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Exploring Bell nonlocality of quantum networks with stabilizing and logical operators
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In practical quantum networks, a variety of multiqubit stabilized states emitted from independent sources are
distributed among the agents, and the correlations across the entire network can be derived from each agent’s
local measurements on the shared composite quantum systems. To reveal the Bell nonlocality in such cases as
a quantum feature, minimal knowledge of the emitted stabilizer state is required. Here, we demonstrate that
knowing the stabilizing and logical operators indeed provides a way of exploring Bell nonlocality in quantum
networks. For the qubit distribution in quantum networks, the associated nonlinear Bell inequalities are derived.
On the other hand, to violate these inequalities, one can design local incompatible observables using minimal
knowledge of the emitted states. The tilted nonlinear Bell inequalities tailored for specific nonmaximal entangled
stabilizer states and a way of achieving the maximal violation are also explored.
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I. INTRODUCTION

In the seminal work of Bell [1], it was shown that the quan-
tum correlations arising from spatially separated systems can
break the limits of classical causal relations [2]. In classical
physics, the realism and locality of spacelike events constrain
the strength of classical correlations bounded by the Bell
inequalities. Quantum theory inconsistent with local realism
predicts stronger correlations that violate the Bell inequal-
ities. Thanks to quantum information science, two-particle
and multiparticle quantum correlations have been extensively
investigated. As a distinct feature from classical physics, Bell
nonlocality has led to applications in quantum information
processing including private random number generation [3],
quantum cryptography [4], and reductions in communication
complexity [5].

In typical Bell experiments on statistical correlations, a
source emits a state comprising two or more particles that
are shared between two or more distant observers, who each
perform local measurements with a random chosen setting
and then obtain the measurement outcomes. To reveal the
Bell nonlocality of an entangled state, the local observables
should be set deliberately. For example, to violate the Bell
inequalities tailored to stabilizer states such as graph states,
it is helpful to take the stabilizers as a reference for find-
ing suitable measurement settings [6–8]. To emphasize the
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role of stabilizing operators and logical bit-flip operators, we
review the Clauser-Horne-Shimony-Holt (CHSH) inequality
and its modification below. Let the two-qubit entangled state
(0 < φ < π

2 )

|φ〉 = cos φ|0〉 + sin φ|1〉, (1)

be the codeword of the [2, 1, 2] stabilizer-based quan-
tum error-detecting code with the logical states |0〉 = |00〉
and |1〉 = |11〉. The stabilizer generator, logical bit-flip, and
phase-flip operators are σz⊗ σz, σx ⊗ σx, and I ⊗ σz, respec-
tively (σx, σy, and σz are Pauli matrices, and I is the identity
operator). In the bipartite Bell test, the CHSH operator is
BCHSH = ∑1

i, j=0(−1)i jAi ⊗ Bj , where Ai and Bj are local ob-

servables, and the CHSH inequality states that 〈BCHSH〉 c
� 2,

where the 〈·〉 denotes the expectation value of ·. To violate the
CHSH inequality, for the first-qubit, we assign

σz → 1

2 cos μ
(A0 + A1), σx → 1

2 sin μ
(A0 − A1), (2)

and for the second-qubit, we assign

σz → B0, σx → B1. (3)

It is easy to verify that

〈φ|BCHSH|φ〉
= 2 cos μ〈φ|σz ⊗ σz|φ〉 + 2 sin μ〈φ|σx ⊗ σx|φ〉
= 2(cos μ + sin μ sin 2φ)

= 2
√

1 + sin2 2φ cos(μ − μ0)

� 2
√

1 + sin2 2φ, (4)
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where tan μ0 = sin 2φ. Some remarks are in order. First, the
operators (A0 + A1) ⊗ B0 = cos μσz ⊗ σz and (A0 − A1) ⊗
B1 = sin μσx ⊗ σx, and hence, both terms in the first equality
in Eq. (4) exemplify the usefulness of the stabilizing operator
and the logical (bit-flip) operator for finding the local observ-
ables that violate the CHSH inequality. The maximal CHSH
value >2 can be achieved by setting μ = μ0. Particularly,
|φ = π

4 〉 is maximally entangled, σx⊗ σx becomes another
stabilizing operator rather than simply a logical bit-flip op-
erator, and the CHSH inequality can be maximally violated.
There are a variety of Bell inequalities violated by the graph
states as a specific family of stabilizer states, where the as-
sociated Bell operators can be reformulated as the sum of
their stabilizing operators, and hence, the perfect-antiperfect
correlations therein can reach the maximal violation [7–12]. If
the multiqubits mixed states involve two stabilizing operators,
their nonlocality can be verified by the violation of stabilizer-
based Bell-type inequalities [13,14]. Second, observables A0

and A1 can be regarded as the results of “cutting and mixing”
the stabilizing operator and the logical bit-flip operator into
the local observables:

σz ⊗ σz, σx ⊗ σx
cutting−→ σz, σx

mixing−→ Axi

= cos μσz + (−1)xi sin μσx. (5)

