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Cavity-QED measurements of the 87Sr millihertz optical clock transition and
determination of its natural linewidth
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We demonstrate the direct quantum nondemolition detection of a millihertz linewidth optical atomic transition.
We observe the modification of the phase and amplitude of a probe field interacting with strontium atoms, which
provides a direct spectroscopic signal to which a laser could be frequency stabilized. To investigate this mea-
surement capability, we demonstrate an approach to determining the intrinsic natural lifetime of exceptionally
long-lived optical excited states. Such transitions are key to the performance of state-of-the-art atomic clocks,
have potential applications in searches for fundamental physics and gravitational wave detectors, as well as
quantum many-body phenomena. Here, we determine the ratio of the challenging to measure and poorly known
ultranarrow linewidth transition (3P0 to 1S0 in 87Sr) to that of another narrow well-known transition (3P1 to 1S0) by
coupling the two transitions to a single optical cavity and performing interleaved nondestructive measurements
of the interaction strengths of the atoms with cavity modes near each transition frequency. We use this approach
to determine the natural linewidth of the clock transition 3P0 to 1S0 in 87Sr to be γ0/(2π ) = 1.35(3) mHz or
τ = 118(3) s. The 30-μHz resolution implies that we could detect states with lifetimes just below 2 h, and with
straightforward future improvements, we could detect states with lifetimes up to 15 h, using measurement trials
that last only a few hundred milliseconds, eliminating the need for long storage times in optical potentials. This
work opens the path to nondestructive direct spectroscopy of ultranarrow transition for continuous frequency
measurements and laser stabilization.

DOI: 10.1103/PhysRevResearch.3.023152

I. INTRODUCTION

Ultranarrow linewidth optical transitions have become the
new standard for precision optical metrology, providing fast
phase evolution, long coherence times, and intrinsic insen-
sitivity to key environmental perturbations that have allowed
remarkable fractional accuracy at the 10−18 level [1–8]. They
have a wide range of potential applications for fundamental
physics, such as gravitational wave detection using matter-
wave interferometry or dark-matter searches [9–16], quantum
many-body physics [17–22], novel cavity QED applications
for superradiant lasing [23,24], and spin squeezing on an
optical clock transition [25].

Here, we demonstrate the direct quantum nondemolition
detection of a millihertz linewidth optical transition by the
observed modification of the phase and amplitude of the
probe field that interacts with the atoms on the ultranarrow
transition. This observation provides a direct spectroscopic
signal to which a laser could in principle be frequency sta-
bilized [26], with previous analogous observations on the 107

*Present address: Instituto de Física, Facultad de Ingenería, Uni-
versidad de la República, J.H. y Reissig 565, 11300 Montevideo,
Uruguay; jmunizq2@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

times broader 7.5-kHz transition in strontium [27–29]. Our
technique contributes towards the aim of creating a different
type of atomic clock built with optical cavities that is com-
plementary to traditional discretely sampled atomic clocks
based on Ramsey and Rabi spectroscopy and offers enhanced
measurement bandwidth and similar predicted sensitivities to
superradiant lasers [24,30–32]. Increased bandwidth would
reduce the challenging requirements on local oscillators and
would enhance the bandwidth for searches for dark matter or
other new fields [15], for example. The nondestructive readout
of atomic populations will also reduce the problem of Dick
noise aliasing in traditional atomic clocks that rely on de-
structive readout. Compared with previous work that probed
kHz to MHz linewidth transitions [25,33–39], our work
probes an ultranarrow optical transition with a millihertz-level
linewidth.

We explore and apply this detection capability to deter-
mine the fundamental intrinsic linewidth of the ultranarrow
clock transition, which is important for understanding the ul-
timate limits on quantum coherence offered by various atomic
transitions and species. Although the expected lifetime of
long-lived excited states can surpass 100 s [40–47], vari-
ous competing processes can preclude the observation of the
natural excited-state lifetime, such as black-body radiation-
induced decay [40,48] or scattering due to optical lattice light
used to trap the atoms [49–51], preventing the application
of standard population decay techniques to determine their
lifetimes. For example, state-of-the-art optical lattice clocks
have only demonstrated coherence up to ∼10 s [3,50,51]
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FIG. 1. System description. (a) Relevant energy levels in 87Sr.
(b) Atoms are trapped inside an intracavity optical lattice. The probe
electric field �Ep is polarized along the magnetic field �B direction (x̂)
and has mode waist radius w. Phase detection is done via heterodyne
measurements. (c) Experimental frequencies showing the cavity cen-
ter frequency ωC , laser frequency ωL , and their respective detunings
δC and δL from the atomic transition frequency ωA. Light leaks out
of the cavity at a total rate κ . (d) For the clock transition (subindex
0), simulated cavity transmission and phase shift δϕ0 against probe
detuning δL0 for δC0 = 0 in units of NC0γ0. At a given detuning, the
phase shift produced by the atomic ensemble is proportional to γ0.

which is limited mostly by Raman scattering of the lattice
light off an excited state [50]. In fact, most of the systems
where these long excited-state lifetimes have been precisely
measured consist of atoms trapped without optical potentials,
such as magnetic or ion traps [40–47], and in some nonde-
structive detection has been performed [52].

To date, the two reported values for the 3P0 excited-
state lifetime in 87Sr are τ = 330(140) s from Ref. [49]
obtained from population decay measurements from excited
metastable states, and τ = 145(40) s from Ref. [53] obtained
from effective atomic models and measurements of differ-
ential Landé g factors between ground and excited clock
states, while ab initio calculations estimate a lifetime between
110–130 s [54,55]. With the implementation of new potential
landscapes for operating with reduced lattice-induced scat-
tering [50,56,57] that can suppress these effects, and with
reference optical cavities whose coherence times start to ap-
proach the minute timescale [58–60], the full enhancement of
these ultranarrow optical transitions can be achieved.

In this paper, we present a series of cavity-enhanced spec-
troscopic measurements directly on the 87Sr clock transition.
This technique allows us to directly determine the natural
lifetime of the excited clock state 3P0 (|e0〉) in 87Sr. Our
technique consists of precisely and simultaneously measur-
ing the ratio of single-photon Rabi frequencies along two
optical transitions, the millihertz transition (1S0 = |g〉 → 3P0

= |e0〉) and the 7.5-kHz transition (1S0 → 3P1 = |e1〉), us-
ing a common atomic ensemble inside an optical resonator
[see Fig. 1(a)]. These single-photon Rabi frequencies, de-
noted by 2g0,1 for light-matter coupling strengths along the
millihertz and 7.5-kHz transitions, respectively, depend on

the electric dipole moment of the atoms (d) along with
well-known and independently characterized geometric fac-
tors [61], such as the cavity’s mode waist (w) and length (L).
The natural linewidth γ0 can then be linked to the known
natural linewidth γ1 from the measured coupling strength
ratio as

γ0

γ1
=

(
L0

L1

)(
w0

w1

)2(
ωA0

ωA1

)2(g0

g1

)2

, (1)

where ωA is the (well-known) atomic transition frequency.
Note that, for this paper, we generically use subscripts 0 and 1
to denote quantities for the clock transition (with wavelength
λ0 = 698.44 nm) and the 7.5-kHz transition (with wavelength
λ1 = 689.45 nm) respectively, as shown in Fig. 1(a). Calcu-
lating this ratio as opposed to just the millihertz transition
Rabi frequency allows for the cancellation of many common
noise and systematic effects such as atom-number fluctua-
tions, inhomogeneous atom-cavity coupling, cavity and laser
frequency noise, and finite-ensemble-size effects.

II. DISPERSIVE MEASUREMENTS USING NARROW
OPTICAL TRANSITIONS

To accomplish the above, we perform consecutive mea-
surements of the dispersive cavity resonance frequency shift

ω1 (or equivalently the multipass phase shift 
ϕ1) on the
7.5-kHz transition, as well as the dispersive phase shift 
ϕ0

on the millihertz transition. These phase shifts depend directly
on the light-matter coupling strength, scaling as 
ϕ0/
ϕ1 ∝
(g0/g1)2 [62,63].

Ultimately, this involves measuring the phase shift expe-
rienced by far off-resonant light passing through an atomic
medium [Fig. 1(b)], which arises from the interference be-
tween the incident and the scattered fields. The optical cavity
magnifies this phase shift due to the multiple round trips [61]
and defines the spatial modes that interact with the atoms.
An optical resonator also introduces systematic effects that
we take into account later in this paper. Remarkably, due to
the ultranarrow linewidth of the clock transition, our phase
shift measurements 
ϕ0 are dispersive, i.e., the probe is
sufficiently detuned from the atomic transition, while also
being in the resolved motional sideband limit, as the axial
vibration frequency is much larger than the probe’s detuning.
This scenario does not have precedent in the atomic quantum
nondemolition (QND) measurements community.

Our system, also described in [23,24], consists of an en-
semble of up to 105 87Sr atoms confined within a high-finesse
optical cavity by a λtrap = 813 nm, near-magic wavelength
intracavity optical lattice, as sketched in Fig. 1(b) [3,64].
We optically pump the atoms into a 50/50 spin mixture of
the 1S0 nuclear Zeeman levels mF = ± 9

2 , with less than 5%
of atoms remaining in the other 8 mF states. The 813-nm
trap is 185 μK deep, with measured axial trap frequency
ωz/(2π ) = 230(1) kHz. The atoms have an axial temperature
Tz = 14(1) μK, and their mean vibrational quantum number
is n̄z = 0.9(1), obtained using sideband spectroscopy [65].

Both transitions fall into the so-called bad cavity regime,
where the ∼150-kHz cavity linewidth (κ) is larger than
the excited-state linewidth (γ ). To understand the dispersive
measurements we perform, we consider N equally coupled
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two-level atomic dipoles with transition frequency ωA that
interact with one cavity mode at frequency ωC , detuned by
δC = ωC − ωA from the atomic transition, as shown in Fig.
1(c).

For the 7.5-kHz transition our system typically satisfies
NC1γ1 � κ1, with C1 = (2g1)2/(γ1κ1) denoting the single-
atom cooperativity parameter that characterizes the cavity-
enhanced interactions on this transition [63,66]. This gives
a resolved collective vacuum Rabi splitting for a resonant
cavity mode (δC1 = 0). For this experiment, we instead op-
erate in the dispersive limit (δC1 � √

Ng1), where the cavity
resonance frequency experiences a shift δω1 = Ng2

1/δC1 [66]
due to the presence of N atoms in the ground state. This
frequency shift corresponds to an equivalent multipass phase
shift δϕ1 = δω1/(κ1/2) = NC1γ1/2δC1. This regime has been
explored in many different QND platforms [67–73].

Dispersive measurements on the 87Sr millihertz transition

The millihertz optical transition falls into a less common
regime for ensemble-cavity experiments, where the collec-
tive vacuum Rabi splitting is unresolved and NC0γ0 	 κ0,
with C0 = (2g0)2/(γ0κ0) the single-atom cooperativity pa-
rameter. Dispersive measurements are realized by observing
the multipass phase shift δϕ0 of the transmitted probe light
detuned δL0 from the atomic transition ωA0. In this case
δϕ0 = −NC0γ0/(2δL0) − (δC0 − δL0)/(κ0/2) for small angles
[κ0 � (δC0, δL0) � NC0γ0]. The first term that contributes to
δϕ0 is the phase shift induced on the probe light by the atoms,
the quantity that we wish to measure. The second term is a
phase shift that arises when the probe light is not on resonance
with an empty cavity, representing a background that must be
subtracted.

