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Chiral approximation to twisted bilayer graphene: Exact intravalley inversion symmetry,
nodal structure, and implications for higher magic angles
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This paper presents a mathematical and numerical analysis of the flat-band wave functions occurring in the
chiral model of twisted bilayer graphene at the “magic” twist angles. We show that the chiral model possesses an
exact intravalley inversion symmetry. Writing the flat-band wave function as a product of a lowest Landau level
quantum Hall state and a spinor, we show that the components of the spinor are antiquantum Hall wave functions
related by the inversion symmetry operation introduced here. We then show numerically that as one moves from
the lowest to higher magic angles, the spinor components of the wave function exhibit an increasing number
of zeros, resembling the changes in the quantum Hall wave function as the Landau level index is increased.
The wave function zeros are characterized by a chirality, with zeros of the same chirality clustering near the
center of the moiré unit cell, while opposite chirality zeros are pushed to the boundaries of the unit cell. The
enhanced phase winding at higher magic angles suggests an increased circulating current. Physical implications
for scanning tunneling spectroscopy, orbital magnetization and interaction effects are discussed.
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I. INTRODUCTION

When one graphene layer is stacked on top of another
layer with small relative twist angle, a moire super-lattice
pattern is created. At particular twist angles, referred to by
Bistritzer and MacDonald as “magic angles” [1], the bands
near the chemical potential are dramatically flattened and sep-
arated from other bands [1–4]. Experiments on “magic angle”
bilayers report interesting phenomena including superconduc-
tivity, interaction-driven insulating states and anomalous Hall
effects [5–29].

There are eight flat bands arising from the combinations
of degrees of freedom in the conduction bands of the compo-
nent graphene layers [30–47]. The states that comprise these
bands may be labeled by a spin degree of freedom and two
additional indices labeling the layer and sublattice of the com-
ponent graphene sheets. Much of the novel physics of twisted
bilayer graphene is believed to arise when the symmetries
corresponding to these quantum numbers are spontaneously
or explicitly broken. Interestingly, many of the broken sym-
metry states appear to have a topological character, revealed
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for example by anomalous Hall effects [7,8,41,48–51], and
at least at integer filling, the topological character is believed
to be inherent in the single-particle wave functions. An im-
proved understanding of the single-particle wave functions is
therefore important both for improved understandings of the
observed and potentially observable topological phases and as
a basis for theories of interaction effects in magic angle bilayer
graphene.

Recently, Tarnopolsky, Kruchkov, and Vishwanath [52]
drew attention to a particular “chiral” model in which the
interlayer tunneling Hamiltonian contains no terms in which
an electron hops from one layer to the same sublattice on the
other layer. They showed that in this case the eight weakly dis-
persing bands become exactly flat (dispersionless) at certain
twist angles. They further constructed explicit expressions for
the zero-mode wave functions, and noticed that their solutions
exhibited a holomorphic character reminiscent of the lowest
Landau level quantum Hall physics [52,53]. This holomorphic
character can give rise to a nontrivial topology of the flat
bands, explaining the anomalous Hall effects.

In this paper, we study the zero-mode wave functions of
the chiral model [52] of twisted bilayer graphene in more
detail. We identify an exact intravalley inversion symmetry
of the chiral model and show how this symmetry implies that
the flat-band wave functions found by Tarpolsky, Kruchkov,
and Vishwanath can be written (up to a normalization factor)
as

φk(r) =
(

iG(r)
ηG(−r)

)
× �k(r), (1)
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FIG. 1. Norm of each component of the wave function Eq. (1) at the moire Dirac point K, plotted at the first three magic angles (three
rows). The upper left and lower right corners of the unit cells are the BA (r0) and AB (−r0) stacking points, as marked. The two columns
correspond to the bottom and top components of the wave function. Each of them has clear symmetry and zero structures. The wave functions
at other Bloch momentum have a similar zero structure, as explained in the text. The zeros are classified by their chirality, i.e., whether the
wave-function phase advances by ±2π when encircling the zero once. Remarkably, the wave function associated with the nth magic angle has
3(n − 1) zeros located at the unit cell center, all of which have the same chirality. We discuss the mathematical structure in Secs. IV and V,
and implications for experimental observables in Sec. VI.

where �k is a quantum Hall wave function of the lowest Lan-
dau level, the function G(r) can be interpreted as a quantum
Hall wave function in a magnetic field oppositely directed
to that of �k, and η = ±1 is the inversion eigenvalue. The
entire dependence on the crystal momentum k is carried by
the quantum Hall wave function �k, which exhibits one node
at a k-dependent position, while G, which is independent of
k, has a number of nodes that increases as the magic angle
index increases, indicating a similarity between higher magic
angles and higher Landau levels. This structure is revealed in
Fig. 1, which for the first three magic angles presents the norm
of each component of φk for the case where k is fixed at the
moire Dirac point K and implies a charge variation that can be
detected by scanning tunneling spectroscopy.

We show that Eq. (1) explains how the wave function φk

can simultaneously have the Abelian translation symmetry of
the usual Bloch wave function and give rise to the anomalous

Hall effect. Further, the quantum Hall antiquantum Hall struc-
ture implies that the wave function nodes have a chirality and
we find that nodes of a given chirality are concentrated in par-
ticular regions of the unit cell, implying intracell circulating
currents that grow in magnitude as the magic angle increases.
The increased density of nodes at higher magic angles will
also affect the project of electron-electron interactions onto
the flat bands in a manner similar to that occurring at higher
Landau levels in the quantum Hall problem.

The paper is organized as follows. Section II reviews the
continuum model of twisted bilayer graphene and the chiral
model defined from it, to establish the notation and approx-
imations used here. Section III introduces our intravalley
inversion symmetry and derives some of the properties that
follow from it. Then in Sec. IV, we reexamine the deriva-
tion of the flat-band wave functions and derive their spinor
structure. We then discuss the nodal structure of the flat-band
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FIG. 2. (Left) Moire Brillouin zone. Right: real-space moire unit
cell. Shown are the reciprocal lattice vectors b1,2, the moire Dirac
points K, K ′, the real-space lattice vectors a1,2 and the wave vectors
q0,1,2, and the BA stacking point r0. The AB and AA stacking points
are located respectively at −r0 and the origin of the unit cell.

wave functions in Sec. V. In the last part of this work, Sec. VI,
we discuss how our findings can impact experimental observ-
ables. Section VII is a summary and conclusions.

II. MODEL HAMILTONIANS

We start this section by reviewing the continuum
model [1–3] and the chiral model [52] of twisted bilayer
graphene to establish the notation.

When two parallel graphene sheets (top, bottom) are
stacked with any one of an infinite set of relative com-
mensurate angles θ , a moire pattern forms, in which the
combined system retains the basic hexagonal lattice structure
of graphene, but with a much larger unit cell containing a
number of carbon atoms ∼θ−2. The corresponding reciprocal
space unit cell, which we refer to as the moire Brillouin zone,
is illustrated in Fig. 2.

As shown in Fig. 2, ai=1,2 indicate the two dimensional
basis vectors of the moire unit cell. The area of the moire
unit cell is 2πS = |a1 × a2|. We denote the reciprocal lattice
vectors as bi=1,2. Throughout this paper, we define the unit
length by setting

√
S = 1.

The fundamental single-particle Hamiltonian for twisted
bilayer graphene consists of a standard single-layer graphene
Hamiltonian for the top/bottom layer, hG(r, r′), and an inter-
layer coupling T (r, r′) whose periodicity defines the moire
superlattice. Schematically the Hamiltonian operator is

HT BLG(r, r′) =
(

hb
G(r, r′) T (r, r′)

T †(r, r′) ht
G(r, r′)

)
. (2)

where t/b stands for the top/bottom graphene sheet.
It is generally agreed that, as proposed by Bistritzer and

MacDonald [1], the low energy properties of twisted bi-
layer graphene can be adequately described by a model
with three key features. The first is a continuum descrip-
tion of the physics in each graphene sheet, obtained by
linearizing the graphene Hamiltonian hG near the Dirac points
(we denote the linearized Dirac Hamiltonian as hD). The sec-
ond is that the interlayer hopping only couples states near one
Dirac point in one layer with states near the same graphene
Dirac point in the other layer. This means that the relevant
Hamiltonian is the product of two copies, one for each valley.

