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Violation of generalized fluctuation-dissipation theorem in biological limit cycle oscillators
with state-dependent internal drives: Applications to hair cell oscillations
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The spontaneously oscillating hair bundle of sensory cells in the inner ear is an example of a stochastic,
nonlinear oscillator driven by internal active processes. Moreover, this internal activity is state dependent
in nature—it measures the current state of the system and changes its power input accordingly. We study
the breakdown of two fluctuation-dissipation relations in these nonequilibrium limit cycle oscillators with
and without state-dependent drives. First, in the simple model of the hair cell oscillator where the internal
drive of the system is state independent, we observe the expected violation of the well-known, equilibrium
fluctuation-dissipation theorem (FDT), and verify the existence of a generalized fluctuation-dissipation theorem
(GFDT). This generalized theorem is analogous to one proposed earlier by Seifert and Speck. It requires the
system to be analyzed in the co-moving frame associated with the mean limit cycle of the stochastic oscillator. We
then demonstrate, via numerical simulations and analytic calculations, that in the presence of a state-dependent
drive, the dynamical hair cell model violates both the FDT and this GFDT. We go on to show, using stochastic,
finite-state, dynamical models, that such a drive in stochastic limit cycle oscillators generically violates both the
FDT and GFDT. We propose that one may in fact use the breakdown of this particular GFDT as a tool to more
broadly look for and quantify the effect of state-dependent drives within (nonequilibrium) biological dynamics.
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I. INTRODUCTION

Biology is replete with nonequilibrium systems that
expend energy to maintain cyclic steady-state dynamics. Ex-
amples include the chemical networks underlying circadian
rhythms, activity patterns in neuronal networks, and cardiac
rhythmogenesis [1–6]. The inner ear provides another striking
example of such dynamics, for it contains an internal active
amplifier that allows the auditory system to detect nanoscale
displacements [7–9]. In a quiet environment, the inner ear
can moreover generate spontaneous otoacoustic emissions,
which are metabolically sensitive, indicating the presence
of an internal oscillatory instability necessitating an energy
source. Beyond its innate importance to the understanding of
sensory neuroscience, the auditory system provides an experi-
mentally tractable substrate in which to study nonequilibrium
fluctuation-dissipation theorems. In this work, we explore one
of the several previously proposed generalizations of the stan-
dard fluctuation-dissipation theorem, and test it in theoretical
models of inner ear dynamics.

An integral part of the vertebrate peripheral auditory sys-
tem, hair cells of the inner ear [10] transduce mechanical
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displacements imposed by the incoming pressure waves into
electrical signals. This process is mediated by direct mechan-
ical gating, as specialized ion channels open in response to
minute lateral deflections of the stereovilli [11]—columnar
structures protruding from the hair cells’ apical surface and
interconnected by tip links. When a hair bundle is deflected by
an incoming sound, motion as small as a few ångströms leads
to an increase in the tension exerted on the tip links and hence
the opening of the transduction channels. Furthermore, hair
cells demonstrate a number of adaptation processes that are
key in maintaining this exquisite sensitivity [12,13]. While the
biophysical mechanisms behind their internal activity are not
entirely known, a number of myosin motor species have been
implicated in hair cells of different species, including Myosin
1C. These molecular motors climb along the internal actin
filaments, and are believed to be connected to the tip links,
thus providing a mechanism capable of continually adapting
to incoming sounds and maintaining the optimal tension re-
quired for sensitive detection [14].

The mechanical feedback loop between the myosin motors
and displacements of the stereovilli has important conse-
quences for hair bundle dynamics. It allows for an unstable
dynamical regime in which the bundle responds to mechanical
input like a spring with a negative spring constant [15,16].
In this regime, the bundle undergoes active oscillations even
in the absence of incoming pressure waves due to the active
feedback between motor activity and bundle displacement.
Since that endogenous drive depends on the deflections of the
bundle, i.e., on the state of our biological system, it provides a
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direct example of adaptive control of a nonequilibrium steady
state. We note that similar examples of adaptation are found in
a number of biological systems, including cellular regulation
[17] and bacterial chemosensing [18].

Biological systems are generally noisy, due to the thermal
fluctuations of their constituent elements. Hair cells encounter
stochasticity from a number of sources. Since they are im-
mersed in a fluid environment, Brownian motion leads to
fluctuations of the stereovilli on the order of a nanometer [19].
Force fluctuations resulting from stochastic myosin motor
activity are also present and may contribute colored noise
[19]. Finally, the membrane potential of the cell body, which
influences hair bundle motility [20], fluctuates due to ion
channel clatter and shot noise in the ionic transport through
transmembrane channels [21]. As a result, the limit cycle
oscillations of the hair cell bundle are innately noisy and thus
provide a window into the basic nonequilibrium statistical me-
chanics of a noisy limit cycle oscillator. Further, they operate
under adaptive control where the internal drive maintaining
the nonequilibrium steady state responds to the oscillator’s
state.

Spontaneous oscillations of the hair bundle have been
studied experimentally by direct measurements performed in
vitro on preparations of the amphibian sacculus [7,15,22].
Based on these experiments, a set of robust mathematical
models of the active oscillations has been developed, com-
prised of nonlinear differential equations of varying degrees of
complexity [19,22,23]. The simplest model that captures the
essential phenomena is a two-dimensional dynamical system
that undergoes a supercritical Hopf bifurcation to the limit
cycle (oscillatory) state [24–26]. In this manuscript, we use
the stochastic normal form equation for the Hopf bifurcation
to model the spontaneously oscillating state of the hair bundle,
in order to study fluctuation-dissipation theorems associated
with noisy nonequilibrium systems.

It is well known that the equilibrium fluctuation-dissipation
theorem can fail in nonequilibrium steady states. In fact,
the breakdown of the standard fluctuation-dissipation the-
orem (FDT) [27] has been used as a way to characterize
the nonequilibrium nature of cytoskeletal networks [28].
Recently, a growing body of work has proposed multiple gen-
eralizations of this theorem, applicable to different classes of
nonequilibrium steady states [29–33]. Baiesi and co-workers
provide a general and formal derivation [34,35], applications
of which include driven colloidal systems and living systems
containing molecular motors [36]. In addition to the equilib-
rium FDT [27], we focus on the generalized FDT (GFDT)
of Speck and Seifert [29,31]. Specifically, we use the GFDT
to study a particular subclass of nonequilibrium steady-state
systems—driven, limit cycle oscillators. We show that, as
expected, the two-dimensional driven hair bundle model vi-
olates the standard, equilibrium FDT [37], but does obey the
Seifert-Speck GFDT.

We find that this agreement with the GFDT, however, is
predicated on the internal drive being state-independent. We
define a state-dependent drive as one which measures the sys-
tem’s current state and responds predictably by modifying the
system’s internal power input. In the case of hair cell oscilla-
tors, this modulation of the power input may be instantiated by
the slow dynamics of the myosin motors, calcium-mediated

modulation of internal springs, or a combination of processes
within the stereocillium. The concept, however, is much more
general.

A state-dependent drive in a biological system is nec-
essary but not sufficient for the homeostatic maintenance
of a nonequilibrium state. Adaptation, as discussed in
Refs. [14,18], requires that the drive return the system to
its initial state following an exogenous perturbation. As we
examine below, the nonisochronous Hopf model of hair cell
dynamics features a state-dependent drive, but this drive is
not adaptive in that the changes in the power generated by
the drive do not return the oscillator to its unperturbed state
after cessation of the external force.

Once we incorporate the state-dependent drive into our
dynamical model, we observe violations of the nonequilib-
rium GFDT. Thus, we propose that just as the violation of
the original FDT in biological systems is an important quanti-
tative measure of nonequilibrium dynamics [38], violation of
the nonequilibrium GFDT provides a quantitative indicator of
the presence of an internal state-dependent drive in biological
dynamical systems.

II. THE STOCHASTIC HOPF OSCILLATOR

The simplest dynamical model of hair bundle oscillations is
the stochastic, supercritical Hopf oscillator in its normal form.
This two-dimensional dynamical system can be described in
terms of a complex variable z(t ) = x(t ) + iy(t ), which obeys
the differential equation

ż = z(μ + iω) − bz|z|2 + ηz(t ) + fz(t ), (1)

where fz(t ) is an external deterministic force acting on this
overdamped system, and ηz(t ) is a stochastic force, described
below. The dynamics of the deterministic and unforced system
( fz = ηz = 0) are governed by the values of the model param-
eters {μ,ω, b = b′ − ib′′, (b′, b′′ > 0)}. The real parameter μ

is the control parameter of the system. When μ < 0, this term
gives rise to overdamped oscillations, leaving the system with
an infinite basin of attraction about the single fixed point at
z = 0. At μ = 0, the oscillator undergoes a supercritical Hopf
bifurcation. As this parameter becomes positive, the oscilla-
tor’s dynamics describe a circular limit cycle of radius R0 =√

μ/b′, which also has an infinite basin of attraction. The
limit cycle has an angular frequency given by ω0 = ω + R2

0b′′,
where we assume that ω is real.

To specify the stochastic system, we include a Gaussian
white noise force ηz = ηx + iηy with a zero mean:

〈ηi(t )〉 = 0, (2)

〈ηi(t )η j (t
′)〉 = Ai jδ(t − t ′), (3)

with the symmetric and diagonal matrix Ai j (Axy = 0) allow-
ing for the uncorrelated noise in the x and y channels to
be drawn, in principle, from different Gaussian distributions.
Finally, we include deterministic external perturbations via
fz(t ) = fx(t ) + i fy(t ).

