
PHYSICAL REVIEW RESEARCH 3, 023146 (2021)
Editors’ Suggestion

Simulation of memristive synapses and neuromorphic computing on a quantum computer
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One of the major approaches to spike-based neuromorphic computing is using memristors as analog synapses.
We propose unitary quantum gates that exhibit memristive behaviors, including Ohm’s law, pinched hysteresis
loop and synaptic plasticity. Hysteresis depending on the quantum phase and long-term plasticity that encodes
the quantum state are observed. We also propose a three-layer neural network with the capability of universal
quantum computing. Quantum state classification on the memristive neural network is demonstrated. These
results pave the way towards quantum spiking neural network built on unitary processes. We obtain these results
in numerical simulations and experiments on the superconducting quantum computer ibmq_vigo.
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I. INTRODUCTION

Neuromorphic computing is a brain-inspired computer
paradigm in contrast with the von Neumann architecture [1,2].
According to the biological model of brain, information is
stored and processed by a highly connected network formed
of neurons, which provides the ability of learning, parallel and
low energy cost computing, etc. Since the 1940s, it has been
realized that how neurons wire up is essential [3]. Besides
neuroscience, this observation also motives the development
of computer programming, such as artificial neural network
(ANN) vastly used in today’s machine learning technologies
[4,5]. In terms of the learning rule of neurons, spike-timing-
dependent plasticity (STDP) is a biologically plausible model
that has gained great attention in recent years [6–8]. In STDP,
the synapse is strengthened or weakened depending on the
temporal order between spikes of presynaptic and postsynap-
tic neurons [see Fig. 1(a)]. In this way, the brain can establish
causal relationships between events.

Quantum computing uses quantum phenomena and is su-
perior to classical computing in solving certain problems [9].
For example, to solve the integer factorization problem, Shor’s
quantum algorithm takes polynomial time with respect to
the integer size, which is exponentially faster than the most
efficient known classical algorithm [10]. In the circuit-based
universal quantum computer, information is encoded in qubits
and processed with unitary gates [11]. This kind of quantum
machines is still under development but already demonstrates
the power of surpassing classical computers [12,13]. Because
the quantum computer for large-scale computing is not avail-
able yet, variational quantum algorithms are proposed for
near-future applications [14–16]. Quantum neural networks
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are generalizations of classical ANN, in which unitary gates
in the quantum circuit are taken as variables [17–26].

Memristor is a resistor with memory and one of the funda-
mental two-terminal circuit elements [see Fig. 1(b)] [27,28].
Its resistance decreases or increases depending on the in-
put signal, i.e., voltage or current. Memristance can explain
STDP in biological synapses [29]. Since the first memristive
device was found in 2008 [30], the application as hardware
analog of synapse in neuromorphic computing has been ex-
tensively investigated [2], mainly because memristive devices
demonstrate behaviors similar to STDP [31,32]. Spiking neu-
ral networks [33,34] with the STDP learning rule are more
biologically realistic than ANN such as sigmoid neurons [4,5],
in which the computation is driven by spike events rather than
the evaluation of differentiable functions.

In this paper, we propose memristorlike unitary quantum
gates, see Fig. 1(c). These gates have the characteristic mem-
ristive property, i.e., hysteretic resistance state [28,30]. Given
an oscillatory input state, the output-input observables display
a pinched hysteresis loop. We find that this loop depends on
not only the classical distribution but also the phase of input
quantum state, which reflects the quantum nature of memris-
tive gates. Using these gates to mimic synapses, we observe
the long-term potentiation (LTP) and long-term depression
(LTD), which are crucial for learning and memory in the
neural network [6,8]. We show that quantum information can
also be encoded in a manner similar to the long-term plasticity.
Therefore, a spiking neural network built on memristive gates
can process quantum information.

In addition to spiking neural network, memristive quantum
gates can also be used to build a nonspiking quantum ANN.
We propose a three-layer neural network taking parameters of
memristive gates as variables, as shown in Fig. 1(d). Neurons
in the input and hidden layers are qubits, and neurons in the
output layer are classical bits. Two quantum layers are wired
up by memristive gates, and output bits are measurement
outcomes of hidden-layer qubits. Compared with the general
quantum neural network [17], the number of variational pa-
rameters is significantly reduced with respect to the number

2643-1564/2021/3(2)/023146(11) 023146-1 Published by the American Physical Society

https://orcid.org/0000-0002-1705-2494
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023146&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1103/PhysRevResearch.3.023146
https://creativecommons.org/licenses/by/4.0/


YING LI PHYSICAL REVIEW RESEARCH 3, 023146 (2021)

(a)

c

Output

classical

bits

C

R

S

Rx

Rz R†
z

Rz R†
z

(c)(b)

Pre

Post

c

c

Input

qubits

(d)

Hidden layer

Qubits

θi φjφi

|0

|1
A

B

FIG. 1. (a) Presynaptic and postsynaptic biological neurons.
(b) A memristor. In the quantum regime, we use qubits to rep-
resent the input/output current and resistance of the memristor.
(c) Memristive gate Mθ decomposed into elementary quantum gates,
where Rz = e−i θ

2 Z and Rx = e−i( π
2 −θ )X . (d) Memristive quantum neu-

ral network.

of neurons and synapses. Each connection between an input
neuron and a hidden-layer neuron is characterized by two
variational parameters (i.e., weights), and each connection to
an output neuron is characterized by only one parameter. We
prove that such a three-layer memristive neural network is
as powerful as a universal quantum computer [11] up to a
polynomial overhead. The application of neural network is
demonstrated in quantum state classification tasks [22–24,35].