A third simplification proposed by Bistritzer and MacDonald
is that the interlayer hopping, in principle a function of r in
one layer and r′ in the other becomes a function only of r with
r′ = r. This is a coarse-graining approximation based on the
notion that T (r) has a range of the order of the carbon-carbon
distance so if the wave functions vary slowly on this scale we
can ignore the detailed local structure.

Following Bistritzer and MacDonald [1], the effective con-
tinuum Hamiltonian of a single valley is

HBM =
∫

d2r�†
BM(r)

(
hb

D

(
θ
2

)
T (r)

T †(r) ht
D

(− θ
2

))�BM(r). (3)

A related Hamiltonian can be found for the opposite valley
by acting with time reversal symmetry. The wave function
�BM(r) is a four-component spinor, with the lower two com-
ponents the two sublattices of the top layer, and the upper two
the two sublattices of the bottom layer:

�BM(r) =

⎛
⎜⎜⎜⎝

ψA
b (r)

ψB
b (r)

ψA
t (r)

ψB
t (r)

⎞
⎟⎟⎟⎠. (4)

We have suppressed the spin index because the global
SU (2) spin invariance implies that the single-particle Hamil-
tonian is spin-diagonal. The continuum approximation to the
Dirac Hamiltonian of a layer λ = t, b is

hλ
D

(
θ

2

)
= v0(−i∇ − Kλ

+) · e− iθ
4 σzσe

iθ
4 σz , (5)

where Kt/b
+ is the graphene Dirac point K+ rotated by ±θ/2.

As shown in Fig. 2, we define the moire Dirac points as K =
Kb

+ − K�
+, K ′ = Kt

+ − K�
+ where K�

+ is the moire Gamma
point labeled in graphene’s reciprocal lattice coordinates. The
interlayer tunneling potential T (r) is constrained by the sym-
metries of a single valley: C3, My and C2T , as discussed in
Sec. III A. In the Bistritzer-MacDonald model, the interlayer
hopping is

T (r) =
2∑

j=0

Tje
−i(q0−q j )·r (6)

with φ = 2π/3, the Tj is

Tj = ω0 − ω1 cos( jφ)σx + ω1 sin( jφ)σy. (7)

The chiral model [52] is obtained by setting ω0 = 0 in
Eq. (7). The chiral model for a single valley is written in a
different basis as HBM in Eq. (3):

HcBM =
∫

d2r�†
c (r)

(
0 D(r)

D†(r) 0

)
�c(r), (8)

where �c(r) is a four-component spinor whose upper two
components (φ) correspond to the A sublattice of the bottom
and top layers, and the lower two components (χ ) the B
sublattice of the bottom and top layers:

�c(r) =

⎛
⎜⎝

φb(r)
φt (r)
χb(r)
χt (r)

⎞
⎟⎠, (9)
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where we have suppressed the Bloch momentum k. The uni-
tary transformation between the nonchiral basis Eq. (4) and
the chiral basis Eq. (9) is

�c,k(r) = e−i(K�
++τzK )·rei θ

4 τzσz�BM,K�
++k(r), (10)

where in Eq. (10), we have used σ and τ for Pauli matrices
acting on the sublattice and layer degrees of freedom, respec-
tively,

σ : sublattices; τ : layers.

In Eq. (10), we have also shifted the center of the Bloch
momentum of the chiral basis to the moire Gamma point. The
Bloch boundary condition of the chiral basis is

�c,k(r + a) = ei(k−τzK )·a�c,k(r), (11)

where the details of Eq. (10) and Eq. (11) can be found in
Appendix A.

The operators D†(r) and D(r) in Eq. (8) are

D†(r) =
√

2

( −i∂̄ αUφ (r)
αUφ (−r) −i∂̄

)
,

D(r) =
√

2

( −i∂ αU−φ (r)
αU−φ (−r) −i∂

)
, (12)

where Uφ (r) is

Uφ (r) = e−iq0·r + eiφe−iq1·r + e−iφe−iq2·r. (13)

As usual, we have defined z = (x + iy)/
√

2, ∂ = (∂x −
i∂y)/

√
2. The parameter α is determined by the twisted an-

gle: α = (3w1a0)/(8
√

2πv0 sin θ
2 ) where v0 is the graphene’s

Fermi velocity and a0 is the graphene’s lattice constant. The
vectors q0,1,2 are specified in Fig. 2.

The chiral Hamiltonian anticommutes with the chiral
matrix σz. As a consequence, the single-particle spectrum
is particle-hole symmetric. In the next section, we review
symmetries of twisted bilayer graphene, and introduce the
intravalley inversion symmetry.

III. INTRAVALLEY INVERSION SYMMETRY

In this section, we start by discussing the symmetries
of twisted bilayer graphene with an emphasis on how C2T
symmetry constrains the tunneling terms. In Sec. III B, we in-
troduce the exact intravalley inversion symmetry of the chiral
model, and derive some properties that follow from it.

A. Symmetry constraint on tunneling terms

The symmetries of twisted bilayer graphene play crucial
roles in determining the single and many particle proper-
ties [30–47]. In this section, we review these symmetries, with
an emphasis on how symmetries constrain the low energy
continuum Hamiltonian.

The “crystal symmetries” of twisted bilayer graphene are
generated by the moire translation symmetry, C6 rotational
rotation, and mirror symmetry My. Time reversal symmetry,
T , is also present. In addition, in the continuum model the
charge conservation of each valley, i.e., U(1) valley symmetry,
is assumed. The symmetries that keep each valley invariant
(C2T , C3, and My) constrain the single valley Hamiltonian in

Eqs. (3) and (8). Here, the important constraint for us is that
C2T symmetry requires the tunneling term in Eq. (3) satisfy
(proof in Appendix B):

T (r) = σxT ∗(−r)σx, (14)

where, as in the previous section, σx acts on sublattice space.
In the chiral basis, this means that the off-diagonal elements
of D (and D†) are related by r ↔ −r, as we shown in Eq. (12).

B. Exact intravalley inversion symmetry of the chiral model

Here we show that the chiral model enjoys an exact
intravalley inversion symmetry as constrained by C2T sym-
metry and the linearized Dirac fermion. We then discuss
properties that follow from it, including the symmetries of
the spectrum and single-particle states. In the end, we show
a numerically observed alternating pattern of magic angle
inversion parities.

Lemma 1. The zero-mode operator satisfies

τyD†(r)τy = −D†(−r). (15)

The calculation follows from the C2T constraint in Eq. (14)
and the definition of D† in Eq. (12). For Lemma 1 to hold,
we need the off-diagonal elements of the D(r) operator to
be related by r ↔ −r. In other words, in the chiral basis
[Eq. (9)], the interlayer tunneling potential from top to bottom
layer is identical to that from bottom to top layer with spatial
inversion. As we discussed in Sec. III A, this is guaranteed by
the C2T symmetry.

We now define the intravalley inversion symmetry.
Theorem 1. The chiral model of twisted bilayer graphene

has an exact intravalley inversion symmetry, whose operator
is

I ≡ σzτy, (16)

such that

IH(r)I† = H(−r). (17)

Again, σ and τ are Pauli matrices acting on the sublattice and
layer degrees of freedom, respectively.

Proof. It is straightforward to prove by using Lemma 1:

IH(r)I† =
(

τy 0
0 −τy

)(
0 D(r)

D†(r) 0

)(
τy 0
0 −τy

)

= −
(

0 τyD(r)τy

τyD†(r)τy 0

)
= H(−r). (18)

�
We call Eq. (17) the intravalley inversion symmetry in

order to distinguish it from the crystalline 2D inversion sym-
metry, C2. Since the C2 symmetry mixes valleys of twisted
bilayer graphene, it is not a symmetry of the single-valley
continuum models in Eqs. (3) and (8). In contrast, the in-
travalley inversion maps k to −k within the moire Brillouin
zone and thus does not mix valleys. As shown in Eq. (17), the
intravalley inversion symmetry is an exact symmetry for the
single valley chiral model (8).