In the following, it will be convenient to work in polar
coordinates: r =

√
x2 + y2 and φ = arctan(y/x) [39]. Trajec-

tories derived from Eq. (1) are those of an overdamped particle
moving in two dimensions in response to a force field f , which
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FIG. 1. The deterministic, unforced Hopf limit cycle (black
curve) of radius R0 sits in the azimuthally symmetric minimum
potential region of �(r) as defined in Eq. (4) and is driven by the
curl of A(r) given in Eq. (5). The color map for the three-dimensional
�(r) runs from dark blue (r = 0) to yellow (r = 7). The magnitude
of the vector potential A(r) is shown as a colored disk which varies
from dark blue (r = 0) to light green (r = 7).

can be decomposed into the gradient of an azimuthally sym-
metric scalar potential �(r) and the curl of a vector potential
A = ẑA(r), where

�(r) = −μ

2
r2 + b′

4
r4, (4)

A(r) = −ω

2
r2 − b′′

4
r4. (5)

Here, �(r) is the well-known “wine bottle” potential and is
illustrated in Fig. 1 along with A(r). Also shown is the parti-
cle’s deterministic, limit cycle. The curl of its vector potential,
fv = ∇ × A(r), is a constant azimuthal nonconservative force
that drives the particle circularly along the minimum of �(r).
Generating the only nonpotential force in the system, it is
solely responsible for the internal power necessary to maintain
the stable limit cycle and will henceforth be referred to as the
internal drive of the Hopf oscillator. For the plots in Fig. 1, we
use μ = 40, ω = 10, b′ = 2, and b′′ = 2.

When driven by white noise, the conservative system with
ω = b′′ = 0 corresponds to the case of an overdamped particle
in thermal equilibrium at some finite temperature. The vector
potential, representing the action of the hair cell’s endogenous
molecular motors, does work on the overdamped system, gen-
erating the limit cycle oscillations, as shown in Fig. 2. We use
the same parameter values as above. Other simulation details
are described in Appendix A.

The appearance of a force field produced by a vector
potential does not alone generate a limit cycle or even a
nonequilibrium steady state. The necessary and sufficient
conditions to create such a state with a time-independent force
field are that (1) the force field is proportional to the curl
of a vector potential, and (2) the nonconservative force does
work on the particle that represents the state of the oscillator.
A classic counterexample, where the second condition is not

FIG. 2. A typical stochastic trajectory of a noisy Hopf oscillator
based on Eq. (1) is shown in green. Its mean limit cycle is shown
as the black circle, which has a particularly simple Frenet frame
{r̂, φ̂}—these unit vectors denote the local normal and tangent to the
curve, respectively.

met, is provided by a charged particle in a magnetic field.
In Appendix B, we review this case, showing that a damped,
charged particle in a two-dimensional harmonic potential and
in a uniformly applied magnetic field, aligned in the direction
perpendicular to the plane of the charged particle’s motion,
obeys the standard FDT.

Generally, for hair cell models, one allows the b coefficient
to be complex, as mentioned above. In this case, the azimuthal
dynamics are of the form φ̇ = r−1(∇ × A) = ω + b′′r2. The
internal drive now depends on the state of the system, here
given by r. In the dynamical systems literature, when the
azimuthal coordinate is driven independently of the state i.e.,
when b′′ = 0, the system is said to experience isochronous
driving. Conversely, state-dependent driving where b′′ �= 0 is
referred to as nonisochronous. For our purposes, the important
feature of this model is that the state-dependent nature of the
drive underlying the steady-state limit cycle oscillations can
be continuously varied through the one model parameter b′′.

To study the fluctuations of the system about its limit cycle
(when μ > 0), we expand about the limit cycle,

r(t ) = R0 + δr(t ), (6)

φ̇(t ) = ω0 + δφ̇(t ), (7)

to find two coupled stochastic linear Langevin equations for
the fluctuations of the radius δr and phase δφ of the oscillator,

δṙ = −2μδr + ηr + fr, (8)

δφ̇ = 2b′′
√

μ

b′ δr + ηφ + fφ. (9)

Here, the terms {ηr, ηφ} and { fr, fφ} are projections of the
stochastic and perturbative forces onto the local normal r̂ and
tangent φ̂, respectively. These unit vectors span the Frenet-
Serret frame associated with the averaged limit cycle of
the oscillator, being the local normal and tangent directions,
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respectively (see Fig. 2). The details of this averaging are
given in Appendix A. The term ∼b′′ in Eq. (9) is particularly
important.

For nonvanishing b′′, the power input by the drive into the
linearized system of stochastic equations (linearized about the
Frenet frame of the averaged limit cycle) varies linearly with
deviations of the radius r from its mean limit cycle value R0.
Writing δr = r − R0 and the azimuthal force measured on the
averaged limit cycle as fv , we find the variations in power
input to be given by

δP = fv · δφ̇ = 2b′′(R0ω0 + b′′R3
0

)
R0δr. (10)

Thus, when the stochastic system is near its limit cycle, the
power input from the state-dependent drive increases when the
radius exceeds its mean limit cycle value and decreases when
that radius is less than that value. This state-dependent feature
of the drive is essential for invalidating the GFDT, and thereby
providing a window into potential feedback-dependent drives
in this particular class of nonequilibrium steady-state systems
(NESS).

The Frenet-Serret frame advances and simultaneously ro-
tates along the stochastic oscillator’s mean limit cycle at
constant angular velocity ω0—which is also the value of the
deterministically driven Hopf particle’s local mean velocity.
By working in this co-moving reference frame, we effec-
tively subtract away the mean nonequilibrium dynamics of the
steady-state oscillator (derivation in Appendix C). Doing so
allows us to recover the GFDT for the nonequilibrium sys-
tem, as discussed by Seifert and co-workers [29,31]. The use
of the dimensionless phase angle φ instead of the arclength
variable s = R0φ requires the noise amplitudes ηr,φ to have
different length dimensions. To account for this explicitly, we
set second moments of the Gaussian force fluctuations in the
frequency domain (given by ν) to be

〈|ηr (ν)|2〉 = 1, (11)

〈|ηφ (ν)|2〉 = R−2
0 , (12)

which also has the effect of setting the effective noise temper-
ature to 1/2, since the mobilities in the Hopf equation have
been set to unity. To account for this dimensional difference,
it will be convenient in the following to define a symmet-
ric “temperature matrix” by Trr = 1, Trφ = R−1

0 , Tφφ = R−2
0 .

This choice of coordinates has no other consequences for our
analysis.

To verify the GFDT in the co-moving frame, we first com-
pute the correlation matrix of the linearized variables in the
frequency domain,

C(ν) =
[ 〈|δr(ν)|2〉 〈δr(ν)δφ(−ν)〉
〈δφ(ν)δr(−ν)〉 〈|δφ(ν)|2〉

]
. (13)

Using Eqs. (8) and (9), we obtain

C(ν) =
[ 1

4μ2+ν2 0

0 b′
μν2

]
+ 2b′′

ν(4μ2 + ν2)

[
0 −i
i 2b′′μ

b′ν

]
. (14)

The radial autocorrelations are those of an overdamped har-
monic oscillator, as expected from the form of the scalar
potential in Eq. (4), calculated near the circular limit cycle
r = R0. Similarly, the autocorrelations of the phase angle vary,

FIG. 3. Measured two-point correlations (colored points) of fluc-
tuations δr(ν ), δφ(ν ) of the simulated stochastic Hopf limit cycle
oscillator are shown in the frequency domain along with their
corresponding analytic calculations (black lines)—see Eq. (14).
Error bars show the standard deviation of the mean. (c) The
frequency-dependent phase diffusion constant. The state-dependent
drive introduces δr, δφ cross correlations (b) so that the radial fluctu-
ations enhance phase diffusion for frequencies below the Lorentzian
corner frequency of the radial fluctuations, indicated by the vertical
(black) line in all the panels.

∼ν−2, as expected for phase diffusion. When the system’s in-
ternal drive is independent of its state or is isochronous (b′′ =
0), there is a simple, frequency-independent phase diffusion
constant, and there are no cross correlations between the radial
and phase fluctuations. A state-dependent drive, however, in-
troduces both a frequency-dependent phase diffusion constant
(observed in hair cell data [24]) and, more importantly, new
cross correlations between the radial and phase fluctuations.
Both of these effects arise because the power generated by the
internal drive changes in response to the state of the system,
given by δr, as discussed above.

All three correlation functions are shown in Fig. 3, where
the solid (black) lines show the theoretical predictions, and the
(colored) points show the numerical results from our Brown-
ian simulations. The error bars on the numerical data points
represent the standard deviation of the mean.