All the results are demonstrated with numerical simula-
tions using QuESTlink [36] and experiments on the quantum
computer ibmq_vigo. The paper is organized as follows. In
Sec. II, we give a brief review of the spiking neural network
and STDP. In Sec. III, we introduce memristive quantum
gates. Characteristic memristive properties, including pinched
hysteresis loop and long-term plasticity, are discussed in Secs.
IV, V, and VI. A protocol of quantum ANN built on mem-
ristive quantum gates is given in Sec. VII. In Sec. VIII, we
discuss the universal quantum computing on the memristive
ANN. Then, we demonstrate its application to the quantum
state classification in Sec. IX. In Sec. X, we summarize and
discuss the conclusions.

II. SPIKING NEURAL NETWORK AND STDP

In a spiking neural network [33,34], the message between
neurons is encoded in spike trains, similar to the biological
neural network. Spikes are signals discretized in time, which
occur when the potential of a neuron reaches a threshold. The
spike of one neuron influences the potential of other neurons
connected through synapses. A synapse, as shown in Fig. 1(a),
is directional. In the STDP model [31,32], the connection
between two neurons evolves according to the relative timing
between presynaptic and postsynaptic spikes: The connection
is strengthened when presynaptic neuron spikes before the
postsynaptic neuron within a finite time window, and the con-
nection is weakened when presynaptic neuron spikes after the
postsynaptic neuron. Spiking neural networks with the STDP
learning rule are capable of various machine learning tasks,
such as unsupervised learning of digit recognition [37,38].

Although all ANNs mimic the brain at some level, spik-
ing neural networks with the STDP learning rule are more

biologically plausible than others, e.g., sigmoid neurons [4,5].
In a neural network with sigmoid neurons, usually the mes-
sage between neurons is a real number, each neuron is a
differentiable function, and the connection between two neu-
rons is characterized by a weight; then weights of connections
and other parameters of the network are updated in the op-
timization of an objective function using methods such as
gradient descent. In this paper, we present a key building block
of quantum spiking neural network, i.e., a quantum gate that
mimics the behavior of synapse in STDP.

III. MEMRISTIVE QUANTUM GATES

To find quantum gates with the memristive properties, we
introduce a simplified picture of the memristor, which is dif-
ferent from actual memristive devices [30]. When we send
the input current to memristor, the current is transmitted or
reflected depending on the state of memristor, and the state
of memristor evolves depending on the input current. If the
input current is from A to B [see Fig. 1(b)], the resistance
of memristor decreases. If the input current is from B to
A, the resistance increases. We use one qubit to represent
the current state: |0〉C and |1〉C denote currents from A to
B and from B to A, respectively. We use another qubit to
represent the resistance state: |0〉R and |1〉R denote trans-
mission and reflection, respectively. In the extreme case, the
resistance state can be completely flipped in one shot, then
memristor is the transformation |0〉C ⊗ |0〉R → |0〉C ⊗ |0〉R,
|0〉C ⊗ |1〉R → |1〉C ⊗ |0〉R, |1〉C ⊗ |0〉R → |1〉C ⊗ |1〉R, and
|1〉C ⊗ |1〉R → |0〉C ⊗ |1〉R. The key point is that input states
and output states of this transformation are both orthogonal.
Therefore, it can be a unitary transformation, i.e., a quantum
gate.

Now, we consider the general case that the resistance state
is rotated by a finite angle of π − 2θ when it is not saturated.
The corresponding unitary transformation reads

Mθ =

⎛
⎜⎜⎝

1 0 0 0
0 0 0 eiθ

0 cos θ i sin θ 0
0 ie−iθ sin θ e−iθ cos θ 0

⎞
⎟⎟⎠, (1)

where basis vectors are sorted as |0〉C ⊗ |0〉R, |0〉C ⊗ |1〉R,
|1〉C ⊗ |0〉R, and |1〉C ⊗ |1〉R. When θ = 0, Mθ can flip the
resistance state in one shot as in the extreme case. When
θ is finite, the gate transforms the input state |0〉C ⊗ |1〉R

into |1〉C ⊗ (cos θ |0〉R + ie−iθ sin θ |1〉R), i.e., the current is
reflected, and the resistance state is rotated by a finite angle. It
is similar for the input state |1〉C ⊗ |0〉R. We can find that the
influence of input current on the resistance state is minimized
at θ = π

2 .
Many similar memristive gates can be constructed. For

example, we can change the phases eiθ and e−iθ , and the gate
is still memristorlike. We choose the phases such that the gate
Mθ can be used for encoding a quantum state and implement-
ing universal quantum computing on the neural network, as
we will show later.

In some scenarios, we want to use different qubits to repre-
sent the states of two terminals A and B. For example, we use
two qubits A and B to represent voltages of two terminals. We
can modify the memristive gate by taking |0〉C = |1〉A ⊗ |0〉B
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FIG. 2. Hysteresis loops of memristive gates. Here 〈ZC〉in and 〈ZC〉out represent the voltage and current, respectively. The phase η = 1 in
(a) and η = i in (b).

and |1〉C = |0〉A ⊗ |1〉B. Then, a three-qubit memristive gate is
M̃θ = Mθ ⊕ 14, where 14 is the four-dimensional identity ma-
trix acting on the subspace of |0〉A ⊗ |0〉B ⊗ |μ〉R and |1〉A ⊗
|1〉B ⊗ |μ〉R, i.e., the state of memristor does not change when
two terminals have the same voltage. Qubits A and B can also
be used to represent the spike timings of two neurons when
the resistance qubit mimics the synapse. Memristive quantum
gates for multistate current and resistance can be constructed
in a similar way. In this paper, we focus on the two-qubit gate
for simplicity.