We emphasize that the intravalley inversion symmetry
requires no extra assumptions beyond the chiral model in
Eq. (8). The only requirement is the crystal symmetry C2T
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and the linearized Dirac fermion, which are already present in
the chiral model in Eq. (8).

The τy operator of Eq. (15) has appeared in recent litera-
ture. In Ref. [54], it is referred to as the involution operator.
It also appeared as Eq. (S15) in the supplementary material of
Ref. [41]. In Ref. [35] and a very recent paper Ref. [43], by
the same authors, a similar operator iτy plus r ↔ −r is termed
the unitary particle-hole operator. This is different than our
intravalley inversion symmetry: our τy operates on the chiral
basis in Eq. (9), while the “unitary particle-hole” acts on the
nonchiral basis in Eq. (4). Since the unitary transformation
between these two bases in Eq. (10) does not commute with
τy, these two symmetries are distinct. It is also important to
emphasize that our intravalley inversion is an exact symmetry
of the chiral model, while the unitary particle-hole symmetry
is an approximate symmetry for both the continuum model in
Eq. (3) and the chiral model in Eq. (8), according to Refs. [35]
and [43].

Many interesting facts follow from the intravalley inversion
symmetry, as we describe here and in the next section.

Corollary 1. At all twist angles, the single particle spec-
trum of the chiral model is not only particle-hole symmetric,
but also inversion symmetric.

This follows directly from Theorem 1. Denote the sublat-
tice A/B wave functions as

�k =
(

φk

χk

)
,

where each of φk and χk is a two-component spinor repre-
senting the bottom and top layer’s degrees of freedom. If we
know �k as an eigenstate of energy E at Bloch momentum k,
then I�k(−r) is the eigenstate of the same energy but with an
opposite Bloch momentum:

H(r)I�k(−r) = IH(−r)�k(−r) = EI�k(−r).

We have thus proved the spectrum inversion symmetry by
explicitly constructing eigenstates of the same energy and
opposite Bloch momentum. This construction in fact also
illustrates a spinor structure of the eigenstates.

Theorem 2. At all twist angles for any Bloch momentum
k, there exists a phase ζk, such that,

φk(r) = +eiζkτyφ−k(−r), χk(r) = −eiζkτyχ−k(−r),

ζk = −ζ−k. (19)

Proof. Below Corollary 1, we explicitly constructed the
eigenstate of opposite Bloch momentum. At nondegenerate
k, our constructed wave function must be proportional to the
wave function at −k up to a U(1) phase,

�−k(r) = eiζkσzτy�k(−r),

from which Eq. (19) follows immediately. The fact that the
phase ζk is antisymmetric is seen by applying Eq. (19) twice.
For degenerate zero modes, one can label them by the chiral
eigenvalue and find the same conclusion. �

Theorem 2 can be regarded as a gauge fixing condition.
One can perform gauge transformations

φk → eiζ ′
kφk (20)

FIG. 3. Evolution at the moire Gamma point of low lying non-
negative energy states from the first magic angle α1 to the second
magic angle α2. A singlet (doublet) state is represented as dots
(squares). The inversion symmetric (antisymmetric) state is repre-
sented by red solid (blue dashed) lines. The black horizontal line
indicates zero energy. Due to the particle-hole symmetry of the
chiral model, the evolution of negative energy states is obtained by
reflecting the figure.

to tune the ζk field:

ζ±k → ζ±k ∓ (ζ ′
k − ζ ′

−k). (21)

The only obstruction of such tuning is at inversion sym-
metric points where kinv = −kinv modulo reciprocal lattice
vectors: there ζ ′

k and ζ ′
−k cancel, and ζkinv

is either 0 or π . In
practice, the intravalley inversion eigenvalue can be read off
from the transformation property of the moire Gamma point
wave function (or from wave functions at other kinv):

φk=0(r) = ητyφk=0(−r), η = ±1. (22)

We numerically observed (for the first three magic angles)
that there is a coincidence between the zero mode’s intravalley
inversion eigenvalue and the parity of magic angle: we found
η = +1 for the first, third magic angles, while for the second
magic angle η = −1. In Fig. 3, we monitored the evolution of
the low lying eigenstates at the Gamma point from the first to
the second magic angle (we plot non-negative energies only
since the full spectrum has particle-hole symmetry). Eigen-
states at the Gamma point are either singlet or doublet, as they
are one and two-dimensional irreducible representation of the
symmetry group (generated by C3 and My) [33]. An inversion
eigenvalue transition is clearly visible in Fig. 3.

We hypothesize that the alternating parity of magic angle
zero-mode wave functions is a generic feature and will hold
for all magic angles: that is, the inversion eigenvalue of nth

magic angle flat-band wave function is −(−1)n.

IV. ZERO-MODE WAVE FUNCTIONS
AND THE SPINOR STRUCTURE

In this section, we reexamine the zero-mode solution of
Ref. [52]), derive the spinor structure of the zero-mode wave
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function as shown in Eq. (1), and show its intricate relation to
quantum Hall physics.

A. Chiral model and the zero modes

Following Ref. [52]), we show that the chiral Hamiltonian
in Eq. (8) has two zero modes. The eigenvectors of these two
zero modes must satisfy:

0 = D(r)

(
χb,k(r)
χt,k(r)

)
; 0 = D†(r)

(
φb,k(r)
φt,k(r)

)
. (23)

In Ref. [52]), the authors found and proved that, for a
discrete series of values of α (corresponding to magic angles),
the chiral model admits exact flat bands. At the crux of their
analysis is the fact that at magic angles, both components
of the moire Dirac K point wave function φK = (φb,K, φt,K )T

vanish at a common point:

r0 = 1
3 (a1 + 2a2), (24)

the BA stacking point, which permits an explicit construction
of the zero-mode wave functions. Here we review several key
steps (Theorem 3–5) of Ref. [52] in deriving the zero-mode
wave functions. We refer the readers to Ref. [52] for more
details.

A crucial step in deriving the zero-mode solutions in
Ref. [52] is Theorem 3, which follows from the translation
and C3 rotation symmetry:

Theorem 3. For all twisted angles, φK,t (±r0) = 0 and
χK,t (±r0) = 0.

Theorem 4. The Fermi velocity defined by

vF (α) ≡
∑
l=t/b

φl,K (r)φl,K (−r) (25)

is independent of r.
Proof. It is straightforward to find vF (α) is holomorphic,

i.e., ∂̄vF (α) = 0, by using the zero-mode equations that φl,K

satisfy. Then, vF (α) must be a constant since it is also cell-
periodic. �

At magic angles (where the low lying two bands become
dispersionless), the Fermi velocity goes to zero. Since the
top component of φK vanishes for all twist angles at ±r0,
it follows from the vanishing Fermi velocity that the bottom
component must at least have one common zero with the top
component, at either +r0 or −r0. In fact, the exact flat-band
condition coincides with the condition that two components
of the wave function have a common zero, as pointed out in
Ref. [52], where the authors proved it by explicitly construct-
ing the zero-mode wave functions.

Theorem 5. The magic angle zero-mode wave functions
take the following form [52,55] (up to a normalization factor):

φk(r) = φK (r)Fk(z), Fk(z) = ez∗
k (z− 1

2 zk ) σ (z − zk )

σ (z − z0)
, (26)

where z0 and zk are the complex coordinates of r0, the BA
stacking point defined in Eq. (24), and

ra
k = ra

0 + εab(k − K )b. (27)

The complex coordinate for a vector r is defined as usual

r → z ≡ rx + iry√
2

. (28)

Note here we have written the zero-mode wave function
in terms of the “modified Weierstrass sigma” function σ (z),
which is slightly different from Ref. [52]), where the authors
used Jacobi theta functions. It has been shown [56–59] that
both the sigma function and theta function can be used to
define the quantum Hall states, and the advantage of the
former is modular invariance. The Weierstrass sigma function
satisfies a similar quasiperiodic boundary condition as the
Jacobi theta function:

σ (z + ai ) = −ea∗
i (z+ 1

2 ai )σ (z), (29)

where ai=1,2 are the complex coordinates of the primitive
lattice vectors a1,2 shown in Fig. 2. The quantum Hall wave
function and the modified Weierstrass sigma function σ (z)
are reviewed in detail in Appendix C. Note that the factor
exp(− 1

2 |zk|2) in Eq. (26) is needed to ensure that the normal-
ization is periodic in k.