In order to test the validity of the GFDT, we need to
compare the correlation functions computed from Eq. (14)
with the linear response functions of the system. A direct
calculation of these linear response functions,

xα (ν) = χαγ (ν) fγ (ν), (15)

generates the matrix

χ (ν) =
[ 1

2μ−iν 0

−2b′′
√

μ

b′
1

(iν)(2μ−iν) − 1
iν

]
. (16)

Now, we may compare the correlation functions from Eq. (14)
to the response functions from Eq. (16) to get the validity of
the GFDT. Since we are working in the co-moving reference
frame that zeros out the mean probability current, we ex-
pect the fluctuation-dissipation theorem of Seifert and Speck
[29,31] to hold, at least in the limit of the state-independent
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FIG. 4. Breakdown of GFDT in the Hopf oscillator with a state-
dependent drive. We compare the measured two-point correlations
of Fig. 3 (circles) with those inferred from the numerical response
function data via GFDT (orange crosses). The latter agrees with the
analytical calculations (black lines) of [χαβ (ν ) − χβα (−ν )]Tβγ using
Eq. (16). (a) While the GFDT predicted correlation function agrees
with observations for the radial fluctuations, it (b) differs from those
for the phase diffusion. In the bottom panels, we show the (c) real
and (d) imaginary parts of χφr (ν ) − χrφ (−ν ). The former is related
to the cross correlations of δr and δφ. The GFDT prediction of these
correlations also fails (orange crosses vs green circles).

drive. Specifically, we expect that

[χαβ (ν) − χβα (−ν)] = 2iν

Tβγ

Cαγ (ν) (17)

holds. To quantify any deviations from this equality produced
by the state-dependent nature of the drive, it is convenient
to define a deviation matrix �αβ by subtracting the left side
of Eq. (17) from the right (and multiplying through by the
temperature matrix):

�αβ (ν) = [χαβ (ν) − χβα (−ν)]Tβγ − 2iνCαγ (ν). (18)

We find that the GFDT (the FDT in the co-moving frame
associated with the mean limit cycle [29,31]) is indeed obeyed
for a state-independent drive. When b′′ �= 0, we observe de-
viations from the predictions of this fluctuation-dissipation
theorem proportional to b′′, which we may write in terms of
the deviation matrix defined in Eq. (18),

�(ν) = 2b′′

ν(4μ2 + ν2)

[
0 −ν + 2iμ

ν + 2iμ −i4b′′μ
b′

]
. (19)

Only the Lorentzian fluctuations of the radial δr variable obey
the GFDT when the drive is state dependent. When b′′ �= 0,
the feedback between the azimuthal driving force and the
radial oscillations breaks the GFDT due to both new cross
correlations Crφ and the modified phase diffusion, seen in
Cφφ . We suspect that the violation of this GFDT due to the
state-dependent drive cannot be removed by an appropriate
change of observables, as has been explored for nonequilib-
rium fluctuations about a fixed point [40,41].

In Fig. 4(a), we show the correspondence between the
correlation data obtained from numerical simulations (dark
blue circles) and that expected from the response function
(orange crosses) for the radial variable based on the GFDT.

FIG. 5. A schematic diagram of the discrete-time three-state sys-
tem, showing states {−1, 0, 1} denoted by red, green, and blue disks,
respectively. These states have energies {ε, 0, 0}. In the equilibrium
steady state, pcurr = 0. Conversely, when pcurr = 1 or 2, the system
has a nonzero internal probability current which may be removed by
working in a co-moving frame (see Appendix E for details).

In Fig. 4(b), where we compare the frequency-dependent
phase diffusion constant measured from the numerical data
(red circles) and the GFDT-based prediction (orange crosses),
we see the failure of the GFDT for the system driven in
a state-dependent manner. Clear deviations are seen at low
frequencies, as predicted by Eq. (19). When the drive is in-
dependent of the state (b′′ = 0)—see Fig. 14 in Appendix
D—these deviations vanish and the GFDT is once again
obeyed. We show the real and imaginary parts of χφr (ν) −
χrφ (−ν) in Figs. 4(c) and 4(d), respectively. The former
predicts the cross correlations of the radial and phase fluc-
tuations via GFDT. Those predicted orange crosses illustrated
in Fig. 4(c) also fail to agree with the simulation data (green
circles). In all panels [Figs. 4(a)–4(d)], we show our analyti-
cal calculations of [χαβ (ν) − χβα (−ν)]Tβγ as obtained from
Eq. (16) (black lines). These are in universal agreement with
the GFDT-based correlation functions obtained from the nu-
merically simulated response function data (orange crosses),
which demonstrates the agreement between our analysis of the
Hopf model presented in Eqs. (14) and (16) and the numerical
simulations.

III. THREE-STATE MODEL WITH
A STATE-DEPENDENT DRIVE

To better understand the role of a state-dependent drive
in breaking GFDT, it is helpful to examine the same phe-
nomenon in a more simple, finite-state model. We analyze
two such three-state systems. First, as shown in Fig. 5, we
consider a discrete-time system with its three states labeled
s = {−1, 0,+1} and having energies {ε, 0, 0}. When calcu-
lating occupation probabilities, the Boltzmann constant kB

is assumed to be 1 without loss of generality. The system’s
dynamics are determined by an internal drive which gener-
ates a probability current pcurr taking on a value of 0,1, or
2 anticlockwise steps per unit time around the triangle of
states—see Fig. 5. In addition to this deterministic stepping,
we include unbiased stochastic hopping.
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For pcurr = 1, the occupation probability distribution tra-
verses from state m to n such that n lies circularly to the right
of m in the set {−1, 0, 1}. When pcurr = 2, it traverses in the
opposite direction. Meanwhile, the hopping rate p, 0 � p �
0.5, is unbiased when ε = 0 and generates diffusion among
the three states. Thus the stochastic system (p > 0) with no
current (pcurr = 0) obeys detailed balance and corresponds to
an equilibrium system.

The three cases we explore in this finite-state model are:
detailed balance, an internal drive with constant probability
current, and a drive that generates a state-dependent current.
We describe the systems with a nonzero current in further
detail here. We also refer the reader to Appendix E, in par-
ticular Table I, for the complete set of transition probabilities
defining the system. To quantify the work done by the internal
drive that generates a constant pcurr = 1, we consider a sim-
ple detailed-balance argument with ε = 0 and compute the
transition probabilities between states −1 and 0. If detailed
balance were to hold, the asymmetry in those probabilities
introduced by the current implies that there is an energy differ-
ence between these states, �ε = ε0 − ε−1 = ln[p/(1 − 2p)]
(when measured in units of kBT ). The work performed by the
drive on the system is then given by the product of �ε and the
difference in the forward and backward hopping probabilities
between the states 0 and −1. We emphasize that the work done
is not equivalent to introducing a time-independent potential
into the three-state system. Rather, one may visualize the drive
as changing the triangle representing the three states into a
helix that continually descends in energy as one traverses the
cycle in the anticlockwise direction. To make contact with the
three-state model, one must also associate each state on the he-
lix with the one vertically above—see Fig. 19 in Appendix E
for a schematic representation.

We incorporate state dependence in the drive by allowing
the value of pcurr to change in response to the history of state
occupation, which allows us to study the finite-state analog of
the Hopf oscillator with a state-dependent drive (ω0 = 0, b′′ �=
0). We incorporate this by setting

pcurr (ti ) =
⌊ ∞∑

j=1

reλ(i− j)ξ (ti− j )

⌋
mod 3, (20)

where 	.
 is the floor function returning the integer part of its
argument. We have also introduced the function ξ (ti− j ), which
takes the value 1,−1, or 0 when the system is in state 1,−1,
or 0, respectively, at time ti− j . In turn, ξ (ti ) is defined using the
indicator functions σk (ti ), which are 1 (0) when the system is
(is not) in state k at time ti:

ξ (ti ) = (−1)σ−1(ti )[1 − σ0(ti )]. (21)

Finally we note that the state-dependent current depends on
two constants r, which determines the responsiveness of its
measurement, and λ, which sets the memory time ∼λ−1. We
first perform numerical simulations of the symmetric model
(ε = 0) that obeys detailed balance (pcurr = 0). We tracked
the stochastic trajectories (p = 0.02) of 40 realizations of the
system over a total of 4 × 104 time steps for each of the real-
izations. Setting ε = 0 resulted in the occupation probability
of the three states being one-third, as expected (not shown).
From these trajectories, we also compute all two-point corre-

FIG. 6. Test of FDT for the equilibrium system. By comparing
Ċ−1,−1 (black dashed line) and χ−1,−1 (red line), we check that the
response of the system to a force driving it out of the −1 state
matches the appropriate correlation function derivative. We also find
the expected correspondence between Ċ0,−1 (black solid line) and
χ0,−1 (green line) as well as Ċ1,−1 (black dash-dotted line) and χ1,−1

(blue line).

lation functions,

Cnm(τ ) = 1
2 [〈σn(ti + τ )σm(ti )〉 + 〈σm(ti + τ ) σn(ti)〉]. (22)

The average is taken over an ensemble of trajectories at
time delay τ . Under the assumption of ergodicity, one may
alternatively average over longer time series from one trajec-
tory. Further, an experimentalist investigating the stochastic
dynamics of a nonequilibrium steady-state system might
implicitly assume time-reversal invariance. Therefore, our
definition of the correlation function was chosen to make it
explicitly time-reversal invariant when n �= m. Clearly, if the
driven system admits a nonvanishing probability current, this
symmetry will not be valid. However, since we propose using
the violation of fluctuation-dissipation theorems as a test for
both an underlying limit cycle in general and one driven in a
state-dependent manner in particular, we will suppose a priori
that the correlation data is analyzed assuming time-reversal
invariance in the steady state.

