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Experimental test of entropic noise-disturbance uncertainty
relations for three-outcome qubit measurements
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Information-theoretic uncertainty relations formulate the joint immeasurability of two noncommuting ob-
servables in terms of information entropies. The tradeoff of the accuracy in the outcome of two successive
measurements manifests in entropic noise-disturbance uncertainty relations. Recent theoretical analysis predicts
that projective measurements are not optimal, with respect to the noise-disturbance tradeoffs. Therefore, the
results in our previous paper [Phys. Rev. Lett. 115, 030401 (2015)] are outperformed by general quantum
measurements. Here, we experimentally test a tight information-theoretic measurement uncertainty relation for
three-outcome positive-operator-valued measures, using neutron spin- 1

2 qubits. The obtained results violate the
lower bound for projective measurements as theoretically predicted.
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I. INTRODUCTION

According to the rules of quantum mechanics, any sin-
gle observable or even a set of compatible observables
can be measured with arbitrary accuracy. However, clas-
sically unanticipated consequences appear when measuring
noncommuting observables jointly, either simultaneously or
successively. Heisenberg’s seminal paper from 1927 [1] pre-
dicts on one hand a lower bound on the uncertainty of a
joint measurement of incompatible observables. On the other
hand, it also sets an upper bound on the accuracy with which
the values of noncommuting observables can be simultane-
ously prepared. While in the past these two statements have
often been mixed, they are now clearly distinguished as mea-
surement uncertainty and preparation uncertainty relations,
respectively.

While Heisenberg’s paper only presented his idea heuris-
tically, the first rigorously proven uncertainty relation for
position Q and momentum P was provided by Kennard
[2] as �(Q)�(P) � h̄

2 , in terms of standard deviations de-
fined as �2(A) = 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2. Hence, the position-
momentum uncertainty relation in terms of standard devia-
tions quantifies how precise, with respect to the observables
of interest, a state can be prepared, rather than the ability
to jointly measure them. In 1929, Robertson [3] extended
Kennard’s relation to arbitrary pairs of observables A and B
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as

�(A)�(B) � 1
2 |〈ψ |[A, B]|ψ〉|, (1)

with the commutator [A, B] = AB − BA.
It is widely accepted [4] (but nevertheless under discussion

[5,6]) that the uncertainty relation as formulated by Robert-
son in terms of standard deviations �(A, |ψ〉)�(B, |ψ〉) �
1
2 |〈ψ |[A, B]|ψ〉| lacks an irreducible or state-independent
lower bound, meaning it can become zero for noncommuting
observables. Furthermore, the standard deviation is not an
optimal measure for all states. Consequently, Deutsch began
to seek a theorem of linear algebra in the form U (A, B, ψ ) �
B(A, B) and suggested to use (Shannon) entropy as an ap-
propriate measure. Note that Heisenberg’s (and Kennard’s)
inequality �(Q)�(P) � h̄

2 has that particular form, but its
generalization, Eq. (1), does not. Uncertainty relations in
terms of entropy were introduced to solve both problems. The
first entropic preparation uncertainty relation was formulated
by Hirschman [7] in 1957 for the position and momentum
observables, which was later improved in 1975 by Beckner
[8] and Bialynicki-Birula and Mycielski [9]. The extension
to nondegenerate observables on a finite-dimensional Hilbert
space was given by Deutsch in 1983 [4] as

H (A) + H (B) � −2 log2

(
1 + c

2

)
, (2)

where H denotes the Shannon entropy and incompatibil-
ity c = maxi, j |〈ai|b j〉| is the maximum overlap between the
eigenvectors |ai〉 and |b j〉 of observables A and B, respectively.
This relation was later improved by Maassen and Uffink [10],
following a conjecture of Kraus [11], yielding the well-known
entropic uncertainty relation

H (A) + H (B) � −2 log2 c. (3)
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FIG. 1. Schematics of the scenarios used in the information-theoretic definitions of (a) noise N (M, A), and (b) disturbance DE (M, B)
for two-level systems. The eigenstates |ain〉 of A (or |bin〉 of B for disturbance) are prepared with equal probability p(±) = 1

2 , before being
measured by M, producing outcome m and transforming the state according to Mm. (b) For the disturbance, the input states are |±b〉, again
with probability p(±) = 1

2 . The result of the first measurement is classically communicated to a device applying a correction transformation
Em on the post-measurement state. The disturbance is obtained upon a subsequent projective measurement of B yielding outcome b′ at the end.

