruent melt in a tube furnace with an oxygen flow
at a pressure under 1 bar [56]. The INS experiments were
performed using one rod-shaped single crystal of mass 1.3 g
grown by a floating-zone method. While this method was
developed [57] for BaCuSi2O6, it could not be applied directly
to Ba0.9Sr0.1CuSi2O6 because large oxygen bubbles from the
reduction of CuO disconnected the two rods and terminated
the crystal growth. In this sense, obtaining several gram-sized
single crystals of Ba0.9Sr0.1CuSi2O6 constituted a significant
achievement, made possible by using one single-crystalline
seed in a mixed argon/oxygen atmosphere to reduce the sizes
of the disruptive oxygen bubbles.

B. Inelastic neutron scattering measurements

INS measurements at zero applied magnetic field were
performed on the triple-axis spectrometers TASP and on the
multiplexing triple-axis spectrometer CAMEA [58,59], both
at the SINQ neutron source [60] at the Paul Scherrer Institute.
INS probes the dynamical magnetic structure factor, S( �Q, ω),
which is the spatial and temporal Fourier transform of the
spin-spin correlation function, allowing direct access to the
magnetic excitation spectrum as a function of the energy (h̄ω)
and momentum ( �Q) transfer of the scattered neutrons [61]. On
TASP, a temperature of 1.5 K was used and the final neutron
energy was fixed to 3.5 meV. The instrumental parameters of
a previous study of BaCuSi2O6 [54] were selected to optimize
the energy resolution. On CAMEA, a temperature of 1.5 K
was used and sequential measurements at fixed incident neu-
tron energies of 7.5 and 9 meV were combined to obtain a
map of the spectrum over multiple Brillouin zones and over
an energy range from 2.5 to 5.5 meV. For both measurements,
the rod-shaped single crystal was aligned with (h 0 l) in the
scattering plane [notation from the crystallographic unit cell,
Fig. 1(c)] [55].

The CAMEA data shown in Figs. 1(c)–1(f) were extracted
from the raw measured intensities using the software MJOL-
NIR [62], which corrects these intensities using measurements
on a standard vanadium sample. The two data sets shown in
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FIG. 2. Inelastic neutron scattering analysis: (a) Scattered intensity as a function of energy transfer, measured on TASP at �Q = (0 0 4)
r.l.u. for Ba0.9Sr0.1CuSi2O6 at 1.5 K (blue symbols) and BaCuSi2O6 at 1.6 K (red). Shaded regions represent Gaussian fits used to extract
the triplon energy, linewidth, and intensity. (b–e) Multiple Ba0.9Sr0.1CuSi2O6 energy scans, of the type shown in panel (a), were analyzed for
�Q-vectors covering two high-symmetry directions in reciprocal space. (b, c) Triplon mode energies obtained from data gathered on TASP (blue
symbols) and CAMEA (open). (d, e) Corresponding scattered intensities. Solid lines are fits obtained from the spin Hamiltonian represented
in Fig. 1(b) with the optimal parameters given in the text.

Fig. 2(a) differed by sample masses and counting times, which
for the Ba0.9Sr0.1CuSi2O6 sample were measured for approxi-
mately 7.5 minutes per point, while the BaCuSi2O6 data were
measured for approximately 15 minutes per point. The com-
parison was made by scaling the BaCuSi2O6 data so that the
integrated intensity of all three modes matched the integrated
intensity of the single mode observed in Ba0.9Sr0.1CuSi2O6.

C. High-field measurements

Magnetization: Magnetization measurements up to 50 T
were carried out in a capacitor-driven short-pulse magnet at
the NHMFL Pulsed Field Facility in Los Alamos using an
extraction technique [63]. These measurements are subject to
a strong reduction of the sample temperature in the changing
magnetic field, which was calibrated by explicit MCE mea-
surements.

Specific heat: The specific heat was measured with a heat-
pulse technique inside a motor-generator-driven long-pulse
magnet at the International MegaGauss Science Laboratory
of the University of Tokyo [64]. The experimental data points
were collected during the flat-topped portion of the magnetic-
field profiles created by feedback loop control [64,65], at
fields up to 37.8 T and temperatures down to 1 K.

Magnetic torque: Measurements of the magnetic torque
were conducted in a 31 T resistive magnet at the NHMFL
DC Field Facility in Tallahassee using a silicon-membrane
cantilever manufactured by NanoSensors and a 3He cryostat
to reach temperatures down to 0.3 K. Torque measurements
were made during constant-temperature field sweeps across
the phase boundary. The temperature was fixed by main-
taining a constant 3He pressure in the sample space; two

field-calibrated sensors, one located close to the cantilever and
the other at the sample holder, were used for a precise in situ
monitoring of the temperature. The angle between the field
and the crystallographic axes of the sample was estimated by
rotation tests to be 10.5◦.

Magnetocaloric effect (MCE): MCE measurements were
performed in vacuum at temperatures down to 1 K at the In-
ternational MegaGauss Science Laboratory of the University
of Tokyo [66], and down to 0.4 K at the NHMFL in Los
Alamos. In both experiments, the temperature was recorded
during magnetic-field pulses up to 50 T using the response
of a thin-film AuGe thermometer sputtered onto the sample
surfaces. Under adiabatic vacuum conditions, the lines de-
fined by T (H ) may be understood as isentropes. The sign
of the temperature change is given by the Maxwell relation
(∂Q/∂H )/T = −(∂M/∂T )|H ; the changes of sign in the gra-
dient of the isentropes correspond to the maxima or minima
in M(T ) that occur at the ordering transitions.

Nuclear magnetic resonance (NMR): 29Si NMR measure-
ments were performed in the field range 22–26 T using a
resistive magnet at LNCMI. A 13 mg single-crystal sample
(5×1 × 0.5 mm3) was placed in the mixing chamber of a
3He - 4He dilution refrigerator with its c-axis oriented paral-
lel to the applied field, �H . NMR spectra were taken by the
spin-echo pulse sequence. In the quantum disordered phase,
the spectra are relatively narrow and were covered fully in a
single-frequency recording; inside the magnetically ordered
phase, the spectra are broader and their reconstruction re-
quired several recordings taken at equally spaced frequency
intervals, by summation of the individual Fourier transforms.
The frequency (ν) of the 29Si spectra was measured rela-
tive to the reference ν0/(μ0H ) = 29γ = 8.4577 MHz/T. The
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magnitude of the applied field was calibrated using a metallic
27Al reference placed in the same coil as the sample. The same
27Al reference was also used to obtain a relative temperature
calibration at temperatures below 1 K from the Boltzmann-
factor dependence of the NMR signal intensity; this was then
related to the values measured directly by the field-calibrated
RuO2 temperature sensor at all higher temperatures, where
stable and field-independent T values were ensured by fixing
the pressure of the He bath.

D. Quantum Monte Carlo

We performed QMC simulations by applying the stochas-
tic series expansion (SSE) algorithm [67] on 3D lattices of
L × L × L/2 sites for L = 8, 10, 12, ..., 32. To reduce the
computational cost we simulated an effective Hamiltonian of
hard-core bosons [68], where each site represents a dimer and
each site boson a dimer triplon. The dispersion relation of
these bosonic quasiparticles was chosen to match the triplon
band determined by INS.

