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Signatures of the BCS-BEC crossover in the yrast spectra of Fermi quantum rings
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We study properties of the lowest energy states at nonzero total momentum (yrast states) of the Hubbard model
for spin- 1

2 fermions in the quantum ring configuration with attractive on-site interaction at low density. In the
one-dimensional (1D) case we solve the Hubbard model using the Bethe ansatz, while for the crossover into the
2D regime we use the Full-Configuration-Interaction Quantum Monte Carlo method to obtain the yrast states
for the spin-balanced Fermi system. We show how the yrast excitation spectrum changes from the 1D to the 2D
regime and how pairing affects the yrast spectra. We also find signatures of fragmented condensation for certain
yrast states usually associated with dark solitons.
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I. INTRODUCTION

The crossover from a fermionic superfluid of weakly bound
Cooper pairs (BCS regime) to a Bose-Einstein condensate
(BEC) of strongly bound dimers is a paradigmatic quantum
many-body problem [1–4]. Our understanding of this problem
is still limited, as strong quantum correlations and the absence
of a small parameter pose severe challenges for theoretical
and computational approaches. While bulk systems have been
studied extensively in recent years using theory [3,5,6] and ex-
periments with quantum gases [6–15], the advent of quantum
gas microscopes [16–19] and micro-traps [20–23] has opened
up the opportunity to experiment with systems that are small
enough to perform exact numerical calculations on.

Of particular interest are ring configurations, where
translational invariance along one spatial dimension makes
(angular) momentum a good quantum number. This allows
for the study of yrast states, which are defined as the lowest
energy state at a given value of the total momentum. Yrast
states in a bosonic superfluid are intimately connected [24–31]
to localized nonlinear waves known as dark solitons [32]. It
was shown that measuring the position of all or at least a
sufficiently large number of bosons in an yrast state reveals
a dark-soliton-like particle depletion [30,33], and that wave-
packet-like superpositions of yrast states emulate the behavior
of classical dark solitons [31]. While the yrast states are
fragmented quantum condensates, breaking the translational
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symmetry restores single condensation and classical soliton
features [28]. Dark solitons in Fermi superfluids have been
identified in experiments [34–36], but many predictions from
mean-field theory have not yet been tested [37–43]. More-
over, there is an intriguing connection [44,45] between dark
solitons and the predicted Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase of imbalanced superfluids [46,47]. Dispersion
relations of yrast states were analyzed in the context of
dark-soliton physics in the Yang-Gaudin (YG) model, a one-
dimensional (1D) Bethe-ansatz solvable model of a fermionic
superfluid in Ref. [48]. An overview of computational studies
of quantum rings can be found in the recent review litera-
ture [49–51].

Beyond the purely 1D models of quantum rings, a sec-
ond spatial dimension can be added by considering stripe- or
ladder-type lattice configurations as it is done in this work.
In Refs. [49,50] these are referred to as quasi-1D geome-
tries. While the Bethe ansatz is unavailable for such models
and mean-field theory is not valid in the strongly correlated
regime, direct numerical simulation is very challenging due
to the fact that Hilbert space size increases exponentially both
with particle number and the number of lattice sites. Quantum
Monte Carlo (QMC) simulations are still possible, although
the fermion sign problem [52,53] provides a challenge for the
simulation of fermionic many-body problems.

QMC methods relevant in the field of ultracold quantum
gases each have their own strengths and weaknesses. Dif-
fusion Monte Carlo has no basis set dependence but either
converges to a bosonic ground state or requires node-fixing,
which introduces an approximation [54]. Auxiliary-field
QMC is sign-problem free for the attractive balanced Hubbard
model [55], but the Hubbard-Stratonovich transformation in-
volved in this method breaks symmetries of the Hamiltonian
and thus does not allow for the study of yrast states. Recent
work has suggested a solution [56] but it has yet to be seen
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whether the method can be implemented efficiently. Deter-
minant Monte Carlo and related methods can handle finite
temperature and extrapolate to zero temperature, but they fix
the chemical potential instead of particle number [57–60]. All
these existing methods have in common that they can study
overall ground-state properties while it is not possible to study
yrast states, because the total momentum cannot be easily
constrained.