Entropic uncertainty has proven to be a useful tool in entangle-
ment witnessing [12], complementarity [13], and in quantum
information theory [14]. Initially, procedures to quantify er-
ror and disturbance are based on distance measures between
target observables and measurements [5,15] or the associ-
ated probability distributions [16]. More recently, interest has
risen in information-theoretic measures, introduced first by
Buscemi et al. [17], but also in several subsequent alternative
approaches [18–21].

II. THEORY

To formally study entropic measurement uncertainty rela-
tions one must define measures for two key properties of a
measurement device, more precisely a quantum instrument
M [22,23] (which may in general implement an arbitrary
quantum measurement with any number of outcomes): how
accurately it measures a target observable A (noise), and how
much it disturbs subsequent measurements (disturbance).

While several definitions of noise have previously been
studied theoretically and experimentally, we utilize the
information-theoretic approach of [17] (schematically illus-
trated in Fig. 1 in case of two-level systems) formulated
as follows. Let {|a〉}a be the ath eigenstates of the d-
dimensional target observable A and measurement device M
being a collection {Mm}m of completely positive (CP) trace-
nonincreasing maps Mm. The instrument M uniquely defines
a positive-operator-valued measure (POVM), denoted as
M = {Mm}m [14]. The noise is defined in the following
scenario: the eigenstates of A are randomly prepared with
probability p(a) = 1

d before M is applied, producing an
outcome m with probability p(m|a) = Tr(Mm |a〉〈a|). If M
accurately measures A, then the value of m should allow one to
infer a; if the measurement is noisy, m yields less information
about a. This noise is quantified in terms of the conditional
Shannon entropy: denoting the random variables associated
with a and m as A and M, respectively, the noise of M for a
measurement of A is [17]

N (M, A) = H (A|M) = −
∑
a,m

p(a, m) log2 p(a|m), (4)

where p(a, m) = p(a)p(m|a) and p(a|m) can be calculated
from Bayes’ theorem.

The entropic disturbance D(M, B) of the apparatus M
on the measurement of B is defined with respect to an
analogous procedure as the noise. Uniformly distributed

eigenstates {|bi〉} with eigenvalues bi associated with random
variable B are fed to the same instrument M from which a
post-measurement state ρm = Mm (|bi〉〈bi|)

Tr(Mm (|bi〉〈bi|))
emerges. In the

disturbance configuration there is an additional subsequent
measurement of observable B with outcomes {b′

j}. Due to the
disturbing nature of the measurement apparatus M, generally,
a loss of correlation occurs. A subtle, yet important addendum
to the concept of disturbance are error corrections. After mea-
surement by Mmj , the state decomposed to the eigenstates of
the measurement observables can be further transformed by
a quantum operation Em dependent on the pointer value m of
the apparatus. The disturbance DE (M, B) is defined as the
conditional entropy H (B|B′

M,E ) as

DE (M, B) := H (B|B′
M,E ) = −

∑
i, j

p(bi, b′
j ) log2 (p(bi|b′

j )).

(5)
Using these notions of noise and disturbance, for arbitrary

observables A and B in finite-dimensional Hilbert spaces, the
noise-disturbance (measurement) relation

N (M, A) + DE (M, B) � − log2(max
i, j

| 〈ai|b j〉 |2) (6)

holds [17]. In [24] we experimentally tested

g[N (M, A)]2 + g[DE (M, B)]2 � 1, (7)

where g[x] is the inverse of the function h(x) defined as

h(x) = −1 + x

2
log2

(
1 + x

2

)
− 1 − x

2
log2

(
1 − x

2

)
, (8)

with x ∈ [0, 1], for maximally incompatible qubit observables
A and B. As it turned out, the proof given in [24] for this re-
lation was incorrect and this relation does not hold in general,
which was pointed out in [25]. It should be noted that the
relation does hold for projective measurements Mpr, although
it can be violated by nonprojective measurements.