The presence of the quasiperiodic elliptic function in the
zero-mode solution is reminiscent of the lowest Landau level
physics on torus [53,60]. We find it conceptually and practi-
cally advantageous to rewrite Eq. (26) in the following form,
as a product of a quantum Hall wave function and a quasiperi-
odic spinor wave function:

φk(r) =
(
G1(r)
G2(r)

)
× �k(r), (30)

where G1/2(r) ≡ φK,b/t (r)/(σ (z − z0)e− 1
2 |z|2 ) and the quantum

Hall wave function �k is

�k(r) = ez∗
k zσ (z − zk )e− 1

2 |zk |2 e− 1
2 |z|2 , (31)

whose boundary condition can be found in Eq. (C14) in
Appendix C. Reformulating the zero-mode wave function in
this way makes the subsequent discussions in Sec. V more
clear.

B. Spinor structure of zero-mode wave functions

The intravalley inversion implies that the two components
of the (magic angle) zero-mode wave functions are not inde-
pendent.

Theorem 6. The zero-mode wave function can be written
as Eq. (1), which we copy below,

φk(r) =
(

iG(r)
ηG(−r)

)
× �k(r),

where η = ±1 is the intravalley inversion eigenvalue from
Eq. (22) and �k(r) is the quantum Hall wave function (31).

Proof. We start with the ansatz

φk(r) =
(
G1(r)
G2(r)

)
�k(r). (32)

Applying Theorem 2 yields

φk(r) = eiζk

(
iG2(−r)

−iG1(−r)

)
�k(r), (33)

where we have used the inversion property of the quan-
tum Hall wave function �−k(−r) = −�k(r) (derived in
Appendix C 3). Equating Eqs. (32) and (33) yields

φk(r) =
(

iG(r)
eiζkG(−r)

)
�k(r), eiζk = ±1, (34)

where we defined G(r) ≡ −iG1(r). �
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The boundary condition of G(r) is derived in Eq. (C17) of
Appendix C.

To conclude, following the intravalley inversion symmetry,
we have derived the spinor structure of the zero-mode wave
function as shown in Eq. (1) and have demonstrated explicitly
its connection to the lowest Landau level wave functions. The
η in Eq. (1) is the intravalley inversion eigenvalue, which can
be read off from Eq. (22).

V. NODAL STRUCTURE

In the previous sections, we described an intravalley inver-
sion symmetry of the chiral model, which led to the discovery
of the spinor structure of the zero-mode wave functions. There
we factorized the wave function into a quantum Hall wave
function and a pre-factor G(r).

However, so far the physical interpretation of the function
G(r) remains mysterious, as does the structure of zeros in
Fig. 1. One hint is that the zero modes must be Bloch func-
tions that transform under the usual translation group, while
quantum Hall states transform under the magnetic translation
group. Hence G(r) must also be quasiperiodic to “cancel”
the magnetic translation effects of the quantum Hall wave
function.

In this section, we resolve this puzzle by demonstrating
mathematically and numerically that G(r) can be regarded
as an antiquantum Hall wave function at a certain Landau
level, i.e., a quantum Hall state in a magnetic field oppositely
directed to that of �k, with the order of the magic angle
serving the role of the Landau level index. In this way, the
zero-mode wave function is a product of a quantum Hall
and an antiquantum Hall state, whose net magnetic fluxes
passing through the moire unit cell cancel, allowing the whole
wave function to be a usual Bloch function. We then discuss
the zeros in more detail. In the next section, we discuss its
experimental implications.

A. Analytical expansion of G(r)

To demonstrate the antiquantum Hall nature of G(r), we
will start by showing that the leading order expansion near r0

is antiholomorphic:

G(r0 + r) ∼ z̄. (35)

Hence we can peel off an antiquantum Hall wave function
from the zero-mode wave function and rewrite its components
as Eqs. (37) and (39).

Since G(r) is independent of Bloch momentum, without
loss of generality we can consider the moire K point sublattice
A wave function φK = (φb

K, φt
K )T to analyze. Its zero-mode

equation D†(r)φ(r) = 0 implies a relation between the top
and bottom components φt

K = i∂̄φb
K/(αUφ ). Theorem 3 tells

us that φt
K must have zeros [52] at ±r0. From the form of

the zero-mode wave function Eq. (1), we know that the +r0

and −r0 zeros of φt
K come, respectively, from the quantum

Hall part �k and G(−r). Therefore, near r0, φt
K must vanish

holomorphically:

i
∂̄φb

K (r0 + r)

αUφ (r0 + r)
∼ z. (36)

Then, by using Uφ (r0) = 3 and the C3 symmetry, one can see
that φb

K must have a second order zero at r0, vanishing as:
φb

K (r0 + r) ∼ zz̄. Again according to Eq. (1), z and z̄ of the
bottom component φb

K come, respectively, from the quantum
Hall wave function and G(r). We hence justified Eq. (35).

B. Zero-mode wave function revisited

The vanishing behavior of G(r) near r0 shows it is pos-
sible to factorize out an antiquantum Hall wave function [a
quantum Hall state in a magnetic field oppositely directed to
that of �k, which we denote as �̄k ≡ (�k)∗] from it without
encountering singularities. The Bloch momentum k of �̄k is
determined by the Bloch translation symmetry of the whole
wave function. After some algebra, we end up with the final
expression:

φb
k (r) = iρ(r) × �̄K (r)�k(r), (37)

where we introduced a function ρ(r) which must be cell-
periodic due to the cancellation of the nonperiodic parts from
�k and �̄k:

ρ(r) ≡ G(r)/�̄K (r). (38)

The top layer wave function is obtained easily by the in-
travalley inversion symmetry:

φt
k(r) = −ηρ(−r) × �̄K ′ (r)�k(r). (39)

The �k and �̄K of Eq. (37) carry opposite magnetic fields
that cancel with each other, leaving φ

b/t
k as a Bloch state. Since

the crystal momentum (k) dependence, and hence response to
an external electric field, is only from the �k piece, the wave
function φk should have the same topological character as the
lowest Landau level wave function, according to Laughlin’s
gauge invariance argument [61].

To see how this argument applies to our case more ex-
plicitly, imagine we apply a time-independent and spatially
uniform in-plane external electric field E across the twisted
bilayer graphene sample. The Bloch momentum of the elec-
tron couples to E through minimal couping, and consequently
changes linearly with time: δk ∼ Et . According to Eq. (27),
we know that the zero of �k is locked to k, and moves
in the direction perpendicular to E. Since zero corresponds
to a charge minimum, we conclude that a unit of charge
is adiabatically pumped in a direction perpendicular to E
during a unit of time. This demonstrates that the zero-mode
wave function (1), as a product of a quantum Hall wave
function and an antiquantum Hall wave function, is indeed a
Bloch function which carries Chern number C = 1. So far, we
discussed the sublattice-A polarized flat-band wave function
φk(r). The other degenerate flat-band χk(r) is sublattice-B
polarized and has Chern number C = −1 since these two flat
bands are related by the C2T symmetry before considering the
hexagonal boron nitride substrate. With the hexagonal boron
nitride substrate breaking the C2 symmetry, the two flat bands
split in energy, and we expect a chiral gapless edge state
connecting them. The time-reversal partner of the chiral edge
would occur from the other valley with an opposite chirality.
Although these two flat bands are sublattice polarized, the
chiral edge mode is sublattice unpolarized since it connects
two bulk bands of opposite sublattice polarization.
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C. Zero structure

We numerically observed that there are multiple zeros oc-
curring at each order of magic angles, as shown in Fig. 1. We
now demonstrate they are indeed zeros rather than numerical
artifacts.