To test the standard FDT, we numerically obtained the
response of the occupation probability of state n, pn(t ) =
〈σn(t )〉, to a force conjugate to the occupation of state −1,

δpn(ti) = −
i∑

j=−∞
χn,−1(ti − t j )δε−1(t j ), (23)

by setting the energy of that state to ε−1 = 3 for one time
step and observing the subsequent stochastic evolution of
the system. We confirmed that our perturbation was in the
linear response regime by varying ε−1; see Appendix F. In
Fig. 6, we plot χ−1,−1(τ ), χ0,−1(τ ), and χ1,−1(τ ) as solid
red, green, and blue curves, respectively. As expected, the
transient increase in the energy of the −1 state suppresses
the occupation probability of that state and symmetrically
increases the occupation probability of the other two states:
+1 and 0. The system recovers its equilibrium probabilities
exponentially with a decay rate of about 20 inverse time units.
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FIG. 7. (a) In the presence of a constant nonzero internal prob-
ability current, the system violates the FDT, as can be seen in the
comparison of the linear response function χ−1,−1 (red) and the
time derivative of its autocorrelation function Ċ−1,−1 (black dashed).
(b) However, upon transforming to the co-moving reference frame,
we show that the three-state model satisfies GFDT. The derivative
Ċ f −1,−1 (dashed black) and the response function χ f −1,−1 (red) are
now in agreement.

The standard FDT requires these response functions to
be equal to the time derivative of the correlation functions
Ċn,−1(τ ) evaluated at time delay τ . We plot the numerically
obtained time derivatives of the correlation functions Ċ−1,−1,
Ċ0,−1, and Ċ1,−1 as dashed black, solid black, and dash-dotted
black lines, respectively, in Fig. 6. As expected, we find that
the time derivatives of the correlation functions of state occu-
pation agree with the responses of the occupation probability
to a force conjugate to that variable. All the correlation func-
tions in this figure were normalized such that Cn,m(0) = δn,m.
The response functions were multiplied by temperature, in
this case of value 0.2. The remaining plots for this system are
all normalized using this value.

We now consider the case of an internal drive generating
a constant nonzero probability current, setting pcurr = 1. In
Fig. 7(a), we demonstrate the violation of FDT. The red curve
is the numerically computed response function χ−1,−1(τ ), and
the dashed black curve is the derivative of the corresponding
correlation function Ċ−1,−1(τ ), whose oscillatory nature can
be attributed to the probability current in the model. The
standard FDT requires these to be equal. They are not equal,
indicating the breakdown of FDT. However, for this model, we
propose that one may obtain a valid GFDT similar to that of
Refs. [29,31] by evaluating the correlation and response func-
tions in a reference frame co-moving with velocity pcurr. Note
that since we model this three-state system after the stochastic,
driven Hopf oscillator, we choose the angular velocity of the
co-moving frame to be equal to that of the driven deterministic
system. To transform to the co-moving frame, we introduce
new indicator functions,

σ̃i(t j ) = σ(i+vdrift t j )mod3. (24)

We find that in the co-moving frame, the numerically com-
puted response function of χ f −1,−1 (red curve) agrees with
Ċ f −1,−1 (dashed black line), as seen in Fig. 7(b). The values
of these two functions, as a matter of fact, are similar to those
of the equilibrium system (Fig. 6). Due to the symmetry of
the problem, we only show plots for the −1 state. For the
other two states, we refer the reader to Figs. 15 and 16 in
Appendix D.

FIG. 8. The three-state model with a state-dependent probability
current [see Eq. (20)]. (a) We juxtapose the derivative Ċ−1,−1 (dashed
black) and the response function χ−1,−1 (red) to illustrate the break-
down of FDT. (b) Furthermore, unlike the one illustrated in Fig. 7,
this system also violates GFDT, as is evident by comparing Ċf −1,−1

and χ f −1,−1, calculated in the associated co-moving frame.

Next, we study the three-state model with a state-
dependent drive by choosing r = 2 and λ = 0.1. This
non-Markovian system violates FDT, as shown by the plots
in Fig. 8(a). The time derivative of the autocorrelation C−1,−1

(black dashed line) deviates appreciably from the response
function χ−1,−1 (shown in red). Plots for the other two states
are given in Appendix G. Moreover, in the co-moving frame,
the state-dependent nature of the probability current precludes
restoration of the generalized theorem [Fig. 8(b)]. In order
to test the GFDT in the rotating frame, we chose a refer-
ence frame co-moving with the average current, which in our
simulations was 1. There exists no other reference frame that
may restore the GFDT in this driven system. The breakdown
of both FDT and GFDT relations in the system is similar
to our observations in the Hopf limit cycle oscillator with a
state-dependent drive, i.e., b′′ > 0.

One may ask whether any time variation of the probability
current is sufficient to invalidate the FDT or the GFDT. To
address this, we considered a randomly varying drive that
generates the same average current as the state-dependent
drive. In particular, we consider a three-state model with a
randomly varying internal current that has equal probabilities
at each time step of being 0,1, or 2. There are no temporal cor-
relations in the stochastic pcurr. It is easy to see that the mean
probability current is unity. This system, unlike the three-state
model with a state-dependent drive, obeys the GFDT (data not
shown). We conclude that the state-dependent mechanism of
the drive is required to invalidate the GFDT.

We also examine the stochastic dynamics of a more gen-
eral three-state model defined by the continuous-time master
equation for the probability pn(t ) of observing the system in
state n = −1, 0, 1 at time ti,

ṗn(ti ) =
∑
m �=n

[pm(ti )αmn(ti ) − pn(ti)αnm(ti)]. (25)

See Fig. 9 for a schematic representation. The system evolves
via six transition rates, e.g., the transition rate from state n to
m at time ti: αnm(ti ). These six transition rates are given by the
following rules. We set

αnm(ti ) = αmneεn−εmα(ti ), (26)

where n is to the right of m in the list of states {−1, 0, 1}
or its cyclic permutations. Transition probabilities are then
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FIG. 9. A schematic diagram of the continuous-time three-state
system, showing states {−1, 0, 1} denoted by red, green, and blue
disks, respectively. These states have energies {ε, 0, 0}. In the
nonequilibrium steady state, the clockwise transition rates are en-
hanced over their detailed-balance values by α(t ). The resulting
steady-state nonzero probability current may again be removed by
working in a co-moving frame.

the product of the respective rates and a simulation time step
duration of 10−2. The bare rates αmn = αnm (both set to one in
our simulations) provide for the undriven system maintaining
detailed balance. Meanwhile, the factor α(t ) breaks detailed
balance as is required by the drive. Thus the strength of the
drive is now modulated by α(ti ), which allows the drive to
depend at time step ti on the history of prior state occupation,
as shown in Eq. (27). By choosing α(t ) to be a constant greater
than one, we generate a clockwise probability current (see
Fig. 9) in the steady state. Such a choice is analogous to
turning on a state-independent drive in the isochronous Hopf
model (ω0 �= 0, b′′ = 0) of the hair cell oscillator. Later, to
introduce a state-dependent process, we will consider the case
in which the probability current depends upon the history of
the system by setting

α(ti ) = 1 + r
∞∑
j=1

eλ(i− j)ξ (ti− j ), (27)

where ξ (ti− j ) has been defined in Eq. (21).
The strength of the dependence is again controlled by r. λ

controls the exponential decay rate of the memory kernel in
Eq. (27). It is measured in inverse time units δt = ti+1 − ti,
which we always set to 0.01. The effect of the feedback is to
increase the probability current when the system has recently
been in the +1 state and decrease it when the system has vis-
ited the −1 state. The simulations for this three-state model, as
for the one before, were performed using 40 realizations over
4 × 104 time steps. For additional details of these simulations,
we refer the reader to Appendix A.

We first study the detailed-balance system, which can eas-
ily be shown to be equivalent to the nondriven case of the first
three-state model. In Fig. 10, we illustrate the time deriva-
tives Ċ−1,−1(τ ), Ċ0,−1(τ ), and Ċ1,−1(τ ) as the dashed black,
solid black, and dot-dashed black lines, respectively. Also
shown are the linear response functions of χ−1,−1(τ ) (red),
χ0,−1(τ ) (green), and χ1,−1(τ )(blue), which, as anticipated,
overlap with their corresponding correlation derivatives. The
temperature of this system is 0.11. We now repeat this mea-
surement in a nonequilibrium system by setting α(t ) = 98.
The resulting drive breaks detailed balance by generating a
state-independent probability current and is similar to the
Hopf model of hair cell oscillations with b′′ = 0 but ω > 0. In

FIG. 10. The FDT relation is satisfied by the detailed-balance
system. As in Fig. 6, we compare the response of the system to a
change in the energy of state −1 with the corresponding correlation
function derivatives. We show Ċ−1,−,1 (dashed black), Ċ0,−,1 (solid
black), Ċ1,−,1 (dot-dashed black), χ−1,−,1 (red), χ0,−,1 (green), and
χ1,−,1 (blue).

Fig. 11(a), we show the measured response function χ1,−1(τ ).
As in the equilibrium case, the applied force pushes the system
out of the −1 state into the 0, 1 states. But, unlike the equilib-
rium case, the change in probability oscillates in time due to
the detailed-balance-breaking drive. For example, the occu-
pation probability of +1 cycles the three-state system in the
clockwise direction, while slowly decaying over longer times
(not shown), resulting in an oscillatory response function as
in the solid blue line in the figure. The correlation function
C1,−1(τ ) also shows this oscillatory behavior, but its derivative
(dashed black line) does not match the corresponding response
function. The standard FDT is violated.