The bound of Eq. (7) can be violated by considering a
three-outcome measurement Mθ , proposed in [25], with the
associated positive-operator-valued measure (POVM) given
by Mθ = {Mθ

+1, Mθ
0 , Mθ

−1} for θ ∈ [0, π
2 ], where

Mθ
m = pm[1 + n(θ )m · σ] with weights and directions,

p0 = cos θ

1 + cos θ
, p−1 = p1 = 1

2(1 + cos θ )
,

n(θ )m = ((−1)m cos (m θ ), 0, sin (m θ ))T . (9)
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FIG. 2. Bloch sphere representation of the three-outcome POVM
Mθ = {Mθ

−1, Mθ
0 , Mθ

+1} for three selected values of the parameter θ ,
given by θ = 0, π/3, π/2.

In Fig. 2 the POVM Mθ
m is illustrated for three distinctive

values of the parameter θ . The POVM Mθ
m is conjectured

to be optimal, while a rigorous proof is still pending. How-
ever, the numerical simulations presented in [25] suggest that
the POVM Mθ

m is optimal. Note that for θ = π
2 the POVM

Mθ degenerates to a projective measurement in ±z direction
with elements Mθ=π/2

−1 = |−z〉 〈−z| and Mθ=π/2
+1 = |+z〉 〈+z|,

a projective measurement of A = σz resulting in zero noise.
While for θ = 0 the POVM element Mθ=0

0 represents the
projector |+x〉 〈+x|, de facto accounting for a projective mea-
surement of B = σx, therefore zero disturbance is expected.

Noise and disturbance for the three-outcome POVM Mθ

The probability of obtaining outcome m when measuring
a state ρ is thus Tr[Mmρ]. Plugging in the three-outcome
POVM Mθ from Eq. (9) into the definition of noise

N (Mθ , A) = H (A|M) = −
∑
a,m

p(a, m) log2 p(a|m)

= −
∑

m

p(m)
∑

a

p(a|m) log2 p(a|m), (10)

we calculate the noise on A = σz. The theoretical predictions
for the conditional probabilities p(a|m) are given by

p(a|m) = Tr

[
|a〉〈a| Mm

Tr[Mm]

]

= 1

2

(
1 + m a sin θ

)|m| + (1 − |m|) cos θ. (11)

With the six conditional probabilities p(a|m) we can calculate
the noise N (Mθ , σz ) via Eq. (10) with p(m) = 1

d Tr[Mθ
m] =

1
2 Tr[Mθ

m] (since for qubits we have d = 2) as

N (Mθ , σz ) = cos θ + h(sin θ )

1 + cos θ
, (12)

with h(x) defined as

h(x) = −1 + x

2
log2

(
1 + x

2

)
− 1 − x

2
log2

(
1 − x

2

)
(13)

with x ∈ [0, 1].
In order to determine a lower bound on the disturbance

D(Mθ , σx ), let us consider the optimal correction Eopt
m that

maps n−1 and n1 onto the negative x axis and n0 onto the

positive x axis, respectively, denoted as

Eopt
m (n(θ )m) = 11 + (−1)mex · σ

2
. (14)

Using

DE (Mθ , B) : = H (B|B′
Mθ ,E ) = −

∑
b,b′

p(b, b′) log[p(b|b′)]

= −
∑
b,b′

p(b, b′) log2
p(b, b′)
p(b′)

, (15)

we get for the joint probabilities

p(b, b′) =
1∑

m=−1

pm

(
1 + b ex · n(θ )m

2

)(
1 + (−1)m b′

2

)

= 1 − b′ + (1 + b′ + 2bb′) cos θ

4(1 + cos θ )
. (16)

Marginal probabilities are given by summation

p(b′) =
∑

b

p(b, b′) = 1 − b′ + cos θ + b′ cos θ

2 + 2 cos θ
. (17)

Finally, the disturbance is calculated applying the four joint
probabilities p(b, b′) from above via the conditional entropy
H (B|B′), from Eq. (26), with B = σx as

DE (Mθ , σx ) = h(cos θ )

1 + cos θ
. (18)

This noise-disturbance pair from Eqs. (12) and (18) violates
Eq. (7) for all θ ∈ ]0, π

2 [ , which is experimentally tested here.