For each applied field, the critical temperature, Tc, was
extracted from the finite-size scaling of the superfluid density,
ρsf , of the hard-core bosons (equivalent to the spin stiffness of
an ordered magnet). The quantity Ld+z−2ρsf (L, T ) has scal-
ing dimension zero, where the dimensionality d = 3 and the
dynamical exponent z = 0 for a finite-temperature transition,
and hence the Lρsf (L, T ) curves for all L cross at the same
point, which is T = Tc [69]. We verified that the values of
Tc(H ), and the associated uncertainties δTc(H ), determined
in this way were fully consistent with the critical exponent,
ν = 0.672, expected for the correlation length [54].

III. MAGNETIC EXCITATIONS AT ZERO FIELD

The first step in characterizing the magnetic excitations
of Ba0.9Sr0.1CuSi2O6 was to succeed in growing gram-sized
single crystals by the technique described in Sec. II A. Fig-
ures 1(c) and 1(d) show the experimental neutron spectrum
measured on CAMEA over multiple Brillouin zones for two
high-symmetry directions, (Qh 0 4) and (0 0 Ql ), in recipro-
cal space. The spectrum along (Qh 0 4) displays one triplon
mode with a periodicity of 2 in Qh and the spin gap (band
minimum) at even values of Qh [Fig. 1(c)]; this single mode
has a periodicity of 4 in Ql and the spin gap appears at
Ql = 2 + 4n [Fig. 1(d)], where n is an integer. In our model
of the spectrum, shown in Figs. 1(e) and 1(f), one may state
at the qualitative level that the location of the band minimum
in Qh is a consequence of an effectively ferromagnetic (FM)
intrabilayer interaction parameter [J ′ in Fig. 1(b)], as pro-
posed [53] and observed [54] in BaCuSi2O6. Similarly, the
location of the band minimum in Ql is a consequence of a FM
interbilayer interaction parameter, J ′′, which is the magnetic
coupling between the top ions of dimers in one bilayer and
the bottom ions of the dimers in the next [Fig. 1(b)]. We
remind the reader that the FM intrabilayer correlations ensure
that the interbilayer interactions are not frustrated for either
sign of this latter parameter, excluding [53] the “dimensional
reduction” scenario mentioned above. The leading qualitative
feature of the intensities is the modulation visible in Figs. 1(c)
and 1(e), which is a consequence of the fact that the resolution

ellipsoid on CAMEA causes intensity to be spread over a
narrower (focusing) or wider (defocusing) range depending
on the value of �Q.

Turning to a quantitative analysis of the low-temperature
spectrum, Fig. 2(a) shows the scattered intensity as a func-
tion of energy transfer for Ba0.9Sr0.1CuSi2O6 (blue symbols),
and also the comparison with BaCuSi2O6 (red) [54], which
we discuss in Sec. III B; both data sets were measured on
TASP at �Q = (0 0 4) using similar experimental conditions.
The solid lines are Gaussian fits used to extract the location,
linewidth, and intensity of the triplon modes. The results of
applying the same procedure at all �Q points along the same
two high-symmetry directions as in Figs. 1(c)–1(f) are shown
as the solid symbols in Figs. 2(b)–2(e), where the locations
and intensities are compared to the analogous results obtained
from CAMEA. The triplon dispersion relations measured on
the two spectrometers are in excellent agreement throughout
the Brillouin zone [Figs. 2(b) and 2(c)] and the measured
intensities are fully compatible [Figs. 2(d) and 2(e)].

A. Spin Hamiltonian

We stress that our observation of one triplon mode per
minimal magnetic unit cell means that the Ba0.9Sr0.1CuSi2O6

structure contains only one type of bilayer, in contrast to
the complicated situation in BaCuSi2O6 [54]. An accurate
determination of the spin Hamiltonian is crucial to verify the
quasi-2D characteristics of the material and for a detailed
investigation of the resulting critical behavior in an applied
magnetic field. We assume that the minimal magnetic Hamil-
tonian of Ba0.9Sr0.1CuSi2O6 is that displayed in Fig. 1(b), i.e.,
that it contains only three interactions, all of purely Heisen-
berg type, to which, as above, we refer as intradimer (J),
intrabilayer (J ′), and interbilayer (J ′′). We note that J ′ is an
effective interdimer interaction parameter that combines two
pairs of ionic (Cu2+-Cu2+) interactions within and between
the two layers of the bilayer structure [53,54].

By fitting the dispersion of the triplon mode shown in
Figs. 2(b) and 2(c) as detailed in Appendix A, we deduce the
optimal parameter set J = 4.28(2) meV, J ′ = −0.52(1) meV,
and J ′′ = −0.02(1) meV, where negative values denote FM
interactions and the error bars represent a conservative es-
timate of the statistical uncertainties. Figures 1(e), 1(f), and
2(b)–2(e) make clear that these parameters provide an excel-
lent account of all the measured data, leaving no evidence of
any requirement for further terms in the spin Hamiltonian. The
INS parameters also serve as a benchmark for the magnetic
interactions estimated using electronic structure calculations
based on measurements of the atomic structure [55], from
which one may deduce (using the notation in Table II of
that work) that J1 ≡ J is obtained to very high accuracy,
J3 − J5 ≡ J ′ is overestimated by approximately 30%, J4 = 0
is identified correctly, and J2 ≡ J ′′ is surprisingly accurate in
both size and sign, given its small value. On this point, we
stress that the three terms we have deduced form a hierarchy of
interactions whose strengths differ by at least an order of mag-
nitude, and hence that each is responsible for physics at quite
different energy scales. Specifically, from the standpoint of
triplon excitations, Ba0.9Sr0.1CuSi2O6 is very much a quasi-
2D magnetic material, with an interbilayer coupling 25 times
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smaller than the energy scale characterizing the intrabilayer
excitation processes.

B. Comparison to BaCuSi2O6

It is instructive to compare the magnetic interactions of
the Ba0.9Sr0.1CuSi2O6 system with those of the parent com-
pound. The transition to a weakly orthorhombic structure
below 90 K [46–48] in BaCuSi2O6 results in the formation
of three structurally inequivalent bilayers of dimers [49,51].
This led to the observation in INS experiments on BaCuSi2O6

of either three separate triplon modes or two separate peaks
at �Q vectors where the energies of the upper two modes are
not distinguishable, which is the case in the data shown in
Fig. 2(a) for �Q = (0 0 4).

In Ba0.9Sr0.1CuSi2O6, the absence of this structural tran-
sition [55] means that the system remains tetragonal at low
temperatures and only one bilayer type, hosting only one
triplon mode, is expected. The neutron spectra presented in
Figs. 1(c)–1(f) and 2 confirm this situation. If the tetragonal
interaction parameters are compared with the orthorhombic
ones, J = 4.28(2) is similar to JA = 4.275(2) meV, the weak-
est of the three intradimer couplings in BaCuSi2O6 [54],
which explains the coincidence of the Ba0.9Sr0.1CuSi2O6

triplon shown in Fig. 2(a) with the lower peak in the
BaCuSi2O6 data. By contrast, J ′ = −0.52(1) for the tetrag-
onal structure is not close to J ′

A = −0.480(3) meV, but lies
between the stronger interactions J ′

B = −0.497(8) meV and
J ′

C = −0.57(1) meV found in the distorted structure. Finally,
interbilayer interaction, J ′′ = −0.02(1) meV, is only half the
size of the corresponding value in BaCuSi2O6, which indi-
cates the extreme sensitivity of these superexchange paths to
the smallest structural alterations. However, while the band-
width of the triplon mode visible in Figs. 1(c), 1(e), and 2(b)
is very similar to that in BaCuSi2O6, the bandwidth of the in-
terbilayer dispersion [Figs. 1(d), 1(f), and 2(c)] is much larger
than the almost flat modes observed in BaCuSi2O6 [54]. This
is a consequence of the ABC bilayer stacking in BaCuSi2O6,
by which the three different dimer types cause a dramatic
reduction of the interbilayer triplon hopping probability.