IV. MEMRISTIVE BEHAVIOR

Let ρC and ρR be input states of the current qubit and
resistance qubit, respectively. Then the output state after the
memristive gate is ρout = MθρC ⊗ ρRM†

θ . We use I , X , Y , and
Z to denote single-qubit Pauli operators. Considering mean
values of Z , we have

〈ZC〉out = Tr(Z ⊗ Iρout )

= Tr(Z ⊗ ZρC ⊗ ρR) = 〈ZR〉in〈ZC〉in. (2)

Here, we have used M†
θ Z ⊗ IMθ = Z ⊗ Z . We can find that

Eq. (2) coincides with Ohm’s law, i.e., 〈ZC〉in = Tr(ZρC),
〈ZR〉in = Tr(ZρR), and 〈ZC〉out = Tr(Z ⊗ Iρout ) play the roles
of voltage, conductance, and current, respectively.

To demonstrate the hysteretic behavior, we let the resis-
tance qubit interact with a sequence of current qubits in input
states ρ

(0)
C , ρ

(1)
C , . . . , ρ

(t )
C , . . . one by one through memristive

gates. Here, t is the label of time. Given any function of the
voltage 〈ZC〉in(t ) = V (t ) ∈ [−1, 1], the corresponding input
states are ρ

(t )
C = |ψ (t )〉〈ψ (t )|, where |ψ (t )〉 = cos φ(t )

2 |0〉 +
η sin φ(t )

2 |1〉, φ(t ) = arccos (V (t )), and η = eiϕ can be any
phase. We can prepare the state |ψ (t )〉 by applying single-
qubit gates Ry(φ) = e−i φ

2 Y and then Rz(ϕ) = e−i ϕ

2 Z on the
initial state |0〉.

Driven by current qubits, the resistance state evolves with
t , which results in the hysteretic behavior. The 〈ZC〉out-versus-
〈ZC〉in (i.e., current-versus-voltage) hysteresis loops are shown
in Fig. 2, and the corresponding 〈ZR〉out-versus-〈ZC〉in curves
are shown in Fig. 3. In these plots, we take φ(t ) = δφt (t =
0, 1, 2, . . .) and η = 1, i. In general, the shape of the hysteresis

loop depends on the voltage form. For some voltage forms, a
memristor behaves like a rectifier, i.e., current in the direction
increasing the resistance is blocked. In our case, the shape of
hysteresis loop also depends on the value of quantum phase
η. In Fig. 2, the voltage form is the same 〈ZC〉in(t ) = cos(δφt )
for both values of η; however, the hysteresis loops have differ-
ent shapes.

A. Numerical simulation

In the numerical simulation, the resistance qubit is initial-
ized in the state ρ

(0)
R = |+〉〈+|, where |+〉 = 1√

2
(|0〉 + |1〉).

With this initial state, we compute the output states of the first
gate, ρ

(0)
out = Mθρ

(0)
C ⊗ ρ

(0)
R M†

θ and ρ
(1)
R = TrC(ρ (0)

out ); with the
output resistance state of the first gate, we compute the output
states of the second gate, ρ

(1)
out = Mθρ

(1)
C ⊗ ρ

(1)
R M†

θ and ρ
(2)
R =

TrC(ρ (1)
out ), and so on. In this way, we can obtain output states

of each gate. Then, at the time t , the voltage is 〈ZC〉in(t ) =
Tr(Zρ

(t )
C ), the output current is 〈ZC〉out (t ) = Tr(Z ⊗ Iρ (t )

out ),
and the output conductance is 〈ZR〉out (t ) = Tr(I ⊗ Zρ

(t )
out ).

In Figs. 2 and 3, small gray circles, respectively, rep-
resent the numerical data of (〈ZC〉in(t ), 〈ZC〉out (t )) and
(〈ZC〉in(t ), 〈ZR〉out (t )) with θ = 7π

16 and δφ = π
32 , where t =

0, 1, . . . , 20π
δφ

− 1. Dashed lines represent the numerical data

with θ = 3π
8 and δφ = π

4 . For dashed lines, the numerical sim-
ulations are implemented for t = 0, 1, . . . , 20π

δφ
+ 1, however,

only the last cycle (i.e., t = 20π
δφ

− 7, 20π
δφ

− 6, . . . , 20π
δφ

+ 1) is
plotted. The codes used to generate numerical results in this
paper have been made openly available online [39].

B. Experiment

The superconducting quantum computer ibmq_vigo has
five qubits. Two-qubit gates are available on nearest neighbor-
ing qubits (0,1), (1,2), (1,3), and (3,4). Only qubits 0,1,2,3 are
used in our experiments: In experiments of the hysteretic be-
havior, LTP, LTD, and quantum state encoding, we always use
the qubit 1 as the resistance qubit and qubits 0,2,3 as current
qubits. In the calibration data from IBM Quantum Experience
on 25 Feb 2020, single-qubit-gate error rates are from 0.03%
to 0.07%, and two-qubit gate error rates are from 0.68% to
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FIG. 3. Hysteresis loops of (〈ZC〉in (t ), 〈ZR〉out (t )). Here 〈ZC〉in and 〈ZR〉out represent the voltage and conductance, respectively. The phase
η = 1 in (a) and η = i in (b).