III. EXPERIMENT

A. Experimental setup

The experiment was performed at the polarimeter in-
strument NepTUn (NEutron Polarimeter TU wieN) [26–31],
located at the tangential beam port of the 250-kW TRIGA
Mark II research reactor at the Atominstitut-TU Wien, in
Vienna, Austria. A schematic illustration of the experimental
setup is depicted in Fig. 3. As in our previous experiments
[24] the qubit system studied in the present experiment is
represented by the spin, a two-state system, of the spin- 1

2

particle neutron, where Si = h̄
2 σi, with i = x, y, z. An incom-

ing monochromatic neutron beam with mean wavelength λ �
2.02 Å (�λ/λ � 0.02) is polarized along the vertical (+z)
direction by refraction from a CoTi multilayer array, hence-
forth referred to as supermirror. To prevent depolarization
by stray fields, a 13 Gauss guide field BGF

z pointing in the
positive z direction, from coils in Helmholtz configuration, is
applied along the entire setup (Helmholtz coils not depicted
in Fig. 3). The probability of preparation of one of the two
possible initial spin states, that is |Sz; ±〉 := |±z〉 for noise and
|Sx; ±〉 := |±x〉 for disturbance measurement, is determined
by a classical random-number generator applying one out of
two possible currents in the spin rotator coil DC-1. Within
the coil DC-1 a local magnetic field By, pointing in positive y
direction, is applied. Larmor precession around the y axis is
induced and the strength of By is tuned such that it causes a
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FIG. 3. Schematic illustration of the neutron polarimetric setup for noise-disturbance measurement of M, representing a complete
quantum instrument, consisting of three-outcome POVM Mθ , transformation of post-measurement state (correction operation), and projective
measurement B. The illustration includes a descriptive legend of the different experimental regions. The setup consists of three supermirror
arrays (one polarizer, two analyzers), four direct current coils (DC-1, 2, 3, 4), and two detectors. Exploiting Larmor precession of the Bloch
vector around magnetic fields (By, BGF

z ) and using supermirror arrays to realize direction of projectors and weights, all required spin states
are prepared and the three-outcome POVM Mθ , as well as a projective measurement σx , is implemented. Noise N (M, σz ) and disturbance
DE (M, σx ) are evaluated from the measured intensities Ia

m and Ib
m,b′ , respectively.

spin rotation by an angle of 0 or π for the noise and +π
2 or

−π
2 for the disturbance measurement, respectively.
For the three-outcome POVM Mθ another spin rotator coil

(DC-2) and the second supermirror (analyzer 1) are applied.
As seen from the definition of the POVM Mθ

m = pm(θ )[1 +
n(θ )m · σ], each POVM element consists of a measurement
direction given by nm and a weighting denoted as pm, depen-
dent on the parameter θ . While the former is adjusted by an
appropriate magnetic field strength By in DC-2, the latter is set
by the horizontal angle of refraction inside the supermirror.
Note that the change in angle of the supermirror only effects
the transmission (weighting) and does not change polarization
of the neutrons, making this procedure a valid experimental
realization of the POVM Mθ .

For the noise-disturbance measurement the whole function
of the quantum instrument has to be specified (not just the
POVM it induces), which includes transformation of the post-
measurement state. Consequently, a correction operation Eopt

m

is applied, in order to minimize the disturbance DE (Mθ , B).
In our experiment Eopt

m maps n±1 onto the negative x axis
and n0 onto the positive x axis, which is achieved by Larmor
precession with DC-3. Finally, DC-4 and the third supermirror
(second analyzer) perform the B measurement, which is a
simple projective measurement, where the observable is given
by B = σx. At the end of the beam line a boron trifluoride
counting tube (detector 2 in Fig. 3) registers all incoming
neutrons. The two successively performed measurements of
Mθ and B result in six output intensities Ib

m,b′ for B = σx

(disturbance measurement), for each setting of θ . For the noise
measurement no B measurement is required, thus, only three

output intensities Ia
m (with m = −1, 0, 1) are obtained, in an

additionally inserted counting tube (detector 1 in Fig. 3).