In principle, valuable physical information is also con-
tained in the line widths of the triplon modes observed in
the two materials. Partial Sr substitution on the Ba sites
should result in a degree of bond disorder, meaning a dis-
tribution in the values of the interaction parameters, which
would act to broaden the triplon in Ba0.9Sr0.1CuSi2O6. Com-
parison with the A triplon in BaCuSi2O6, which lies at the
same energy in Fig. 2(a), reveals that the full width at
half maximum (FWHM) of the Gaussian characterizing the
10% Sr-substituted material is 20% higher at �Q = (0 0 4)
[0.32(2) meV as opposed to 0.25(2) meV]. At �Q = (1 0 4),
however, the FWHM is essentially unchanged [0.30(2) meV
as opposed to 0.29(4) meV, not shown]. A number of fac-
tors affect this comparison, including that the Sr-substituted
crystal was subject to a grain reorientation during growth
[57] and that the different shapes of the two crystals made
it necessary to adjust the focusing slits for each case, affecting
the experimental resolution. On the basis of these results, we
are not able to discern a significant intrinsic broadening, due
to bond disorder, from the extrinsic contributions to broad-

ening, and thus we make only the qualitative statement that
disorder effects on the magnetic properties arising from the
weak structural disorder caused by Sr substitution are small in
Ba0.9Sr0.1CuSi2O6.

IV. FIELD-TEMPERATURE PHASE BOUNDARY

The parameters we have determined for the gapped,
zero-field ground state have essential consequences for the
field-temperature phase diagram. The onset of field-induced
magnetic order, when the field is strong enough to close the
triplon gap, is generally referred to as a Bose-Einstein conden-
sation of magnons; while the quadratic magnon dispersion at
the transition ensures the Bose-Einstein universality class, the
effective dimensionality of the system remains an open issue,
as explained in Sec. I. Given the questions raised by the parent
compound BaCuSi2O6, and the more general questions raised
about possible fingerprints of BKT physics in coupled quasi-
2D systems [21], we have performed the most comprehensive
study within our capabilities of the QPT and the surrounding
quantum critical regime.

A. High-field thermodynamic measurements

For this we applied a combination of thermodynamic
measurements up to the highest available pulsed and static
magnetic fields (Sec. II C) to map the field-temperature phase
diagram of Ba0.9Sr0.1CuSi2O6. Magnetization data obtained
in pulsed fields are shown in Fig. 3(a). While zero magne-
tization indicates a spin gap, an abrupt jump and increasing
M(H ) values are a signature of gap closure and magnetic
polarization. The phase transitions both into and out of the
ordered state are identified as sharp features in the second
field derivative [inset, Fig. 3(a)]. Although field pulses up
to 50 T make it possible to reach saturation even at the
lowest temperatures, the M(H ) curves taken in short-pulse
magnets are adiabatic, rather than isothermal. BaCuSi2O6

and Ba0.9Sr0.1CuSi2O6 have a strong MCE, meaning that the
rapidly changing applied field drives a dramatic reduction
of the sample temperature in the absence of heat transfer.
We performed explicit MCE measurements (below) in order
to obtain an accurate determination of the real measurement
temperatures shown for both phase transitions in Fig. 3(a).

We have measured the specific heat in pulsed fields up to
37.8 T and display the results in Fig. 3(b). Because this field
value is closer to the upper critical field of Ba0.9Sr0.1CuSi2O6

than to the lower, these measurements make it possible to ac-
cess the top of the phase-boundary “dome” shown in Fig. 3(d).
The λ-shaped anomalies in Cp(T ) are characteristic of second-
order phase transitions, and we used an equal-area method to
estimate the critical temperatures for each magnetic field. The
λ shapes have also been associated directly with the 3D XY
universality class in a number of systems showing magnon
BEC [40,41,43,44,70–72], while below the transition Cp(T )
is consistent with the T 3 form expected from AF magnons in
three dimensions.

In a static external field, we have measured the magnetic
torque up to 29 T, as shown in Fig. 3(c). In these experiments
the sample temperature is known exactly but, because a torque

023177-6



REVEALING THREE-DIMENSIONAL QUANTUM … PHYSICAL REVIEW RESEARCH 3, 023177 (2021)

FIG. 3. Phase boundary of Ba0.9Sr0.1CuSi2O6: Results from a wide range of thermodynamic measurements performed on single-crystalline
Ba0.9Sr0.1CuSi2O6 at high magnetic fields, all with Ĥ ‖ ĉ. (a) Magnetization, M(H ), measured in pulsed fields up to 50 T. Curves are shown
with successive vertical offsets of 0.3. Left and right labels are the calibrated temperatures obtained respectively for the lower and upper phase
transitions after correction for the strong magnetocaloric effects (MCEs) acting during the field pulse. The inset shows the second derivative,
∂2M/∂H 2, highlighting the locations of the ordering transitions. (b) Specific heat, Cp(T ), measured in pulsed fields up to 37.8 T and showing a λ

anomaly at the phase boundary. The maximum transition temperature, T max
c � 3.8 K at 35.2 T, demarcates the top of the phase-boundary dome.

(c) Magnetic torque, τ (H ), measured in static fields around the onset of magnetic order. Curves above 0.35 K are shown with vertical offsets of
0.2. The inset shows the second derivative, ∂2τ/∂H2. (d) Field-temperature phase diagram of Ba0.9Sr0.1CuSi2O6 obtained by collecting all of
our experimental data from magnetization, specific heat, magnetic torque, MCE, and NMR. Solid lines are lines of constant entropy obtained
from our MCE measurements. Color contours represent the magnetic Grüneisen parameter, 
H = −(∂M/∂T )/Cp = −(∂T/∂H )S/T , which
shows a sharp change of sign at the phase boundary. The black dashed line shows for comparison the phase boundary of BaCuSi2O6 [43].

acts only when the sample is tilted away from its principal
axes, the tilt angle provides a degree of uncertainty that af-
fects the absolute field. By contrast, the relative values of
the critical fields at each temperature are extremely accurate,
allowing one to probe the shape of much of the left side of
the phase-boundary dome. Again the second field derivative
[inset Fig. 3(c)] gives the most accurate determination of the
critical field, Hc, for each measurement temperature, T . Here

we have corrected these fields to the NMR values of Hc(T )
(below) in the regime of temperature where the two methods
overlap, thereby obtaining the phase-boundary points shown
up to 3.03 K in Fig. 3(d).