1.18%, depending on the qubits. We performed experiments
on 25–27 Feb 2020. Each circuit runs for 8192 shots.

Because of the topology of qubit network on ibmq_vigo,
we implement the memristive gates between the resistance
qubit and at most three current qubits. To demonstrate a full
cycle of each hysteresis loop, we divide the cycle into four
segments, as shown in Figs. 2 and 3. In the experiment, we
take θ = 3π

8 and δφ = π
4 as the same as in numerical simula-

tions of the dashed lines. For the segment started at t = s, we
prepare the resistance qubit in the numerically-computed out-
put state ρ

(s)
R , and then we let the resistance qubit interact with

three current qubits prepared in states ρ
(s)
C , ρ

(s+1)
C , and ρ

(s+2)
C

one by one. The starting time of four segments are, respec-
tively, s = 20π

δφ
− 7, 20π

δφ
− 5, 20π

δφ
− 3, 20π

δφ
− 1. Mean values

〈ZC〉out (t ) and 〈ZR〉out (t ) are measured in the experiment, and
(〈ZC〉in(t ), 〈ZC〉out (t )) and (〈ZC〉in(t ), 〈ZR〉out (t )) are plotted as
large circles in Figs. 2 and 3, respectively. If quantum gates
are ideal, experimental data should be consistent with dashed
lines. The difference is caused by the noise on ibmq_vigo. To
minimize the impact of noise, we decompose the memristive
gate into elementary gates as shown in Fig. 4(c).

Suppose we have enough qubits (or we can reuse the same
current qubit and reinitialize it at each time t), we can directly
implement a full cycle without dividing it into segments. Re-
sults of such a full-cycle experiment and the segmented-cycle
experiment may have a discrepancy. Because the quantum
computer is imperfect, each memristive gate causes some
noise on the resistance qubit, making its state deviate from
the one without noise (the numerical result). Such noise is ig-
nored (compared to a full-cycle experiment) when we prepare
the resistance qubit in the numerically-computed state at the
beginning of each segment.

V. LONG-TERM PLASTICITY

In STDP, causal events increase the strength of a synapse,
and acausal events decrease the strength, which are called LTP

and LTD, respectively. LTP and LTD can be mimicked using
the memristor [32]. In the memristive gate, the resistance state
evolves driven by the current qubit. The output state of resis-
tance qubit is Mθ,ρC (ρR) = TrC(ρout ), where TrC denotes the
partial trace on the current qubit, and Mθ,ρC is a completely
positive map depending on θ and the input state ρC of current
qubit. The steady state of this map is ρs = 1

2 (I + 〈ZC〉inZ ) (see
Sec. V A). Therefore, after the interaction with a sequence
of current qubits in the same input state, the conductance
of memristor converges to 〈ZR〉s = 〈ZC〉in, i.e., the classical
information of current qubit is encoded into the resistance
qubit.

A. Steady state in long-term plasticity

We express the map on a qubit using the Pauli trans-
fer matrix representation. The state of a qubit can be
written as a linear combination of Pauli operators: The in-
put state of the current qubit is ρC = 1

2 (I + ρX
C X + ρY

CY +
ρZ

CZ ), the input state of the resistance qubit is ρR = 1
2 (I +

ρX
R X + ρY

RY + ρZ
RZ ), the output state of the resistance qubit

is ρR,out = Mθ,ρC (ρR) = 1
2 (I + ρX

R,outX + ρY
R,outY + ρZ

R,outZ ).
We can find that each qubit state corresponds to a vector of
which elements are coefficients of Pauli operators. Accord-
ingly, we can express a linear map on the state as a matrix
acting on the corresponding vector. The Pauli transfer matrix
of the memristive-gate map Mθ,ρC is

Mθ,ρC =
(

1 0
k E

)
, (3)

where

k = ρZ
C

⎛
⎝cos θ sin2 θ

cos2 θ sin θ

cos2 θ

⎞
⎠ (4)

and

E =
⎛
⎝ρX

C cos θ − ρY
C sin3 θ −ρX

C cos2 θ sin θ − cos θ sin2 θ

ρY
C cos3 θ ρX

C cos θ sin2 θ − ρY
C sin θ − cos2 θ sin θ

−ρY
C cos θ sin θ ρX

C cos θ sin θ sin2 θ

⎞
⎠. (5)
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2 Z .

(b) Circuit of the memristive gate M0. (c) Circuit of the memristive gate Mθ optimized for the implementation on ibmq_vigo. (d) Circuit
of the modified memristive gate with a measurement on the current qubit and a feedback gate on the resistance qubit. (e) Circuit of the
modified memristive gate with an additional controlled-NOT gate, which is used in the experiment on ibmq_vigo. (f) Circuit of the quantum
state classification experiment on ibmq_vigo.

Then, we have ⎛
⎜⎝

ρX
R,out

ρY
R,out

ρZ
R,out

⎞
⎟⎠ = E

⎛
⎜⎝

ρX
R

ρY
R

ρZ
R

⎞
⎟⎠ + k. (6)

The steady state of the map Mθ,ρC is the solution of the
equation ρs = Mθ,ρC (ρs). Express the steady state in the form
ρs = 1

2 (I + ρX
s X + ρY

s Y + ρZ
s Z ), the equation becomes⎛

⎜⎝
ρX

s

ρY
s

ρZ
s

⎞
⎟⎠ = E

⎛
⎜⎝

ρX
s

ρY
s

ρZ
s

⎞
⎟⎠ + k, (7)

and its solution is ⎛
⎜⎝

ρX
s

ρY
s

ρZ
s

⎞
⎟⎠ =

⎛
⎝ 0

0
ρZ

C

⎞
⎠. (8)

We remark that ρZ
C = Tr(ZρC) = 〈ZC〉in.