For this work we use Full-Configuration-Interaction Quan-
tum Monte Carlo (FCIQMC), a method originally developed
for strongly correlated electrons in the context of quantum
chemistry [61,62]. FCIQMC has been applied with great suc-
cess to a large number of problems in this field [63,64] and
recently to ultracold atoms [65,66]. This method can find the
ground-state energy and many-body wave function in a Fermi
system by expanding the wave function into a set of Slater
determinants. A stochastic version of exact diagonalization of
the Hamiltonian in this basis is achieved by simulating the
dynamics of a walker population in Slater determinant space.
FCIQMC mitigates the sign problem by walker annihilation to
a certain degree but does not eliminate it [67]. By performing
a stochastic projection to the ground state of a Hamiltonian
in a given Fock basis directly, i.e., without resorting to a
Hubbard-Stratonovich transformation, it is easy to respect
symmetries of the Hamiltonian. In particular, it is possible to
obtain energies and observables from yrast states by ground-
state projection in a plane-wave basis because the FCIQMC
algorithm conserves total momentum if the Hamiltonian does.
With the FCI method taking into account all correlations in the
system, we probe the BCS-BEC crossover from the noninter-
acting to the strongly attractive regime in the Hubbard model.

In this paper, we present a QMC study of yrast states in
the Hubbard model for spin- 1

2 fermions. Using a filling factor
much smaller than one, this system resembles a continuum
superfluid with the difference that momentum is replaced
by lattice momentum. We study the crossover from 1D to
2D geometry in the case of attractive on-site interactions.
For 1D Hubbard chains, we obtain exact results using the
Bethe ansatz and compare them to QMC results. Then we use
FCIQMC to investigate the crossover into the 2D geometry
by increasing the number of sites in the transverse direction.
We find that in 2D, the shape of the yrast dispersion changes
considerably, but that for increasing interaction strength, the
more typical shape of the 1D spectrum is restored, which
indicates solitonlike physics and is a signature of the transition
into the superfluid regime. We investigate in more detail the
behavior of the local minima of the yrast spectrum at the
so-called “umklapp” points where sufficient quasimomentum
is added to boost either all or half of the constituent fermions
by one unit in order to form a ring current. We find signatures
of the transition from noninteracting Fermi gas to a paired
superfluid and of the BCS to BEC crossover in the excitation
energy and in the pair-correlation functions for the first half
and full umklapp points. Last, we focus on the yrast states
around the maxima of the dispersion, which are related to dark
solitons. We calculate the inertial mass of possible solitons
for different system sizes and interaction strengths. We find
an increase of the inertial mass by a factor of 2 when the
transverse dimension is large enough for the system to be
considered truly 2D, which is indicative of a transition from

dark soliton to a solitonic vortex [68,69]. From mean-field and
basic hydrodynamic theory, in the 1D to 2D crossover dark
solitons are replaced as stable yrast excitations by solitonic
vortices [69,70], or vortex pairs [42,71], which have larger
inertial mass [35,72,73]. By looking at the pair densities of
these yrast states, we find that fragmented condensation into
more than one momentum state takes place, as expected for
superfluid yrast states [28].

This paper is organized as follows: After introducing the
model in Sec. II and the FCIQMC approach in Sec. III, we
discuss yrast spectra of a 1D Hubbard chain obtained by the
Bethe ansatz in Sec. IV. The energies and spin correlation
functions for the umklapp points in the 1D to 2D crossover are
discussed in Sec. V before analyzing the physics of the max-
ima of the yrast dispersion by computing their effective mass
and momentum-space pair densities in Sec. VI and drawing
conclusions in Sec. VII.

II. SYSTEM

To study yrast states in an ultracold fermionic superfluid,
we use the Hubbard model in the regime of low densities. In
this regime, the Hubbard model approximates a discretized
free space. The correspondence to free space becomes exact
in the low-density limit. We focus on the crossover between
the 1D and the 2D geometry; therefore, our Hubbard model
corresponds to a rectangular lattice with L × W sites, where
1 � W < L, but with the same lattice spacing α in both di-
mensions. We are using periodic boundary conditions in both
directions, and thus our systems has the topology of a torus.
While torus geometries can be realized in ultracold atom ex-
periments [74], this is challenging and nonstandard. For the
yrast states considered in this work, (discrete) translational
invariance is only important in one of the dimensions (the long
dimension), and thus the essential physics could be observed
in systems with only one periodic boundary. While annular
lattices have already been demonstrated [75], a homogeneous
2D trap with one periodic boundary could be created as the
outer surface of a cylinder with optical trapping techniques.