The normalized power transmission (red line) and phase
shift δϕ0 (black line) for a weak probe in the presence of atoms
for δC0 = 0 are shown in Fig. 1(d). In the weak excitation
limit, the transmission drops as the incident and scattered
electric fields destructively interfere over a characteristic fre-
quency width of order NC0γ0, while δϕ0 shows a narrow
feature around δL0 = 0 of order γ0. As |δL0| increases, the
cavitylike phase shift starts to be significant compared to
the atomiclike phase shift: for our chosen probe detuning
|δL0|/(2π ) = 1 kHz, the former is ∼15 mrad while the latter
is ∼40 mrad.

To measure δϕ0 we select a TEM00 cavity mode and adjust
the cavity length to be on resonance with the clock transition,
i.e., δC0 = 0. At the clock transition wavelength λ0, the
cavity’s linewidth is κ0 = 2π × 140.9(3) kHz, while the free
spectral range (FSR) is 
FSR,0 = 2π × 3.714 61(3) GHz. The
different probe tones used to determine the phase shifts δϕ0,1

are created using an in-fiber electro-optical phase modulator
(EOM) before being coupled to the cavity, and are polarized
along the quantization direction x̂, established by a static
magnetic field �B = B0x̂ with B0 ∼ 100 mG [Fig. 1(b)].

We investigate the cavity transmission characteristics in the
presence of atoms for the ultranarrow transition in Fig. 2,
observing spectroscopic signals that could be used in the
future for stabilization of a laser to the atomic transition
frequency, providing an atomic clock with complementary
properties to traditional atomic clocks. The atomic clock
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FIG. 2. Probing the clock transition. (a) Transmitted power for a
single tone versus its detuning δL0 from the narrow clock transition
frequency ωA0 (see inset). The two dips correspond to atoms in the
ground mF = ±9/2 states in the presence of a 200-mG magnetic
field that creates a 200-Hz nuclear Zeeman splitting in the optical
transition frequency. (b) Atomic-induced phase shift 
ϕ0 on the
clock transition as the central frequency detuning δL0 of the probes
from the clock transition frequency ωA0 is scanned (see inset). The
probes are detuned 2δp0/(2π ) = 2 kHz from each other. Blue (red)
markers are for atoms initially in |g〉 (|e0〉). Solid lines are empirical
fits that take into account the finite excitation fraction. Either the
transmitted probe amplitudes or phases could serve in the future as
frequency references for laser frequency stabilization to an ultranar-
row optical transition.

transition is addressed with light from a stabilized state-
of-the-art sub-10-mHz linewidth laser [2,58,60]. The power
transmission of a near-resonant probe, detuned by δL0 from the
atomic transition, exhibits two distinct peaks [Fig. 2(a)], as-
sociated with the mF = ± 9

2 ground states in the presence of a
magnetic field [53]. We attribute the absence of full absorption
in this example data to an overly large probe power causing
atoms to transition to the excited state 3P0. The imbalance in
the depth of the absorption features is attributed to imbalance
on the relative mF = ± 9

2 populations.
To gain partial immunity to systematic uncertainty in

the atomic transition frequency (i.e., uncertainty in δL0)
as well as laser frequency noise, we probe the cavity
with two symmetrically detuned tones at δL0 ± δp0 and
measure their phase shifts, i.e., δϕ0(δL0 ± δp0), by creating
a heterodyne beat note. Typically, δp0/(2π ) = 1 kHz.
The difference between these two phases encodes the
atomic contribution that we would like to measure.
To extract this atomic contribution and further reduce
sensitivity to various sources of frequency noise, we
simultaneously measure the phase shift of an identical
pair of tones that probe a consecutive TEM00 cavity mode
[δϕ0(
FSR,0 + δL0 ± δp0)]. Finally, we compute the pairwise
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FIG. 3. Measuring (g0/g1). (a) (i) For the phase shift measure-
ment 
ϕ0, the two probe tones are detuned by only 1 kHz from
the atomic transition, to be compared to the spacing between the
axial motional levels ωz/(2π ) = 230 kHz. In this resolved-sideband
regime, the probe tones experience a differential phase shift primarily
from the carrier transition that does not change the motional quan-
tum number. Due to finite axial confinement, the carrier transition
strength is reduced by 6%, the largest correction factor that must
be applied to our measurement. (ii) In contrast, for the phase shift
measurement 
ϕ1 the probe tones are far detuned and the probe ex-
periences a phase shift due to interacting with all motional sideband
transitions. (b) Ratio 
ϕ0/
ϕ1 measurement, from the interleaved
pulse sequence (top inset) as P0 is changed. Different colors corre-
spond to different measurement sets (markers), over different days,
and their color matching solid lines are quadratic polynomial fits
on P0 according to our model discussed in Appendix E. Statistical
errors (1σ ) are indicated by the error bars. Top inset shows the mea-
surement sequence, which alternates three 2-ms 
ϕ1 measurements
between two 25-ms 
ϕ0 measurements (first TH = 5 ms are removed
for the extraction of 
φ0). The solid black line is a global fit to the
three measurements. The bottom inset shows 
ϕ0/
ϕ1 (markers)
and its weighted linear fit (solid line), for a fixed set (P0, P1), as atom
number N is changed.

difference 
ϕ0 = [δϕ0(δL0 + δp0) − δϕ0(δL0 − δp0)] −
[δϕ0(
FSR,0 + δL0 + δp0) − δϕ0(
FSR,0 + δL0 − δp0)]. For
the rest of the paper 
ϕ0 refers to this quantity. Note that on
resonance (δL0 = 0) the phase shift is 
ϕ0 = −NC0γ0/δp0.

In Fig. 2(b) we measure 
ϕ0 against δL0 for atoms initially
in |g〉 when the two symmetric tones are applied (blue mark-
ers). The sharp resonances near δL0 = ±δp0 occur when one
of the tones is near resonant with the atoms, while for this
magnetic field (∼100 mG) and probe power, the Zeeman level
resonances are not resolved. Importantly, by using two tones,
the measured phase shift is now only quadratically sensitive
to the detuning δL0 when |δL0| 	 δp. Furthermore, we mea-
sure 
ϕ0 after having adiabatically transferred the atoms to
|e0〉 [23,24], and remove the remaining atoms in |g〉 using the
strong 1S0 - 1P1 transition at 461 nm (red markers). We clearly
observe 
ϕ0 switching sign along with the atomic inversion
(N → −N), as well as a reduction of the signal, in agreement
with the measured adiabatic transfer efficiency. We note both

sets seem to be shifted from one another in frequency by less
than 100 Hz, the typical uncertainty to determine δL0 = 0. The
change in sign of the signal illustrates that the observed phase
shifts can be used to provide a differential readout of atomic
populations in the ground and excited states for nondestruc-
tive readout of traditional Ramsey and Rabi spectroscopy or
entanglement generation. The high-frequency resolution also
means that dual simultaneous probing of two transitions at
once can provide rejection of magnetic field noise.

III. LINEWIDTH MEASUREMENT OF THE 87Sr 1S0 → 3P0

TRANSITION

We now center our attention on the measurement of γ0. In
order to extract the ratio of linewidths γ0/γ1, we will need to
measure the ratio of the squares of the two single-photon Rabi
frequencies (g0/g1)2 as described in Eq. (1). This quantity can
be measured by comparing multipass phase shifts on the two
transitions. Our strategy relies on measuring 
ϕ0 when the
cavity and probes’ center frequency are on resonance with
the millihertz atomic transition, i.e., δC0 = δL0 = 0, and the
7.5-kHz transition phase shift 
ϕ1 in the same configuration
with the same atomic ensemble. As the cavity length is al-
ready stabilized to be on resonance with the clock transition
(δC0 = 0), the closest cavity mode will be detuned by δC1 from
the 689-nm transition |g〉 → |e1〉 [Fig. 3(a)(ii)]. The cavity
linewidth at 689 nm is κ1/(2π ) = 153.0(4) kHz.

We set the cavity length such that the closest mode to
the excited 3P1 F ′ = 9

2 state is detuned by δC1/(2π ) =
277.5(8) MHz. The cavity phase shift δϕ1 is computed by
measuring the cavity frequency shift δω1 of the TEM00 mode
detuned by δC1 from ωA1. To probe δω1, we scan the frequency
of a weak π -polarized probe across the cavity resonance. As
before, in order to gain further insensitivity with respect to
cavity and laser frequency noise, we simultaneously probe
a consecutive longitudinal TEM00 mode of the cavity at
frequency δC1 − 
FSR,1, and compute the difference 
ϕ1 =
δϕ1(δC1) − δϕ1(δC1 − 
FSR,1) (see Appendix B for details).
From now on we will refer to 
ϕ1 as this measured quantity.

Using phase shifts induced on probe light by ultranarrow
transitions has previously been proposed for laser frequency
stabilization [26,27] but in the saturated and resonant con-
figuration, which is intrinsically destructive. Here, using joint
measurements of the phase shifts 
ϕ0 and 
ϕ1 we can extract
the ratio of light-matter coupling rates (g0/g1)2 according to(

g0

g1

)2

= −
(


ϕ0


ϕ1

)(
κ0

κ1

)(
δp0

δC1

)
, (2)

allowing us to calculate γ0 from the known γ1 via Eq. (1).
Our experimental scheme relies on nondestructive interleaved
measurements of 
ϕ0 and 
ϕ1 during a single shot such that
the inhomogeneity of the atom-cavity coupling [69,70] and
fluctuations in atom number N are common to both measure-
ments and cancel in the final computed ratio. In comparison
with other methods, ours constitutes a nondestructive probe of
the atomic inversion on the clock states, with the possibility to
be used for continuous tracking of the inversion.

The ratio of (g0/g1)2 is directly encoded in the 
ϕ0/
ϕ1

measurement, absent atomic excitations, as described in
Eq. (2), taking into account the details of the measurement
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TABLE I. Largest identified corrections and uncertainties.

Effect Affects Correction

Finite axial confinement 
ϕ0/
ϕ1 1.062(4)
Cavity birefringence 
ϕ0/
ϕ1 1.012(5)
Atomic resonance uncertainty 
ϕ0 0.994(6)
Cavity resonance offset 
ϕ0 1.008(6)

and atomic structure. To approach the zero-power limit where
no atomic excitations are created we measure 
ϕ0/
ϕ1 as the
probe optical powers are reduced. In order to gain insensitivity
to atom loss from the lattice (lifetime about 500 ms), we
alternate three short (∼2 ms) 
ϕ1 measurements with two
longer (∼25 ms) 
ϕ0 measurements, as indicated in Fig. 3(b)
top inset. From these five measurements we build a suitable
estimator for the ratio 
ϕ0/
ϕ1 and extract the ratio (g0/g1)2.

Experimental results are shown in Fig. 3(b). Probe optical
powers P0 and P1 for the 698- and 689-nm probes, respec-
tively, are reduced to interpolate to the zero-power value for

ϕ0/
ϕ1. Three different measurement sets (markers) are
shown for consistency and repeatability in Fig. 3(b), each
fitted with a quadratic polynomial on P0 (solid lines) with
reduced χ2

ν near 1 for all sets. For these data sets, we have ver-
ified that the P1 was already sufficiently low to avoid creating
excitations in |e1〉 (see Appendices A and C for details). Each
of these sets were taken on different days and with indepen-
dent cavity alignments to the clock transition. A simultaneous
fit to the three sets is shown as a solid black line in Fig.
3(c). Using different estimators and fit methods, we consis-
tently measure a zero-power crossing ratio (
ϕ0/
ϕ1)exp =
−8.95(9) × 10−2.

We note that the spread of the zero-power values for
different sets is consistent with the effect of the estimated
uncertainty on our ability to tune δC0 to zero for each data
set. The bottom inset in Fig. 3(b) shows 
ϕ0/
ϕ1 for differ-
ent atom number N and a fixed powers P0 and P1, with the
red line indicating a linear weighted fit. The variation of the
measured values suggests that we can constrain any unknown
first-order variation with N or N−1 to the 2% level, within
our final uncertainty, limited by signal to noise. Since there is
not an underlying model for why these scalings would exist
(beyond offsets in 
ϕ0 and 
ϕ1 accounted for separately), no
adjustment to the quoted uncertainty is applied.