The MCE, meaning the change in sample temperature due
to an applied field, is related directly to the first temperature
derivative of the magnetization (Sec. II C). MCE measure-
ments in pulsed fields up to 50 T were used to obtain the
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lines of constant entropy shown in Fig. 3(d), whose local
minima mark the location of the ordering transition in both
field and temperature. We carried out two separate MCE ex-
periments, at ISSP Tokyo and NHMFL Los Alamos, and used
the latter data to deduce the true sample temperature for the
magnetization results shown in Fig. 3(a). The MCE shows a
discernible asymmetry [Fig. 3(d)], in that the phase-boundary
temperature for the same isentrope is higher on the left side of
the dome than on the right [42], indicating that the isothermal
entropy, S(H ), is higher on the right than on the left. This re-
sult implies a larger specific heat on the right side of the dome
and has been explained as a magnon mass anisotropy [71] that
is connected to the ratio of the upper and lower critical fields.
In Fig. 3(d) we show also the magnetic Grüneisen parameter,
whose sign change becomes increasingly abrupt as the tem-
perature is lowered, thereby locating the phase boundary with
increasing accuracy.

We also performed NMR measurements at very low tem-
peratures to determine the phase boundary close to the lower
critical field, but defer a detailed discussion of these exper-
iments to the next subsection. Figure 3(d) compiles all of
our experimental data to display a comprehensive picture
of the dome-shaped phase boundary of the magnetically or-
dered (condensate) phase. The dome is rather symmetrical
in shape between a lower critical field μ0Hc1 � 22.5 T and
an upper critical field μ0Hc2 � 46.5 T, with a maximum
height of T max

c � 3.8 K around 35 T. In Fig. 3(d) we show
also the phase-boundary dome determined [43] for the parent
compound, BaCuSi2O6, which is altered only slightly by the
Sr substitution. Specifically, the small reduction of Hc1 is a
consequence of the smaller gap in Ba0.9Sr0.1CuSi2O6, which
arises due to the combination of increased bandwidth (con-
trolled by J ′) and rather constant band center (controlled by J).
The reduction of the upper critical field, Hc2, is a consequence
of the fact that the stronger intradimer coupling constants of
the structurally inequivalent bilayers in BaCuSi2O6 are absent
in Ba0.9Sr0.1CuSi2O6.

B. Nuclear magnetic resonance

For a detailed investigation of the quantum critical regime,
we performed NMR measurements at high magnetic fields
and very low temperatures using the facilities at the LNCMI
(Sec. II C). In the magnetically ordered phase above the crit-
ical field, which at any temperature we denote by Hc(T ), the
presence of a staggered magnetization, m⊥(T ), transverse to
the direction of the external field (which is applied along the
ĉ axis) lifts the degeneracy between sites that were equiva-
lent in the gapped dimer phase [73,74]. Their NMR spectra
therefore show a splitting into two separate peaks. Figure 4(a)
shows 29Si NMR spectra obtained using a 13 mg single crystal
of Ba0.9Sr0.1CuSi2O6 at T = 120 mK over a range of static
magnetic fields crossing the value of Hc for this temperature.
Whereas in BaCuSi2O6 it was possible by 29Si NMR to detect
only a broad distribution due to the presence of structurally
different bilayer types [48,50,52], whose local spin polariza-
tion could be determined quantitatively only by 63Cu NMR
[75], in the 29Si spectra of the Sr-substituted variant we ob-
serve a second peak that splits from the first with increasing

applied field, becoming a separate and clearly resolved entity
in the upper panels of Fig. 4(a).

Because of the low temperatures of these measurements,
the field value at which the NMR peak-splitting appears
constitutes our most accurate estimate of the critical field,
Hc(T ), for each temperature, T , in the regime most likely
to approach quantum critical scaling. The splitting of the
peaks in frequency is directly proportional to the magnetic
order parameter [73], allowing us to obtain the field-induced
evolution of the ordered moment up to a single, nonuniversal
constant of proportionality, which is the hyperfine coupling
constant of the NMR experiment. To determine the field
dependence of the peak splitting, and hence of the order pa-
rameter, we measured NMR spectra up to fields significantly
higher than Hc(T ) for one example temperature, 120 mK
[Fig. 4(a)], and the results are shown in the inset of Fig. 4(d).
To determine the phase boundary for a study of its quantum
critical properties, we have measured NMR spectra for a num-
ber of fixed temperatures between 49 and 921 mK, over a
range of fields close to Hc(T ) in each case, and a further set
of spectra is shown for T = 412 mK in Fig. 4(b).

To optimize our extraction of the peak-splitting from the
spectral data, which contain multiple additional features and
complications, we exploit its relation to the order parameter to
model it as a power-law function of the field difference from
the phase transition, H − Hc(T ), and perform a simultaneous
fit of one peak (blue) or two split peaks [red and green in
Figs. 4(a) and 4(b)] to all NMR spectra measured at the
same T . Details of this procedure, which is valid over a field-
temperature regime near the phase boundary, are provided in
Appendix B. Only at fields well above Hc(T ) was it possible to
obtain reliable fits to the two clearly separated spectral peaks
of each individual spectrum, and examples of these fits are
shown in the upper panels of Fig. 4(a).

The result of the simultaneous fit procedure is the set of
fitting functions shown by the lines in Fig. 4(c), where the
crosses represent the fields at which spectra were collected,
and these lines yield a set of estimated critical points, Hc, j ,
with uncertainties δHc, j . The corresponding temperature val-
ues, with their uncertainties, were determined relative to a
field-calibrated RuO2 thermometer (Sec. II C). The data pairs
(Hc, j, δHc, j ) and (Tc, j, δTc, j ) together constitute the NMR
phase boundary near the quantum critical point, which we
show as the blue and open circles in Fig. 4(d). The blue line
and shading represent the results of our statistical analysis of
the quantum critical properties of the NMR phase boundary,
which we discuss below.

To assist with the interpretation of the measured phase
boundary, we performed large-scale QMC calculations of a
model with only one type of bilayer, following the established
procedure [54] summarized in Sec. II D. For this we mapped
the spin Hamiltonian of Fig. 1(b) to a hard-core-boson model
[68] for triplons with the low-energy triplon dispersion de-
termined from our zero-field INS measurements. The QMC
phase boundary in the regime close to the quantum critical
point (QCP) is shown by the orange and open squares in
Fig. 4(b), while the corresponding lines and shading are the
results of the statistical analysis we present next (Sec. V).
We remark that the precise agreement in location of the
QCP obtained by using the zero-field parameters implies that
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FIG. 4. NMR measurements in the critical regime: (a, b) 29Si NMR spectra measured for a range of field values around the corresponding
value of Hc(T ) at 120 mK (a) and 412 mK (b). The spectra show a splitting from a single, sharp peak (blue) in the quantum disordered phase
at H < Hc(T ) to two generally broader peaks (red and green) in the magnetically ordered phase at H > Hc(T ). The measured intensities were
modeled as the sum (gray) of the single or double peak(s) and a weak, constant contribution. The double peaks were modeled by a simultaneous
fitting procedure in all panels other than the highest four fields shown at 120 mK (a), where individual peak fits were used. (c) Splitting of
peaks in the NMR spectra. Solid lines show splitting functions deduced from simultaneous fits to all spectra measured at the same temperature,
and crosses mark the field values at which data were taken. (d) Low-field phase boundary of Ba0.9Sr0.1CuSi2O6 extracted from the NMR
peak-splitting data (blue and white circles). Orange and white squares show the phase boundary obtained from QMC simulations. Blue and
orange lines show the optimal fit to the phase boundary based on each set of points, obtained from the mean of the posterior distribution
determined by a Bayesian inference procedure based on Eq. (1). The blue and orange shaded areas represent the estimated uncertainties in the
form of the 68% (dark) and 95% (light shading) credible intervals (CIs). NMR and QMC data points marked by white circles and squares are
those excluded from the statistical analysis of the quantum critical properties. Inset: NMR peak-splitting measured up to 25 T at T = 120 mK
(blue circles) juxtaposed with the magnetic order parameter, m⊥(T ), obtained from QMC simulations.

magnetostriction effects are negligible, a result also found in
BaCuSi2O6. We also performed QMC simulations to deter-
mine the order parameter at low temperatures for fields well
inside the magnetically ordered regime, and in the inset of
Fig. 4(d) these are shown for a temperature corresponding to
120 mK. By matching the field-induced ordered moment in
Bohr magnetons to the peak-splitting measured in MHz over

this field range, we obtain the hyperfine coupling constant as
noted above.