Abstracting from the challenges to realizing the precise
geometry of our simulations, the choice of torus boundary
conditions allows us to study the influence of adding a sec-
ond dimension gradually and in the absence of boundary
effects. The torus boundary conditions have previously been
employed to study the onset of the snaking instability for dark
solitons [42,76,77], which is the physics we are interested in
exploring in this work. Mechanisms and length scales found
by these studies extend to 2D systems with other than torus
boundary conditions as well.

The Hubbard Hamiltonian in momentum representation is

H =
∑

�k,s

ε�kc†
�ks

c�ks + U

LW

∑

�k1,�k2,�k3

c†
�k1↑

c†
�k2↓

c�k3↓c�k1+�k2−�k3↑, (1)

where the operators c(†)
�k,s

create (annihilate) a fermion with

lattice momentum h̄�k and spin s. Wave vectors can take on
values �k = (kx, ky) = 2π (nx/αL, ny/αW ), where nx, ny are
integers. The single-particle dispersion for the Hubbard model
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is given by

ε�k = 2t (2 − cos(kxα) − cos(kyα)), (2)

where t is the hopping amplitude and U < 0 is the interaction
parameter. In the low-density regime, mostly the low-lying
momentum states are occupied where the dispersion rela-
tion (2) is approximately parabolic. Thus the Hubbard model
approximates a continuum Fermi gas.

Throughout this paper we present results obtained for a
particle number of N = 10, with 5 fermions in each spin state
and a lattice length of L = 21, while the width W varies from
1 to 11. Energies will be given in units of hopping amplitude
t and momenta in longitudinal lattice units P0 = 2π h̄

αL .

III. FCIQMC

FCIQMC is a numerical method originally created in the
context of strongly correlated electron systems and quantum
chemistry. It can find ground states of fermionic many-body
systems by expanding the many-body wave function in terms
of Slater determinants

|�〉 =
∑

i

Ci|Di〉, (3)

which in our case are of the form

|D〉 = c†
�k1,s1

. . . c†
�kN ,sN

|vac〉. (4)

FCIQMC then obtains the expansion coefficients Ci by us-
ing a stochastic population dynamics approach to solve the
imaginary-time Schrödinger equation. The automatic anti-
symmetrization of the wave function by expanding it in Slater
determinants ensures that unlike Diffusion Monte Carlo,
FCIQMC always finds a fermionic wave function. FCIQMC’s
capacity for overcoming the so-called “fermion sign prob-
lem,” which here manifests in fluctuations of the sign of each
of the coefficients Ci and which cannot be predetermined,
depends on the importance of annihilation events among the
walkers in establishing the sign structure of the sampled wave
function. When this effect is strong, the full FCIQMC method
requires a number of walkers that scale with the size of the
Hilbert space, making it impractical for large spaces.

To counter this, we use a range of modifications to
FCIQMC, which facilitates calculations when the sign prob-
lem is strong. We make use of a similarity-transformed
Hamiltonian which makes the many-body wave function more
compact in Hilbert space [78]. We also use the initiator ap-
proximation [62], which can introduce a bias into the energy
that disappears in the limit of large walker number. In order
to control this undesirable bias, we first compare QMC re-
sults with exact results in the 1D case and then adjust the
walker number until the initiator bias is eliminated. For the
2D systems, we successively increase the walker number with
increasing W . Walker numbers used in this paper range from
NW = 1 × 106 for weakly interacting 1D chains to NW =
2 × 108 for 2D systems at U/t = −5. The most demanding
computations were run on up to 400 processor cores using up
to 2 GB memory per core.