We can, however, obtain a GFDT in the driven system by
working in a “rotating” reference frame—one that moves with
the constant clockwise probability current of the nonequilib-
rium steady state. We derive the frame’s velocity using the
master equation in Appendix H. Moving at the speed of α−1

2 ,
we now find that the response function of the +1 state in
this co-rotating frame to a force acting on the −1 state—the
dashed blue line in Fig. 11(b)—agrees with the numerically

FIG. 11. (a) FDT violation in the broken detailed-balance system
at α(t ) = 98. We compare the time derivative of the cross-correlation
Ċ1,−1 (dashed black line) and the response χ1,−1 (blue line) functions.
(b) In the co-moving frame, the GFDT holds, as seen by comparing
the cross-correlation Ċf1,−1 (black line) and response χ f1,−1 (dashed
blue line) functions. Error bars denote the standard deviation of the
mean.

023150-8



VIOLATION OF GENERALIZED … PHYSICAL REVIEW RESEARCH 3, 023150 (2021)

FIG. 12. The three-state system with a state-dependent drive,
given by Eq. (27). (a) With the drive parameters at r = 0.095 and
λ = 0.1, the states are no longer occupied with equal probability,
even when their occupation energies are equal. (b)–(d) Comparison
of Ċ (black dashed) with the appropriate χ (color solid) in the
nonrotating lab frame. In (d), we observe significant deviations from
the FDT.

measured time derivative of the correlation function [calcu-
lated using Eq. (22)], shown as the black line in this figure.
The error bars represent the standard deviation of the mean
for the response data. We find a similar agreement between
the other correlation and response functions in the co-rotating
frame; these are shown in Appendix D (Figs. 17 and 18).
While neither the time derivative of the correlation function
nor the response function in a system with a constant inter-
nal probability current agrees with predictions based on the
equilibrium system, their agreement with each other shows
that a generalized fluctuation-dissipation theorem holds in
such a system, as expected based on the work of Seifert and
collaborators [29,31]. The appearance of the GFDT in the
co-rotating frame, which zeros out the steady-state proba-
bility current, is analogous to our observation of a similar
fluctuation-dissipation theorem in the isochronous Hopf os-
cillator system.

We now introduce a drive that generates state-dependent
probability current in this more general three-state system via
Eq. (27), taking r = 0.095 and λ = 0.1. This is analogous
to the nonisochronous Hopf system in that the drive now
depends on the state of the system. By analogy, we expect
to observe the breakdown of the GFDT once again. With
this state-dependent drive, we obtain a steady-state system
with nonequal occupation probabilities of the three states in
a steady state. In spite of the fact that the energies of all three
states are equal, the drive breaks the permutation symmetry
of these states, as shown in Fig. 12(a). As a result, the simple
occupation probabilities of the states in this nonequilibrium
steady state do not reflect their relative energies. Conversely,
just by observing these occupation probabilities, one might
conclude erroneously that this system was in equilibrium
with a particular spectrum of energy levels. To test this con-
clusion, one must not only examine these probabilities, but
also compare the correlation and response functions of the
system.

FIG. 13. (a) Correlation of the steady-state probability current
α(t ) − 1 for different λ and r values: r = 0.095, λ = 0.1 (dashed
line), r = 0.095, λ = 0.25 (dotted line), r = 0.095, λ = 1 (dot-
dashed line), and r = 0 (solid line). For r = 0.095 and λ = 0.1, we
show the stochastic current from a representative trajectory (inset).
(b)–(d) Illustration of the violation of the GFDT when working in
a co-moving frame that works to eliminate the mean probability
current. Comparing with Fig. 12, we see that this frame partially,
but rather imperfectly, restores the fluctuation-dissipation theorem.

In Figs. 12(b)–12(d), we show a comparison of the time
derivative of the correlation function Ċk,−1(τ ) and the re-
sponse function χk,−1(τ ) for k = −1, 0,+1, respectively. The
standard FDT fails dramatically for one set of measurements:
Ċ1,−1(τ ) �= χ1,−1(τ )—see Fig. 12(d).

We examine the probability current in this more general
continuous-time three-state model. We show its temporal cor-
relation function in a system with a state-dependent current in
Fig. 13(a). In the inset of the same panel, we show a repre-
sentative part of the time series of the probability current from
which the correlation functions were obtained. Clearly, as λ

is decreased (drive memory time increased), the probability
current’s correlation time increases, so that the effect of the
drive’s state dependence is reduced. Its current value depends
on a long time average of the system, which itself necessarily
varies only slowly in time. As a result, we find that with suf-
ficiently long memory times, the system whose drive is state
dependent begins to resemble one whose drive is uncorrelated
with the state, as long as r/λ remains fixed. As a result, the
magnitude of the violations of the GFDT will decrease.

Given this intuition, it is interesting to examine the resid-
ual violation of the GFDT in a system driven by a weakly
state-dependent drive. Due to the current fluctuations that are
still correlated with the state of the system, it is clear that no
co-moving frame can precisely reestablish the GFDT. But we
can find the best approximation to the GFDT in this system by
working in a co-moving reference frame selected to eliminate
the mean probability current, i.e., we chose a velocity 〈α〉−1

2 to
minimize GFDT discrepancies. In Figs. 13(b)–13(d), we do
this. The results shown in Figs. 13(c) and 13(d) demonstrate
that the GFDT still fails due to feedback between the sys-
tem and the drive. But a comparison between Fig. 13(c) and
Fig. 13(d) measured in the co-moving frame with Fig. 12(c)
and Fig. 12(d), showing the same quantities in the nonrotating
laboratory frame, demonstrates that GFDT may be partially
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restored. This restoration can be quantified using the L2
norm of Ċ−1,m − T χ−1,m for state m, whose value is 2.5 ×
10−5, 4 × 10−5, and 10−4, respectively, when m = −1, 0, and
1. Notably, any restoration of GFDT is visible only at short
timescales of τ < 40 when the memory time of the drive is
λ = 0.1. With even weaker state dependence of the drive, this
restoration of the GFDT further improves (data not shown),
demonstrating that the magnitude of the GFDT deviations can
be used as a proxy for assessing both the integration time
of the drive and its responsiveness, defined as the degree to
which its energy input varies in response to the state of the
system.

IV. SUMMARY

Systems that exhibit nonequilibrium steady states fre-
quently violate the FDT. Failure to satisfy the conditions
set by that theorem has therefore been used as a test of
the nonequilibrium nature of various stochastic steady states,
indicating the presence of an energy-consuming process. As
complex biological systems invariably contain active pro-
cesses, such a test is useful for experimentally quantifying
precisely which degrees of freedom in the system are out
of equilibrium and thereby learning something about the un-
derlying processes maintaining that nonequilibrium steady
state. For example, in actomyosin gels, one observes enhanced
strain fluctuations at low frequencies due to motor activity.
This is a consequence of the fact that the motor dynamics in-
troduce force autocorrelations with a colored noise spectrum.
As a result, the strain fluctuations observed across multiple
timescales do not correspond to the equilibrium (visco)elastic
system at any single temperature. In this and other systems,
the quantitative measurement of the breakdown of the FDT
is a type of sensor for the detection of nonequilibrium steady
states and for providing a measure of how far from equilib-
rium they are.

Broadly speaking, there are multiple ways to violate the
FDT, and, as a consequence, not all FDT violations have the
same implications. A large class of nonequilibrium biologi-
cal systems breaks detailed balance by having nonvanishing
probability currents in the steady state. We have explored one
particular class of such systems: those exhibiting stochastic
limit cycles. In this case, previous work by Seifert et al. has
introduced a new type of generalized fluctuation-dissipation
theorems, i.e., GFDTs, based on working in a co-moving
reference frame that effectively eliminates the stationary
probability current. When fluctuations are viewed in this co-
moving reference frame, the familiar relations between them
and the response functions of the system are restored.

In the current work, we introduce a different feature: the
internal drive maintaining the limit cycle, in effect, measures
the state of the system and modifies its power generated
based on that measurement. In systems driven by such a
state-dependent drive, we demonstrated the violation of the
Seifert-Speck GFDT. We first examined the Hopf oscillator
model with a state-dependent drive, where the quantitative
degree of GFDT violation is proportional to a single model
parameter b′′, which measures the ability of the azimuthal
drive to modulate the oscillator’s power input in response to
the radial excursions of the system.

To isolate the role of state dependence of a drive in break-
ing the GFDT in an even simpler model, we introduced
two related three-state systems—one described using discrete-
time dynamics and the other being continuous time in nature.
In both of these, we violate detailed balance by producing
stationary states with a nonzero probability current. These
systems then violated the standard FDT, as expected. By
introducing a co-rotating frame to eliminate the probability
current in the three-state system with a state-independent
drive, we obtain a GFDT, which is consistent with previous
work [29,31]. But when we allow the probability current to
change based on the history of the system’s trajectory, we once
again observe the breakdown of the GFDT. We also observed
that the feedback between the drive and the state of the system
is crucial for GFDT violations. These vanish if the power
generated by the drive varies randomly in time in a manner
uncorrelated with the state of the system. These results are in
direct analogy with the more complex Hopf model and allow
us to more carefully probe the role of a state-dependent drive
in the violation of the GFDT.