V. CRITICAL EXPONENT

From the statistical mechanics of classical phase tran-
sitions, the field-temperature phase boundary should be

023177-9



STEPHAN ALLENSPACH et al. PHYSICAL REVIEW RESEARCH 3, 023177 (2021)

described by a power-law form in the critical regime close to
the QCP, and hence can be expressed as

Tc(H ) = α(H − Hc1)φ. (1)

Here Hc1 is the critical field of the QCP, i.e., at zero temper-
ature, α is a nonuniversal constant of proportionality, and φ

is the critical exponent, which is universal and should reflect
only the dimensionality of space and the symmetry of the
order parameter. In a true BEC one has φ = 2/d [45,76–
78], where the numerator is the dynamical exponent for free
bosons (ω ∝ k2) and d the dimensionality of space. The form
of Eq. (1) means that the parameters (α, Hc1, φ) required to
model the experimental data are highly correlated; specifi-
cally, the best estimate for φ depends strongly on the value
of Hc1. Further, the width of the quantum critical regime, the
ranges of Tc and H − Hc1 over which Eq. (1) remains valid, is
a nonuniversal quantity about which little specific information
is available. Attempts to deal with both the correlation prob-
lem [45] and the critical-regime problem [79,80] on the basis
of limited available data have led in the past to significant
confusion, which has been cleared up for certain models [76].
In order to obtain an accurate estimate of φ and to quantify
its uncertainty reliably, we have applied a thorough statistical
analysis using Bayesian inference.

Bayesian inference is a general method for the statistical
analysis of all forms of experimental data, and thus its appli-
cations can be found throughout physics [81]. The quantity of
interest is the posterior probability distribution,

p(θ|D) ∝ p(D|θ)p(θ), (2)

of the model parameters, θ, conditional on the observed data,
D. In this expression of Bayes’ theorem, p(D|θ) denotes the
likelihood of making the observations D for a given θ and
p(θ) is a prior probability distribution summarizing any infor-
mation previously available about the model parameters. In
the problem of describing the phase boundary, θ = (α, Hc1, φ)
is the set of parameters in the model of Eq. (1) and D =
{Hc, j, Tc, j, δHc, j, δTc, j} is the set of phase-boundary points
with their associated uncertainties; clearly the total number
of points ( j) in the input information will have a leading role
in determining the accuracy of the output. The posterior dis-
tribution, p(θ|D), is a high-dimensional density function that
contains all of the information available about the parameters
in θ, including their uncertainties and (nonlinear) correlations.
To obtain individual parameter estimates and error bars, the
posterior distribution is compressed in various ways. We use
the mean of the marginal distribution of each parameter, which
provides the prediction with the smallest error given the input
data [81]. To quantify these errors, we construct the highest
posterior-density credible intervals (CIs), which are the short-
est intervals containing a fixed fraction of the posterior density
[82], and show the commonly chosen 68% and 95% CIs.

Figure 4(d) shows the mean of the posterior distributions of
the model function of Eq. (1) as a blue line for the NMR data
set, DNMR, and an orange line for our QMC data, DQMC, while
the shaded regions indicate the 68% and 95% CIs. Referring
back to the issue of the width of the quantum critical regime,
the two posterior distributions were constructed on the basis
of the 6 NMR phase-boundary data points falling below the
temperature T NMR

max = 412 mK (blue circles) and the 17 QMC

points below T QMC
max = 426 mK (orange squares). The criterion

by which these maximum values were determined is discussed
below, and an extension of the fit to higher temperatures is
shown for reference.

To explain these results, Figs. 5(a)–5(c) show the marginal
distributions, p(θi|DNMR), of each of the three model parame-
ters in θ. These are normalized density distributions, obtained
from Monte Carlo sampling of the posterior by integrating
over the remaining two parameters in each case, which allow
the full shape of each marginal to be investigated. These are
clearly skewed, with the distributions of α [Fig. 5(a)] and
φ [Fig. 5(b)] having tails extending towards larger values
whereas that of Hc1 [Fig. 5(c)] extends towards smaller values.
Qualitatively, the origin of these distorted shapes lies in the
interplay of the uncertainties in the field and temperature
measurements, whose simultaneous consideration is a key
strength of the Bayesian approach; details of its quantitative
implementation are presented in Appendix C. By contrast, a
regression analysis such as a least-squares approach would
yield biased estimates under these circumstances. Figure 5(d)
shows a projection of the posterior distribution as a pair plot
depending on φ and Hc1, which highlights the strong negative
correlation between these two parameters. In the absence of
accurate knowledge of Hc1, the NMR phase boundary data of
Fig. 4(d) can often be described by decreasing Hc1 while si-
multaneously reducing the height of the curve, i.e., increasing
φ, or vice versa. In view of this situation, one may consider
the precise goal of the present analysis as being to localize the
most probable (Hc1, φ) pair accurately on the axes of Fig. 5(d).

Using the mean and 68% CI boundaries of the marginal
posterior distributions, from our NMR data for T � T NMR

max
we obtain the model parameter estimates α = 1.35+0.15

−0.16 K,
μ0Hc1 = 22.550+0.007

−0.003 T, and φ = 0.666+0.053
−0.074. The nonuniver-

sal parameter α has no influence on the critical properties.
By comparing Hc1, for a field applied along the ĉ axis,
with the value of the spin gap extracted from INS, � =
3.00(1) meV, we deduce a g factor of g‖c = 2.298+0.008

−0.008. This
result is in agreement with both the value 2.32(2) determined
for the Sr-doped material [55] and the value g‖c = 2.306(3)
obtained for the parent compound [83]. Clearly the mean
value of φ we obtain agrees spectacularly well with the 3D
exponent of 2/3, although we stress that the CIs are broad
(as one may expect from the number of data points in the
analysis), and to interpret these results we turn to QMC
modeling.

Because our QMC simulations were performed with an
effective quasiparticle Hamiltonian matching the INS disper-
sion, Hc1 is fixed by the lower band edge (using the same g
factor) and the set of points {Hc, j} has no errors ({δHc, j} = 0),
which simplifies the statistical analysis (Appendix C). We de-
duce the values α = 1.46+0.03

−0.03 K and φ = 0.663+0.008
−0.009, based

on our data below T QMC
max = 426 mK. Figure 5(e) shows the

putative critical regime on logarithmic axes, a format in which
the gradient of each line is the critical exponent, φ, and in
which both our NMR and QMC results are indistinguishable
from the line φ = 2/3 expected of a 3D BEC.