IV. BETHE ANSATZ RESULTS

For a 1D Hubbard chain (W = 1), the system is integrable
and the Hamiltonian (1) can be diagonalized using the Bethe
ansatz [79]. For a balanced Fermi system with N fermions,
energy and total momentum are given by

E = −2t
N∑

j=1

cos(κ j ) + U (L − 2N ), (5)

P/P0 =
N∑

j=1

κ j mod 2π, (6)

with N dimensionless quasimomenta κ j which must be ob-
tained, alongside N/2 rapidities �α , by solving the Lieb-Wu
equations

exp(iκ jL) =
N/2∏

α=1

sin κ j − �α + iU/4t

sin κ j − �α − iU/4t
, (7)

N∏

j=1

sin κ j − �β + iU/4t

sin κ j − �β − iU/4t
= −

N/2∏

α=1

�α − �β + iU/2t

�α − �β − iU/2t
. (8)

Solving the Lieb-Wu equations via root finding can be done
with great accuracy and polynomial effort with particle num-
ber. The Bethe ansatz thus provides us with an exact reference
for the 1D Hubbard chain.

This allows us to compare QMC results with exact results
to determine the parameter range where we can consider
FCIQMC to be reliable in the sense that a possible initia-
tor bias is smaller than the statistical uncertainty inherent in
the Monte Carlo approach. In general, larger values of |U/t |
lead to stronger correlations in the many-body wave function,
which then requires a larger number of Slater determinants to
be accurately represented. Also, the fermionic sign problem
becomes more severe, which tends to increase the initiator
bias in the calculated energy. In Fig. 1, we compare results
obtained using the Bethe ansatz and FCIQMC results for a
1D chain (L = 21, W = 1). We see that for |U/t | � 5 the
agreement is very good. We therefore mainly use interaction
strengths of |U/t | � 5 in this paper, which covers the entire
BEC-BCS crossover and typical values achievable in experi-
ments [60].

V. UMKLAPP POINTS

Figure 1 illustrates the characteristic shape of the yrast
dispersion, which is concave downward resembling inverted
parabolas in the intervals 0 < P < P0N/2 and P0N/2 < P <

P0N , and with local minima at integer multiples of P0N/2.
It can be understood by looking at the noninteracting case:
To increase the total momentum of the system by a single
unit of P0, first a fermion at the Fermi surface is excited.
The resulting hole can then be filled by another fermion to
increase the momentum again and so forth, with the energy
tracing the inverted parabolic part of the Hubbard lattice dis-
persion relation of Eq. (2). The first local minimum of the
yrast spectrum, called the half umklapp point, in our case
(N = 10) at P/P0 = 5 is reached when all particles of one spin
component have each been boosted by P0. At that point, the
Fermi surfaces of both components are shifted with respect to
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FIG. 1. Comparison of yrast state excitation energies for a 1D
Hubbard chain of length L = 21 with N = 10 fermions, obtained for
interaction strengths U/t = 0, −1, −2, −3, −4, −5 using the Bethe
ansatz (empty symbols, dashed lines) and FCIQMC (filled symbols,
solid lines). For |U/t | � 5, the agreement is sufficient for reproduc-
ing the main features of the yrast dispersion. The lines are merely a
guide to the eye.

each other, but there are no holes in the Fermi seas of either
spin species.

The full umklapp point at P/P0 = 10 is reached when both
spin components or all particles are boosted. In the continuum
limit, where full Galilean invariance is restored, the excitation
energy of the umklapp point is determined by the boost only
and is independent of interactions, since the state is strictly
a boosted ground state. In the lattice system, where Galilean
invariance is broken, a weak interaction dependence at the
umklapp points is nevertheless observed as seen in Fig. 1.

For a noninteracting 2D system, constructing the yrast dis-
persion from hole excitations leads to a different shape, which
in the thermodynamic limit in an isotropic 2D system is linear.
In our case, as is shown in Fig. 2 for W = 11, due to finite-size
effects in our mesoscopic system, the spectrum for U = 0 has
linear segments but is not perfectly linear. It is remarkable
that for increasing interaction strength, the parabolic shape of
the 1D spectrum with the umklapp points at P/P0 = 5, 10 is
restored.

We can take a look at how the pairing in the system changes
the characteristics of the umklapp points by calculating two-
body correlation functions. It is possible to obtain the reduced
two-body density matrix,

	s1,s2,s3,s4 (�k1, �k2, �k3, �k4) = 〈�1|c†
�k1,s1

c†
�k2,s2

c�k3,s3
c�k4,s4

|�2〉, (9)

from FCIQMC by simultaneously running two statistically
independent QMC simulations with solutions �1, �2 to avoid
biases [80]. This is valuable even in the 1D case as ob-
taining the same quantity from the Bethe-ansatz solution
is not feasible. To illustrate the BEC-BCS crossover, we
show the opposite-spin pair-correlation function g↑↓(�k1, �k2) =
	↑↓↓↑(�k1, �k2, �k2, �k1) for the ground state and half umklapp
point in the 1D case in Fig. 3.