Systematic corrections

To precisely determine the excited clock state linewidth
from the measured (
ϕ0/
ϕ1)exp, several systematic effects
need to be accounted for. A detailed description is given in
Appendix D, but here we focus on a few corrections (Table I).
The largest systematic correction that must be applied arises
from the fact that the phase shift measurements 
ϕ0 are made
in a resolved sideband regime in which the probe detunings
δp0/(2π ) = ±1 kHz are much less than the axial trapping
frequency ωz/(2π ) = 230(1) kHz, as shown in Fig. 3(a). To
be in a dispersive regime requires δp0 � NC0γ0; for most fully
allowed optical transitions, this typically implies δp0 � ωz

when NC0 � 1. However, here γ0 being so small allows us to
operate in the dispersive regime, probing the carrier transition,

even when δp0 	 ωz. For our atomic sample, the correction
to the measured 
ϕ0/
ϕ1 is 1.062(4), where we also take
into account the inhomogeneous coupling between probes and
atoms across the optical lattice.

The cavity also possesses intrinsic birefringence which
modifies both phase shifts and thus changes 
ϕ0/
ϕ1. Rather
than a single polarization-independent cavity resonance, bire-
fringence creates two normal modes split by frequencies δb0

and δb1 at λ0 and λ1, respectively. If θb is the opening angle
between the probe beam polarization (x̂) and the birefringent
eigenmode axis on the Poincaré sphere, the correction on
each phase shift scales as [δbi/(κi/2) sin θb]2 for i ∈ {0, 1}.
Including relevant measurement details, such as the hyperfine
structure of the relevant states, imperfect state preparation in
the ground-state hyperfine manifold, uncertainty in the polar-
ization alignment of the local oscillator polarization relative
to the probe’s polarization, and possible differential linewidths
for both birefringent normal modes, we determine a correction
factor on the phase shift ratio of 1.012(5).

Furthermore, the atomic phase shift measurement 
ϕ0

is quadratically sensitive to uncertainty in the detuning
δL0/(2π ) = 0 ± 100 Hz [Fig. 2(b)]. Corrections on the mea-
sured value of 
ϕ0 from this effect scale as [1 − (δL0/δp0)2].
Similarly, 
ϕ0 depends quadratically on the cavity resonance
condition, i.e., how close δC0 is to 0. This correction scales as
[1 + (δC0/(κ0/2))2], where typically |δC0|/(2π ) � 10 kHz.

Considering all the other systematic effects studied in
Appendix D, the correction factor to (
ϕ0/
ϕ1)exp is
FC = 1.074(16). The corrected ratio is then 
ϕ0/
ϕ1 =
−9.61(17) × 10−2. In order to use the measured value for

ϕ0,1 to determine (g0/g1)2 as in Eq. (2), we need to take
into account the hyperfine structure in the 3P1 state manifold,
which would modify the expression for the associated phase
shift 
ϕ1. Following the discussion in the Appendix C, we
extract (g0/g1)2 = 1.83(3) × 10−7. Finally, using Eq. (1) we
determine γ0/γ1 = 1.81(3) × 10−7, where the waist (w) and
length (L) for each mode are independently characterized in
our Appendix B following the treatment in [74]. Using the
value of γ1/(2π ) = 7.48(1) kHz measured in Ref. [75], we fi-
nally find γ0/(2π ) = 1.35(3) mHz for the clock excited-state
natural linewidth. This value implies an excited-state lifetime
of τ0 = 118(3) s, in agreement with Ref. [53] but in disagree-
ment with Ref. [49]. Ab initio atomic structure calculations
place the atomic linewidth at 1.4(5) mHz in Ref. [55], and
1.2 mHz in Ref. [54]. We also note that the value used for γ1

reported in Ref. [75] is consistent with previous less precise
determinations, with relative uncertainties at the 2% level,
from decay and photoassociation measurements [76,77].

IV. CONCLUSIONS

In conclusion, we show that cavity-enhanced dispersive
measurements can be used to realize spectroscopic measure-
ments directly on ultranarrow optical transitions. We report
state-dependent phase shifts on the 87Sr clock transition, that
are notably nondestructive, allowing for continuous tracking
of the transition frequency and potentially allowing laser sta-
bilization to these transitions. With further improvements on
our detection setup, this scheme could be used as an atom
counting tool directly on the clock transition, in contrast
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to other systems [33–38]. This tool would be particularly
useful for new optical lattice clocks built with optical cavi-
ties. Moreover, our setup represents a potential path for laser
stabilization to ultranarrow lines such as in a continuous su-
perradiant laser.

Finally, we report a lifetime resolution of 30 μHz, which
implies we could determine excited-state lifetimes of up to
90 min in comparable integration time ∼100 ms. With reason-
able improvements in our setup, we could expect to determine
up to 15-h lifetimes, i.e., by reducing δp0 to increase the
signal, if no systematic effects are taken into account. For
instance, it could be used to directly measure the magnetic-
field-dependent linewidth of the Sr bosonic isotopes [51,78],
determine the Sr 3P2 excited-state lifetime or even longer-
lived states such as the predicted ∼10-μHz nuclear transition
on 229Th being pursued as a next-generation clock [79–81], or
obtain data on exotic systems of interest for atomic structure
calculations, such as highly charged ions [52,82,83], in cases
where suitable transitions can be found.
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APPENDIX A: LIGHT-MATTER INTERACTIONS

In this Appendix we explore the light-matter interactions
and the phase shift acquired by a probe detuned from the
atomic transition.

1. Optical Bloch equations

Following the conventions adopted in Ref. [66], we
consider N two-level atoms, described by the usual Pauli op-
erators σ̂ i

j , with i = x, y, z and j = 1, . . . , N , equally coupled
to a single-cavity mode with annihilation operator ĉ. In this
case the Jaynes-Cummings Hamiltonian [62,63] in the atomic
frame is

H = h̄δcĉ†ĉ + h̄g(ĉĴ+ + ĉ†Ĵ−), (A1)

where Ĵ± = ∑N
i=1 σ̂±

i are the collective raising and lowering
operators for the atoms, δc = ωc − ωa is the cavity detuning
from the atomic transition (ωa), and 2g is the single-photon
Rabi frequency. We can further define Ĵ z = 1

2

∑N
i=1 σ̂ z

j , in
order to have a closed angular momentum algebra.

If we add a cavity drive ci(t ) at frequency ωp, where ci

has units of
√

photons/s, we can use the input-output formal-
ism [66,84] to write the Heisenberg-Langevin equations of
motion for the cavity and atomic mean operators (O = 〈Ô〉),
on the atomic frame, as follows:

ċ = −
(

iδc + κ

2

)
c − igJ− + √

κmci(t ),

J̇− = i2gJzc − γ⊥J−, (A2)

J̇ z = −ig(cJ+ − c∗J−) − γ

(
N

2
+ Jz

)
,

where we have included the spontaneous emission rate γ , a
transverse dephasing term γ⊥, and cavity losses characterized
by its linewidth κ . The single mirror transmission is charac-
terized by

√
κm (κ = 2κm). In the rotating frame, the incident

cavity field is ci(t ) = ci0e−iδpt , with δp = ωp − ωa the drive
detuning from the optical transition.

2. Steady-state solution

In the presence of a driving field with detuning δp [ci(t ) =
ci0e−iδpt ], the steady-state solution is characterized by observ-
ables of the form J− = J̃−e−iδpt and c = c̃e−iδpt . Working in
the weak probe approximation, such that all the atoms remain
in the ground state, the transmitted field (c̃t = √

κmc̃) satisfies
c̃t = T (δp)ci0 for a transfer function T (δp) given by

T (δp) = 1

1 − i
( δp−δc

κ/2

) + NCγ /2
γ⊥−iδp

, (A3)

and for the collective atomic coherence J̃− is

J̃− = igNc̃

(iδp − γ⊥)
. (A4)

Here we defined the cooperativity parameter as C =
(2g)2/(γ κ ).

The phase δϕt (δp) acquired by the transmitted field [c̃t =
|T (δp)|eiδϕt (δp)ci0] satisfies

tan[δϕt (δp)] = −2
[
δpg2N + (δc − δp)

(
δ2

p + γ 2
⊥
)]

γ⊥2g2N + κ
(
γ 2

⊥ + δ2
p

) . (A5)

Under the following hierarchy, realized in our system at the
clock transition [17],

√
Ng ∼ δp 	 κ,

γ⊥ 	 δp, (A6)

|δc − δp| ∼ δp,

we can approximate

tan[δϕt (δp)] ≈ −2g2N

κδp
− 2(δc − δp)

κ
, (A7)

which can be rewritten as

tan[δϕt (δp)] ≈ −NCγ

2δp
− 2(δc − δp)

κ
. (A8)

The first term on the right-hand side of Eq. (A8) is the
atomiclike phase shift, while the other term is a cavitylike
phase shift, independent of the atoms. For our measurements,
we are interested in the first term as it encodes the collective
interactions (Ng2), while the last term can be measured inde-
pendently and subtracted, by for example measuring the phase
shift of an identical tone one free spectral range away. For our
system, the atomiclike phase shift [NCγ /(2δp)] is typically 30
mrad, while the on-resonance cavitylike phase shift (2δp/κ) is
typically 15 mrad, for δp/(2π ) = 1 kHz.

As described in the main text, we take the difference be-
tween the pairwise phases on two consecutive cavity modes.
A detailed description is given in the next section. The total
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FIG. 4. (a) Experimental setup. An 813-nm optical lattice confines atoms at 14(1) μK. A 689- and 698-nm laser addresses the atomic
transitions between the ground 1S0 state and the 3P1 and 3P0 states, respectively. The different frequency tones to generate the probes, as
described in the main text, are generated by an in-fiber EOM and rf function generators operating at the different necessary frequencies.
Most of the light constitutes an optical local oscillator. The local oscillator is frequency shifted by 
 fHet, polarization filtered along x̂ with
a polarization beam splitter, and is beat with the transmitted probes into a photodiode. The photocurrent is properly demodulated by each rf
frequency and recorded as a different voltage Vout(t ). (b) The probe tones used to address the clock transition are shown in (i), while the tones
and hyperfine levels for the excited 3P1 manifold are shown in (ii). The detuning δC1 is defined with respect to the F = 9

2 manifold. Frequencies
not to scale. (c) Vibrational spectroscopy on the clock transition. We scan the detuning δL0 of a strong 698-nm probe and record the excitation
fraction. We follow the procedure in Ref. [65] to fit the occupation number, temperature, and trap frequency.

phase shift, defined as 
ϕ0 in the main text, becomes


ϕ0 = −NCγ

δp

(
1 − 4

δ2
c

κ2
+ 4

δ2
p

κ2
+ (NCγ )2

12δ2
p

− NCγ

κ

)
. (A9)

Higher-order terms in Eq. (A9) show higher-order corrections
on the phase shift, that will be considered as corrections (see
systematic section later).

Finally, we want to note that at short times, there is an
initial transient ringing, of duration NCγ , associated with the
homogeneous solution of the optical Bloch equations, that in
our system lasts about 2 ms.

3. Excitation fraction

If we break the weak probe power approximation, and
allow the inversion to change during the probing, using
Eqs. (A2) and (A4) we find that the steady-state excitation
fraction is

Ne/N ≈ γ⊥C

δ2
p + γ 2

⊥
|ci0|2, (A10)

showing the characteristic 1/δ2
p dependence of these disper-

sive measurements.
In the absence of dephasing (γ⊥ = γ /2), the steady state

is reached on a 1/γ timescale. Therefore, for a measurement
window Tm, the fraction of atoms in the excited state at the

end of the measurement will be

(Ne/N )Tm
≈ γ Tm

γC

2δ2
p

|ci0|2. (A11)

We will adjust the power, i.e., |ci0|2, such that (Ne/N )Tm
	 1

over the measurement window. Ideally, this constraint, and the
final quantum efficiency, will limit the resolution of the atom
counting as a nondestructive process.