B. LTP and LTD

To demonstrate LTP and LTD phenomena mimicked using
memristive gates, we take ρC = |0〉〈0| and ρC = |1〉〈1| to
represent causal events in LTP and acausal events in LTD,
respectively. We also take ρC = |+〉〈+| to represent stochas-
tic events (SE) without a definite casual order, where |±〉 =

1√
2
(|0〉 ± |1〉). Results of numerical simulation and experi-

ment are shown in Fig. 5(a). These results are obtained with
two-qubit memristive gates. We can obtain similar results
with three-qubit memristive gates by using qubits A and B
to represent spike timings of two neurons, respectively.

In the numerical simulation, we let the resistance
qubit interact with a sequence of current qubits in the
input states ρ

(0)
C , ρ

(1)
C , . . . , ρ

(t )
C , . . . one by one through

memristive gates, as the same as in hysteresis-loop
simulation. We take ρ

(t )
C = |1〉〈1| when t = 0, 1, . . . , 99,

ρ
(t )
C = |0〉〈0| when t = 100, 101, . . . , 199, ρ (t )

C = |1〉〈1| again
when t = 200, 201, . . . , 299, and ρ

(t )
C = |+〉〈+| when t =

300, 301, . . . , 399. The resistance qubit is initialized in the
state ρ

(0)
R = |+〉〈+|. With this initial state, we compute out-

put states of the resistance qubit, i.e., ρ
(t+1)
R = M

θ,ρ
(t )
C

(ρ (t )
R ),

where θ = 7π
16 . Then, 〈ZR〉out (t ) = Tr(Zρ

(t )
R ) is computed and

plotted as the thin curve in Fig. 5(a).
Four experiments of LTP and LTD are implemented on

ibmq_vigo, corresponding to four thick curves (with circles)
in Fig. 5(a). From left to right in the plot, the initial state of
the resistance qubit is |+〉, |1〉, |0〉, and |1〉 in the four ex-
periments, respectively, and the initial state of currents qubits
is, respectively, |1〉, |0〉, |1〉, and |+〉. We let the resistance
qubit interact with three current qubits one by one through
the memristive gate. We take θ = π

4 in the memristive gate,
and the gate is decomposed into elementary gates as shown in
Fig. 4(c). After each memristive gate, 〈ZR〉out is measured.

VI. ENCODING QUANTUM STATES

Memristive gates can encode quantum information into the
resistance qubit. In LTP and LTD processes, only the classical
information is encoded because the phase information is not
preserved. The current qubit is flipped or not flipped depend-
ing on the resistance state. Therefore two qubits are correlated
in the Z direction in the output state, which damages the phase
information. To restore the phase, we can measure the output
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FIG. 5. (a) Classical and (b),(c) quantum long-term plasticity
based on memristive gates. Thin solid curves represent numerical
results, and filled circles represent experimental results. Empty cir-
cles denote initial values in the experiments. In (b) and (c), we take
the same values of the parameter θ . Dashed horizontal lines denote
values in the input state of current qubits, i.e., the steady state.
P = X,Y, Z are Pauli operators. The quantum state is successfully
encoded when three 〈PR〉out converge to dashed lines.

current qubit in the X basis and adjust the phase of resistance
qubit, see Fig. 4(d): The identity gate I or phase gate Z on the
resistance qubit is performed if the measurement outcome is
|+〉 or |−〉, respectively. Accordingly, the map on resistance
qubit reads M′

θ,ρC
(ρR) = TrC(K+ρoutK+) + TrC(K−ρoutK−),

where Kη = |η〉〈η| ⊗ Z
1
2 −η 1

2 . The steady state of this map
is ρ ′

s = ρC (see Sec. VI A). Therefore, after the interaction
with a sequence of current qubits in the same input state, the
resistance state converges to ρC, i.e., quantum information is
encoded.

A. Steady state in the quantum state encoding

In the Pauli transfer matrix representation, the matrix of the
memristive-gate map M′

θ,ρC
is

M ′
θ,ρC

=
(

1 0
k′ E ′

)
, (9)

where

k′ = cos2 θ

⎛
⎜⎝

ρX
C

ρY
C

ρZ
C

⎞
⎟⎠ (10)

and

E ′ =
⎛
⎝ sin2 θ −ρZ

C cos θ sin θ ρY
C cos θ sin θ

ρZ
C cos θ sin θ sin2 θ −ρX

C cos θ sin θ

−ρY
C cos θ sin θ ρX

C cos θ sin θ sin2 θ

⎞
⎠.

(11)

Let ρ ′
s = 1

2 (I + ρ ′X
s X + ρ ′Y

s Y + ρ ′Z
s Z ) be the steady state of

M′
θ,ρC

. By solving the steady state equation (see Sec. V A),
we can find that ⎛

⎜⎝
ρ ′X

s

ρ ′Y
s

ρ ′Z
s

⎞
⎟⎠ =

⎛
⎜⎝

ρX
C

ρY
C

ρZ
C

⎞
⎟⎠. (12)

Therefore, ρ ′
s = ρC.