FIG. 2. Yrast spectrum for a lattice of 21 × 11 sites and inter-
action values U/t = 0, −1, −2, −3, −4, −5. The spectrum changes
from having linear segments to a parabolic shape as in the 1D case
depicted in Fig. 1.

Strong pair correlations with k1 + k2 = 0 clearly emerge as
interaction strength is increased from U/t = −1 to U/t = −5.
The P/P0 = 5 half umklapp point at weak interactions ex-
hibits mostly the physics of a noninteracting system, with two
Fermi seas displaced with respect to each other. This is in stark
contrast to the situation at U/t = −5, where the correlation
function is the same as for P = 0 but shifted in momentum
space. The mere translation of the pair-correlation function
is consistent with interpreting the system as superfluid of 5
bosonic pairs, where total momentum P/P0 = 5 correponds
to a full umklapp (i.e., Galilean boost of the ground state)

FIG. 3. Opposite-spin pair-correlation function g↑↓(k1, k2) =
〈c†

k1,↑c†
k2,↓ck2,↓ck1,↑〉 for the ground state (left) and the half umk-

lapp point (right) at U/t = −1 (top) and U/t = −5 (bottom). The
crossover from a weakly interacting Fermi gas to a BEC of bound
pairs is clearly visible, as the half umklapp point changes its charac-
teristics from one spin component shifted in momentum space with
respect to the other to a translation of the whole system. The half
umklapp point of the Fermi system becomes the first full umklapp
point of a fully paired superfluid with 5 bosonic pairs.
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FIG. 4. Excitation energy for the half umklapp point Ph = 5P0

(purple data set at lower energies) and for the full umklapp point
Pu = 10P0 (green data set at higher energies) for different values of
interaction strength U and width W . Solid lines are calculated for
W = 1 using the Bethe ansatz and symbols denote FCIQMC results
for the 1D system in (a) and for 2D systems in (b). The horizontal
dashed lines show the behavior expected in the continuum 1D Fermi
gas (YG model) as explained in the main text, while the dotted lines
show the expected asymptotic behavior for −U/t � 1. While the
excitation energy at the full umklapp point appears to be largely
independent of the transverse lattice size indicating a full translation
of both Fermi seas in momentum space, the half umklapp point
shows additional features of a mesoscopic system for different lattice
sizes. Interestingly, the values for W = 11 approach the other points
from below. For this particular value of W , a rearrangement rather
than a simple shift of the fermions in momentum space takes place.

in contrast to the weakly interacting Fermi gas, which only
reaches a half umklapp point at this momentum.

The yrast excitation energy at the half umklapp point Ph =
P0N/2 and at the full umklapp point Pu = P0N are shown in
Fig. 4. The lattice results can be compared to the expected
excitation energies in an equivalent free-space system. The
behavior of the umklapp points of an attractive 1D Fermi gas
in free space has been studied using the YG model [48]. There,
the energy of the full umklapp point is independent of the
interaction strength, as it represents simply a translation of the

entire Fermi sea in momentum space. In the YG model this
energy is given by E − E0 = P2

u /2Nm, where N is the total
particle number and Pu = P0N the full umklapp momentum.
In units of the Hubbard model parameters, this excitation
energy is E − E0 = 40π2t/L2 and is depicted as the upper
dashed horizontal line in Fig. 4(a). The half umklapp point,
however, drops by a factor of 2 from E − E0 = P2

h /2mN↑ to
E − E0 = P2

h /2mN , as it changes from being the half umk-
lapp point of a system of N fermions to being the full umklapp
point of a gas of N/2 bosons. This is shown as the two lower
dashed horizontal lines in Fig. 4(a), with energies E − E0 =
20π2t/L2 and E − E0 = 10π2t/L2.