Returning to the width of the critical regime, this is
a nonuniversal quantity in studies of critical behavior and
hence is an unknown in any fitting procedure. Under these

023177-10



REVEALING THREE-DIMENSIONAL QUANTUM … PHYSICAL REVIEW RESEARCH 3, 023177 (2021)

FIG. 5. Analysis of the critical exponent: (a–c) Posterior probability distributions of the parameters in the model of Eq. (1) for the field-
temperature phase boundary. The input for the analysis is the set, DNMR, of six blue NMR data points up to Tmax = 412 mK in Fig. 4(d).
The marginal posterior distributions, p(θi|D), for each of the model parameters θi ≡ α (a), φ (b), and Hc1 (c), are visualized as histograms of
samples drawn from the posterior distribution together with their mean (blue lines), 68%, and 95% CI boundaries. (d) Posterior distribution
shown by projection to φ and Hc1 (i.e., integrating over α), which illustrates the strong negative correlation between the two parameters. (e)
Phase-boundary points of Fig. 4(d) shown on logarithmic axes. The gradients of both sets of points correspond to the critical exponent, φ. For
comparison we indicate the cases φ = 1 (dotted) and φ = 2/3 (dashed lines). (f) Evolution of φ as a function of the maximal temperature,
Tmax, up to which phase-boundary data points are included. Horizontal lines show the mean and shaded boxes the 68% and 95% CIs of the
marginal distribution of φ deduced by including only points below Tmax; the 95% CIs for Tmax = 264 mK lie at 0.465 and 0.923. The NMR
symbols were obtained by including 5, 6, . . . , 10 of the data points shown in Fig. 4(d) and panel (e), the QMC symbols by including between
8 and 30 data points.

circumstances, the windowing fit was introduced [76] to dis-
cern the trend of the data towards a critical value at the
QCP when the width of the critical regime may be arbi-
trarily small, and has been applied [45,54] for the analysis
of BaCuSi2O6 data. To investigate this issue, we performed
an effective windowing analysis by applying the Bayesian
inference procedure using 10, 9, 8, 7, 6, and 5 NMR data
points, and the results for the fitted exponents are shown as
the blue symbols in Fig. 5(f). The horizontal lines show the
mean and the heights of the shaded boxes show the 68% and
95% CIs of the marginal posterior distribution of φ for each
case. We observe that the estimated mean value of φ is almost
exactly 2/3 for the three narrowest windows, but then dips on
inclusion of the 8th data point and recovers slightly towards
2/3 when the 9th and 10th points are considered. However,
by a criterion that the mean φ should include 2/3 within the

68% CI, all of these windows are consistent with 3D critical
scaling.

For further insight as to whether it is realistic to ascribe
this behavior in its entirety to quantum critical physics, we
perform the same type of analysis using our QMC data. While
QMC studies of 3D models have revealed quantum critical
regimes with relative widths on the order of 10%–20% of the
control parameter [76,84], simulations of quasi-1D models
have struggled to reach such a regime. Our QMC results,
which have better data coverage and much narrower CIs,
can be expected to reflect the physics of quasi-2D bosons
at the energy scales of their interlayer coupling. The data in
Fig. 5(f) show a systematic and near-monotonic evolution best
described as the estimated φ converging to 2/3 from below as
the number of data points is reduced. If one defines Tmax as the
highest temperature at which φ has converged to 2/3 within
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the 68% CI, one obtains T QMC
max = 426 mK, which corresponds

to the use of 17 phase-boundary points. On this basis we de-
duce that effects beyond quantum critical fluctuations become
discernible above approximately 0.4 K, and hence that this is
an appropriate width to adopt for the scaling regime.

This criterion terminates our NMR data set at T NMR
max =

412 mK, corresponding to the six phase-boundary points used
for the analysis shown in Figs. 4(d) and 5(a)–5(d). However,
we note that the criterion is far from exact, and in the present
case an almost identical estimate with lower uncertainties,
φ = 0.665+0.040

−0.054, is obtained by including the seventh data
point. The evolution of the estimated φ on inclusion of the
ninth and 10th data points indicates both the onset of com-
plex and manifestly nonmonotonic crossover behavior beyond
the critical regime and the accuracy of the analysis beyond
features visible in Fig. 4(d) or Fig. 5(e). The discrepancy be-
tween the forms of behavior exhibited by our NMR and QMC
data could lie in interaction terms neglected in our minimal
magnetic Hamiltonian, or in possible disorder effects arising
due to Sr substitution, which we discuss further in Sec. VI.
However, we stress that these differences in critical behavior
are extremely subtle and are certainly not discernible in the
NMR and QMC phase boundaries shown in Fig. 4(d).

To summarize, our NMR measurements and statistical
analysis, backed up by our QMC simulations, present a
quite unambiguous demonstration of 3D critical physics in
a material with a strongly quasi-2D structure and magnetic
properties. With reference to the prediction that unconven-
tional magnetic ordering bearing the hallmarks of BKT
physics should appear uniquely in 3D coupled quasi-2D sys-
tems [21], our results [Figs. 3(c) and 4(d)] demonstrate that
the field-induced onset and evolution of the ordered phase
are quite conventional. From this we conclude that the in-
terbilayer coupling in Ba0.9Sr0.1CuSi2O6 is still significantly
too large to access BKT physics, despite being only 1/100
of the magnon bandwidth (1/25 of the intrabilayer interac-
tion, a value that by any other measure appears worthy of
the designation “quasi-2D”). Nevertheless, the restoration of
observable 3D quantum criticality from an apparently minor
chemical substitution constitutes a somewhat remarkable con-
sequence of structural “disorder.”

VI. DISCUSSION

We have found that the interaction parameters of
Ba0.9Sr0.1CuSi2O6 determined by INS at zero field, J =
4.28(2) meV, J ′ = −0.52(1) meV, and J ′′ = −0.02(1) meV,
provide an excellent description not only of the triplon spec-
trum (Figs. 1 and 2) but also of the critical properties at the
field-induced QPT [Figs. 4(d) and 5]. It is notable that these
interaction parameters are not changed, within the error bars
of our zero- and high-field experiments, by applied fields in
excess of 20 T. More noteworthy still is the hierarchy of
energy scales contained within the minimal spin Hamiltonian,
which appear to define a quasi-2D material. The zero-field
spectrum measured in Figs. 1 and 2 probes largely the intra-
bilayer energy scale, which gives the triplons a bandwidth of
2 meV. However, it is clear in Fig. 5(f) that the interbilayer
energy of fractions of a Kelvin is the scale on which the 3D
physics emerges.