The Hopf model is, in fact, the simplest model for de-
scribing the dynamics of hair cell motion. As such, it
provides an important connection between the basic ques-
tions of fluctuation-dissipation theorems (or their failure) in
driven steady states with underlying state-dependent drives
and stochastic dynamics in a living system. It also presents us
with a relatively simple biological dynamical system in which
to experimentally explore fluctuation-dissipation theorems in
nonequilibrium steady states. Our previous work looking at
hair cell fluctuations in the Frenet frame co-moving with the
mean probability current of the system generated correlation
data consistent with the theory discussed here [24]. Future
work is needed to examine the response functions of the
system in order to test the GFDT.

Based on our current work, we propose that just as the
failure of the FDT has been used to test for nonequilibrium
steady states, one should be able to look for the breakdown
of the GFDT as a test of stochastic steady states driven out of
equilibrium by a state-dependent drive. Two emblematic fea-
tures of living systems are long-lived nonequilibrium steady
states and homeostasis. One method to maintain homeostatic
control of driven states is through a drive that measures and
consequently modulates its activity based on the current state
of the system, as seen in the nonisochronous hair cell model.
As many biological systems may contain homeostatic control
that is not as readily accessible experimentally, we suggest
that the breakdown of the GFDT may serve as a useful tool
to indicate the presence of and to quantify the efficacy of
such feedback-based control. One experimentally tractable
biological system in which one might test the correlation
and causation between an internal state-dependent drive and
violation of GFDT is the spontaneously oscillating hair cell of
the inner ear.
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APPENDIX A: SIMULATION DETAILS

A. Hopf oscillator

The stochastic and externally perturbed Hopf oscillator of
Eq. (1) was simulated using the fourth-order Runge-Kutta
method for a duration of 60 s, with a time step of 10−4 s. We
explore a large range in the amplitude of the noise variances
〈η2

x 〉 and 〈η2
y 〉 (where 〈η2

x 〉 = 〈η2
y 〉) covering 10−7 to 0.4, as well

as a range of perturbative forces 10−3 to 10−1. All throughout,
the amplitude of mean limit cycle oscillators was held to be
O(1). While consistent results were obtained over the full span
of these values, Figs. 3 and 4 employ the highest value of force
and noise in their respective ranges.

B. Mean limit cycle of the Hopf oscillator

The Hopf oscillator’s phase space {−π, π} is partitioned
into 200 bins. Trajectories in each bin are then averaged,
resulting in the mean curve.

C. Three-state model

Equation (25) was numerically computed using a random-
number generator that outputs a value in the range [0–1].
Comparison of this value with the occupation probabilities of
the three states determines the stochastic trajectory for each
of the 40 realizations. Data were always taken after running
the system long enough so that its initial conditions were no
longer relevant. All simulations were performed using MAT-
LAB [42].

APPENDIX B: ELECTRICALLY CHARGED PARTICLE
IN A MAGNETIC FIELD

The motion of a damped, harmonically bound charged
particle of mass m and charge e in the xy plane under the

influence of magnetic field Hẑ is given by

¨̂r + γ ˙̂r + ω2
0 r̂ = e

mc
˙̂r × H, (B1)

where γ is the friction coefficient, ω0 is the natural frequency
of the oscillator (ω0 = √

k/m for a Hookean spring constant
k), and c is the speed of light. The equations of motion may
be written in terms of x and y as

ẍ + γ ẋ + ω2
0x = eH

mc
ẏ, (B2)

ÿ + γ ẏ + ω2
0y = −eH

mc
ẋ, (B3)

with introduction of the classical Larmor frequency ωr = eH
mc .

Upon driving Eqs. (B2) and (B3) using either stochastic or
deterministic (externally applied) forces, we obtain

[
x
y

]
= 1(−ω2 + ω2

0 − iωγ
)2 − ω2

r ω
2

×
[−ω2 + ω2

0 − iωγ −iωrω

iωrω −ω2 + ω2
0 − iωγ

][
ηx

ηy

]
.

(B4)

When considering these as Langevin equations, we assume
rotationally symmetric thermal noise so that 〈η2

x 〉 = 〈η2
y 〉 =

〈η2〉.
Since the dynamics in the directions x̂ and ŷ are symmetric,

we compute and compare one of each of the autocorrelation
and cross-correlation functions. A lengthy but straightfor-
ward calculation yields the following response and correlation
functions. In order to confirm the validity of the FDT, we
present the response functions in combinations such that these
combinations should be equivalent to the derivatives of the
corresponding correlation functions. We find

χ̃xx(ω) − χ̃xx(−ω)

2i
= γω

[(
ω2

0 − ω2
)2 + γ 2ω2 + ω2

r ω
2
]

[
ω2γ 2 + (

ω2
0 − ω2 − ωωr

)2][
ω2γ 2 + (

ω2
0 − ω2 + ωωr

)2] , (B5)

Cxx = 〈η2〉[(ω2
0 − ω2

)2 + γ 2ω2 + ω2
r ω

2
]

[
ω2γ 2 + (

ω2
0 − ω2 − ωωr

)2][
ω2γ 2 + (

ω2
0 − ω2 + ωωr

)2] , (B6)

and

χ̃xy(ω) − χ̃yx(−ω)

2i
= γω

(
2iω3ωr − 2iω2

0ωω2
r

)
[
ω2γ 2 + (

ω2
0 − ω2 − ωωr

)2][
ω2γ 2 + (

ω2
0 − ω2 + ωωr

)2] , (B7)

Cxy = 〈η2〉(2iω3ωr − 2iωωrω
2
0

)
[
ω2γ 2 + (ω2

0 − ω2 − ωωr )2
][

ω2γ 2 + (
ω2

0 − ω2 + ωωr
)2] . (B8)

By direct comparison of Eqs. (B5) and (B6), as well as the
cross correlations given by Eqs. (B7) and (B8), we verify that
FDT is satisfied for a system responding to a magnetic field.
Even though the force is generated from the curl of a vector
potential (like our drive in the Hopf system), the magnetic

field does not invalidate the FDT since the magnetic forces
cannot do work on the system.

APPENDIX C: FOKKER-PLANCK FORMALISM
FOR THE HOPF OSCILLATOR

The time-dependent probability density p(r, φ, t ) of the
stochastic Hopf oscillator defined in Eq. (1) evolves as fol-
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lows:

∂ p(r, φ, t )

∂t

= − ∂

∂r
[(μr − b′r3)p(r, φ, t )] − ∂

∂φ
[(ω + b′′r2)p(r, φ, t )]

+ 1

2
〈|ηr (t )|2〉 ∂2

∂r2
p(r, φ, t ) + 1

2
〈|ηφ (t )|2〉 ∂2

∂φ2
p(r, φ, t ),

(C1)

where the effective diffusion coefficients 〈|ηr (t )|2〉, 〈|ηφ (t )|2〉
are constant and are given by Eqs. (11) and (12). We see that
when b′′ = 0, the joint probability distribution for the radial
and angular variables decouples so that the joint distribution
may be written as a product, p(r, φ, t ) = p(r, t )p(φ, t ). As a
result, there are no cross correlations between the radial and
angular fluctuations in the system with a state-independent
drive. In that case, we obtain

∂ p(r, t )

∂t
= ∂

∂r
(−μr + b′r3)p(r, t ) + 1

2
〈|ηr (t )|2〉 ∂2

∂r2
p(r, t ),

(C2)

∂ p(φ, t )

∂t
= −ω

∂

∂φ
p(φ, t ) + 1

2
〈|ηφ (t )|2〉 ∂2

∂φ2
p(φ, t ).

(C3)

The Hopf oscillator is bounded in the radial direction but
has a nonzero, phase-independent probability current in the
tangential direction. Writing r(t ) = R0 + δr(t ) and expanding
about the limit cycle δr(t ) � R0, we obtain the steady-state
probability currents,

jr = 0 ⇒ p(r, t ) ∝ e
[− 2

〈|ηr (t )|2〉 μδr2+O(δr4 )]
, (C4)

jφ = ωp(φ, t ), (C5)

where the total probability current is �j = êr jr + êφ jφ . We
note that the local mean velocity v(t ) of the stochastic
isochronous Hopf oscillator is given by its deterministic az-
imuthal current, which is a constant, ω. This allows for
the admission of the Seifert-Speck GFDT in the locally co-
moving Frenet-Serret frame (whose angular velocity is ω)
associated with such a system (Fig. 14).

However, in the case of the stochastic, nonisochronous
Hopf oscillator, the radial and angular fluctuations are cor-
related, making the joint probability distribution analytically
intractable. Therefore, we simply follow from the isochronous
Hopf case—the Frenet-Serret frame associated with this os-
cillator rotates with a constant angular velocity ω0 where,
ω0 = ω + b′′R2

0 is the local mean velocity of the determin-
istic nonisochronous Hopf system. In Fig. 4, we show that
this frame is, however, insufficient for the admittance of the
GFDT.

APPENDIX D: SYSTEMS WITH A STATE-INDEPENDENT
DRIVE

In the main text, we present three representative systems
that incorporate a state-dependent drive. For completeness,

FIG. 14. Correlation and response functions for the isochronous
Hopf oscillator (b′′ = 0). (a) Power spectral density of radial fluctu-
ations as a function of frequency ν (blue dots). (b) Phase diffusion
constant, obtained from the product of the phase fluctuation power
spectral density and ν2 (red dots). In both panels, the vertical (black)
line indicates the corner frequency of 2μ. (c),(d) Comparison of the
measured two-point autocorrelation functions with those inferred via
GFDT from the numerically obtained response function data of χrr

and χφφ (orange crosses). The predicted correlation functions agree
with those directly measured from the Hopf oscillator simulations for
both the radial and phase fluctuations. Overlaid on all four plots are
the respective theoretical calculations (in black lines) from Eqs. (14)
and (16).

we show results obtained from the Hopf system with a state-
independent drive, i.e., one with b′′ = 0. This system, whose
drive is independent of its state, admits the GFDT. In Fig. 14,
we show that the response (black lines) and fluctuations (col-
ored dots) agree as expected from the GFDT, or the FDT in
the Frenet frame that is co-moving with the mean probability
current of the driven oscillator.