For the noninteracting case, we observe expected behavior
with energy values slightly lower than the YG model. This is
because the YG model uses a quadratic dispersion written in
parameters of the Hubbard model as

εYG
�k = 2tα2�k2, (10)

which is an upper bound to the Hubbard dispersion: ε�k � εYG
�k

for all �k.
However, for finite interactions the energy values we cal-

culate for the Hubbard model do not behave like for the
YG model. In our system, lattice effects dominate once the
interaction is strong enough. It is known that for U/t → −∞,
the asymptotic effective Hamiltonian of the Hubbard model
corresponds to a bosonic system with a one-boson-per-site
hard-core condition and repulsive next-nearest-neighbor in-
teractions [81]. The effective Hamiltonian also has a global
prefactor of U 2/t , meaning that the entire spectrum has the
same scaling in the asymptotic regime. For the (half) umklapp
points, the asymptotes 80P2

0 /m × t2/U and 20P2
0 /m × t2/U

are presented in Fig. 4(a) as the green and purple dashed lines,
respectively. We see that finite-size effects are reduced as the
umklapp energies approach these asymptotic lines.

VI. MAXIMA OF THE YRAST SPECTRUM

The point P = Ph/2 near the first local maximum of the
yrast spectrum (such as at P/P0 = 2, 3 in Fig. 2) is of particu-
lar interest as a point where in the 1D homogenous case, dark
solitons appear [27,48,82] that are stationary with respect to
background and with phase step π across the soliton. Dark
solitons in a Fermi superfluid are characterized by a localized
density depression and a phase jump in the superfluid order
parameter around this depression. In a system with periodic
boundary conditions, this phase jump must be compensated
by a phase gradient along the system, which corresponds to a
constant counterflow velocity vcf. In addition, the soliton can
be associated with an inertial mass mI , related to the curvature
of the yrast dispersion. We extract these parameters from our
calculated dispersions by fitting the quadratic function,

E (P) = E (0) + vcf(P − Ph/2) + 1

2mI
(P − Ph/2)2, (11)

around the first local maximum at momenta P/P0 = 1, 2, 3, 4,
where Ph = NP0/2 = 5P0.

The results for the inertial mass are shown in Fig. 5,
where we only show data points for the parameters where
the yrast dispersion closely resembles a parabolic shape.
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FIG. 5. Inertial mass of the first yrast maximum vs interaction
strength. Unlike in free space, the inertial mass in the lattice asymp-
totically approaches −∞ linearly with the interaction strength U/t .
For quantum rings with larger width (W = 9, 11) and at smaller
interaction strength, shell effects distort the shape of the yrast dis-
persion to be nonparabolic such that extraction of the inertial mass
is not possible (and hence no data are shown in this regime). In the
2D regime with W = 11 and |U/t | � 4, a parabolic yrast dispersion
shape reappears (see Fig. 2) and the inertial mass is larger by a factor
of two. Lines are a guide to the eye.

This would correspond to a regime where a superfluid is
present and the particles are strongly paired. This is mostly
the case for W � 7, where the system is still effectively 1D
and transverse momentum states are sparsely populated. For
the larger and more 2D systems with W = 7, 9, we find that
for |U/t | = 4, 5, a parabolic yrast spectrum reappears (see
also Fig. 2). For the effective mass, there is an increase in
magnitude by a factor of 2 as we increase the system size
to W = 11. This indicates a further change to the properties
of the system, possibly a transition from a soliton state to
a vortex pair [35,72,73]. In our 2D geometry with periodic
boundary conditions and therefore toruslike topology, the only
possibility of a vortex entering the system is a vortex line
piercing the torus and hence creating two vortices of opposite
orientations.

This scenario is closely related to the snaking instability
of a planar dark soliton in a 2D superfluid, where the soliton
decays into pairs of oppositely charged vortices as the system
becomes wide enough [42,69,71].

However, we cannot directly show a potential density de-
pression caused by the soliton. The reason is that, unlike
in mean-field theory, our technique provides the many-body
wave function of a (translationally invariant) eigenstate of
total momentum and thus a superposition of solitons at
all possible positions. The real-space single-particle den-
sity we can calculate is flat. To map out the dark soliton
as described in Refs. [33,82], we would need access to
higher-order density matrices beyond the two-body density
matrix. Therefore, it remains to be seen if the increase
in inertial mass really corresponds to a soliton-vortex pair
transition.