We noticed that all extra zeros occurring at higher magic
angles are located at the reflection symmetric lines. The mirror
symmetry My constrains that ρ(x, y) and ρ∗(x,−y) to be the
same zero-mode solutions. By using the global U(1) phase
degree of freedom of the wave function, ρ(r) can be chosen
to be a purely real function on the reflection symmetric line
y = 0, the red dotted line of Fig. 5. Here we parametrize this
line by r = λ(a1 − a2) = (x, 0) with λ ∈ [−0.5, 0.5), and plot
ρ(λ) along it in Fig. 4. Since ρ(λ) is cell-periodic, it must
cross zero along the reflection symmetric line an even number
of times.

The zeros of the zero-mode wave functions are classified
into two types by their “movability.” One of them is a “mov-
able zero” [62–64] from the quantum Hall wave function �k,
whose location moves linearly with the Bloch wave vector:

ra
k = ra

0 + εab(k − K )b. (40)

This zero carries the external Hall response of the Chern
band. There are other “frozen zeros” whose locations are fixed
and independent of the Bloch momentum k. In particular,
among these frozen zeros, one of them is from the antiquan-
tum Hall state. In Fig. 5, we illustrate the zero-structure, where
the black and blue dot represent the movable quantum Hall
zero and the frozen antiquantum Hall zeros. The yellow and
red dots are frozen zeros from the function ρ(r).

Besides their “movability,” zeros are also classified by their
“chirality”: the wave function receives a 2πn phase when
the coordinate r encircles the zero once anticlockwise. We
numerically noticed that the black and red dots are n = 1
zeros, while yellow and blue are n = −1 zeros. Interestingly,
as shown in Fig. 1 the center of the unit cells are concentrated
with more and more n = −1 zeros at higher magic angles.
We discuss the implication for circulating currents in the next
section.

We have shown that the zero-mode wave function shares
some similarities with the simple harmonic oscillator sys-
tem whose eigenstates also have alternating parity and have
an increasing number of zeros. In Appendix D, we pro-
vide an analytical argument why these features might persist
for all higher magic angles by an analogy to the harmonic
oscillator [65].

VI. EXPERIMENTAL OBSERVATION AND IMPLICATIONS

A. Charge density and scanning tunneling probes

One direct consequence of the zeros is a charge density
deficiency that can be seen in scanning tunneling spectroscopy
experiments [36,66,67].

We expect a spectroscopy experiment will probe only the
top (or bottom) layer, which corresponds to the components
φt (top layer sublattice A wave function) and χt (top layer
sublattice B wave function). If the spectroscopy measurement
has spatial resolution on the level of the atomic spacing,
then the sublattice wave functions can be probed separately.

FIG. 4. Plot of ρ(r) defined in Eq. (37) along the reflec-
tion symmetric line parameterized by (x, 0) = λ(a1 − a2) with λ ∈
[−0.5, 0.5). The blue solid and orange dashed lines indicate the real
and imaginary part of ρ respectively. It can be seen from these plots
that ρ(λ) is real, and crosses zero an even number of times.

In this case, fixed zeros in the wave function components
φt or χt correspond to the vanishing of charge density in
real space, which will be strongly visible in the spectroscopy
experiment. If the ground state is sublattice polarized, which
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FIG. 5. Illustration of zeros. (Left) Real-space plot of the bottom
component of the zero-mode wave function φb

k (r) at the second
magic angle. Right: sketch of the zeros of the same wave function.
Without loss of generality, we here choose k to be a generic point,
K + 0.3b1 − 0.05b2. Since location of the black dot (the zero of the
quantum Hall wave function �k) is locked with its Bloch momentum
according to Eq. (40), it called a movable zero. The blue dot is the
frozen zero from the antiquantum Hall wave function. The yellow
and the red dots are the frozen zeros from the function ρ(r). We found
the black and red dots are n = 1 zeros, while the yellow and blue dots
are n = −1 zeros, where n is the 2πn phase that the wave function
receives when the coordinate r encircles the zero once anticlockwise.
The red dotted line is one of the three C3 symmetry related reflection
symmetric lines.

maybe the case on a hexagonal boron nitride substrate, then
such spatial resolution is not required to observe the zeros in a
spectroscopy experiment. Notice that since the opposite valley
wave function on the same sublattice is related by T , which
acts trivially in real space, we expect the two opposite valley
wave functions on the same sublattice have the same location
of fixed zeros. Therefore, probing the zeros with spectroscopy
does not require valley polarization.

The accumulation of zeros at the unit cell center and the
unit cell boundary as magic angle order increases, as shown
in Fig. 1, should also be visible by spectroscopy with even
less atomic resolution. This accumulation will become more
prominent at higher magic angles.

Away from the chiral model, the zeros become nonzero
minima in the charge density, which we have observed nu-
merically. These will give a less sharp signature in scanning
tunneling spectroscopy experiments, but will likely still be
observable over some parameter regime.

B. Higher Landau level physics at higher magic angles

As we have seen from Sec. V, the G(r) piece of the flat-
band wave function in Eq. (1) has an increasing number of
zeros and has an analytical expansion similar to an antiquan-
tum Hall wave function. Consequently, we interpreted the
zero-mode wave function as a product of a higher Landau
level antiquantum Hall state and a lowest Landau level quan-
tum Hall state [Eq. (37)], where the Landau level index of the
former is determined by the order of the magic angle. We also
discussed in Sec. V B that the topological properties of the
flat bands are determined by the lowest Landau level quantum
Hall piece �k since G(r) does not have Bloch momentum
dependence.

Nevertheless, we expect the effective interactions projected
into the flat bands are modified strongly by both G(r) and

�k. In particular, the nodal structure of G(r) directly impacts
the charge density, which determines the projected Coulomb
interaction. In the quantum Hall problem, the nodal structure
of the higher Landau levels results in arrangement of charge
that ultimately stabilizes various states [68–71] such as charge
density waves, bubble phases, and other many-body topo-
logical phases (for instance, the non-Abelian Moore-Read
phase [72]) that are absent in the lowest Landau level. By anal-
ogy, we might expect a different set of interacting phases to
be stabilized at higher magic angles than at the first magic an-
gle. Our formulation provides a theoretical and computational
pathway towards analyzing interacting physics at different
magic angles.

C. Local current and magnetization at higher magic angles

From the charge density of the zero-mode wave function as
plotted in Fig. 1, we observe that for the first magic angle, the
charge density maximum occurs at the unit cell center, i.e., the
AA stacking point. At higher magic angles, we see an increas-
ing number of zeros appearing at this region. Interestingly, all
these zeros are of the same chirality for both layers, while
zeros of the opposite chirality are pushed to the boundary of
the unit cell. This indicates a stronger phase winding effect
and hence circulating currents near the AA stacking region at
higher magic angles, which could be experimentally observ-
able nearby the chiral limit.

To see the circulation currents, we first define the following
intrasublattice intralayer “current operator” Jl

ss for sublattice
s and layer l . The operator Jl

AA is defined as

Jl
AA(r) ≡ i(t ′)[(∇φl )

∗φl − φ∗
l (∇φl )](r), (41)

operator Jl
BB(r) is defined in a similar manner but with φ

replaced by χ . Here t ′ is the microscopic parameter repre-
senting the next-nearest-neighbor hopping strength. We call
the above a “current operator” in quotes because Jl

ss is not
the current operator of the chiral model, which by definition
should be proportional to ∂kHk, and hence couples distinct
sublattices and vanishes within one sublattice. Since the exact
flat-band wave functions are fully sublattice polarized (corre-
sponding physically to hexagonal boron nitride splitting the
sublattice degeneracy), the current operator ∂kHK vanishes
within one sublattice polarized state. Nevertheless, we ar-
gue that our current operator Jl

ss has a microscopic origin,
and hence should be a physical current operator. The Jl

ss
can be regarded as a continuum version of lattice current
i(a†

s,ias, j − a†
s, jas,i ) induced from the next-nearest-neighbor

hopping process in graphene, where the as,i are graphene’s
electron annihilation operators and i, j labels graphene’s next-
nearest-neighbor sites.