B. Demonstration of the quantum state encoding

We take two input states to demonstrate the quantum state
encoding, and results are shown in Figs. 5(b) and 5(c). The
resistance qubit is initialized in the state ρ

(0)
R = |+〉〈+|. We let

the resistance qubit interact with a sequence of current qubits
in the input states ρ

(0)
C , ρ

(1)
C , . . . , ρ

(t )
C , . . . one by one through

modified memristive gates. In both numerical simulation and
experiment, we take ρ

(t )
C = |ψ〉〈ψ | for all t , where |ψ〉 =

e−i 7π
22 Ze−i 3π

10 X |0〉 in (b) and |ψ〉 = e−i π
16 Ze−i 3π

32 X |0〉 in (c). The
circuit of modified memristive gate (encoding gate) is shown
in Fig. 4(d). Because we are only interested in the state of
the resistance qubit, the modified memristive gate can also be
realized using the circuit shown in Fig. 4(e). The additional
controlled-NOT gate in Fig. 4(e) is equivalent to a phase gate
on the resistance qubit depending on the phase state of the
current qubit.

In the numerical simulation, we compute the output state of
the resistance qubit at each time t , i.e., ρ

(t+1)
R = M′

θ,ρ
(t )
C

(ρ (t )
R ),

where θ = 7π
16 . Then, the mean values of three Pauli operators

〈PR〉out (t ) = Tr(Pρ
(t )
R ) are computed and plotted as thin solid

curves in Figs. 5(b) and 5(c), where P = X,Y, Z . In the two
experiments implemented on ibmq_vigo, we take θ = π

8 , and
the modified memristive gate is realized using the circuit in
Fig. 4(e), in which the memristive gate is decomposed into
elementary gates as shown in Fig. 4(c). The mean values
of Pauli operators 〈PR〉out are measured after each modified
memristive gate and plotted as thick curves (with circles) in
Figs. 5(b) and 5(c).

In the two experiments, the encoding fidelity, respectively,
reaches 97.672% and 97.638% after three memristive gates.
We can express states of the current qubit and resistance
qubit as ρ

(t )
C = 1

2 (I + ρX
C X + ρY

CY + ρZ
CZ ) and ρ

(t )
R = 1

2 (I +
ρX

R X + ρY
RY + ρZ

RZ ), respectively. Here, ρP
C = Tr(Pρ

(t )
C ) and

ρP
R = Tr(Pρ

(t )
R ). Therefore, when Tr(Pρ

(t )
C ) = Tr(Pρ

(t )
R ) for

all P, two states are the same. In Figs. 5(b) and 5(c),
the dashed horizontal lines represent Tr(Pρ

(t )
C ). Because
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FIG. 6. Universal quantum computing operations on the neural
network, including (a) write operation, (b) read operation, (c) single-
qubit gate, and (d) two-qubit gate. Red arrows denote the time
sequence.

ρ
(t )
C is a pure state, the fidelity is F =

√
Tr(ρ (t )

C ρ
(t )
R ) =√

(1 + ρX
C ρX

R + ρY
CρY

R + ρZ
CρZ

R )/2.

VII. ARTIFICIAL NEURAL NETWORK

The neural network in Fig. 1(d) has three layers. The input
layer and hidden layer are formed by M current qubits and N
resistance qubits, respectively. Each connection between two
quantum layers has three labels (i, a, b) and two parameters
(φi, θi ): The ith connection is a composite gate Mθi e

−i φi
2 Y ⊗ I

on the ath current qubit and bth resistance qubit. Here, the
Y -axis rotation is on the current qubit. We remark that these
connections are time ordered according to i because quantum
gates are noncommutative. The output layer is formed by N
classical bits. Each resistance qubit and the corresponding
classical bit has a connection with only one parameter φ j :

After a Y -axis rotation e−i
φ j
2 Y , the resistance qubit is measured

in the Z basis, and outcome is the classical bit.

VIII. UNIVERSAL QUANTUM COMPUTING

To implement universal quantum computing on the mem-
ristive ANN, we initialize input (current) and hidden-layer
(resistance) qubits in states |0〉 and |+〉, respectively. We can
think of that resistance qubits form the register of quantum
data, and current qubits conduct the computing. (i) A current
qubit can write/read the quantum state of a resistance qubit
by taking φ = θ = 0, as shown in Fig. 6(a), corresponding
to transformations M0|ψ〉 ⊗ |+〉 = |+〉 ⊗ |ψ〉 and M0|0〉 ⊗
|ψ〉 = |ψ〉 ⊗ |0〉, respectively. (ii) To perform a single-qubit
gate, we let a current qubit carry the qubit state |ψ〉 and
prepare a resistance qubit in the state |0〉 by using write/read
operations. Then, by visiting the resistance qubit twice with
parameters shown in Fig. 6(b), we obtain the transform
MθM0e−i φ

2 Y ⊗ I|ψ〉 ⊗ |0〉 = I ⊗ e−i θ
2 Ze−i φ

2 Y |0〉 ⊗ |ψ〉, which
is a universal single-qubit gate. (iii) To perform a two-qubit
gate on two resistance qubits, we use a current qubit to read
the state of the first qubit ψ and let it interact with the second
qubit ϕ [see Fig. 6(c)]. The output current state is written into
the third resistance qubit. In this way, a controlled-NOT gate

X is performed. The corresponding transformation on three
resistance qubits is |�〉1,2 ⊗ |+〉3 → |0〉1 ⊗ 
X |�〉2,3, where
|�〉 is the input two-qubit state, and the second qubit is the
control qubit in 
X . To understand the controlled-NOT gate,
we only need to note that the memristive gate with θ = 0, i.e.,
M0, is equivalent to a controlled-NOT gate followed by a swap

ψ

0

+ +

0

0

0

0
0

0

1 2 3 4 56

0
0

0
0

0
0

φ
θ

FIG. 7. Single-qubit gate. Red numbers denote the time sequence.

gate, as shown in Fig. 4(b). The universal single-qubit gate and
controlled-NOT gate form a universal gate set [9].