Cutting means cutting the first qubit observables from σz ⊗
σz and σx ⊗ σx; mixing means linearly superposing the two
cut observables. In what follows, the local observables on
the source side will be constructed in a similar way. In
addition, note that the local observables anticommute; i.e.,
{A0, A1} = {B0, B1} = 0. Third, the observable B0 is the
phase-flip operator, which can be exploited in the tilted CHSH
operators Bβ-CHSH = βB0 + BCHSH with the Bell inequality

〈Bβ-CHSH〉 c
� 2 + β. By setting β = 2/

√
1 + 2 tan2 2φ, the

maximal violation can be achieved by |φ〉 [15,16]. That is,
the nonmaximally entangled state can maximally violate the
tilted Bell inequalities involving the phase-flip operators.

One can generalize the above approach to the multiqubit
case. For example, let |ψ〉 = cos ψ |0〉 + sin ψ |1〉 be the code-
word of the [5, 1, 3] stabilizer-based quantum error-correcting
code (SQECC), and let Alice hold the first qubit and Bob
hold the other qubits. In this case, the useful stabilizing op-
erator and logical bit-flip operator are g = σz ⊗ σz ⊗ σx ⊗
I ⊗ σx and σ⊗5

x , respectively. The observables of the first
and second qubits of the stabilizing operators and the bit-flip
operator are the same as those in Eqs. (2) and (3), respec-
tively. The last three qubits are termed idle qubits since the
observable σx is always measured on them, while the out-
come of the fourth qubit is discarded if Bob measures B′

1.
In the Bell test, Alice randomly measures one of the ob-
servables in Eq. (2), whereas Bob randomly measures B′

0 =
B0 ⊗ σ⊗3

x or B′
1 = B1 ⊗ σx ⊗ I ⊗ σx. The CHSH-like inequal-

ity can be written as 〈∑1
i, j=0(−1)i jAi ⊗ B′

j〉
c
� 2. As another

example, let the logical states be |0〉 = |0〉⊗n and |1〉 =
|1〉⊗n, and denote the n-qubit Greenberger-Horne-Zeilinger
(GHZ) state (n � 3) as |GHZφ〉 = cos φ|0〉 + sin φ|1〉. Al-
ice holds the first m qubits, and Bob holds the other
n − m qubits. Here, the useful stabilizing, logical bit-flip
and phase-flip operators can be set as σz ⊗ I⊗m−1 ⊗ σz ⊗

I⊗n−m−1, σ⊗n
x , and I⊗m ⊗ σz ⊗ I⊗n−m−1, respectively. One

can construct the local observables A′′
i = cos μσz ⊗ I⊗m−1 +

(−1)i sin μσ⊗m
x using the cutting-and-mixing scheme, and

B′′
j = (1 − j)σz ⊗ I⊗n−m−1 + jσ⊗n−m

x such that {A′′
0, A′′

1} =
{B′′

0, B′′
1} = 0. Hence, we reach the CHSH-like inequality

〈∑1
i, j=0(−1)i jA′′

i ⊗ B′′
j 〉

c
� 2. Here, the last n − m − 1 qubits

are idle since only the observable σx is always measured on
each of them. Conditional on the qubit assignment, one can
select the useful stabilizing operators and logical operators to
derive similar CHSH-like inequalities.

Recently, Bell nonlocality in quantum networks like the
generalized Bell experiments have attracted much research
attention. Long-distance quantum networks of large-scale
multi-users are the substantial goals of quantum communica-
tion, so it is fundamental to study their nonlocal capacities.
A quantum network involves multiple independent quantum
sources, where each of them initially emits a two- or mul-
tiqubit entangled state shared among a set of observers or
agents. There are several obstacles to the study of nonlocality
in a quantum network. The classical correlations of a net-
work indicate more sophisticated causal relations and lead to
stronger constraints than those in the typical (one-source) Bell
scenario. In addition, each observer can perform a joint mea-
surement on the qubits at hand, which could result in strong
correlations across the network. Unlike the typical linear
Bell-type inequalities, most Bell-type inequalities for various
classes of networks are nonlinear, which implies the noncon-
vexity of the multipartite correlation space [17–20]. In the
two-source case as the simplest quantum network, bilocal and
nonlocal correlations were thoroughly investigated [21,22].
Next, the Bell-type inequalities for star-shaped and noncyclic
networks were studied [17,18]. Recently, broader classes of
quantum networks based on locally causal structures have
also been investigated [19,20,23,24]. Computationally effi-
cient algorithms for constructing Bell inequalities have been
proposed [20]. These Bell-type inequalities are tailored for
networks with quantum sources emitting either two-qubit Bell
states or generalized GHZ states. The stabilizing operators and
logical operators implicitly play substantial roles in setting up
local joint observables. On the other hand, regarding the po-
tential applications of encrypted communication in quantum
networks, SQECCs can be more useful in quantum network
cryptography, such as in quantum secret sharing [25] and se-
cure quantum key distribution protocols [26]. Revealing Bell
nonlocality in a network is required for detecting potential
eavesdropping attacks. Moreover, a structured quantum state
with stabilizing operators and logical operators is more useful
in the engineering of quantum networks [27–31].