B. Noise and disturbance measurements

Uniformly distributed eigenstates of the observable A =
σz, denoted as {|ai〉} = {|+z〉 , |−z〉}, are sent onto the ap-
paratus Mθ . The correlation between the eigenvalue ai

corresponding to the state prepared and the outcome m mea-
sured by the apparatus M is used to determine the noise
N (Mθ , A). This correlation is quantitatively characterized
by the joint probability distribution p(a, m). The conditional
probability p(a|m) is then obtained via p(a|m) = p(a,m)

p(m) , al-

lowing to calculate the noise N (Mθ , A) using Eq. (10). The
noise N (Mθ , A) of the three-outcome POVM Mθ is deter-
mined applying the reduced setup, where the detector (3He
cylindric count tube, diameter ø=1 in) is directly mounted
onto the exit window of the second supermirror to main-
tain optimal positioning when the supermirror is rotated (to
implement the POVM weights). With this configuration, a
maximal count rate Imax = 350 counts per second is recorded.
During the measurement the POVM parameter θ is varied
between π/2 and 0 in steps of π/34. For each value of θ

three intensities, belonging to the POVM outputs Mθ
0 , Mθ

1 ,
and Mθ

−1 (denoted as Ia
m with m = −1, 0, 1) are recorded in a

measurement time tmeas = 400 s, which is plotted in Fig. 4(a).
The particular order of the POVM elements, that is starting
with Mθ

0 followed by Mθ
+1 and Mθ

−1, has experimental rea-
sons, namely, to reduce the number of movements of the
neutron optical components. For each value of θ an initial
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FIG. 4. (a) Raw data Ia
m (with m = −1, 0,+1) of the noise measurement N (Mθ , σz ) of the three-outcome POVM Mθ for a measurement

time of 400 s. Error bars (±1 standard deviation) are below the size of points. (b) Randomly selected initial states {|ai〉} = {|+z〉 , |−z〉} for all
values of θ .

state (eigenstate of A = σz) is chosen by random generator.
The result is blinded during the measurement but stored in a
data file for a later comparison with the obtained values for the
noise N (M, A). The randomly generated sequence is listed in
Fig. 4(b).

The count rates are detangled according to their corre-
sponding POVM output, and data corrections are performed:
First a background correction is applied, by subtraction the
background counts of Ibg

m = 1.37 ± 0.03 counts per second
resulting in the intensity bgCorrIa

m. A second correction is per-
formed, by taking the finite contrast for our system, measured
as C = 95% into account.

Next, the count rates are normalized by the total count rate.
The statistical error is given by square root of the observed
count rate

√
N (due to Poissonian statistics of the neutron

count rates), before calculating the normalized count rate. The
systematic error stems from the imperfection of the spin rota-
tors and is estimated as ∼0.7◦. Normalized data of Mθ

+1, Mθ
0 ,

and Mθ
−1, accounting for the joint probability

p(a, m) =
bgCorrIa

m∑bgCorr
m Ia

m

, (19)

is plotted in Fig. 5. Using the theoretical prediction of the
sum of the two probabilities given by p(a = ±1, m = +1) =
p(a = +1, m = +1) + p(a = −1, m = +1), the joint proba-
bilities p(a = +1, m = +1) and p(a = −1, m = +1) can be
derived for each individual value of θ .

The results for Mθ
+1 are plotted in Fig. 5(a); apart from

θ = 0, where the initial states are indistinguishable, the ini-
tial state can be inferred with a distinctive probability from
p(a = +1 ∨ a = −1, m = +1). For the next output element
that is Mθ

0 the situation is different. As can be seen from
the normalized count rate of Mθ

0 , which is plotted below in
Fig. 5(b), it is impossible to infer which eigenstate of σz was
sent since the theoretical predictions are exactly the same.