In Fig. 6, we plot the real-space distribution of Jb
AA(r),

calculated from the bottom layer sublattice-A wave function
φb at three different Bloch momenta. According to Ref. [73]),
the orbital magnetization is dominated by the Gamma point
K0 and Dirac point K ′ in a single valley model, since the bands
hybridize most strongly with other bands at these points.
Given the strong circulating current present at the second
magic angle, it is reasonable to speculate a stronger orbital
magnetization [74–80] at higher magic angles than the mag-
netization at the first magic angle [73,81,82] for cases close
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FIG. 6. Expectation value of the bottom layer sublattice A cur-
rent operator Jb

AA at the moire Gamma point K0 and moire Dirac
points K ′, K at the first two magic angles. The chirality of the current
operator would be opposite on the B sublattice, and the chirality is
the same for both layers within one sublattice.

to the chiral limit. Note that the circulation currents are odd
under time reversal or a sublattice transformation, hence a
strong experimental signal requires valley and sublattice po-
larization. We leave a detailed exploration of higher magic
angle orbital magnetization with more realistic parameters as
future work.

VII. CONCLUSION

In this work, we studied the chiral model of twisted bilayer
graphene introduced in Ref. [52]). We pointed out the intrinsic
intravalley inversion symmetry of the chiral model, protected
by the C2T crystal symmetry and the linearized Dirac fermion.
As a consequence, the energy spectrum is inversion symmet-
ric at all twist angles. Furthermore, zero modes occurring at
different magic angles are distinguished by their intravalley
inversion eigenvalue. We numerically found a correspondence
of the zero-mode inversion parity and the order of magic
angles and speculated such an alternating pattern would hold
for all magic angles.

We also pointed out the intricate relation between the zero-
mode wave function and the quantum Hall wave functions. As
guaranteed by intravalley inversion symmetry, the zero-mode
wave function has an internal spinor structure, and in fact each
component can be regarded as a product of a quantum Hall
and an antiquantum Hall wave function, which guarantees the

zero mode has the periodicity of a Bloch wave function. Inter-
estingly, there are an increasing number of zeros occurring in
each component at higher magic angles.

In the end, we discussed the implications of our results to
realistic systems and observable phenomena. First, these zeros
can be detected as charge minima in real space by scanning
tunneling spectroscopy. Second, the increasing number of ze-
ros present in the zero-mode wave function resembles the in-
creasing number of zeros present in higher Landau level wave
functions. Motivated by this observation, we anticipate higher
Landau level physics will occur at the second and higher
magic angles. Moreover, we noticed the phase circulation of
the flat-band wave functions at higher magic angles, and an-
ticipate phenomena related to magnetization. We leave more
detailed studies on higher magic angles as future work. We
notice an earlier work on low twist angle physics in Ref. [83].

Last but not least, it is well known that on a com-
pact manifold, a U(1) magnetic field is subject to a Dirac
quantization condition [84]. Our identification of zero-mode
wave functions with two quantum Hall wave functions
may also shed light on the non-Abelian quantization con-
dition [85–87], where a semi-classical analysis was done
recently in Ref. [88]).

Note added. Recently, we noticed the “unitary particle-
hole” symmetry occurring in Ref. [43], which is similar but
distinct from our intravalley inversion symmetry in Eq. (15);
we contrast the difference between the two in the paragraphs
under Eq. (18). We also noticed a relevant work on the chiral
model, Ref. [89], that appeared recently.
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APPENDIX A: MODEL HAMILTONIANS AND UNITARY
TRANSFORMATIONS

1. Lattices

We start with setting up the notation of moire lattice. As
mentioned in the main text, we denote the two-dimensional
lattice vectors as aa=x,y

i=1,2 . The area of unit cell is defined to be
2πS:

2πS ≡ |a1 × a2| = ∣∣εabaa
1ab

2

∣∣, (A1)

where εxy = −εyx = 1 is the antisymmetric symbol. The re-
ciprocal basis vectors are

bi
a = εi jεabab

j

/
S. (A2)

As will be shown in Appendix C,
√

S defines an effective
magnetic length. We set

√
S = 1 throughout this work.

Graphene contains A and B sites. As shown in Fig. 2 of the
main text, the Dirac points K/K ′ and A/B sites are located at

K = −2b1 + b2

3
, K ′ = 2b2 − b1

3
,

rA = a1 + 2a2

3
, rB = 2a1 + a2

3
. (A3)

We use r0 for rA throughout this work.
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2. Unitary transformations

In Sec. II, we described the Bistritzer-MacDonald Hamil-
tonian Eq. (3) and the chiral model Eq. (8) of a single valley.
They are written in the nonchiral �BM and the chiral basis �c

respectively, see Eqs. (4) and (9). In this section, following
Ref. [52], we work out the details of the unitary transfor-
mation between the two bases. We start with the continuum
model Eq. (3), and perform a gauge transformation to remove
the momentum shift on the diagonal. The Hamiltonian is
transformed to be

HBM = MT

(−iv0σ+θ/2 · ∇ T (r)
T †(r) −iv0σ−θ/2 · ∇

)
M†

T ,

MT = diag(eiKb
+·r, eiKt

+·r), (A4)

where T (r) is given in Eq. (6). Then, we remove the diagonal
θ dependence by rotation:

HBM = (MT Mθ )HcBM(MT Mθ )†, (A5)

where

HcBM =
(−iv0σ · ∇ T (r)

T †(r) −iv0σ · ∇
)

,

Mθ = diag(e− iθ
4 σz , e

iθ
4 σz ). (A6)

The matrix HcBM is the chiral Hamiltonian organized in
basis (φb, χb, φt , χt )T where φ and χ represent the A and B
sublattices, respectively, and b/t represent the bottom and top
layer components. More explicitly,

HcBM =
√

2v0

⎛
⎜⎜⎝

0 −i∂ 0 αU−φ

−i∂̄ 0 αUφ 0
0 αU ∗

φ 0 −i∂
αU ∗

−φ 0 −i∂̄ 0

⎞
⎟⎟⎠. (A7)

where Uφ is defined in Eq. (13). Transforming into the chiral
basis Eq. (9), we obtain Eq. (8):

HcBM = v0

(
0 D
D† 0

)
, D† =

√
2

( −i∂̄ αUφ

αU ∗
−φ −i∂̄

)
,

D =
√

2

(−i∂ αU−φ

αU ∗
φ −i∂

)
. (A8)

The unitary transformation Eq. (10) can be easily worked
out from matrices MT , Mθ and the basis shuffling. As defined
in the main text, we denote the rotated graphene Dirac points
as Kb/t

+ , and denote the moire Dirac points as K = Kb
+ − K�

+
and K ′ = Kt

+ − K�
+, where K�

+ is the moire Brillouin zone
center. We have also shifted the Bloch momentum of the chiral
basis Eq. (9) to center at the moire Gamma point. Its Bloch
translation symmetry can be also worked out easily as shown
in Eq. (11).

APPENDIX B: HOW C2T SYMMETRY CONSTRAINS
THE CHIRAL HAMILTONIAN

We have written the inter-layer coupling matrix in real
space as Eq. (3). We now discuss the action of C2T , which
complex conjugates and exchanges the two sublattices. The
diagonal blocks in Eq. (3) are invariant under this transforma-
tion. We now consider the off-diagonal tunneling terms H tun

BM.