The single-qubit gate can be implemented under the re-
striction that each current qubit can only visit a resistance
qubit at most once. As shown in Fig. 7, connection-1 prepares
the second resistance qubit (from left to right) in the state
|0〉, connection-2 reads the state of the first resistance qubit
|ψ〉 into the second current qubit, connection-3 corresponds
to the first visit in Fig. 6(c), connection-4 writes the output
state of second current qubit into the third resistance qubit,
connection-5 reads the state of the third resistance qubit into
the third current qubit, and connection-6 corresponds to the
second visit in Fig. 6(c).

The overhead cost of universal quantum computing on the
memristive ANN is polynomial. Each controlled-NOT gate
consumes one current qubit and one resistance qubit. Under
the one-visit restriction, each single-qubit gate consumes three
current qubits and two resistance qubits. Therefore, the over-
head factor is a constant.

IX. QUANTUM STATE CLASSIFICATION

Now, we use the memristive neural network for quantum
state classification [22–24,35]. Input qubits are prepared in
one of the quantum states to be classified |�k〉. Hidden-layer
qubits are initialized in the state |+〉. The input layer and
hidden layer are fully connected, and connections are sorted
as follows: The first input qubit interacts with from the first
to the N th hidden-layer qubits one by one; then, the second
input qubit interacts with from the first to the N th hidden-layer
qubits one by one; and so on. In other words, the ath input
qubit and the bth hidden-layer qubit are coupled by the ith
Y -axis rotation and memristive gate, where i = N (a − 1) + b.

The probability distribution of output classical bits μ de-
pends on the input state |�k〉. Here, μ = (μ1, μ2, . . . , μN )
is a binary vector, μ j is the value of the jth output bit, i.e.,
the measurement outcome of the jth hidden-layer qubit. The
probability of μ given the input state |�k〉 is pφ,θ (μ|�k ),
where φ = (φ1, φ2, . . . , φ(M+1)N ) and θ = (θ1, θ2, . . . , θMN )
are parameters of the neural network, and φMN+ j is the pa-
rameter of the Y -axis rotation on the jth hidden-layer qubit
before the measurement. We find the optimal parameters by
maximizing D = ∑

k 
=k′ D(pφ,θ (•|�k ), pφ,θ (•|�k′ )). Here,

D(pφ,θ (•|�k ), pφ,θ (•|�k′ ))

= 1

2

∑
μ

|pφ,θ (μ|�k ) − pφ,θ (μ|�k′ )| (13)
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FIG. 8. (a) Neural network for the classification of two-qubit
states. (b) Probability of the output bit 0 given optimal parameters.
Dashed and solid boxes represent the theoretical and experimental
results, respectively.

is the trace distance between two distributions [9], which char-
acterizes how well two states can be distinguished according
to the output μ.

Two examples are implemented. First, we use a network
with two neurons in each layer, i.e., M = N = 2 to classify
four Bell states. Because Bell states are orthogonal, they are
completely distinguishable, which can be achieved by the
neural network. Second, we use a network with M = N = 5
to classify two five-qubit ground states of the quantum Ising
model in ferromagnetic and paramagnetic phases [40], i.e.,
the Greenberger-Horne-Zeilinger state |�ghz〉 = 1√

2
(|0〉⊗M +

|1〉⊗M ) and the product state |�+〉 = |+〉⊗M . These two states
are not orthogonal. We find that the maximum distance given
by neural network can reach the quantum upper bound, i.e.,
the trace distance between two quantum states [9]. If we turn
off parameters φ by setting all φ to zero, only memristive gates
are used in the classification. In this case, the distance can
reach 0.94792, which is lower than the upper bound 0.96824
but is still above the classical value 0.9375, i.e., the distance
given by a direct measurement in the Z basis on each qubit.
For the experimental implementation, we use the network
shown in Fig. 8(a) to classify two-qubit ground states. In the
numerical simulation, the distance can reach the theoretical
upper bound 0.70711, which is reduced to 0.65673 (but still
higher than the classical value 0.5) in the experiment using op-
timal parameters. The corresponding distributions are shown
in Fig. 8(b).

A. Numerical simulation of Bell-state classification

To distinguish four Bell states

|�1〉 = 1√
2

(|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉), (14)

|�2〉 = 1√
2

(|0〉 ⊗ |0〉 − |1〉 ⊗ |1〉), (15)

|�3〉 = 1√
2

(|0〉 ⊗ |1〉 + |1〉 ⊗ |0〉), (16)

|�4〉 = 1√
2

(|0〉 ⊗ |1〉 − |1〉 ⊗ |0〉), (17)

we take M = N = 2, i.e., each layer has two qubits or classi-
cal bits. We find optimal parameters φ and θ by maximizing

the distance function

D(φ, θ) =
3∑

k=1

4∑
k′=k+1

D(pφ,θ (•|�k ), pφ,θ (•|�k′ )). (18)

The value of the average distance D/6 is plotted in Fig. 9(a),
which reaches one at the end of the optimization. The distance
D is never larger than 1, and D = 1 means that two states are
fully distinguishable with the successful probability one. The
optimal parameters are φ = (0,−0.31973, 0, 0,−1.5708, 0)
and θ = (0,−1.3065, 0, 0). We note that π

2 � 1.5708, and
changing values of φ2 and θ2 does not reduce the distance.