Furthermore, this suggests that even if the inversion is
changing because of a different process rather than the excita-
tion caused by the tones, the atomiclike phase shift 
ϕ0 can
be used to dynamically track the atomic inversion Jz(t ) [85].

APPENDIX B: EXPERIMENTAL SETUP

A detailed scheme of the experimental setup is given in
Fig. 4(a) and it has been already detailed in Refs. [23,24,35].
Atoms are loaded into a 813-nm near-magic wavelength in-
tracavity optical lattice, following cooling and trapping on the
7.5-kHz transition (1S0 → 3P1) at 689 nm [86]. The lattice
is near magical for the 1S0 → 3P0 millihertz clock transition
at 698 nm, with a detuning of maximally ∼2 GHz from the
magic wavelength (half free spectral range). As in the main
text, from here on all the 0(1) subindices refer to quantities
defined on the 1S0 → 3P0 (3P1) transition.
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For both the clock and the 7.5-kHz transitions, a small
fraction of the light is coupled into the same in-fiber electro-
optical phase modulator (EOM) and sent to the optical
resonator. Which light enters the modulator at a given time
is controlled by acousto-optic modulators prior to the phase
modulator. Both probes are polarized along the quantization
direction ẑ, established by a static magnetic field �B. The dif-
ferent probe tones are driven by different radio-frequency (rf)
sources, indicated by a generic rf generator in Fig. 4(a). The
different cavity modes probed for each transition are shown
in Fig. 4(b), which also indicates the relative frequency dif-
ference of the hyperfine states of the 3P1 excited state. Further
details for the individual transitions are provided below.

1. Probing 3P0

The clock transition 3P0 is probed with two tones nomi-
nally detuned by ±δp = ±1 kHz from atomic resonance [see
Fig. 4(b)(i)]. An identical pair of probe tones offset by one free
spectral range (
FSR,0) probes the phase shifts induced by the
empty cavity resonance. Since this second pair of probe tones
is far from resonance, we can use much more power in these
probe tones to reduce their photon shot-noise contributions to
the final signal to noise.

The probe tones are typically applied for 20 to 40 ms.
We remove the first interval of width TH ≈ 5 ms, where the
initial transient is large. Using two probe tones near the atomic
transition provides first-order insensitivity to laser frequency
uncertainty and noise relative to the atomic transition fre-
quency. Using the full four-tone probe technique provides
cavity and laser frequency noise rejection, as well as auto-
matic rejection of the empty cavity phase shift.

A large fraction of the laser light is picked off prior to the
phase modulator and frequency shifted by 
 fLO to provide
a local oscillator �ELO, linearly polarized along x̂. The LO
is frequency shifted by 
 fLO = 20 kHz, polarization filtered
by a polarization beam splitter that transmits light polarized
along x̂, and combined with the transmitted tones onto a fast
photodetector (PD), forming a heterodyne beat note [Fig. 4(a)]
with photon shot-noise limited sensitivity.

After amplification, both pairs of probe tones are separately
in-phase and quadrature (IQ) demodulated to a base band of
20 kHz using the same RF sources used to drive the phase
modulator. The demodulated IQ voltage signals VIQ(t ) are
digitally sampled into the computer and then fitted to extract
the difference in the phases for a single pair. For example, the
near-resonant pair of tones that probe the clock transition are
demodulated to 20 ± 1 kHz, for δp0/(2π ) = 1 kHz.

After computing the four individual phases δϕ0(±δp)
and δϕ0(
FSR,0 ± δp), we compute the appropriate
pairwise differences to arrive at an estimate of the
atomic phase shift 
ϕ0 = [δϕ0(δp) − δϕ0(−δp)] −
[δϕ0(
FSR,0 + δp) − δϕ0(
FSR,0 − δp)] that for the small
angles here is related to the atomic linewidth γ0 by

ϕ0 = −NC0γ0/δp0.

2. Probing 3P1

The 7.5-kHz transition 1S0 to 3P1 is probed using a to-
tal of two tones separated by one free spectral range [see

Fig. 4(b)(ii)]. Both tones are linearly swept in frequency at the
same time, and as described above, the transmitted probe light
is heterodyne detected, amplified, the individual probe tones
are IQ demodulated, and digitally sampled into the computer.
The IQ data are fitted to extract the resonance frequency δω1

of each cavity mode up to a common offset, and an estimate of
the differential frequency shift between the two cavity modes

ω1 is then computed.

3. Axial sideband spectroscopy

We determine the mean occupation number, trap fre-
quency, and temperature via axial sideband spectroscopy
using a cavity probe near resonance with the clock transition,
following the approach of Ref. [65]. The fraction of atoms
excited by this probe as we scan its frequency is shown in
Fig. 4(c). We consistently measure the axial trap frequency
to be ωz/(2π ) = 230(1) kHz, the temperature to be T =
14(1) μK, and the mean occupation number nz = 0.9(1).
The Lamb-Dicke parameter computed for the 3P0 transition is
η0 = 0.1425(6) and η1 = 0.1443(6) for the 3P1 transition. Re-
markably, the measurement is dispersive (δp0 � NC0γ0), but
addresses the carrier transition (δp0 	 ωz), which is achiev-
able for this set of ultranarrow optical transitions.

4. Cavity geometry determination

In order to set the detuning of the cavity to the F = 9
2

3P1

manifold (δC1), while keeping the cavity on resonance with
the clock transition, we heat up our ceramic cavity spacer
with a set of lights by about 10 K from room temperature.
At these settings, we measure a free spectral range (FSR) of

FSR,0 = 2π × 3.714 61(3) GHz for the clock transition and

FSR,1 = 2π × 3.714 59(2) GHz for the 7.5-kHz transition.
The cavity waist at the clock transition 3P0 wavelength is de-
termined to be w0 = 73.85(7) μm. For the broader transition
3P1 transition’s wavelength, the waist is w1 = 73.37(7) μm.
These values are predicted by the Gaussian beam propagation
theory using the known wavelengths, mirror radius of curva-
ture, and cavity free spectral range. The waist sizes have been
independently verified to agree at the 0.1% level by measuring
the spacing between the TEM00 mode and the TEM1,0/0,1

modes relative to the measured free spectral range of the
cavity [74].

Atoms are loaded at the cavity center (in-between the
two mirrors), as confirmed by taking fluorescence images
of the loaded atoms. The Rayleigh length of the modes
[∼2.453(5) cm] is typically much longer than the longitudinal
extent of the cold atomic cloud [σlong = 0.30(5) mm]. Finally,
we performed cavity ring-down measurements to determine
the cavity linewidth. For these measurements we probed the
cavity on resonance with light polarized along x̂ and after
quickly turning off the probe light with the electro-optical
modulator (EOM), we observed the photocurrent on a fast
dc coupled photodiode directly positioned after the cavity.
We determine a linewidth of κ0/(2π ) = 140.9(3) kHz at the
clock transition and κ1/(2π ) = 153.0(4) kHz at the 689-nm
transition, after taking statistics over several trials. The cavity
and atomic parameters can be found in Table II.
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TABLE II. Summary of cavity and atomic parameters.

Description Symbol Value Unit

Probe wavelength 0: 3P0 probe [87] λ0 698.4457 nm
Probe wavelength 1: 3P1 probe [87] λ1 689.4485 nm
Trap wavelength λtrap 813.4257(2) nm
Cavity FWHM 0 for probe polarized along x̂ κ0/2π 140.9(3) kHz
Cavity FWHM 1 for probe polarized along x̂ κ1/2π 153.0(4) kHz
Mode waist 0 w0 73.85(7) μm
Mode waist 1 w1 73.37(7) μm
Lattice waist wtrap 79.7(1) μm
Rayleigh range 0,1 zR 2.453(5) cm
Free spectral range 0 
FSR,0/2π 3.71461(3) GHz
Free spectral range 1 
FSR,1/2π 3.71459(2) GHz
Cavity length 0 L0 4.03532(3) cm
Cavity length 1 L1 4.03534(2) cm
Axial trap frequency on axis ωz/2π 230(1) kHz
Radial trap frequency ωr/2π 528(2) Hz
Axial temperature Tz 14(1) μK
Radial temperature Tr 12(2) μK
rms thermal radius σr 14(1) μm
rms longitudinal cloud radius σlong 0.30(5) mm
Axial vibrational quanta n̄z 0.9(1)
Axial Lamb-Dicke parameter 0 η0 0.1425(6)
Axial Lamb-Dicke parameter 1 η1 0.1443(6)
Cavity detuning 0 δC0/2π 0(10) kHz
Cavity detuning 1 δC1/2π 277.5(8) MHz
Birefringent cavity mode full splitting 0 δb0/2π 23(3) kHz
Birefringent cavity mode full splitting 1 δb1/2π 24(3) kHz
Birefringent cavity mode polar angle on Poincaré sphere (Jones vector) θb 30(2) deg
Birefringent cavity mode azimuthal angle on Poincaré sphere (Jones vector) ϕb ±14(4) deg
3P1 linewidth [75] γ1/2π 7.48(1) kHz
3P1 F ′ = 11/2 detuning from 9/2 [87] 
11/2/2π −1463.15(6) MHz
3P1 F ′ = 7/2 detuning from 9/2 [87] 
7/2/2π 1130.26(6) MHz

APPENDIX C: EXTRACTING (g0/g1)2 FROM MEASURED
PHASE SHIFTS

We measure the ratio (g0/g1)2 by interleaved measure-
ments of the atomic-induced phase shift between two probes
near resonant with the clock transition 
ϕ0 and cavity fre-
quency shift 
ω1 on the 7.5-kHz transition, from which we
calculate the associated phase shift 
ϕ1 = 
ω1/(κ1/2). An
ideal measurement assumes that all the atoms are homoge-
neously coupled to the cavity mode, they do not move, they
are optically pumped to the mF = ± 9

2 states, all the atoms
remain in the ground state during the probing, both probes
are π polarized, and that the cavity mode is aligned to the
clock transition, while the 689 F = 9

2 → F ′ = 9
2 transition

is detuned by δC1. The validity of these approximations will

be taken into consideration when analyzing the systematic
corrections.

The atomic contribution to the phase shift on the clock
transition between tones at ±δp0 with respect to the atomic
transition is


ϕ0 = 4Nc2
Cg2

0

κ0δp0
, (C1)

where cC is the Clebsch-Gordan coefficient for π -polarized

light probing the stretched states (cC =
√

9
11 ), 2g0 is the

single-photon Rabi frequency for the clock transition, and κ0

is the cavity linewidth at 698 nm.
The difference between the cavity frequency shifts for the

two 689-nm modes, as shown in Fig. 4(b)(ii), is


ω1 = Ng2
1

{(
c2

N1

δC1
+ c2

N2

δC1 − 
11/2

)
−

(
c2

N1

δC1 − 
FSR,1
+ c2

N2

δC1 − 
11/2 − 
FSR,1

)}
, (C2)

where cN1 and cN2 are the Clebsch-Gordan coefficient for
π -polarized light probing the stretched states on the F =
9
2 → F ′ = 9

2 and F = 9
2 → F ′ = 11

2 transitions, respectively

(cN1 =
√

9
11 , cN2 =

√
2
11 ), 
11/2/(2π ) = −1463.15(6) MHz

is detuning of F ′ = 11
2 with respect to the F ′ = 9

2
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TABLE III. Correction factors FC for 
ϕ1 measurement.