Its transformation under C2T reads

H tun
BM

C2T−−→
∫

dr�†(−r)

(
0 σxT (r)σx

σxT †(r)σx 0

)∗
�(−r)

=
∫

dr�†(r)

(
0 σxT (−r)σx

σxT †(−r)σx 0

)∗
�(r),

where, same as the main text, the Pauli matrices σ act on
sublattice space. By virtue of being invariant under C2T , it
follows that

T (r) = σxT ∗(−r)σx, (B1)

or, element by element:

TAA(r) = T ∗
BB(−r), TAB(r) = T ∗

BA(−r). (B2)

If we rotate to the chiral basis �c Eq. (9), the tunneling
terms enter in the following way:

HcBM(r) =
(

T diag
A (r) D(r)

D†(r) T diag
B (r)

)
, (B3)

where the diagonal blocks are

T diag
A (r) =

(
TAA(r)

T ∗
AA(r)

)
,

T diag
B (r) =

(
TBB(r)

T ∗
BB(r)

)
, (B4)

and the off-diagonal blocks are

D(r) =
(−√

2i∂ T ∗
BA(r)

TAB(r) −√
2i∂

)
,

D†(r) =
(−√

2i∂̄ T ∗
AB(r)

TBA(r) −√
2i∂̄

)
. (B5)

Using the action of C2T in Eq. (B2), these can be written
in terms of only one complex parameter TAB:

D(r) =
(−i

√
2∂ TAB(−r)

TAB(r) −√
2i∂

)
,

D†(r) =
( −√

2i∂̄ T ∗
AB(r)

T ∗
AB(−r) −√

2i∂̄

)
, (B6)

which satisfy our Lemma 1:

τyD†(r)τy = −D†(−r), τyD(r)τy = −D(−r), (B7)

where the Pauli matrices τ act on the layer index.
In this basis, the chiral matrix σz that anticommutes with

the Hamiltonian enforces TAA(r) = TBB(r) = 0. Notice that
Eq. (B7) also requires linearized Dirac fermion; a quadratic
term in the dispersion destroys it. Note that a quadratic term
in the dispersion also destroys the exact flat band of the chiral
model. We hence demonstrated that for chiral models with
linearized Dirac fermion, intravalley inversion follows from
C2T symmetry.

APPENDIX C: QUANTUM HALL WAVE FUNCTION

In this section, we review the quantum Hall wave func-
tion that is frequently used in the main text. We start with
discussing magnetic translation symmetry and quasiperiodic
elliptic functions.
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1. Magnetic translation symmetry

Since the lowest Landau level wave functions are usually
written in terms of holomorphic functions, we start by setting
up a notation for complex coordinates. Complex structures
ωa=x,y and ω∗

a=x,y define a one-to-one mapping from two-
dimensional affine space to the complex plane. We represent
the metric and the antisymmetric tensor as

gab = ω∗
aωb + ωaω

∗
b, iεab = ω∗

aωb − ωaω
∗
b . (C1)

They have the properties: ωa = gabωb, ωaωa = 0, and
ωaω∗

a = 1. The complex vectors are defined by contracting
complex structure with vectors A ≡ ωaAa, and complex co-
vectors as B ≡ ωaBa. To distinguish with vectors, complex
vectors are unbold. In terms of complex coordinates, the inner
product and cross product are respectively A · B ≡ AaBa =
AB∗ + A∗B, and A × B ≡ εabAaBb = −i(A∗B − AB∗). In this
work, we took ωx = 1/

√
2 and ωy = i/

√
2.

The quantum Hall system describes two-dimensional inter-
acting or noninteracting electrons in a perpendicular magnetic
field. In a magnetic field, the electron’s coordinate is factor-
ized into the center of its cyclotron motion i.e., guiding center
R, and the radius, i.e., Landau orbits R̄:

r = R + R̄, (C2)

where R commutes with R̄, but their individual components
are noncommutative:

[Ra, Rb] = −iεabl2
B, [R̄a

, R̄b] = iεabl2
B. (C3)

In our case the area of unit cell S plays the same role as
magnetic length squared l2

B = h̄/|eB| where e, B are electron
charge and magnetic field strength. When projected into a
single Landau level, an electron is fully described by the non-
commutative R degrees of freedom. The magnetic translation
operator is defined as the following one:

t (d ) ≡ exp(id × R), (C4)

which translates the guiding center R by distance d. The
magnetic translation algebra is

t (d1)t (d2) = t (d2)t (d1)eid1×d2 = t (d1 + d2)e
i
2 d1×d2 .

Due to the single value of wave function, any legal wave
function must transform back to itself after a periodic transla-
tion. So we have the boundary condition

t (a)ψ = eiφaψ, (C5)

where a ∈ A is a lattice vector. From now on we define
the whole lattice as A ≡ {ma1 + na2|m, n ∈ Z}. The phase
factor φa effectively measures the fraction of flux inside the
torus. The wave functions that satisfy Eq. (C5) are written
in terms of elliptic functions. One choice of elliptic function
is the Jacobi theta function [60]. Recently it was also found
that the “modified Weierstrass sigma function” is another
choice [56,57]. Compared with Jacobi theta function, Weier-
strass sigma function has the advantage of being modular
invariant.

2. Modified Weierstrass sigma function

The modified Weierstrass sigma function [56,57] σ (z) is
defined as

σ (z) = σ̃ (z)e− 1
2 Ḡ(A)z2

, (C6)

i.e., a product of the standard Weierstrass sigma function
σ̃ (z) and a holomorphic factor e− 1

2 Ḡ(A)z2
, where as will be

explained soon the “almost modular form” Ḡ(A) is a modular
independent c-number constant that vanishes for square and
hexagonal torus. We now introduce the Ḡ(A), and discuss the
quasiperiodic property of σ (z).

The standard Weierstrass sigma function σ̃ (z) has a prod-
uct series expansion (which is also a fast converging form for
numerics),

σ̃ (z) ≡ z
∏

a∈Amn\{0}

(
1 − z

a

)
e

z
a + 1

2
z2

a2 , (C7)

where as defined above, A means the set of lattice points.
Clearly, it is modular invariant. It is also quasiperiodic,

σ̃ (z + ai ) = −e2η̃i (z+ai/2)σ̃ (z), i = 1, 2,

where η̃i is the standard zeta function evaluated at half period,
which is related to the k = 1 Eisenstein series G2(ai ), i = 1, 2,

η̃i = G2(ai )ai/2. (C8)

The Eisenstein series G2(ai ) has a highly convergent for-
mula

G2(ai ) = 2π2

a2
i

(
1

6
+

∞∑
n=1

1

sin2
(
nπ

a j �=i

ai

)
)

. (C9)

The η̃i in addition obey a relation that defines chirality,

η̃1a2 − η̃2a1 = 1

2Nφ

(a∗
1a2 − a1a∗

2 ) = iπ. (C10)

In our case, the magnetic flux quanta of a unit cell is one, so
Nφ = 1. The (C8) and (C10) suggests a modular independent
quantity called “almost modular form,”

Ḡ(A) ≡ G2(ai ) − 1

Nφ

a∗
i

ai
. (C11)

With these formulas in hand, we are ready to get the
quasiperiodicity of σ (z):

σ (z + ai ) = −ea∗
i (z+ai/2)σ (z), i = 1, 2. (C12)

Last but not least, the sigma function is odd under spatial
inversion: σ (−z) = −σ (z).

3. Quantum Hall wave function

The quantum Hall wave function is given in Eq. (31),
which we copy below:

�k(r) = ez∗
k zσ (z − zk )e− 1

2 |zk |2 e− 1
2 |z|2 .

It has a single zero located at ra
k = ra

0 + εab(k − K )b in
each unit cell, with r0 defined in Eq. (24). Mapping to the
complex plane, the zero occurs at zk and its translated coun-
terparts, where zk is

zk = ωa
(
ra

0 − εabKb
) + ωaε

abkb = −ik, (C13)
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FIG. 7. The one-to-one mapping between k and rk, where the
first and second letter are rk and k, respectively. The figure is con-
structed by rotating the moire Brillouin zone by 90 degrees and
overlaps with the real-space unit cell, precisely because of the mathe-
matical relation ra

k = ra
0 + εab(k − K )b. All points in the diagram are

illustrated modulo lattice vectors.

where the first term is zero following from Eqs. (A2) and (A3).
We used Eq. (C1) to derive the second term.