Finally, we take a look at the third output element, that is Mθ
−1,

which is depicted in Fig. 5(c). Note that all theory curves from
the output port Mθ

−1 for input state |+z〉 correspond to those
of Mθ

+1 for input state |−z〉. Using

p(a|m) = p(a, m)

p(m)
= p(a, m)∑

a p(a, m)
, (20)

the conditional probabilities p(a = +1|m = +1) and p(a =
−1|m = +1) are calculated, which is depicted together with
the theoretical predictions in Fig. 5(d). The identical data sets
of Mθ

0 are taken for the joint probabilities p(a = +1, m =
0) = p(a = −1, m = 0) and for the conditional probabilities
p(a = +1|m = 0) = p(a = −1|m = 0), which is plotted in
Fig. 5(e). The conditional probabilities p(±a|m = −1) are
determined in analogous manner from p(a = +1 ∨ −1, m =
−1) via p(a = +1, m = −1) and p(a = −1, m = −1) result-
ing in p(a = +1|m = −1) and p(a = −1|m = −1), which is
illustrated in Fig. 5(f). The theoretical predictions (red and
blue curves in Fig. 5) for the conditional probabilities p(a|m)
are given by

p(a|m) = 1
2 (1 + m a sin θ )|m| + (1 − |m|) cos θ. (21)

With the six conditional probabilities p(a|m) we can calcu-
late the noise N (Mθ , σz ) via

N (Mθ , σz ) = −
∑

m

p(m)
∑

a

p(a|m) log2 p(a|m), (22)

with p(m) = 1
2 Tr[Mθ

m]. The final results of the noise measure-
ment N (Mθ , σz ), together with the theoretic prediction

N (Mθ , σz ) = cos θ + h(sin θ )

1 + cos θ
(23)

for the three-outcome POVM measurement and

N (Mpr, σz ) = h(cos θ ), (24)

023175-5



STEPHAN SPONAR et al. PHYSICAL REVIEW RESEARCH 3, 023175 (2021)

FIG. 5. Normalized data from Eq. (19), of Mθ
+1, Mθ

0 , and Mθ
−1 in (a)–(c), respectively, with “indefinite” input state (|+z〉 or |−z〉).

Conditional probability p(a = ±1|m = −1, 0, +1), by applying Eq. (20), for |+z〉 branch left and |−z〉 right plotted in (d)–(f).

for projective measurements, can be seen in Fig. 6 (blue and
green curve, respectively).

For the disturbance measurement DE (Mθ , B) the three-
outcome POVM measurement is followed by a subsequent
projective measurement of an observable B = σx. In addition,
an optimal correction operation Eopt

m in-between the two mea-

FIG. 6. Plot of the noise N (Mθ , σz ) of the three-outcome POVM
Mθ as a function of the POVM parameter θ , together with the the-
oretical predictions for POVM and projective measurements. Error
bars correspond to plus or minus one standard deviation.

surements maps n−1 and n1 onto the negative x axis and n0

onto the positive x axis, respectively.
Uniformly distributed eigenstates of the observable B, de-

noted as {|bi〉} = {|+x〉 , |−x〉} and associated with random
variable B, are fed to the same instrument Mθ . Due to the
disturbing nature of the measurement apparatus Mθ , gen-
erally, a loss of correlation occurs. The correlation between
the eigenvalue b corresponding to the state prepared and the
outcome b′ of the second now projective measured, which
will be used to define the disturbance, is characterized by the
joint probability distribution p(b, b′), allowing to calculate the
disturbance DE (Mθ , B) using Eq. (15).

In the actual experiment, the detector (boron trifluoride
cylindric count tube, diameter ø=3 in, active volume of length
Lact = 30 cm) was placed horizontally, transversal to the
beam. This was done to account for the beam displacement
�y ∼ 10 mm, caused by the tilt of the second supermirror,
when setting the POVM weights. With this configuration
a maximal count rate Imax = 25 cnts/s is recorded. During
the measurement the POVM parameter θ is varied between
π/2 and 0 in steps of π/34. For each value of θ now six
intensities Ib

m,b′ , belonging to the +b and −b measurements
of the POVM outputs Mθ

0 , Mθ
+1, and Mθ

−1, are recorded in a
measurement time tmeas = 400 s, which is plotted in Fig. 7(a)
(for higher statistics also a second data set with tmeas = 800 s
was recorded). For each value of θ an initial state (eigenstate
of B = σx) is chosen by a random generator. Again, the result
is blinded during the measurement but stored in a data file for
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FIG. 7. (a) Raw data Ib
m.b′ (with m = −1, 0, +1 and b′ = ±1) of the disturbance measurement DE (Mθ , σx ) of the three-outcome POVM

Mθ and projective B = σx measurement for 400 s. (b) Randomly selected initial states {|bi〉} = {|+x〉 , |−x〉} for all values of θ .

a later comparison with the obtained values for the disturbance
DE (Mθ , B). The randomly generated sequence is listed in
Fig. 7(b).