Effect 1 − FC Uncertainty on FC

Polarization uncertainty 2 × 10−4 6 × 10−5

Differential lattice shift −2.3 × 10−3 8 × 10−4

Saturation during probe −2 × 10−4 2 × 10−4

Probe optical pumping
and losses −4 × 10−4 4 × 10−4

Zeeman shift 2 × 10−8 1 × 10−9

Higher-order corrections −2.5 × 10−4 1 × 10−4

manifold [87], and 
FSR,1/(2π ) is the cavity free spectral
range at 689 nm. Note that the F ′ = 7

2 manifold, detuned by

7/2/(2π ) = 1130.260(6) MHz from the F ′ = 9

2 transition,
does not contribute to the expression in Eq. (C2) as we are
assuming atoms are optically pumped to mF = ± 9

2 and the
probe is π polarized.

To finally reveal the ratio between g0 and g1, we need to
precisely know all the numerical factors in Eqs. (C1) and (C2),
as well as characterize all systematic corrections that must be
applied to account for deviations of the experiment from the
idealized situation above.

APPENDIX D: SYSTEMATIC EFFECTS

This measurement approach for determining natural life-
times of long-lived states is unique, and it is important to think
broadly about potential systematic corrections that must be
applied, as well as the uncertainties on these corrections. In
this Appendix, we will discuss nearly 20 different systematic
corrections. Most of these are small enough to be ignored,
but we include them for completeness and for the sake of
future applications of the technique, in which details of the
experimental system might make these effects larger.

We roughly break up the systematics discussion into three
categories: those that affect individually the cavity phase shift
measurement 
ϕ1 on the 7.5-kHz transition, those that affect
the phase shift measurement 
ϕ0 on the clock transition, and
those that affect the measured ratio (
ϕ0/
ϕ1). We define the
correction factors FC as the ratio of the ideal quantity Qi and
the actually measured quantity Qm such that the ideal quantity
can be recovered from the measured quantity as Qi = FCQm.

1. Corrections on the phase shift �ϕ1

In this section we discuss effects that affect the measured
cavity frequency shift 
ϕ1 for the two consecutive TEM00

modes on the 7.5-kHz transition at 689 nm. The magnitude
of the correction factors FC are shown in Table III.

a. Polarization uncertainty in 3P1 probe

The polarization uncertainty effect refers to the fact that
the probe light’s polarization might not have been perfectly
π polarized. To optimize the probe polarization’s orientation
relative to the magnetic field, we performed a measurement of

ϕ1 at a (variable) value of the transverse magnetic field Bt

first, and within 4 ms we measure it again at another magnetic
field Bref

t that we believe to be close to the value that cancels
the transverse components. Magnetic fields along x̂, ŷ, ẑ are

generated by three respective sets of Helmholtz coils driven by
a stabilized current source, which allow us to rapidly perform
small changes in the y and z components of Bt in order to
perform this measurement [see Fig. 4(a)]. In this way, we
have the ability to compute the ratio in each experimental
repetition, which gives us further insensitivity with respect to
other quantities that fluctuate shot to shot, like atom number.

The ratio of the two measurements 
ϕ1(Bt )/
ϕ1(Bref
t ) is

maximized when the y and z components are nulled, as our
model shows. An example of this measurement is shown in
Fig. 5(a). If the reference field Bref

t was not properly chosen,
we can change it accordingly and evaluate the ratio again,
until we consistently find the right value for Bref

t , where we
would like to operate the experiment. Typically, we observed
day-to-day shifts of 3 mG as we repeat this procedure before
any of the measurements to establish the linewidth ratio. The
associated correction factor FC takes into account the effect
of a small magnetic field fluctuations of magnitude 3 mG
on typical data sets as shown in Fig. 5(a). Based on our
model, we find that we can realize a probe with 98% pure
π polarization. The fitted quadratic dependence of the phase
shift magnitude along with this 3-mG uncertainty is used to
estimate the correction factor for this effect.

b. Differential lattice shift in 3P1 probe

The differential lattice shift is due to the fact that the lattice
is not quite magic for the 3P1 states. However, the expected
differential ac Stark shifts, around 0.7(2) MHz for our trap
depth, are very small compared to the cavity detuning from
the atomic transition δC1. Experimentally, we determine 
ϕ1

to change by less than 1% for trap depths changing by 50%.
The uncertainty is estimated based on a combination of trap
depth, resonance frequency, and cavity detuning uncertainties.

c. Saturation and optical pumping due to the 3P1 probe

While probing the cavity phase shift 
ϕ1, the probe it-
self can excite atoms, especially if the probe power is large.
To characterize this effect, we measure the change in 
ϕ1

as a function of the probe power. In each experimental
repetition, we perform three consecutive measurements as
depicted in Fig. 5(b): first at a (variable) power PH

1 , then at a
(low) reference power PL

1 , then again at the same (variable)
power PH

1 . This allow us to be insensitive to, for instance,
shot-to-shot variations in atom number, while allowing us
to characterize the effect of a high-power probe on each
measurement.

In each experimental shot, we obtain three cavity phase
shifts for each of the previous powers that we denote as

ϕ1

1 , 
ϕ2
1 , and 
ϕ3

1 , respectively. We model the effect of any
possible probe power related effect during the probe, in the
low-power limit, as a modification in the measured phase shift
as 
ϕ1(P) = 
ϕ1(P = 0)[1 − 2(P/P0)], where P is the probe
optical power, P0 is some parameter that works as an effective
saturation power in this model (the beam area is fixed by the
cavity), and 
ϕ1(P = 0) is the zero-power phase shift that
is the interest of our measurement. In order to characterize
this behavior, we change PH

1 and measured the effect on 
ϕ1

using the ratio sS = [(
ϕ1
1 + 
ϕ3

1 )/2 − 
ϕ2
1 ]/(
ϕ2

1 ); for low
excitation fractions, this is linear in the input power PH

1
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FIG. 5. (a) Polarization alignment using cavity phase shift measurements while changing one of the transverse magnetic field components.
In a single shot, we compute the ratio between two measurements at a variable transverse field Bt and a reference transverse field Bref

t .
Typical day-to-day fluctuations are around 3 mG. (b) Saturation effects on the 689-nm transition probe. We use interleave 
ϕ1 measurements
at different powers to determine the relative reduction on 
ϕ1 as the probe power increases. (c) Power-induced reduction on the 689-nm
transition phase shift. We use interleave 
ϕ1 measurements at different powers to determine the relative reduction on 
ϕ1 as the probe power
increases. (d) Influence of the cavity detuning δC0 on the atomlike phase shift 
ϕ0 on the clock transition. We tune the cavity at two different
cavity detunings, one fixed δC0,ref , and one variable δC0, and in a single show we compute the ratio 
ϕ0(δC0 )/
ϕ0(δC0,ref ) that maximizes when
δC0 = δC0,ref = 0. (e) Optical pumping correction factor FC , where we take the fractional population on the ± 7

2 states to be ε, on the ± 5
2 states

is ε2, on the ± 3
2 states is ε3, and on the ± 1

2 states is ε4. Inset shows the dependence of the correction factor for ε = 0.05 versus the cavity
detuning δC1 to the 3P1, F ′ = 9

2 manifold. (f) Zoom-in for low powers for Fig. 3(c) in the main text. Results and fits shown for estimator E3 as
described in this text.

and scales as sS = (P0 − 2PH
1 )/(P0 − 2PL

1 ). For a given
probe power P, the correction factor would be FC = 1/[1 −
2(P/P0)]. As we measure PL

1 and sS , we can determine P0 in
our model to estimate the correction.

The measurement is shown in Fig. 5(b), where we fit a
linear function (red line) to the input probe power PH

1 . This
allows us to establish that the excitation fraction is not signif-
icant (<0.0001) for cavity probe input powers below 1 nW.
The value quoted for the associated correction factor takes
into account the maximum power used for the data presented
in Fig. 3(b) in the main text, which was around 1 nW and was
decreased together with the clock transition probe power to
extract the ratio 
ϕ0/
ϕ1. The uncertainty is taken to cover
the full range of power used in the 
ϕ0/
ϕ1 measurement
presented in the main text. We assign a value FC = 1.0002(2)
for the correction factor.

Furthermore, the probe itself can cause more permanent
effects. For instance, it can cause atom loss or optically
pump atoms to different magnetic sublevels, modifying

ϕ1 and eventually 
ϕ0 on interleaved measurement se-
quences. To characterize this effect, we again use three
consecutive measurements to obtain 
ϕ1

1 , 
ϕ2
1 , and 
ϕ3

1 :
first at a (low) reference power PL

1 , then at a (variable)
power PH

1 , then again at a (low) reference power PL
1 .

This scheme allow us, in a single shot, to characterize

the change that occurs after applying a relative high-power
probe.

The values for PL
1 used here fall into the low-power region

from the the previous analysis, such that for simplicity we
will consider they do not have a significant effect. However,
we will consider the second high-power probe has a more
permanent effect. For example, we consider the case that dur-
ing, and after, the second pulse with power PH

1 the measured
phase shift is modified by an effective value [1 − (PH

1 /POP )]
from its zero-power value. Again, this POP tries to capture
any effect such as redistribution in the ground-state hyperfine
state manifold or atom loss as consequence of a higher probe
power.

To characterize this effect and estimate the necessary cor-
rection, we consider the parameter sOP = 1 − (
ϕ3

1 )/(
ϕ1
1 ),

that measures the differential phase shift after applying a
higher probe power in-between the two pulses. In particular,
our model predicts a behavior of the form sOP = (PH

1 /POP ).
We show the result of these measurements in Fig. 5(c), where
we varied the optical power of the second probe PH

1 . For the
final optical power used in the phase shifts ratio measurement
presented in the text, we use maximum probe powers in the
689-nm transition on the order of 1 nW. From this characteri-
zation, we assign a correction factor FC = 1.0004(4) to cover
the full range of variation for the used powers.
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TABLE IV. Correction factors FC for 
ϕ0 measurement.

Effect 1 − FC Uncertainty on FC

Polarization uncertainty −3 × 10−4 3 × 10−4

Atomic resonance uncertainty 6 × 10−3 6 × 10−3

Cavity resonance drift −8 × 10−3 6 × 10−3

Zeeman shift 2.3 × 10−3 5 × 10−4

Higher-order corrections 4 × 10−4 2 × 10−4

d. Zeeman shifts in 3P1 probe

The Zeeman shift on the different ground and excited states
changes the effective atom-cavity detuning by a few hundred
kHz, which is much smaller than the cavity detuning δC1. The
typical magnetic field that we use is 95 mG, as calibrated
using the splitting between the peaks in the superradiant
pulses [24] and corroborated by the splitting measured in
Fig. 2(a) in the main text, for example. Taking this effect into
account, we expect a very small correction to the ratio of phase
shifts.

e. Higher-order corrections on �ϕ1 measurement

Higher-order corrections on the cavity frequency shift
manifest in δω1 as δω1 = Ng2

1/δC1(1 − 2Ng2
1/δ

2
C1) [66]. We

note that this correction is N dependent. For typical ex-
perimental parameters we have 2Ng2

1/δ
2
C1 � 1 × 10−3. We

calculate the correction factor FC based on an independent
atom-number calibration using florescence imaging, while its
uncertainty is estimated assuming extreme 50% fluctuations
in typical N .