We remark again that the FM effective intrabilayer inter-
action removes any frustration of the interbilayer interactions,
reinforcing the expectation of a simple scaling form around
the QCP. In a windowing analysis of the critical scaling in
BaCuSi2O6, an abrupt change in behavior towards an expo-
nent φ = 1 was reported below 0.75 K, which was interpreted
as a frustration-induced dimensional reduction [45]. Subse-
quent investigation has revealed the absence of frustration
[53], the presence of structurally inequivalent bilayers [49,51],
and the problem of the strong negative correlation between φ

and Hc1 [shown clearly in our Fig. 5(d)]. The experimental
confirmation of the absence of frustration was accompanied
by detailed QMC simulations of the quantum critical regime,
from which it was possible to conclude that the true behav-
ior of the system includes an intermediate field-temperature
regime of nonuniversal scaling governed by an anomalous
exponent whose value turned out to be φ � 0.72 over much
of the effective scaling range [54]. This result raises the ques-
tion of whether our present analysis, which obviously relies
on a limited number of experimental data points, can be re-
garded as sufficiently precise to claim that Ba0.9Sr0.1CuSi2O6

shows true 3D scaling. For this we appeal first to the fact we
demonstrated by INS, that the Sr-substituted material has only
one bilayer type and one species of triplon (Figs. 1 and 2),
whereas all the complications leading to anomalous scaling in
BaCuSi2O6 result from a new effective energy scale dictated
by the separation of the inequivalent triplon modes. Thus
in the Sr-substituted case one expects both a wider critical
regime and a lack of alternatives other than the universal 2D
or 3D forms, and our results are certainly not consistent with
2D scaling (φ = 1). Second, we note from the error bars in
the QMC data for the layered model of BaCuSi2O6 [54] that
the anomalous effective exponent is in no way compatible
with 2/3; by contrast, our NMR data for Ba0.9Sr0.1CuSi2O6

favor strongly an exponent of 2/3 in Fig. 5(f) rather than any
anomalous value, as do our QMC simulations for the model
with only one type of bilayer.

The crux of our analysis is the materials-synthesis result
that Sr substitution improves the regularity of the BaCuSi2O6

structure, maintaining tetragonal symmetry and eliminating
the orthorhomic transition that also produces the structurally
inequivalent dimer bilayers. However, the introduction of the
smaller Sr ion in the interbilayer position of the Ba ions also
creates a local strain most likely to act along the ĉ axis within
the bilayers. The most important statement concerning any
magnetic disorder produced by this structural disorder is that it
can be at most a bond disorder, and not a site disorder, because
the Cu2+ sites are unaffected. Because of the interbilayer
location of the Ba2+ and Sr2+ ions, this bond disorder is most
likely to affect the local value of J ′′, a parameter so small
that our results are not very sensitive to the possibility of a
distribution of values. The most important observation in the
context of possible magnetic disorder is the result of our INS
measurements that any resulting triplon broadening (lifetime)
effects are too small to be distinguished from extrinsic factors
(Sec. III B). From this we may conclude that local magnetic
effects arising from this disorder are minimal, and that it has
no discernible consequences for the magnetic Hamiltonian.
Thus the disorder can be called “ideal” in the sense that only
its qualitative and quantitative effects on the average structure
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are relevant. Regarding its density, while the nominal substi-
tution was x = 0.1 and a compatible value of x = 0.08(2) was
determined by energy-dispersive x-ray spectroscopy (EDX), a
somewhat lower value of x = 0.05(1) was obtained from Ri-
etveld refinement of synchrotron diffraction data for crushed
crystals [55].

Further disorder effects within our experiment are the fol-
lowing. The density of magnetic impurities was estimated
by fitting the Curie tail in the magnetic susceptibility, which
arises at the lowest temperatures due to free spin-1/2 levels,
and was found to be 3% in the best crystals selected for
our experiments [55,57]. A typical nonmagnetic impurity in
BaCuSi2O6 is Cu2O, which can be created by the decay of
CuO during crystal growth; it is visible on surfaces and in
thinner crystals, allowing its presence to be minimized by
careful selection of crystals. In our INS experiments, the
floating-zone-grown single crystals have a reorientation in
growth direction of up to 15◦ as a consequence of the growth
process [57]. However, it is important to stress that none of
these possible sources and consequences of disorder are sig-
nificant when compared to the complex and incommensurate
crystal structure and magnetic Hamiltonian realized in the
parent material [46,49,51,52,54].

VII. CONCLUSION

In summary, we have performed a comprehensive exper-
imental and numerical analysis of the quasi-2D dimerized
antiferromagnet Ba0.9Sr0.1CuSi2O6. The nonmagnetic site
disorder due to this weak Sr substitution of Han purple
affects only the lattice, acting to stabilize the tetragonal room-
temperature structure of the parent material down to the lowest
temperatures. We have measured the spin excitation spectrum
at 1.5 K and zero applied magnetic field to verify that indeed
there is only one triplon branch, and hence that all dimer
bilayers are structurally and magnetically equivalent in this
compound. This triplon has a spin gap of 3.00 meV and is de-
scribed by only three Heisenberg superexchange interactions,
all on very different energy scales.

To examine the consequences of these interactions for
field-induced magnetism and universal critical properties at
the magnetic transition, we have gathered extensive thermody-
namic data at high fields and low temperatures using a range
of experimental techniques, including a detailed NMR study
of the quantum critical phase boundary. For an optimal analy-
sis of these latter data, we have performed Bayesian inference
to obtain the critical exponent φ = 0.67+0.05

−0.07, determined by
assuming a quantum critical regime of approximate width
0.4 K. QMC simulations of a 3D model with a single type
of bilayer yielding the triplon band determined from the zero-
field INS measurements provide excellent agreement with the
quantum critical phase boundary, return a critical exponent
φ = 0.66+0.01

−0.01, and indicate both a convergence to φ = 2/3
and the actual width of the regime over which this quantum
critical scaling is obeyed. We conclude that the structural
alteration caused by the small chemical modification of Han
purple to its 10% Sr-substituted variant fully restores the orig-
inally envisaged properties of 3D quantum critical scaling at
the field-induced magnetic ordering transition of a structurally
and magnetically quasi-2D system.
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APPENDIX A: NEUTRON SPECTRUM CALCULATIONS

The single-particle excitations in an AF spin-dimer ma-
terial with a global singlet ground state are coherently
propagating triplets, commonly referred to as triplons. To
determine the interaction parameters of Ba0.9Sr0.1CuSi2O6,
we have modeled the magnetic dynamical structure factor,
S( �Q, ω), by applying a triplon-based RPA approach [54,85].
In this framework, the zero-temperature dispersion of the sin-
gle triplon mode is given by

ω( �Q) =
√

J2 + JJ ( �Q) (A1)

for �Q ≡ (Qh, Qk, Ql ) in the crystallographic basis, with

J ( �Q) = 2J ′[cos(π [Qh + Qk]) + cos(π [Qh − Qk])] (A2)

− 2J ′′ cos
(

1
2πQl

)
[cos(πQh) + cos(πQk )]. (A3)

The INS intensities, I ( �Q, ω), are given by

I ( �Q, ω) = AF 2
mag( �Q)S( �Q, ω), (A4)

where A is an overall prefactor. The magnetic form factor,
Fmag( �Q), is known to be spatially anisotropic [54] and hence
was modeled using the minimal parametrization

Fmag( �Q) = C1e−(ch1Q2
h+cl1Q2

l ) + C2e−(ch2Q2
h+cl2Q2

l ). (A5)
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Theoretically, the dynamical structure factor at zero tempera-
ture due to the triplon is given by

S( �Q, ω) = N[1 − cos( �Q· �R)]
J

ω( �Q )
δ(ω( �Q) − ω), (A6)

where N is the number of dimers in the crystal and �R the vec-
tor connecting the two ions of a single dimer. In experiment, N
is absorbed in A and the δ function is replaced by a Gaussian
of unit integrated intensity and width 
( �Q), which includes
both intrinsic dynamical and extrinsic instrumental resolution
effects. In the modeled spectra shown in Figs. 1 and 2, 
( �Q)
was fitted separately at every �Q point. A and F 2

mag( �Q) were
fitted using the intensity data shown in Figs. 2(d) and 2(e)
while keeping the interaction parameters fixed to their opti-
mal values determined using the dispersion data of Figs. 2(b)
and 2(c).