B. Numerical simulation of ground-state classification

The two ground states |�ghz〉 and |�+〉 are not orthogo-
nal. Therefore, they are not fully distinguishable. The trace
distance between the two quantum states is

D(|�ghz〉, |�+〉) =
√

1 − |〈�+|�ghz〉|2

=
√

1 − 1

2M−1
, (19)

where M is the number of qubits in the ground states.
For any measurement setup, the distance between
measurement-outcome distributions of two quantum
states is never larger than D(|�ghz〉, |�+〉). Therefore,
D(pφ,θ (•|�ghz), pφ,θ (•|�+)) � D(|�ghz〉, |�+〉).

If two ground states are directly measured in the Z ba-
sis, the measurement-outcome distributions are q(μ|�ghz) =
δμ,0+δμ,1

2 and q(μ|�+) = 1
2M , where 0 = (0, 0, . . . , 0) and 1 =

(1, 1, . . . , 1). The distance between the two distributions is

D(q(•|�ghz), q(•|�+)) = 1 − 1

2M−1
. (20)

To distinguish two ground states of five qubits, we take
M = N = 5, i.e., each layer has five qubits or classical bits.
We find optimal parameters φ and θ by maximizing the dis-
tance function

D(φ, θ) = D(pφ,θ (•|�ghz), pφ,θ (•|�+)). (21)

The result is plotted in Fig. 9(b), and D reaches the quantum
upper bound D(|�ghz〉, |�+〉) � 0.96824 at the end of the
optimization.

If we turn off parameters φ by setting φi = 0 for all i =
1, 2, . . . , (M + 1)N , we find the optimal θ by maximizing the
distance function

D(θ) = D(p0,θ (•|�ghz), p0,θ (•|�+)). (22)

Here, 0 is the (M + 1)N-dimensional zero vector. The result
is plotted in Fig. 9(c), and D reaches 0.94792 at the end of the
optimization, which is lower than D(|�ghz〉, |�+〉) but above
D(q(•|�ghz), q(•|�+)) = 0.9375.

C. Experiment of ground-state classification

In the experiment, we use a three-qubit neural network
shown in Fig. 8(a), i.e., M = 2 and N = 1, to distinguish
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FIG. 9. Values of the distance in the optimisation computing for the classification of (a) Bell states, (b) ten-qubit Ising-model states
with all parameters, (c) ten-qubit Ising-model states with reduced parameters, and (d) three-qubit Ising-model states. Blue dots denote
the distance returned in each step. Dashed lines denote the quantum upper bound of the distance. Solid lines denote classical values, i.e.,
D(q(•|�ghz ), q(•|�+)).

two-qubit ground states. We find optimal parameters φ and
θ by maximizing the distance function D(φ, θ) [Eq. (21)],
and the result is plotted in Fig. 9(d). The distance D reaches
the quantum upper bound D(|�ghz〉, |�+〉) � 0.70711 at the
end of the optimization. The optimal parameters are φ =
(1.5708, 1.5708,−0.78540) and θ = (0, 0). We note that π

2 �
1.5708 and π

4 � 0.78540. These parameters are used in the
experiment.

To implement the three-qubit neural network on
ibmq_vigo, we optimize the circuit, i.e., minimize the
number of two-qubit gates, as follows. We can find that
only memristive gates Mθ with θ = 0 are used according
to optimal parameters. Each gate M0 can be realized using
two controlled-NOT gates, as shown in Fig. 4(b), which is
equivalent to a controlled-NOT gate followed by a SWAP
gate. Therefore, we can implement the neural network
with optimal parameters as shown in Fig. 4(f): At the
beginning, qubit-0 represents the resistance qubit (i.e.,
hidden-layer qubit), qubit-1 and qubit-2 represent current
qubits (i.e., input qubits); to perform the first memristive
gate, instead of physically performing the SWAP gate,
the roles of qubit-0 and qubit-1 are exchanged after the

first controlled-NOT gate, i.e., now qubit-1 represents the
resistance qubit, and qubit-0 represents a current qubit; It
is similar for the second memristive gate. The distributions
of measurement outcomes obtained in the experiment are
shown in Fig. 8(b). The distance between distributions
of two ground states is 0.65673, which is lower than the
theoretical value D(|�ghz〉, |�+〉) � 0.70711 but above
D(q(•|�ghz), q(•|�+)) = 0.5.

X. DISCUSSION

We have demonstrated that memristive quantum gates can
mimic memristors and synapses, which are essential building
blocks of spike-based neuromorphic computing. These gates
are unitary transformations that are feasible in many physical
systems [9]. Memristive gates are fully quantum compared
with the memristance involving the weak measurement and
dissipation in quantum systems [41–46]. The experiments are
implemented using universal gates on a circuit-based quantum
computer ibmq_vigo. By engineering the interaction between
qubits, it is also possible to realize a memristive gate di-
rectly in the time evolution. Synapses based on memristive
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gates can encode the quantum state in a way similar to
the long-term plasticity, therefore, are capable of processing
quantum information. We have proposed a nonspiking ANN
built on memristive gates. The question that we have not
discussed in this work is how to combine memristive gates
with spiking neurons in the quantum regime [47] to construct
a quantum spiking neural network, which is worth future
exploration.
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