The fluctuations in the normal (radial) direction (blue) are
still well described by a simple Lorentzian (black), whose
corner frequency is once again marked by a vertical line.
However, the phase diffusion constant exhibits no frequency
dependence (red), consistent with Eq. (14). Furthermore, the
cross correlations Crφ vanish, and the correlation data depicted
in Figs. 14(c) and 14(d) agree with those inferred from GFDT

FIG. 15. Ċ0,−1 (black dashed) vs χ (τ )0,−1 (green solid) for
pcurr = 1. (a) The time derivative of the numerically computed cross-
correlation function Ċ0,−1 and the linear response function of χ0,−1

disagree, revealing the breakdown of FDT. (b) However, the system
satisfies GFDT, as seen when comparing these functions calculated
in the Frenet frame.
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FIG. 16. Ċ1,−1 (black dashed) vs χ (τ )1,−1 (blue solid) for pcurr =
1. Comparing the time derivative of the cross-correlation Ċ1,−1 and
response χ1−1 functions, we observe (a) significant deviations from
FDT and (b) the satisfaction of GFDT.

and the numerically computed response functions. When b′′ =
0, the hair cell model violates FDT but obeys GFDT.

For the stochastic discrete-time three-state system with a
constant pcurr (Fig. 5), we have shown in the main text for
state −1 that the FDT breaks down, but the GFDT is satisfied.
In Figs. 15 and 16, we illustrate the same for the other two
states, where we obtain similar results.

When examining the second continuous-time three-state
system (Fig. 9) with broken detailed balance, but no state
dependence, we found that the GFDT holds, as expected. In
the main text, we demonstrated the necessary correspondence
for only one correlation function—see Fig. 11. For complete-
ness, here we show the analogous results for states −1 and
0 in Figs. 17 and 18, respectively. In all of these examples,
the standard FDT breaks down, but the GFDT relations are
valid.

APPENDIX E: TRANSITION PROBABILITIES FOR THE
FIRST THREE-STATE MODEL

In Fig. 5, we illustrate our first discrete-time, three-state
model whose probability current pcurr can take only the val-
ues {0, 1, 2}. The corresponding transition probabilities for
the purely diffusive system and for a driven system with a
constant nonzero probability current are given in Table I.

The work done by the drive generating the constant prob-
ability current pcurr = 1 in this three-state system may be
visualized using Fig. 19, where the three states form a helix
that is continually descending in energy as the particle tra-
verses the loop of states in an anticlockwise direction. The

FIG. 17. Ċ (black dashed) vs χ (τ ) (red solid) for α = 98 and
state −1. (a) Time derivative of the cross-correlation Ċ−1−1 and the
response χ−1−1 functions superimposed, illustrating the breakdown
of FDT. (b) The Frenet frame formalism allows for the obedience of
GFDT.

FIG. 18. Ċ (black dashed) vs χ (τ ) (green solid) for α = 98 for
state 0. Time derivative of the cross-correlation Ċ0−1 and response
χ0−1 functions, demonstrating the (a) violation of FDT and (b) valid-
ity of GFDT.

effect of the drive can be thought of as a constantly decreasing
gravitational potential as the particle descends the helix, but
in order for this to make sense, we must associate the states
k, k′, k′′, k′′′, where k = −1, 0, 1.

APPENDIX F: LINEAR REGIME OF THE EQUILIBRIUM
THREE-STATE MODEL

In Fig. 10, we perturb the system using an ε−1 value of 3.
To verify that the response of this forced oscillator is within
its linear regime, in Fig. 20(a) we plot, over a range of ε−1

values (2.6, 2.8, 3, 3.2, and 3.4), their respective response
functions: χ−1,−1. Additionally, in Fig. 20(b), we show that
the magnitude of these response functions at time τ1 varies
with ε−1 in a linear fashion.

APPENDIX G: THREE-STATE SYSTEM WITH A
STATE-DEPENDENT DRIVE

In Fig. 8, we depicted the effects of a state-dependent drive
only for the state −1, namely, the violation of both FDT and
GFDT. We obtain similar plots for both states 0 and 1; see
Figs. 21 and 22.

APPENDIX H: PROBABILITY CURRENT IN THE SECOND
THREE-STATE MODEL

We rewrite the master equation in Eq. (25) in a form that
resembles the Fokker-Planck formalism such that it is com-
prised of two terms—one is a probability current and the other

TABLE I. Transition probabilities for the three-state model of
Fig. 5.

No Constant drive Constant drive
Transitions drive with pcurr = 1 with pcurr = 2

−1 → −1 1–2p p p
−1 → 0 p 1–2p p
−1 → 1 p p 1–2p
0 → −1 p p 1–2p
0 → 0 1–2p p p
0 → 1 p 1–2p p
1 → −1 p 1–2p p
1 → 0 p p 1–2p
1 → 1 1–2p p p
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-1’

-1’’

-1’’’

0’

0’’

1’’

1’

0’’’

1

FIG. 19. A schematic diagram illustrating the work done by an
internal drive generating constant pcurr = 1 as moving down a po-
tential. The three-state system is reenvisioned as a repeating set of
states on a helix lying on a cylinder in a uniform gravitational po-
tential. The states {−1′, 0′, 1′} are equivalent to the ones below them
{−1′′, 0′′, 1′′}. The drive is implemented by the change in potential
and the mapping rules that relate states 1, 1′, and 1′′, as shown in the
figure.

is diffusive. Let q be the particle’s hopping probability (rate of
jumping from one state to the neighboring states) and s be the
strength of the current. Then, for state 0, we have

ṗ0(ti ) = p−1(ti )α−10(ti ) + p1(ti )α10(ti )

− p0(ti )α0−1(ti ) − p0(ti )α01(ti ). (H1)

Using Eq. (26), we can rewrite it as

ṗ0(ti ) = p−1(ti )α−10 + p1(ti )α01α(ti )

− p0(ti )α−10α(ti ) − p0(ti )α01. (H2)

FIG. 20. Variation of χ−1,−1 with ε−1. (a) With the three-state
model obeying detailed balance, we obtain its χ−1,−1 response by
setting the energy of state −1, ε−1 = [2.6, 2.8, 3, 3.2, 3.4] for one
time step. These are, respectively, colored blue, orange, yellow, pur-
ple, and green. (b) The magnitude of the χ−1,−1(τ1) values linearly
increases with ε−1.

FIG. 21. Ċ0,−1 (black dashed) vs χ (τ )0,−1 (green solid) for
history-dependent pcurr . The time derivative of the cross-correlation
function Ċ0,−1 and the response function χ0,−1, when juxtaposed,
reveals the breakdown of (a) FDT and (b) GFDT.

Since the counterclockwise transition rates in Fig. 9 are al-
ways 1, we further simplify this as

ṗ0(ti ) = p−1(ti ) + p1(ti )α(ti )

− p0(ti )α(ti ) − p0(ti ). (H3)

Thus, the values of q and s can be computed using the
equivalence

p−1(ti ) + p1(ti )α(ti ) − p0(ti )α(ti ) − p0(ti)

= q(p1 − 2p0 + p−1) + s(p1 − p−1). (H4)

So, we obtain by inspection, the following hopping probabil-
ity q and drive term s:

q = α(ti ) + 1

2
, (H5)

s = α(ti ) − 1

2
. (H6)

Thus, in analogy to the continuous-time Hopf oscillator of
Appendix C, the local mean velocity of the deterministic
driven three-state system is α−1

2 . We choose the value of its
Frenet frame’s velocity accordingly.

FIG. 22. Ċ1,−1 (black dashed) vs χ (τ )1,−1 (blue solid) for
history-dependent pcurr . Comparison of the time derivative of the
cross-correlation Ċ1,−1 and response χ1−1 functions exemplifies
violation of both the (a) equilibrium and (b) generalized fluctuation-
dissipation relations.

023150-14



VIOLATION OF GENERALIZED … PHYSICAL REVIEW RESEARCH 3, 023150 (2021)

[1] Biological Clocks: Cold Spring Harbor Symposium on Quan-
titative Biology 25, edited by E. Bunning (SIAM, New York,
1960).

[2] A. Goldbeter, A model for circadian oscillations in the
drosophila period protein (PER), Proc. R. Soc. London B 261,
319 (1995).

[3] T. Mori, B. Binder, and C. H. Johnson, Circadian gating of
cell division in cyanobacteria growing with average doubling
times of less than 24 hours, Proc. Natl. Acad. Sci. 93, 10183
(1996).

[4] A. Goldbeter, Computational approaches to cellular rhythms,
Nature (London) 420, 238 (2002).

[5] E. M. Izhikevich, Dynamical Systems in Neuroscience: The Ge-
ometry of Excitability and Bursting, 1st ed. (MIT Press, Boston,
2007).