APPENDIX B: EXTRACTION OF NMR PHASE BOUNDARY

To extract the phase boundary of Ba0.9Sr0.1CuSi2O6 from
the NMR spectra, we modeled the opening and increase of the
peak-splitting visible in Figs. 4(a) and 4(b) by exploiting its
direct proportionality to the order parameter [inset, Fig. 4(d)].
In the critical regime we therefore assumed that the splitting
of peak frequencies is given by

� f (H, T ) = c(T )[H − Hc(T )]ζ (T ) (B1)

for each measurement temperature, T . This allowed us to
perform simultaneous fits of all spectra at each T , and hence
to optimize the accuracy of our estimate for the corresponding
Hc(T ).

To model the shapes of the NMR peaks [Figs. 4(a) and
4(b)] we used the Student t distribution. A single peak was
used below Hc(T ) and two peaks above, where Hc(T ) is
the key parameter to be fitted. Implementing this behavior
required a number of additional assumptions. The widths of
the peaks below Hc(T ) [blue in Figs. 4(a) and 4(b)] and of
the lower-frequency peaks above Hc(T ) (red) were treated as
individual parameters, while the widths of the higher peaks
above Hc(T ) (green) were parametrized using a low-order
polynomial in order to avoid spurious contributions from
background features. The shape parameters of the t distri-
butions were modeled using a function linear in H − Hc(T ),
which allowed us to confirm that the shape remains almost
constant for different fields. The relative intensity ratio of the
two peaks, and the size of a constant background parameter,
were taken to be the same for all spectra measured at the same
temperature. To assist the fit convergence, and because the
important parameter is the position or positions of the NMR
peak(s), all integrated intensities were normalized to unity
before processing.

APPENDIX C: BAYESIAN ANALYSIS OF
PHASE-BOUNDARY DATA

To analyze the NMR and QMC data close to the QCP
within the framework of Eq. (1), it is necessary to specify the
functions entering Eq. (2). Beginning with QMC, the critical
fields, Hc1 and {Hc, j}, are input values for the simulation and
hence are known exactly ({δHc, j} = 0). The corresponding

critical temperatures, {Tc, j}, are estimates based on extrapo-
lation from repeated simulations with increasing grid sizes,
and we assumed them to obey a normal distribution around
the true critical fields with standard deviations {δTc, j}. The
likelihood function was therefore taken to be

p(DQMC|θQMC) =
jmax∏
j=1

N (Tc, j |α[Hc, j − Hc1]φ, δTc, j ), (C1)

where N (x|μ, σ ) denotes the probability density function of
the normal distribution with mean μ and standard deviation
σ , evaluated at x. In this expression θQMC ≡ (α, φ) contains
only two unknowns and jmax, the index of the data point
with temperature Tc, j = Tmax, introduces the finite width of the
quantum critical regime. The statistical relationship between
the phase-boundary parameters and the observations in this
case is therefore that of a regression model.

In the phase-boundary data obtained by NMR, both the
critical fields and the corresponding temperatures are esti-
mated quantities. Each temperature, Tc, j , is subject to both
measurement uncertainties and possible systematic variations,
and was treated as a noisy measurement of a single value.
Each critical field, Hc, j , was obtained from the NMR peak-
splitting with an uncertainty that arises from background,
noise, and the finite number of measurements, as a result of
which it is essentially uncorrelated with δTc, j . The presence
of uncertainty in two measurement dimensions means that
the true point on the phase boundary at each j is unknown.
Its location can be parametrized by either a temperature or
a field coordinate, and here we chose the latter, introducing
the parameters {H∗

c, j} to represent the true, unknown critical
fields of which {Hc, j} are uncertain estimates. Taking {Hc, j}
and {Tc, j} to be independent and to have a normal distribu-
tion around these true phase-boundary points, with respective
standard deviations {δHc, j} and {δTc, j}, the likelihood function
was taken as

p(DNMR|θNMR) =
jmax∏
j=1

N (Tc, j |α[H∗
c, j − Hc1]φ, δTc, j )

×N (Hc, j |H∗
c, j, δHc, j ), (C2)

where θNMR denotes the extended parameter set
(α, Hc1, φ, H∗

c, j ). In the Bayesian methodology, once the
posterior is obtained its dependence on the introduced
parameters {H∗

c, j} can be removed in an optimal manner by
averaging over all possible values weighted by their posterior
probability.

Turning to the prior probability distributions in Eq. (2),
their selection should guide the inference process efficiently
without introducing undue bias in the final result. α is known
from studies of BaCuSi2O6 [45,54] only to be of order unity
(for measurements in T and K), and hence we assigned it
an uninformative normal distribution on a logarithmic scale.
For μ0Hc1, we used the gap � = 3.00(1) meV obtained from
the INS data and the g factor g‖c = 2.32(2) [55] to obtain
an initial estimate of 22.34 ± 0.24 T. Because φ is positive
and is not expected to exceed unity, we used as its prior a
half-normal distribution, Nhalf (x|σ ), with the scale parameter
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chosen to ensure that it is approximately flat in the region
where φ is physically plausible, but does permit larger values.
These considerations gave the prior probability distributions

p(log10 α) = N (log10 α|0, 3),

p(Hc1) = N (μ0Hc1|22.34 T, 0.24 T),

p(φ) = Nhalf (φ|2), (C3)

for the three model parameters. For the true critical fields,
{H∗

c, j}, required to analyze the NMR phase boundary, these
are unknown before measurement, and thus we assigned a flat
prior probability distribution,

p(H∗
c, j ) = U (μ0H∗

c, j |0 T, 50 T), (C4)

where U (x|a, b) denotes a uniform distribution with limits a
and b. We made the minimal assumption that the range of
possible values does not exceed 0–50 T, which includes the
entirety of the ordered phase. Because all of these probabili-
ties are independent, the joint prior probability distributions,
p(θQMC) and p(θNMR), entering Eq. (2) are given by their
product.

To investigate the unknown width of the quantum critical
regime, we repeated the analysis of our NMR data multiple
times with 339 mK � Tmax � 921 mK (5 � jmax � 10 data
points) and of our QMC data with 234 mK � Tmax � 939 mK
(8 � jmax � 30 data points). In each case we recovered the
posterior by drawing random samples using emcee [86], a
Markov-chain Monte Carlo implementation of an affine in-
variant ensemble sampler [87]. An ensemble of 200 chains
was sampled for 40 000 steps to ensure equilibration of the
Markov process before a further 10 000 steps were recorded,
yielding a total of 2 000 000 parameter samples for each jmax.
These samples form point clouds in the parameter space of θ,
whose density is proportional to the posterior probability, and
one of these (obtained using the NMR data with jmax = 6)
is visualized using different projections in Figs. 5(a)–5(d).
As a heuristic confirmation of convergence we note that the
maximal autocorrelation time [87] was 117 steps. The pos-
terior standard deviations are at least 20 times smaller than
the prior ones in all cases, confirming that, after convergence,
the results depend only on the data and not on our choice of
weakly informative prior.
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