FIG. 6. Pair densities for 2D lattices with 21 × 11 sites. The
weakly interacting case (U/t = −1, top row) shows a small peak in
the pair density at zero momentum both for the ground state (top left)
and the yrast state at P/P0 = 2 (top right). For strong interactions
(U/t = −5, bottom row), the peak at zero momentum dominates
at P = 0 (bottom left), while at P/P0 = 2 (bottom right), a second
peak appears, with the system showing condensation into both zero
momentum and momentum h̄kx = 2P0.

Instead, we investigate more closely the pair condensation,
for which a relevant quantity is the pair Green’s function

Gp(l ) = 〈ψ†
j+l,↑ψ

†
j+l,↓ψ j,↓ψ j,↑〉, (12)

where ψ and ψ† denote creation and annihilation operators,
respectively, in position space. The Fourier transform of this
Green’s function is the momentum-space pair density. For a
system with a homogeneous density, it can be directly ob-
tained from the momentum representation of the two-body
density matrix

np(�k) =
∑

�k1,�k2

	↑↓↓↑(�k1, �k − �k1, �k − �k2, �k2). (13)

This quantity indicates whether Bose-Einstein condensation
of pairs occurs. While we find evidence of Bose-Einstein
condensation of pairs by a peak in the pair density that grows
with increasing interaction strength for the ground state and
umklapp point, the situation is more complex for general yrast
states. In Fig. 6 we show the pair density for a 2D system with
21 × 11 sites for interaction parameters U/t = −1 and U/t =
−5 for the ground state and the P/P0 = 2 yrast state. For weak
interactions, the structure of the pair density is determined
mostly by the structure of the Fermi sea, or the noninteracting
yrast state. For stronger interactions, the ground state exhibits
one sharp peak at zero momentum indicating strong pairing
correlations, as expected for crossover to a BEC of pairs.
However, for P/P0 = 2, there are actually two peaks for lon-
gitudinal momenta 0 and 2P0. Similar features appear in the
smaller 2D and 1D systems. Experimentally, the pair density
in momentum space can be probed with the time-of-flight
technique, possibly after sweeping the interaction strength in
order to strongly bind fermion pairs as done in Ref. [34].

We now show that this double-peak feature signifies the
presence of fragmented condensation. Fragmentation occurs
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FIG. 7. Pair densities for the 1D ground state (top left), the yrast
states with P/P0 = 2 (top right), P/P0 = 3 (bottom left), and the
half umklapp point (bottom right). The ground state shows a rapid
growth of the pair density at zero momentum, as expected for Bose
condensation of pairs, while the half umklapp point is identical to the
ground state but shifted by one lattice momentum unit. For the yrast
states, however, we observe near equal growth of both pair momenta
P = 0 and P = P0, meaning that fragmented condensation into zero
and nonzero momentum states is taking place.

when during the transition to a BEC, more than one state
becomes macroscopically occupied [83]. In Fig. 6, the mo-
mentum states (0,0) and (2P0, 0) dominate the pair density.
For the 1D system, where obtaining the reduced density ma-
trices is easier, we plot the pair densities of several momenta
for the yrast state with P = 3P0 in Fig. 7 as a function of
interaction strength. We see that in addition to P = 0, the pair
density at P = P0 strongly increases as well. Since the pair-
correlation functions are diagonal in momentum space for
(discrete) translationally invariant states, observing a double-
peak structure indeed indicates fragmented pair condensation.
Similarly, for other yrast states we see the same phenomenon,
a strong signature of fragmented condensation.

The yrast states at the local maxima of the yrast dis-
persion are closely related to dark solitons. Preparing dark
solitons in experiments can be done by phase imprint-
ing [34,36,84,85]. Since dark solitons are superpositions of
nearby yrast states (see Refs. [28,48]), we expect our re-
sults for the pair-correlation functions of yrast states to be
robust and equally apply for dark soliton states, which break
translational symmetry and are not fragmented condensates.
Experimentally preparing single yrast eigenstates of total mo-
mentum, which are translationally invariant and fragmented,
will be more challenging. Being the lowest energy eigenstates
of the Hamiltonian at given total momentum, the yrast states
should be as stable as the ground state unless perturbations
are present which break translational invariance and allow for
a change of total momentum.