2. Corrections on the phase shift �ϕ0

In this section we discuss effects that affect the measured
atomiclike phase shift 
ϕ0 on the millihertz transition at
698 nm. The magnitude of the correction factors FC are shown
in Table IV.

a. Polarization uncertainty in 3P0 probe

The polarization uncertainty correction takes into account
any possible misalignment between the probe polarization and
the applied magnetic field that defines the quantization axis.
Based on the measurements for 
ω1 presented before, we
model in a very similar way what the effect would have been
for the atomic phase measurement 
ϕ0 with a typical 3-mG
uncertainty on the transverse magnetic fields.

b. Atomic resonance uncertainty in 3P0 probe

The clock transition is addressed with light from a state-of-
the-art laser, used in the 87Sr optical lattice clock experiments
at JILA [2,3,60]. To determine the atomic resonance, we
perform Rabi spectroscopy, measuring the excitation fraction
versus the probe light’s frequency. The probe frequency is
changed by changing the in-fiber EOM driving frequency. For
sufficiently low power, we are able to determine the central
frequency with less than 10 Hz uncertainty, but the full width
at half-maximum of the spectroscopic feature is typically be-
tween 50 and 100 Hz, similar to the data shown in Fig. 2(b)

in the main text. The frequency might be shifted from the
natural 87Sr frequency due to various atomic frequency shifts,
such as dc Stark shifts, Doppler shifts, collective shifts, and
differential ac Stark shifts from a lattice imperfectly tuned
to the clock state’s magic wavelength. However, we have
already fully characterized all these possible clock transition
frequency shifts to be well below 100 Hz in Ref. [24].

Because we are using two symmetric tones to address
the atomic transition, the associated correction factor FC

to the measured phase shift scales as [1 − (δL0/δp0)2] with
δL0 the detuning from the tones central frequency to the atomic
transition, as defined in the main text. Note that this effect
increases the absolute value of the measured phase shift 
ϕ0,
as can be seen in Fig. 2(b) in the main text. Assuming that
|δL0|/(2π ) < 100 Hz but is equally likely to take on any value
in this range, we calculate a correction factor centered on
the root-mean-square (rms) average of FC (δL0) over possible
values of δL0, accompanied by an uncertainty large enough to
cover the full range.

c. Cavity resonance uncertainty in 3P0 probe

By probing and subtracting the phase shifts for two con-
secutive TEM00 modes, one on resonance with the atomic
clock transition, we guarantee that any instantaneous cavity
length fluctuation will be instantaneously removed from our
measurement. However, if the initial cavity detuning from
the clock transition δC0 is nonzero, the phase shift will be
modified by a factor [1 + (δC0/(κ0/2))2], as noted in Eq. (A9).
Typically, we can align the initial cavity length and mini-
mize cavity drifts such that |δC0|/(2π ) � 10 kHz during each
of the measurement in Fig. 3(b) in the main text. We had
verified analytically and experimentally what would be the
effect of a cavity resonance drift, with good agreement. For
example, Fig. 5(d) shows the relative change in 
ϕ0 as δC0

is intentionally changed. For this measurement, we are able
to change the cavity detuning by changing the drive voltage
on the PZTs after the atoms are already loaded in the lattice,
as shown in the inset. We first measure 
ϕ0 for a variable
detuning δC0 and then change the cavity length to a reference
detuning δref

C0 , which allow us to remove unwanted effects,
such as atom-number drifts, from our measurements as we
did when we analyze the impact of transverse components of
the magnetic field on the phase measurements. Based on these
results, and a precise determination of the cavity FSR, we
estimate a correction of less than 1% if we average over cavity
detunings below a maximum 10-kHz drift. In fact, the drifts in
the zero-power value for 
ϕ0/
ϕ1 reported in Fig. 3(b) in the
main text are consistent with cavity frequency misalignment
within our 10-kHz uncertainty.

d. Zeeman shift in 3P0 probe

The small magnetic field present to define the quantization
axis generates a Zeeman splitting between the two ground
states, of typical magnitude 100 Hz, smaller than the probes
splitting 2δp0/(2π ) = 2 kHz. We can accurately calibrate the
magnetic field by observing the splitting between superradi-
ant pulses, as in Ref. [24]. By using two symmetric tones
to address the clock transition, the phase shift will be only
second-order sensitive to the Zeeman splitting. We calculate
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TABLE V. This table contains the correction factors FC to correct
the ratio (
ϕ0/
ϕ1).

Effect 1 − FC Uncertainty on FC

Offsets in 
φ0,1 0 1 × 10−2

Axial inhomogeneous
Probe coupling 0 2 × 10−3

Differential radial average 7 × 10−5 1 × 10−5

Finite axial confinement/ −6.2 × 10−2 4 × 10−3

resolved carrier correction
Ground-state mF distribution −1 × 10−3 1 × 10−3

Lifetime in the lattice −2 × 10−3 2 × 10−3

Cavity birefringence −1.2 × 10−2 5 × 10−3

this value and assign an uncertainty based on a 5% uncertainty
on the determination of the magnetic field along the quantiza-
tion axis.

e. Higher-order corrections on the �ϕ0 measurement

Higher-order corrections on the four-tones phase shift
method are derived in Eq. (A9). The second correction fac-
tor [(2δc/κ )2] is the cavity resonance drift considered above.
The other higher-order terms, remnant from the small-angle
approximation, contribute at the level of 10−4 for typical atom
numbers, obtained through an independent calibration of our
fluorescence imaging. Its uncertainty is estimated assuming
extreme 50% fluctuations in typical N .

3. Corrections on the ratio (�ϕ0/�ϕ1)

In this section we discuss effects that modify both the mea-
sured atomiclike phase shift 
ϕ0 on the millihertz transition
at 698 nm and the cavity phase shift 
ϕ1 on the 7.5-kHz
transition at 689 nm. The magnitude of the correction factors
FC is shown in Table V.

a. Offsets in �ϕ0,1

The effect of noncanceled offsets in our measurements is
to alter the measured values of 
ϕ0 and 
ϕ1. In particular,
because the desired phase shifts are collective, while the offset
are not, it can cause an N-dependent correction to the ratio

ϕ0/
ϕ1.

Assuming single-atom phase shifts 
ϕa
0,1 and offsets 
ϕoff

0,1
on each measurement, we can express the desired ratio as


ϕ0


ϕ1
= N
ϕa

0 + 
ϕoff
0

N
ϕa
1 + 
ϕoff

1

. (D1)

For the three different sets shown in Fig. 3(b) in the main text
we measured low-power sets with no atoms in the cavity, and
verified that 
ϕoff

0,1 = 0 within error bars. To be specific, we
typically measure 
ϕoff

0 = 0(0.25) mrad and 
ϕoff
1 = 0(4)

mrad, while the low-power phase shifts for N = 80 × 103

atoms are approximately 
ϕ0 = 40 mrad and 
ϕ1 = 400
mrad. Therefore, the offsets do not alter the measured ratios at
the 1% level, limited by the uncertainty in our determinations
of the offsets.

We consider in this case the correction factor
to be FC = (
ϕa

0/
ϕa
1 )/(
ϕ0/
ϕ1) that for small

offsets (
ϕoff
0,1 	 N
ϕa

0,1) is approximately FC =
1 + ((
ϕoff

1 /
ϕa
1 ) − (
ϕoff

0 /
ϕa
0 ))/N . For the values just

quoted and summing in quadrature the uncertainties for
each phase shift, we have FC = 1.00(1), which represents
the largest single uncertainty contribution to the final FC .
It is worth noticing that the uncertainty in the phase shift
measurements can potentially be improved by, for example,
increasing the probe detunings and their power, and improving
the final quantum efficiency of the detection system.

b. Axial inhomogeneous probe coupling

The optical lattice at λtrap = 813 nm, the probe at λ1 = 689
nm, and the probe at λ0 = 698 nm all form standing waves
in the cavity that are all incommensurate with each other.
Focusing on just the two probes, the couplings vary approxi-
mately as g2

0/1 = g2
m,0/1 cos2 (2πz/λ0,1 + ψ0/1) where z is the

location along the cavity axis, z = 0 is at the center of the
cavity, and the spatial phase of the standing waves is ψ0/1 = 0
or π/2, depending on the relative parity of the modes. The
maximum coupling at an antinode is g2

0/1,m.
As one moves along the cavity axis, the standing wave of

the two probes continuously transform every 13 μm from
being aligned (having antinode aligned to antinode) to an-
tialigned (having anitnodes aligned to nodes.) As a result, the
probes do not interact with exactly the same set of atoms.
However, the atoms are loaded into lattice sites spanning
approximately 0.6 mm along the cavity axis (rms diameter)
so that one expects the reduction in the coupling due to spatial
averaging to be nearly identical and thus cancel in the ratio
of the measured couplings. Assuming atoms are only located
every λtrap/2, and are spread uniformly along 0.6 mm, the ratio
of averaged couplings is modified by <2 × 10−3. If a more
reasonable Gaussian envelope with standard deviation 0.3 mm
(rms radius) is used to describe the loading of the lattice sites,
the ratio of averaged couplings is changed by many orders
of magnitude less. Here, we conservatively apply a correction
FC = 1 with an uncertainty on FC of 2 × 10−3.

c. Radial inhomogeneous probe coupling

The measured phase shifts are also modified when av-
eraging over the radial positions of the atoms due to the
finite difference in the probe mode waist sizes w0 and w1

characterizing the 1/e2 in intensity radius of the Gaussian
TEM00 probe modes (see Table II). The ratio of waists scales
as w1/w0 = λ1/λ0 ≈ 1 − 1.29 × 10−2. For an atom at a dis-
tance r away from the cavity axis, the ratio of the couplings
g2

0/g2
1 is modified by the factor f compared to its on-axis value

f = e−2( r
w̄ )2 (

w2
1−w2

0
w̄2 )

, (D2)

where w̄ = √
w0w1 is the geometric mean of the waists. For

scale, at the rms thermal radius of the atomic cloud σr =
14 μm, the correction factor is f = 1.0007. After averaging
over the atomic radial distribution, the averaged coupling g2

0
and g2

1 are both reduced by about 4% but the ratio g2
0/g2

1
is changed by less than 10−4. We expect that the rms ther-
mal radius is common to both measurements because we do
interleaved nondestructive probes and because we interpolate
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to zero probe power so that any potential mechanical forces
on the atoms are also interpolated to zero.

d. Finite axial confinement and resolved carrier correction

The largest systematic correction that must be applied
arises from the finite localization of the atoms along the axial
direction. The atoms are trapped in the Lamb-Dicke regime
along the cavity axis with spacing dictated by the lattice
wavelength (813 nm). The probe tones almost exclusively in-
teract with the well-resolved motional carrier transition since
δp0 	 ωz. Lastly, because of the finite localization of the
atomic wave function (i.e., finite Lamb-Dicke parameter) the
effective strength of the carrier transition [i.e., the effective
g2

0 is reduced by an estimated 6.2(4)% for which we apply a
correction].

In order to evaluate the apparent modification to g2
0 from

this effect, we estimate the probability distribution P(n) of
finding an atom in the nth axial vibrational level. The estimate
is made using sideband spectroscopy measurements as shown
in Fig. 4(c), following Ref. [65]. Based on this probability
distribution, we calculate the average correction to g2

0. We
model the light-matter coupling as g2

0(φ, ẑ) = g2
0,m cos2(kpẑ +

φ), where kp is the probe wave vector, ẑ is the harmonic
oscillator position operator, g0,m is the value of g0 at a probe
antinode, and φ is a uniformly distributed phase between 0
and 2π that accounts for the inhomogeneous coupling of the
trap atoms to the probe. This is justified as the probe and the
axial atomic distribution are incommensurate and the beating
length is much shorter than the cloud extent.

Furthermore, the radial spreading of the cloud means that
each atom will have a slightly different axial trap frequency.
To leading order, an atom at distance r from the center will
have an axial frequency ωz(r) = ωz,0[1 − (r/wtrap)2], where
ωz,0 is the maximum axial frequency [ωz,0/2π = 230(1) kHz]
and wtrap is the trap waist (wtrap = 79.7 μm). As both direc-
tions are decoupled, we have that the average axial frequency
over the atomic ensemble is 〈ωz〉 = ωz,0[1 − (〈r2〉/w2

trap)].
For a Gaussian radial density distribution profile, we have
〈r2〉 = 2σ 2

r = 2kBTr/(mω2
r ), with Tr the radial temperature

determined from the motional sideband fit, kB is the Boltz-
mann constant, ωr the radial trap frequency, and σr the rms
thermal radius of the cloud along its radial direction.