As before in the noise measurement, the count rates are
detangled according to their corresponding B measurement
and POVM output.

Next, a background correction is applied, by subtracting
the background counts of Ib′

bg = 0.176 ± 0.008 cnts per s re-
sulting in the intensity bgCorrIb

m,b′ and an overall contrast of
C = 0.97 is taken into account. Following the same procedure
as for the noise, the count rates are normalized (equipped
with statistical and systematical error) by the total num-
ber of counts which gives the six probabilities p(b = +1 ∨
−1, m, b′) with m = −1, 0, 1 and b′ = ±1, which is plotted
in Figs. 8(a)–8(c), respectively, and calculated as

p(m, b, b′) =
bgCorrIb

m,b′∑bgCorr
b,b′ Ib

m,b′
. (25)

Again, the data points are separated according to the input
state |+x〉 → b = +1 and |−x〉 → b = −1, which gives in
total 12 probabilities p(m, b, b′) with m = −1, 0, 1, b = ±1,
and b′ = ±1. Since the disturbance is defined as

DE (Mθ , B) := H (B|B′
Mθ ,E ) = −

∑
b,b′

p(b, b′) log2 p(b|b′)

= −
∑
b,b′

p(b, b′) log2
p(b, b′)
p(b′)

, (26)

we have to calculate the joint probability p(b, b′) via

p(b, b′) =
1∑

m=−1

p(m, b, b′), (27)

which is plotted in Fig. 9(a). The theoretical curves are given
by

p(b, b′) = 1 − b′ + (1 + b′ + 2bb′) cos θ

4(1 + cos θ )
, (28)

plotted as purple lines in Fig. 9(a). Next, we calculate the
marginal probabilities p(b′) by summation of the data from
above

p(b′) =
∑

b

p(b, b′), (29)

which is plotted in Fig. 9(b). The theoretical curves are given
by

p(b′) = 1 − b′ + cos θ + b′ cos θ

2 + 2 cos θ
, (30)

plotted as gray lines in Fig. 9(b). Finally, the disturbance is
calculated applying the four joint probabilities p(b, b′) from
above via the conditional entropy H (B|B′

Mθ ,E ) from Eq. (26).
The final results of the disturbance measurement DE (Mθ , σx ),
together with the theoretic prediction

DE (Mθ , σx ) = h(cos θ )

1 + cos θ
(31)

for the three-outcome POVM measurement and

DE (Mpr, σx ) = h(sin θ ) (32)

for projective measurements, can be seen in Fig. 10, where
the disturbance DE (Mθ , σx ) is plotted versus the noise
N (Mθ , σz ) in comparison with results from suboptimal pro-
jective measurements N (Mpr, σz ) versus DE (Mpr, σx ).

The experimental results of the disturbance measurement
DE (Mθ , σx ) can be seen in Fig. 10. The values obtained for
the disturbance measurement for small values of θ are slightly
higher than the theoretically predicted. This is due to the fact
that for small values of p(b, b′) in Eq. (27) the disturbance
DE (Mθ , σx ) is very sensitive to the input data. Unlike in
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FIG. 8. Normalized data from Eq. (25), of Mθ
+1, Mθ

0 , and Mθ
−1, respectively, with “indefinite” input state (|+x〉 or |−x〉) split up in the two

output channels of the subsequent projective B measurement with B = σx .

the case of the noise N (Mθ , σz ), for the disturbance certain
probabilities are predicted to be zero over the entire range
of θ .

C. Final results

A parametric plot of the experimental results of the
noise-disturbance measurement is given in Fig. 11, where
the disturbance DE (Mθ , σx ) is plotted versus the noise
N (Mθ , σz ). Note that the final results from Fig. 11 contain
disturbance measurements of tmeas = 400 s, for the first four
noise-disturbance pairs (high disturbance, low noise, top left),
and tmeas = 800 s, for the last four noise-disturbance pairs
(low disturbance, high noise, bottom right) for better statistics.
Here, only noise-disturbance pairs where it is possible to
decide whether projective or POVM measurements perform
better (due to the size of error bars) are shown.