It is worth noting that the pair density with two peaks
obtained here is similar to the case of an imbalanced Fermi
gas, where Fermi surfaces of different size lead to FFLO
pairing with nonzero total momentum and the signature is a

two-peaked pair density. This has been studied for 1D and
2D Hubbard models [45,58,59,86,87]. Yrast states in our bal-
anced system start with holes in one of the Fermi seas for
weak interaction, which also leads to pairing with nonzero
total momentum.

VII. CONCLUSIONS

In this paper, we have used the FCIQMC method to study
the crossover from weakly interacting fermions to a conden-
sate of bosonic pairs for yrast states in mesoscopic Fermi
systems. With this method we can treat larger systems than
are accessible to the previously used deterministic CI or exact
diagonalization methods [49,50] and can probe the full tran-
sition from a 1D chain not just to quasi-1D rings but also
to full 2D systems. We obtain energy spectra and reduced
two-body density matrices for yrast states in the attractive
Hubbard model in these geometries.

Comparisons with exact Bethe ansatz results in 1D show
very good agreement and demonstrate that FCIQMC can ac-
curately provide yrast states for mesoscopic systems with 10
fermions and 21 × W sites where W ranges from 1 to 11. We
find that the shape of the yrast spectrum changes from the typ-
ical inverted parabolas in 1D to a quasilinear spectrum in 2D.
However, as interaction strength is increased, the parabolic
dispersion including the half umklapp point is restored. While
the quasilinear spectrum is a consequence of the 2D geometry
and the Pauli exclusion principle, with stronger interactions
the exact shape of the noninteracting Fermi sea plays less of
a role until we see the expected universal concave downward
dispersion of a spinless superfluid. This indicates a transition
to a fully paired Fermi superfluid.

We further find that mesoscopic effects can cause sig-
nificant deviations for certain geometries from the general
behavior of the umklapp energies, which otherwise does not
differ much between 1D and 2D systems. Specifically we find
that the half umklapp excitation energy for a lattice of 21 × 11
points increases with interaction strength at intermediate val-
ues of U/t contrary to the general trend displayed by all other
systems under study. This originates in a rearrangement of
the fermions in momentum space, where for this particular
geometry, the half umklapp point is a different configuration
than the ground state with one spin component shifted in
momentum space. This can be of importance for experiments
on mesoscopic Fermi systems.

By calculating the pair-correlation function, we can follow
the pairing process by means of which the fermionic half
umklapp point becomes the first full umklapp point of the
Bose condensate of pairs.

In the fully paired regime, we calculated the inertial mass
of the dark-soliton-like local maximum of the yrast dispersion.
We found a sudden increase by a factor of 2 between the
narrow stripe geometry and our largest system in a lattice of
21 × 11 sites. We interpret this as a possible change in the
system geometry where a soliton is no longer stable and the
yrast state is instead provided by a pair of oppositely charged
vortices.

The most striking feature of yrast states in the Hubbard
model is revealed to be fragmented condensation, which oc-
curs around the maxima of the yrast dispersion, away from
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the umklapp points. We find that here, multipeaked pair den-
sities appear, where in addition to pairing with zero total
momentum, the amplitude of other total momentum pairs
becomes large for strong interactions. These pair densities of
yrast states share some similarities with FFLO states, which
are characterized by a double-peaked momentum pair den-
sity [45]. In the FFLO case the origin of this is a mismatch of
Fermi surfaces, which have different sizes due to the spin im-
balance. In our case of the yrast states, the Fermi surfaces are
shifted in momentum space. In addition, both yrast and FFLO
states are related to solitons in the real-space density [45].

ACKNOWLEDGMENTS

We thank M. Zwierlein, S. Shamailov, P. Jeszenszki,
and W. Dobrautz for useful discussions. U.E. thanks the
Max-Planck-Institute for Solid State Research for hospital-
ity. This work was supported by the Marsden Fund of New
Zealand (Contract No. MAU1604), from government fund-
ing managed by the Royal Society Te Apārangi. We also
acknowledge support by the NeSI high-performance comput-
ing facilities through a Merit Allocation and a consultancy
project.

[1] D. Eagles, Possible pairing without superconductivity at low
carrier concentrations in bulk and thin-film superconducting
semiconductors, Phys. Rev. 186, 456 (1969).

[2] A. J. Leggett, Diatomic molecules and Cooper pairs, in Mod-
ern Trends in the Theory of Condensed Matter, Lecture Notes
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