We calculate the average value 〈g2
0〉 over this distribution

for this effective axial trap frequency 〈ωz〉, that is the value
that enters in our measurement result for 
ϕ0, as

〈
g2

0

〉 =
n=Nz∑
n=0

1

2π

∫ 2π

0
P(n) 〈n| g2

0,m cos2(kpẑ + φ) |n〉 dφ,

(D3)
where Nz is the maximum harmonic level on the trap (Nz ∼
17) [65] and |n〉 are the eigenstates of the unperturbed
harmonic potential along the z direction. We follow a similar

procedure for the 689-nm probe, but taking into account that
we are probing every transition, i.e., we sum over all possible
initial and final states correcting the relative detuning between
each harmonic oscillator state. Based on the reconstructed
probability distribution P(n), we obtain a correction factor
FC = 1.062(4), dominated by the uncertainty on the fitted
temperature on the axial and radial coordinates. This is the
biggest correction we apply to the measured ratio (
ϕ0/
ϕ1).

We emphasize that for the 3P1 probe, where the probe de-
tuning is much bigger than the trap frequency (δC1 � ωz), the
vibrational degrees of freedom do not play a significant role.
However, the average over the phase ϕ in Eq. (D3) gives a 1

2
reduction on g2

1, that is also present in the g2
0 term, making this

a common mode effect whose impact is highly suppressed.
Imperfect cancellation of this factor is taken into account on
the previous section (Appendix D 3 b).

e. Ground-state mF distribution

The initial distribution among the different magnetic mF

sublevels in the ground states is extremely important. For ex-
ample, if there are atoms in any other mF state other than ± 9

2 ,
both 
ϕ0 and 
ϕ1 (or the measured 
ω1) will be affected.
Measuring the frequency splitting between the superradiant
pulses on the clock transition [24], confirmed that the initial
optical pumping efficiency is at least 95% to the ± 9

2 states. In
order to estimate the correction to the dispersive phase shift
ratio, we assume a conservative bound of 5% of the atoms in a
wrong state. We model the measured ratio (
ϕ0/
ϕ1) when
5% of the atoms are allowed to be in any of the other mF

levels as a function of the detuning δC1. Because the position
of the different hyperfine levels on the 3P1 state relative to
the cavity modes [hyperfine splitting is comparable to cavity
free spectral range, see Fig. 4(b)(ii)], and the fact that each
transition has a different set of Clebsch-Gordan coefficients,
the correction factor is highly sensitive to the cavity detuning
δC1. A detail explanation follows below.

We consider a realization of the atomic distribution among
the ground hyperfine state levels PG that contains the list
of probabilities of finding an atom in each ground state
mF . Ideally, PG = {1/2, 0, . . . , 0, 1/2}, for the set mF =
{−9/2,−7/2, . . . , 7/2, 9/2}. For the phase shift on 1S0 →
3P0 transition at 698 nm, 
ϕ0, the new phase shift for an
arbitrary distribution PG on the mF manifold is


ϕ0,{mF } =
mF =9/2∑

mF =−9/2

PG(mF )
4N

[
c0
π (mF )

]2
g2

0

κ0δp0
, (D4)

where c0
π (mF ) is the Clebsch-Gordan coefficient for π -

polarized light probing the mF hyperfine ground state on the
1S0 → 3P0 transition, populated with probability PG(mF ).

For the phase shift at the 1S0 → 3P1 transition at 689 nm,

ϕ1, the equivalent modification is


ϕ1,{mF } =
∑

k={0,1}

mF =9/2∑
mF =−9/2

PG(mF )
2πNg2

1

κ1
(−1)k

( [
c0
π,9/2(mF )

]2

δC1 − k × 
FSR,1
+

[
c0
π,11/2/2(mF )

]2

δC1 − 
11/2 − k × 
FSR,1
+

[
c0
π,7/2(mF )

]2

δC1 − 
7/2 − k × 
FSR,1

)
,

(D5)
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where c0
π,9/2(mF ), c0

π,11/2(mF ), and c0
π,7/2(mF ) are the Clebsch-Gordan coefficients for the π -polarized transition on the F =

9
2 , 11

2 , 7
2 hyperfine manifolds for each mF state, populated with probability PG(mF ). Note that the sum subtracts the shifts on the

two cavity modes (k index), as shown in Fig. 4(b)(ii), and the signs on 
9/2 and 
7/2 are taken to be consistent with the cavity
detuning definition (δC1).

Corrections on the measured ratio are shown in Fig. 5(e) for the case where the fractional population on the ± 7
2 states is ε,

on the ± 5
2 states is ε2, on the ± 3

2 states is ε3, and on the ± 1
2 states is ε4. We determine the value of FC as the one for ε = 0.05,

and its uncertainty the one associated to the spread in order to cover up to ε = 0.1, giving FC = 1.001(1). We point out again the
dependence on the cavity detuning to the 3P1 manifold, δC1, on the correction factor FC on Fig. 5(e) inset for ε = 0.05. For the
value we choose to operate [δC1/(2π ) = 277.5(8) MHz] we are near the maximum correction factor, but we gain in insensitivity
with respect to the cavity detuning.

f. Finite lifetime on the optical lattice

Any of our measurement sequences that involve a few consecutive measurements per experimental trial are susceptible to
atom loss from the trap. In particular, the lifetime in the lattice is τlatt ∼ 500 ms (limited by parametric heating), while typical
measurements on the clock transition last Tm ∼ 20 ms typically. By combining 5 of these measurements, as in Fig. 3(b) in
the main text, we can use the different outcomes and partially cancel the effect of the trap lifetime, by retaining a correction
1 + α(Tm/τlatt )2, where α can vary from 0 to 1 according to the way we combine the measurement outcomes (see next sections).
The magnitude and uncertainty on the correction contemplates a uniform spread of α.

g. Cavity birefringence

In an ideal atom-cavity system, light polarized along the atoms’ quantization axis will only interact with π transitions.
However, the presence of cavity birefringence featuring normal modes misaligned with this axis leads to a coupling between
π -polarized light and atomic transitions normally driven by circularly polarized light that is quadratic in the birefringent energy
splitting. This effect introduces corrections to both phase shift measurements which do not cancel in their ratio, leading to a
systematic on the ratio measurement. Calculating these corrections requires modifying the cavity transfer function shown in
Eq. (A3).

In the presence of cavity birefringence, a single longitudinal mode splits into two resonances characterized by polarization
eigenmodes ĉ±, such that

Ĥcav =
(

ωc − δb

2

)
ĉ†
−ĉ− +

(
ωc + δb

2

)
ĉ†
+ĉ+ (D6)

for birefringent splitting δb. Since the probe beam polarization and quantization axis are aligned to a common vertical direction
[x̂ as in Fig. 4(a)], it makes sense to express these eigenmodes in this basis as well. This is accomplished using two parameters
θb, ϕb:

ĉ− = [cos(θb/2)] v̂ + [− sin(θb/2)e−iϕb] ĥ,

ĉ+ = [sin(θb/2)eiϕb] v̂ + [cos(θb/2)] ĥ,
(D7)

such that light along ĥ [ŷ as in Fig. 4(a)] and v̂ polarizations interact with σ and π transitions, respectively. The above expressions
are essentially Jones vector representations of the eigenmodes; correspondingly, θb and ϕb can be thought of as spherical
coordinates for the eigenmodes on the Poincaré sphere with poles defined by h and v polarizations.

As long as the atoms occupy stretched states (mF = ± 9
2 ), there is only one σ transition. Therefore, one can unambiguously

define collective spin operators along the two transitions, denoted by J±
π/σ = ∑N

i=1 σ±
i,π/σ and Jz

π/σ = 1
2

∑N
i=1 σ z

i,π/σ for single-
particle operators σ ∗

i,π/σ . We go into the rotating frame of the atoms, assuming the two transitions are degenerate in frequency,
to construct the following Hamiltonian:

Ĥ =
[(

δc − δb

2
cos θb

)
v̂†v̂ +

(
δc + δb

2
cos θb

)
ĥ†ĥ + δb

2
sin θb(ĥ†v̂eiϕb + ĥv̂†e−iϕb )

]
+ [gπ (v̂Ĵ+

π + v̂†Ĵ−
π ) + gσ (ĥĴ+

σ + ĥ†Ĵ−
σ )].

(D8)
Analogously to the derivation at the start of this document, one can derive optical Bloch equations to analyze mean-field behavior
(O = 〈Ô〉). Assuming a vertically polarized cavity drive vi(t ) at detuning δp from atomic resonance, these equations are given by

v̇ = −i

[(
δc − δb

2
cos θb

)
v +

(
δb

2
sin θb e−iϕb

)
h

]
− igπJ−

π − κ

2
v + √

κmvi(t ),

ḣ = −i

[(
δc + δb

2
cos θb

)
h +

(
δb

2
sin θb eiϕb

)
v

]
− igσ J−

σ − κ

2
h,

(D9)
J̇−
π = 2igπvJz

π − γ ⊥
π J−

π , J̇−
σ = 2igσ hJz

σ − γ ⊥
σ J−

σ ,

J̇ z
π = igπ (v†J−

π − vJ+
π ) − γπNπ , J̇ z

σ = igσ (h†J−
σ − hJ+

σ ) − γσ Nσ ,
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where Nπ/σ represents the number of atoms excited along the
π/σ transition. In the weak probe limit, both of these go to 0
as there are no excited atoms available to decay.

From these equations, one can determine how the input
probe vi(t ) = ṽie−iδpt changes in transmission through the
atom-cavity system. In general for a birefringent cavity, the
transmitted light’s polarization may be different from the
probe due to different resonance conditions for the two normal
polarization modes. In our experiment, we beat the transmit-
ted light with a vertically polarized local oscillator to measure
the light in heterodyne, so the signal of interest is the vertical
component of any transmitted light. We are therefore inter-
ested in the transfer function Tv (δp), defined by ṽt = Tv (δp)ṽi.
It turns out that Tv can be expressed in terms of the following
transfer functions, which decouple the horizontal and vertical
excitations:

Tπ (δp) = 1

1 − i
( δp−δc+δb/2 cos θb

κ/2

) + NCπ γπ /2
γ ⊥

π −iδp

,

Tσ (δp) = 1

1 − i
( δp−δc−δb/2 cos θb

κ/2

) + NCσ γσ /2
γ ⊥

σ −iδp

. (D10)

Then, the full transfer function is given by

Tv (δp) = Tπ (δp)

1 + (
δb
κ

sin θb
)2

Tσ (δp)Tπ (δp)
. (D11)

Note that the transfer function does not depend on the az-
imuthal angle ϕb; this holds as long as the transmitted light
is only measured along v. For small birefringent splitting,
Fv can be calculated perturbatively by expanding in powers
of ( δb

κ
sin θb)2. It follows that leading-order corrections to the

cavity shifts will be quadratic in δb.
Using a simple polarimetry setup consisting of PBSs,

waveplates, and photodiodes, we were able to measure
δb0/κ0 = +0.16(2), δb1/κ1 = +0.16(2), and θb = 30(2)◦.
This implies ( δb

κ
sin θb)2 = 0.006(2) along both transitions,

justifying a perturbative treatment. From this, we can calculate
the modified shifts and derive a correction factor for the shift
ratio 
ϕ0/
ϕ1, which turns out to be FC = 1.012(3). This
value accounts for all differential shift measurements, as well
as the full hyperfine landscape.