Since �k is not a Bloch function, the “Bloch vector” k
here should be understood as labeling the magnetic translation
boundary condition Eq. (C5): t (a1,2)�k = −eik·a1,2�k. For a
quantum Hall wave function, its zero moves linearly with the
boundary condition k, reflecting the fact of Chern number
C = 1 [62]. The following diagram Fig. 7 is helpful to quickly
figure out rk given the Bloch momentum k.

Using results derived in the last section, it is easy to find
the quasiperiodic boundary condition �k satisfies in real and
reciprocal space. With i = 1, 2, they are

�k(r + ai ) = −e
i
2 ai×reirk×ai�k(r), (C14)

�k+bi (r) = −e
i
2 bi·rk�k(r). (C15)

The nontrivial phase factors above cannot be removed by
a smooth, global, gauge transformation, which reflects the
fact that �k has a nontrivial Chern number. Technically, these
boundary conditions allow one to restrict the discussion to the
unit cell and the first Brillouin zone. From now on, we denote
k as Bloch momentum inside the first Brillouin zone.

It is straightforward to see how inversion acts on quantum
Hall wave functions from Eq. (C13):

�k(r) = −�−k(−r). (C16)

We finish this section by showing the boundary condition
of G(r), which follows straightforwardly from the periodicity
of the zero-mode wave function in Eq. (11) and the quantum
Hall wave function in Eq. (C14):

G(r + ai=1,2) = −G(r) × e− i
2 ai×reiq0·ai . (C17)

APPENDIX D: ANALYTICAL ARGUMENT
FOR THE NODAL STRUCTURE

The alternating parities and the increasing number of zeros
we observed in the chiral model shares many similarities as

the simple harmonic oscillator. In this section, we provide
an argument for the zero structure and inversion patterns by
making an analogy to simple one-dimensional harmonic os-
cillators. Specifically, since the additional zeros that occur at
higher magic angles occur along a reflection symmetric line,
we reduce the zero-mode equation to a one variable ordinary
differential equation on that line. We can then compare to a
harmonic oscillator in one dimension.

The one-dimensional harmonic oscillator is described by
the Hamiltonian:

H = p̂2

2m
+ 1

2
(mω2)x2, (D1)

whose nth eigenstate φn(x) satisfies the eigenequation:

− h̄2

2m

d2φn

dx2
+ 1

2
(mω2)x2φ2

n = Enφn, (D2)

which can be transformed into the standard Sturm-Liouville
form, with dimensionless parameters α ≡ √

h̄/(mω), ε ≡
E/(h̄ω/2) and u ≡ x/α:

d

du

[
p(u)

dφn(u)

du

]
+ (q(u) + εω(u))φn(u) = 0, (D3)

where

p(u) = 1, q(u) = −u2, ω(u) = 1. (D4)

The normalizable solutions of Eq. (D3) are given by,

φn(u) = NnHn(u)e− 1
2 u2

, (D5)

where Nn = ( mω
π h̄ )

1
4 (2nn!)−

1
2 is the normalization factor and

Hn is the nth Hermite polynomial. Therefore we see that for
the harmonic oscillator, the number of zeros of the nth excited
eigenstate is n, and the parity of the nth eigenstate ψn alter-
nates as (−1)n. Such oscillatory behavior is a generic feature
for Sturm-Liouville type differential equations Eq. (D3) on the
interval where p(u) and ω(u) are positive [65].

We have observed a similar alternating parity and increas-
ing number of zeros of eigenstates at higher magic angles in
the chiral model, as discussed in Secs. III B and V C. The
problem of the chiral twisted bilayer graphene model is more
difficult. One reason is that it is a two-variable differential
equation. To make progress, we utilize the symmetry of the
problem to reduce the problem to one variable.

We starting by reviewing the zero-mode equation, and see
how symmetry helps reduce the dimension of the problem. We
first recall the zero-mode equation from Eqs. (1) and (12):

−i∂̄ (iG(r)�k(r)) = −ηαUφ (r)G(−r)�k(r). (D6)

By using the lowest Landau level condition that the quantum
Hall wave function �k satisfies

∂̄�k = − z

2
�k, (D7)

we arrive at the zero-mode equation that the function G(r)
must satisfy(

∂̄ − z

2

)
G(r) + ηαUφ (r)G(−r) = 0, (D8)

which is subject to the boundary condition Eq. (C17).
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We note that due to the mirror symmetry My of the prob-
lem, both G(x, y) and G∗(x,−y) are zero-mode solutions of
Eq. (D8). By utilizing the global U(1) phase degree of free-
dom of wave function, one can always choose G(r = 0) to
be a purely real number, thereby constraining G(x, 0) to be
a real function. We have already used this property for ρ(r)
in Sec. V C, and plotted its real and imaginary parts on the
reflection symmetric line in Fig. 4.

Here we denote the real and imaginary parts of G(x, 0) as
R(x) and I (x) respectively. Although the imaginary part van-
ishes identically at y = 0, its y-direction derivative (∂yI )(x) ≡
∂yI (x, y)|y=0 does not. We end up with the following:

I (x) = 0, R(x) �= 0, (∂yI )(x) �= 0. (D9)

The zero-mode equation Eq. (D8) is now rewritten as

∂xR(x) − (∂yI )(x) − x

2
R(x) + ηαUφ (x)R(−x) = 0,

(D10)
subject to the boundary condition Eq. (C17) which, when
reduced to the y = 0 line, becomes

R(x +
√

3a) = −R(x),

(∂yI )(x +
√

3a) = −(∂yI )(x) +
√

3a

2
R(x), (D11)

where a is the length of the moire primitive lattice vectors. In
the unit S = 1, we have been using, its value is a2 = 4π/

√
3.

The derivation so far is exact. The differential equation
Eq. (D10) and its boundary conditions Eq. (D11) contain the
full information of the nodes in the problem. The difficulty
of solving Eq. (D10) is that it is a two-variable differential
equation. To make progress, we now do approximation on
(∂yI ) to eliminate one variable.

It is interesting to observe that − x
2R(x) satisfies the same

boundary condition as (∂yI )(x). In the following, we will
approximate

(∂xI )(x) ≈ −x

2
R(x). (D12)

Under this assumption, the differential equation simplifies
dramatically, and becomes a one-variable ordinary differential
equation:

d

dx
R(x) + ηαUφ (x)R(−x) = 0, (D13)

which can be rewritten into a second-order form:

− d

dx

(
1

Uφ (x)

dR(x)

dx

)
= α2Uφ (−x)R(x).

R(x +
√

3a) = −R(x). (D14)

Hence we have brought the zero-mode equation on the
reflection symmetric line into the Sturm-Liouville form
Eq. (D3) under the approximation shown in Eq. (D12).

Suppose we have two solutions R1,2 of Eq. (D14), which
corresponds to two magic angles α1,2, with α1 < α2. From
Eq. (D14), we deduce that[

U −1
φ (R1R′

2 − R′
1R2)

]′ = (
α2

1 − α2
2

)
Uφ (−x)R1R2,

where we have implicitly suppressed the argument x in U −1
φ ,

R12 and their derivatives. Now, consider a region spanned
[xa, xb]. The integration of the above equation in this region
yields[

U −1
φ (x)(R1(x)R′

2(x) − R′
1(x)R2(x))

]∣∣xb

xa

= (
α2

1 − α2
2

) ∫ xb

xa

dζUφ (−ζ )R1(ζ )R2(ζ ). (D15)

It then follows from the theory of differential equa-
tions [65], in the parameter region x ∈ [xa, xb] that Uφ (±x) >

0 or Uφ (±x) < 0, the nodes of two consecutive solutions must
oscillate; otherwise it leads to contradiction with Eq. (D15).
We emphasize that our argument is based on the assumption
Eq. (D12), and we can only argue for the node oscillation in
the regions where Uφ (±x) are both positive or negative. This
argument shows that in general, there should be more zeros at
higher magic angles.
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