In addition, Fig. 11 gives an experimental comparison with
the results from the projective measurements from [24], in
terms of N (Mpr, σz ) versus DE (Mpr, σx ). Our experimental
data clearly confirm that the three-outcome POVM measure-
ment outperforms usual projective measurements, evidently
reproducing the tighter bound theoretically predicted in [25].

IV. DISCUSSION AND OUTLOOK

At this point, we want to emphasize that Fig. 10 gives an
intuitive explanation why the three-outcome POVM, defined
in Eq. (9), outperforms projective measurements: although
there is a loss coming from the noise in the POVM (meaning
higher noise values compared to the projective measurement),
this loss is surpassed by the gain in the obtained distur-
bance (significantly lower disturbance values as for projective
measurement). This behavior is a peculiarity of the applied
three-outcome POVM. In general, increasing the number of
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FIG. 9. (a) Joint probabilities p(b, b′) with b = ±1 and b′ = ±1, obtained via Eq. (27). (b) Marginal probabilities p(b′), by applying
Eq. (29), together with theoretical predictions.

possible outcomes has a negative (increasing) effect on the
noise-disturbance bound [25].

Entropic uncertainty relations have many applications in
the rapidly growing field of quantum cryptography, e.g., quan-
tum key distribution (QKD) (see for instance [32] for a recent
review). The security of QKD crucially relies on Heisenberg’s
uncertainty principle in general, more precisely, mainly on
entropic preparation uncertainty relations, since Alice (and
Bob) perform measurements on one of two (randomly se-
lected) incompatible observables (typically in Z and X basis),
to generate the common secret key. For example, in Ekert’s
protocol [33], Alice and Bob share a maximally entangled
two-qubit state in the quantum channel [12] plus a public

FIG. 10. Plot of noise N (Mθ , σz ) and disturbance DE (Mθ , B) of
the three-outcome POVM Mθ as a function of the POVM parameter
θ , together with the theoretical predictions (blue and red line). For
comparison, theoretical prediction of N (Mpr, σz ) and DE (Mpr, σx )
in case of projective measurements are shown. Error bars correspond
to plus or minus one standard deviation arising from the Poissonian
statistics of the neutron count rate.

channel; Eve (the eavesdropper) interacts via the quantum
channel (e.g., by performing a measurement). Security of
QKD is guaranteed if Alice and Bob have large agreement
on the qubits measured in one basis, then necessarily Eve’s
information about the bits measured in the complementary
basis must be low. When the eavesdropper interacts, for in-
stance, when Eve is in possession of a quantum memory,

FIG. 11. Experimental comparison between noise-disturbance
plot for successive projective measurements N (Mpr, σz ) vs
DE (Mpr, σx ) (green points), taken from [24], together with theoret-
ical predictions in red and N (Mθ , σz ) vs DE (Mθ , σx ) (blue points)
for the three-outcome POVM Mθ of the measurement apparatus Mθ ,
with theory in purple. Error bars correspond to plus or minus one
standard deviation.
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one has to assume that Alice, Bob, and Eve share a common
state after the preparation. In this case, a tripartite entropic
uncertainty relation in the presence of a quantum memory [12]
has to be considered. Our approach presented here focuses on
characterization of a single measurement and its disturbance
on another, subsequent measurement in terms of entropy. It is
relevant to evaluate individual measurements represented by
POVMs. The tested tight measurement uncertainty relation (7)
expresses the loss of correlations caused by the measurement
itself.

A next experimental step will be investigation of two
consecutive three-outcome POVMs. So far, only the first mea-
surement apparatus used a POVM followed by a subsequent
projective measurement. It is of interest to replace the pro-
jective measurement apparatus with a second three-outcome
POVM and study the resulting disturbance on the second
POVM.

V. CONCLUSION

We experimentally tested a tight information-theoretic
measurement uncertainty relation, in terms of a proposed
three-outcome POVM using neutron spin- 1

2 qubits. The ob-
tained results of the noise-disturbance tradeoff relation for
three-outcome POVM outperform prior results for projective
measurements, over almost the entire measured range of the
tested POVM parameter θ .
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