Considering the effect of cavity birefringence opens up
new potential sources of uncertainty. First, one might imagine
that an imperfect optical pumping scheme might conspire with
the cavity’s birefringence to produce larger corrections than
previously discussed. In fact, numerical calculations show
the two effects are largely decoupled and can be treated
separately. Second, if the local oscillator is misaligned from
vertical polarization by some small angle α, all phase shifts
will receive a linear correction proportional to α δb

κ
sin θb.

However, the experiment’s differential probe design leads to
partial cancellation of these shifts. Assuming α is uncertain by
5◦, the additional uncertainty on FC is at most 0.003. Finally,
if the two birefringent normal modes exhibit slightly different
linewidths, the optical Bloch equations change accordingly
and lead to further phase shift modifications. Data used to
determine δb allows us to constrain any linewidth difference
to δκ � 0.05κ , which limits the correction on FC to � 0.001.

Incorporating these additional sources of uncertainty into the
birefringence correction factor gives FC = 1.012(5).

This experiment was performed before the discovery of
cavity birefringence in our system. In principle, for future
experiments one could mitigate the effect of this systematic
by aligning all beam polarizations and the atoms’ quanti-
zation axis along the birefringent eigenmode axis. If the
eigenmodes are linearly polarized, the probe beam will only
excite one of the two modes, completely removing any
birefringent coupling. Otherwise, any ellipticity the eigen-
modes possess will limit the ability to suppress the coupling
with a linearly polarized probe beam, which is necessary
for this experiment. In our system, the effect of birefrin-
gence could be suppressed by approximately ∼17 by such an
alignment.

4. Summary: Full systematic correction

Taking all these effects into account we infer a correction
factor FC = 1.074(16) on the measured ratio (
ϕ0/
ϕ1). Its
value is determined by multiplying the systematic corrections
detailed in Tables III, IV, and V, while its uncertainty is
properly summed in quadrature. The uncertainty on FC is
dominated, mostly, by technical issues, such as the uncertainty
in the clock atomic frequency, the cavity alignment with the
atomic resonance, and alignment of the probe polarization
with respect to the cavity eigenmode axis considering bire-
fringence, which can be further improved. Furthermore, its
uncertainty is also dominated by technical aspects such as
signal to noise in our data and its influence on determining
the phase shift offsets, as well as uncertainty in the atomic
transition frequency and cavity alignment on the clock transi-
tion.

APPENDIX E: EXTRAPOLATING �ϕ0/�ϕ1 TO
ZERO-PROBE POWER AND INTERLEAVED

MEASUREMENTS

In this Appendix, we will discuss the details of the low-
power measurement presented in Fig. 3(b) in the main text.
Absent systematic corrections, it remains to determine the
zero-probe-power value for the ratio (
ϕ0/
ϕ1), that we will
name (
ϕ0/
ϕ1)P=0.

We measured the ratio of the atomic phase shift to cavity
frequency shift while simultaneously decreasing both 698 and
689 probe powers, P0 and P1, respectively, and taking longer
sets to accumulate similar statistics for lower optical power
measurements, as expected from the photon-shot-noise scal-
ing. The ratio is expected to strongly depend on both powers,
although the maximum 689-nm optical power was already
low enough to be a significant effect, according to the results
shown in Figs. 5(b) and 5(c). We measure 
ϕ0 and 
ϕ1 in
an interleave form, to gain insensitivity with respect to lattice
lifetime. We realize five measurements every Tc = 25 ms, as
shown in Fig. 3(b) in the main text, interleaving three 
ϕ1

short measurements (∼2 ms) with two longer 
ϕ0 measure-
ments (∼25 ms). Upon further detailed inspection, the ratio
of the average of two 
ϕ0’s and the average of the three

ϕ1’s measurements will have the same linear sensitivity to
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TABLE VI. This table contains different fits for several estimators for the ratio (
ϕ0/
ϕ1).

Estimator Fit method/origin
(


ϕ0

ϕ1

)
P=0

× 10−2 χ 2
ν

Estimator E1 Quadratic on P0. Mean value for crossing −8.92(6)
Estimator E2 Quadratic on P0. Mean value for crossing −8.92(6)
Estimator E3 Quadratic on P0. Mean value for crossing −8.95(6)
Estimator E3 Linear on P0 (P0 � 400 pW). Mean value for crossing −8.95(6)
Estimator E3 Quadratic on P0. Mean value for crossing −8.95(6)
removing 7 ms data
Estimator E3 Quadratic on P0 −8.86(6) 0.7
only for red set
Estimator E3 Quadratic on P0 −9.02(7) 1.2
only for green set
Estimator E3 Quadratic on P0 −8.95(4) 0.6
only for blue set
Estimator E3 Quadratic on P0. Using a global fit to the three sets −8.95(4) 1.1

atom loss, therefore, a ratio of the two quantities will be
quadratically sensitive to Tc/τlatt.

The 698-nm clock transition probe could excite atoms to
|e0〉, and those atoms will not be counted by the following dis-
persive 689-nm probe. We assume, in the weak probe power
limit, that each clock transition probe excites a fraction β0

of atoms into |e0〉 every Tc/2 interval while they are being
probed. Reversely, if there are atoms in the excited state, a
fraction β0 is transferred to |g〉. For the 689-nm probe, we
assume an excitation fraction β1, but also that any atom in the
excited state is reset to the ground state before the following

ϕ0 measurement, as the spontaneous emission decay time is
only 21 μs. Furthermore, losses from the lattice are treated as
an exponential loss decay with time constant τlatt, which was
experimentally verified repeatedly.

We use the measurement outcomes of the different 
ϕ0

and 
ϕ1 measurements to construct different estimators for

the zero-power ratio (
ϕ0/
ϕ1)P=0. Examples of these esti-
mators, to name a few, are

E1 = 3

2

(

ϕ1

0 + 
ϕ2
0


ϕ1
1 + 
ϕ2

1 + 
ϕ3
1

)
, (E1)

E2 = 2

(

ϕ1

0 + 
ϕ2
0


ϕ1
1 + 2
ϕ2

1 + 
ϕ3
1

)
, (E2)

E3 = 4

(

ϕ1

0 + 
ϕ2
0


ϕ1
1 + 6
ϕ1

1 + 
ϕ3
1

)
, (E3)

where the superindex orders each of the five measurements,
i.e., 
ϕ2

1 is the second 
ϕ1 measurement.
For low optical power β0 (β1) is proportional to the probe

optical power P0 (P1) on the clock transition (7.5-kHz transi-
tion) and satisfies β0 (β1) 	 1. In this case we can compute
how populating the |e0〉 and |e1〉 states during the measure-
ment sequence affects the estimators, for example,

E1 =
(


ϕ0


ϕ1

)
P=0

(
1 − β0 + 2β1 − 5

6
(Tc/τlatt )

2 + O(β0, β1, Tc/τlatt )

)
,

E2 =
(


ϕ0


ϕ1

)
P=0

(
1 − β0 + 2β1 − 1

2
(Tc/τlatt )

2 + O(β0, β1, Tc/τlatt )

)
, (E4)

E3 =
(


ϕ0


ϕ1

)
P=0

[1 − β0 + 2β1 + O(β0, β1, Tc/τlatt )],

where O(β0, β1, Tc/τlatt ) refers to higher-order terms in
combinations of β0, β1, and Tc/τlatt, and ( 
ϕ0


ϕ1
)
P=0

is the zero-
power ratio that we want to determine.

In Fig. 3(b) in the main text we show the result for the
so-called E3 estimator above and show quadratic polynomial
fits in the optical power P0 for the clock transition (β0 ∝
P0). In Table VI we show the fitted ( 
ϕ0


ϕ1
)
P=0

for different
estimators and fit methods, as a way to show a consistent
method-independent value. The data are not corrected by
any systematic. We also point out that we did not take β1

or P1 into consideration for either of these fits, as doing so
does not significantly modify the other fitted parameters, be-
cause the maximum value that P1 takes on all the Fig. 3(b)

measurements is already low enough to cause significant pop-
ulation in |e1〉 .

The results are consistent with a zero-power crossing
( 
ϕ0


ϕ1
)
P=0

= −8.95(9) × 10−2. We finally note that for single
measurement instances as represented by the red, green, and
blue data sets, independently of the estimators we compute,
the data are spread consistently with a 10-kHz uncertainty on
the alignment of the cavity resonance frequency to the clock
atomic transition (δC0), as described previously. A zoom-
in of the data presented in Fig. 3(b) in the main text is
shown in Fig. 5(f). Fits are for the estimator E3 for each
set, and the black solid line is a global fit for all the data
sets.
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APPENDIX F: EXTRACTING γ0/γ1 FROM THE
MEASURED �ϕ0/�ϕ1

In order to extract the ratio between (g0/g1)2, which in con-
junction with the known 3P1 linewidth [75] could determine
the 3P0 natural radiative linewidth, we use Eqs. (C1) and (C2),
the systematic correction FC , and the measured value for
(
ϕ0/
ϕ1)P=0 from the zero-power crossing measurement.
Furthermore, we need to determine all the numerical factors
that appear in Eqs. (C1) and (C2) with their uncertainty. Most
of these factors were already described above and appear on
Table II.

We obtain (
ϕ0/
ϕ1)P=0 = −9.61(17) × 10−2 after ap-
plying the systematic correction factor FC , adding both
statistical and systematic uncertainty contributions in quadra-
ture. Using Eqs. (C1) and (C2), we determine (g0/g1)2 =
1.83(3) × 10−7.

The radiative excited-state linewidths are γ0 ∝ d2
0 (ωA0)3

and γ1 ∝ d2
1 (ωA1)3 [88,89], where d0 and d1 are the elec-

tric dipole moments between the 1S0 and the 3P0 state, and
the 1S0 and the 3P1 state, respectively. On the other hand,
g0 ∝ d0

√
ωA0

w2
0L0

and g1 ∝ d1

√
ωA1

w2
1L1

for the same pair of tran-

sitions [61–63]. Here, w0,1 and L0,1 refer to the cavity mode
waist (1/e2 radio) and cavity length for the same transitions as
before. All the numerical proportionality constants that we are
omitting are physical constants, independent of the transitions
we use. Finally, we have

γ0

γ1
=

(
g0

g1

)2(w0

w1

)2(
ωA0

ωA1

)2 L0

L1
. (F1)

Using the values measured in this work and the best re-
ported value for γ1 to our knowledge [75], we report

γ0/(2π ) = 1.35 ± 0.03 mHz, that implies a lifetime of
118 ± 3 s.

APPENDIX G: CONSTRAINING N-DEPENDENT EFFECTS
ON �ϕ0/�ϕ1 MEASUREMENTS

As discussed on a few of the systematic corrections
presented previously, sometimes we can find atom-number-
dependent corrections that do not completely cancel when
measuring the ratio 
ϕ0/
ϕ1, for example, when discussing
the independent phase shift offsets or higher-order correc-
tions.

In order to check the influence of these effects, and lacking
an underlying model to believe they would impact our mea-
surement, we decided to perform 
ϕ0/
ϕ1 measurements for
different atom number N . These measurements are presented
as an inset in Fig. 3(b) in the main text.

For that set, our phase shift measurements present some
nonzero phase shift offsets that were properly measured. The
most simplistic model, as introduced in Eq. (D1), serves us as
a proxy to further investigate any unknown variations with N
and 1/N on the ratio measurements. All in all, by considering
different variations of these fits, taking into account the N = 0
point and the offsets we measured, we find agreement at the
2% level with the weighed average of the measured phase shift
ratio (the value that we would assign for the ratio if no N-
dependent effect were present). This uncertainty is dominated
by the signal-to-noise ratio on the current data set.

Therefore, we constrain any unknown N-dependent effect
on the ratio at the 2% level, which is at the level of our final
uncertainty on the phase shift ratio and linewidth ratio. We
consider this experiment as a sanity check, but we do not use
this independent constraint to modify our final uncertainty.
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