[6] D. J. Schwab, R. F. Bruinsma, J. L. Feldman, and A. J. Levine,
Rhythmogenic neuronal networks, emergent leaders, and K-
cores, Phys. Rev. E 82, 051911 (2010).

[7] A. J. Hudspeth, Making an effort to listen: Mechanical amplifi-
cation in the ear, Neuron 59, 530 (2008).

[8] T. Reichenbach and A. J. Hudspeth, The physics of hearing:
Fluid mechanics and the active process of the inner ear, Rep.
Prog. Phys. 77, 076601 (2014).

[9] P. Martin, and A. J. Hudspeth, Active hair-bundle movements
can amplify a hair cell’s response to oscillatory mechanical
stimuli, Proc. Natl. Acad. Sci. 96, 14306 (1999).

[10] M. LeMasurier and P. Gillespie, Hair-cell mechanotransduction
and cochlear amplification, Neuron 48, 403 (2005).

[11] M. Vollrath, K. Kwan, and D. Corey, The micromachinery of
mechanotransduction in hair cells, Ann. Rev. Neurosci. 30, 339
(2007).

[12] R. A. Eatock, Adaptation in hair cells, Annu. Rev. Neurosci. 23,
285 (2000).

[13] S. Camalet, T. Duke, F. Jülicher, and J. Prost, Auditory sensi-
tivity provided by self-tuned critical oscillations of hair cells,
Proc. Natl. Acad. Sci. 97, 3183 (2000).

[14] P. G. Gillespie, and J. L. Cyr, Myosin-1c, the hair cell’s adapta-
tion motor, Annu. Rev. Physiol. 66, 521 (2004).

[15] P. Martin, A. D. Mehta, and A. J. Hudspeth, Negative hair-
bundle stiffness betrays a mechanism for mechanical ampli-
fication by the hair cell, Proc. Natl. Acad. Sci. 97, 12026
(2000).

[16] M. Benser, R. Marquis, and A. Hudspeth, Rapid, active hair
bundle movements in hair cells from the bullfrog’s sacculus,
J. Neurosci. 16, 5629 (1996).

[17] L. K. Nguyen, Regulation of oscillation dynamics in biochem-
ical systems with dual negative feedback loops, J. R. Soc.
Interface 9, 1998 (2012).

[18] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu, The
energy-speed-accuracy tradeoff in sensory adaptation, Nat.
Phys. 8, 422 (2012).

[19] B. Nadrowski, P. Martin, and F. Jülicher, Active hair-
bundle motility harnesses noise to operate near an optimum
of mechanosensitivity, Proc. Natl. Acad. Sci. 101, 12195
(2004).

[20] S. W. F. Meenderink, P. Quiñones, and D. Bozovic, Voltage-
mediated control of spontaneous bundle oscillations in saccular
hair cells, J. Neurosci. 35, 14457 (2015).

[21] P. Läuger, Shot noise in ion channels, Biochem. Biophys. Acta
Biomembr. 413, 1 (1975).

[22] P. Martin, D. Bozovic, Y. Choe, and A. J. Hudspeth, Sponta-
neous oscillation by hair bundles of the bullfrog’s sacculus, J.
Neurosci. 23, 4533 (2003).

[23] R. M. Amro and A. B. Neiman, Effect of bidirectional
mechanoelectrical coupling on spontaneous oscillations and
sensitivity in a model of hair cells, Phys. Rev. E 90, 052704
(2014).

[24] J. Sheth, S. W. F. Meenderink, P. M. Quinones, D. Bozovic, and
A. J. Levine, Nonequilibrium limit-cycle oscillators: Fluctua-
tions in hair bundle dynamics, Phys. Rev. E 97, 062411 (2018).

[25] V. M. Eguíluz, M. Ospeck, Y. Choe, A. J. Hudspeth, and M. O.
Magnasco, Essential Nonlinearities in Hearing, Phys. Rev. Lett.
84, 5232 (2000).

[26] A. J. Hudsepth, Integrating the active process of hair cells with
cochlear function, Nat. Rev. Neurosci. 15, 600 (2014).

[27] H. B. Callen, and T. A. Welton, Irreversibility and generalized
noise, Phys. Rev. 83, 34 (1951).

[28] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh,
Nonequilibrium mechanics of active cytoskeletal networks,
Science 315, 370 (2007).

[29] T. Speck, and U. Seifert, Restoring a fluctuation-dissipation
theorem in a nonequilibrium steady state, Europhys. Lett. 74,
391 (2006).

[30] U. Seifert, Stochastic thermodynamics, fluctuation theorems
and molecular machines, Rep. Prog. Phys. 75, 126001
(2012).

[31] U. Seifert, and T. Speck, Fluctuation-dissipation theorem
in nonequilibrium steady states, Eur. Phys. Lett. 89, 10007
(2010).

[32] J. R. Gomez-Solano, A. Petrosyan, S. Ciliberto, R. Chetrite,
and K. Gawçdzki, Experimental Verification of A Modified
Fluctuation-Dissipation Relation for a Micron-Sized Particle in
a Nonequilibrium Steady State, Phys. Rev. Lett. 103, 040601
(2009).

[33] C. Kwon, P. Ao, and D. Thouless, Structure of stochastic dy-
namics near fixed points, Proc. Natl. Acad. Sci. USA 102,
13029 (2005).

[34] M. Baiesi, C. Maes, and B. Wynants, Fluctuations and Response
of Nonequilibrium States, Phys. Rev. Lett. 103, 010602 (2009).

[35] M. Baiesi, C. Maes, and B. Wynants, Nonequilibrium linear
response for Markov dynamics, I: Jump processes and over-
damped diffusions, J. Stat. Phys. 137, 1094 (2009).

[36] G. Verley, K. Mallick, and D. Lacoste, Modified fluctuation-
dissipation theorem for non-equilibrium steady states and
applications to molecular motors, Europhys. Lett. 93, 10002
(2011).

[37] P. Martin, A. J. Hudspeth, and F. Jülicher, Comparison of a hair
bundle’s spontaneous oscillations with its response to mechani-
cal stimulation reveals the underlying active process, Proc. Natl.
Acad. Sci. 98, 14380 (2001).

[38] F. S. Gnesotto, F. Mura, J. Gladrow, and C. P. Broedersz, Bro-
ken detailed balance and non-equilibrium dynamics in living
systems: A review, Rep. Prog. Phys. 81, 066601 (2018).

[39] J. Sheth, D. Bozovic, and A. J. Levine, Noise-induced distortion
of the mean limit cycle of nonlinear oscillators, Phys. Rev. E 99,
062124 (2019).

023150-15

https://doi.org/10.1098/rspb.1995.0153
https://doi.org/10.1073/pnas.93.19.10183
https://doi.org/10.1038/nature01259
https://doi.org/10.1103/PhysRevE.82.051911
https://doi.org/10.1016/j.neuron.2008.07.012
https://doi.org/10.1088/0034-4885/77/7/076601
https://doi.org/10.1073/pnas.96.25.14306
https://doi.org/10.1016/j.neuron.2005.10.017
https://doi.org/10.1146/annurev.neuro.29.051605.112917
https://doi.org/10.1146/annurev.neuro.23.1.285
https://doi.org/10.1073/pnas.97.7.3183
https://doi.org/10.1146/annurev.physiol.66.032102.112842
https://doi.org/10.1073/pnas.210389497
https://doi.org/10.1523/JNEUROSCI.16-18-05629.1996
https://doi.org/10.1098/rsif.2012.0028
https://doi.org/10.1038/nphys2276
https://doi.org/10.1073/pnas.0403020101
https://doi.org/10.1523/JNEUROSCI.1451-15.2015
https://doi.org/10.1016/0005-2736(75)90053-X
https://doi.org/10.1523/JNEUROSCI.23-11-04533.2003
https://doi.org/10.1103/PhysRevE.90.052704
https://doi.org/10.1103/PhysRevE.97.062411
https://doi.org/10.1103/PhysRevLett.84.5232
https://doi.org/10.1038/nrn3786
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1126/science.1134404
https://doi.org/10.1209/epl/i2005-10549-4
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1209/0295-5075/89/10007
https://doi.org/10.1103/PhysRevLett.103.040601
https://doi.org/10.1073/pnas.0506347102
https://doi.org/10.1103/PhysRevLett.103.010602
https://doi.org/10.1007/s10955-009-9852-8
https://doi.org/10.1209/0295-5075/93/10002
https://doi.org/10.1073/pnas.251530598
https://doi.org/10.1088/1361-6633/aab3ed
https://doi.org/10.1103/PhysRevE.99.062124


SHETH, BOZOVIC, AND LEVINE PHYSICAL REVIEW RESEARCH 3, 023150 (2021)

[40] L. Dinis, P. Martin, J. Barral, J. Prost, and J. F. Joanny,
Fluctuation-Response Theorem for the Active Noisy Oscilla-
tor of the Hair-Cell Bundle, Phys. Rev. Lett. 109, 160602
(2012).

[41] J. Prost, J. F. Joanny, and J. M. R. Parrondo, Generalized
Fluctuation-Dissipation Theorem for Steady-State Systems,
Phys. Rev. Lett. 103, 090601 (2009).

[42] MATHLAB, ver. R2019a, (The MathWorks, Natick, MA, 2019).

023150-16

https://doi.org/10.1103/PhysRevLett.109.160602
https://doi.org/10.1103/PhysRevLett.103.090601