In this paper, we study the Bell nonlocality of quantum
networks. Hereafter, we consider a K-locality network N ,
as shown in Fig. 1. There are K + M agents, of which K ,
S (1)...S (K ) are on the source side and M, R(1)...R(M ) on
the receiver side. There are N independent sources. Let 0 =
e0 < e1 < · · · < eK = N . The agent S (s) holds the sources
es−1 + 1, . . ., and es; thus, the number of sources that S (s)

holds is (es − es−1). The source i (es−1 + 1 � i � es) held by
S (s) emits ni particles, of which n(0)

i ( �= 0) are in possession of
the agent S (s) , and n(m)

i (� 0) are sent to the agent R(m). Con-
sequently,

∑M
j=0 n( j)

i = ni. In the classical networks, source i
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FIG. 1. The particle distribution of the state emitted from the source i held by S (s) if es−1 + 1 � i � es. The particles assigned on the source
(receiving) side are inside (outside) the circle. The state can be (a) the classical hidden state λi or (b) the quantum state |ψ(i)〉. Here, the particle
(i, 1) assigned on the source side is determined as the center of the star graph. Qubit (i, j) in (b) is denoted by a black dot if {̂s(i, j), t̂(i, j)} = 0.
A quantum network is depicted in (c). The qubits in a rounded rectangle are locally accessible by an agent. According to Eqs. (28) and (29),
there is an odd number of black dots in each rounded rectangle.

emits ni particles described by hidden state λi; in the quantum
networks, it emits ni qubits in quantum state |ψ(i)〉, which can
be either a stabilizer state or a codeword of a SQECC. In the
Bell test, observer S (s)[R(m)] measures observable A(s)

xs
[B(m)

ym
]

with the associated outcome as (bm), where xs, ym ∈ {0, 1} and
as, bm ∈ {−1, 1}. In the following, the index pair (i, j) denotes
the jth particle emitted from source i, and (i, j) → X (k) indi-
cates that particle (i, j) is at agent X (k)’s hand (X ∈ {R, S}).
Finally, we denote the particle sets S(k) = {(i, j)|∀(i, j) →
S (k)} and R(k) = {(i, j)|∀(i, j) → R(k)}.

The remainder of this paper is organized as follows: In
Sec. II, we investigate the classical networks, where general
local causal models (GLCMs) are introduced. Then Bell in-
equalities associated with classical networks are proposed.
We study Bell nonlocality of K-locality quantum networks in
Sec. III. First, we review the stabilizer states and SQECCs.
Then we demonstrate how to violate the proposed Bell in-
equalities using deliberated local observables. It will be shown
that the local observables can be made up of “cut-graft-
mixing” stabilizing operators and logical operators. Notably,
there are two alternative nonlocal correlations. One is due
to the entanglement of the logical states themselves, where
two suitable stabilizing operators are exploited to construct
the local observables. The other nonlocality results from the
entanglement due to the superposition of logical states, in
which a stabilizing operator and a logical operator can be
suitably exploited in this case. We illustrate these two kinds of
nonlocality in terms of the 5-qubit code, which is the small-
est stabilizer code that protects against single-qubit errors.
In Sec. IV, we propose Bell inequalities tailored for non-
maximally entangled states distributed in a quantum network.
Finally, conclusions are drawn in Sec. V.

II. CLASSICAL NETWORKS

A. GLCMs

The GLCMs in classical networks can be described as fol-
lows: The ith source is associated with a local random variable
as the hidden state λi in the measure space (�i, 	i, μi ) with

the normalization condition
∫
�i

dμi(λi) = 1. All systems in
the Bell test scenario are considered in the hidden state 
 =
(λi, · · · , λN ) in the measure space (�, 	, μ), where � =
�1 ⊗ · · · ⊗ �N and the measure of 
 is given by μ(
) =∏

μi(λi) with the normalization condition
∫
�

dμ(
) = 1. In
the measurement phase, agent S (s) performs the measurement
A(s)

xs
on state 


(s)
S with the corresponding outcome denoted by

as ∈ {1,−1}. The GLCM suggests a joint conditional proba-
bility distribution of the measurement outcomes

P(a|x) =
∫

�

dμ(
)
K∏

s=1

P(as|xs,
), (6)

where a = (a1, a2, · · · , aK ) and x = (x1, x2, · · · , xK ); hence,
we have the correlation〈

A(1)
x1

. . . A(K )
xK

〉 =
∑

a

a1 · · · aK P(a|x,
). (7)

On the other hand, in the K-locality condition [20], S (s) can
access the hidden state 


(s)
S = (λes−1+1,· · · , λes ) in the measure

space �
(s)
S = �es−1+1 ⊗ · · · ⊗ �es , where



(s)
S ∩ 


(s′ )
S = ∅ ⇔ s �= s′, (8)

and

∪K
i=1


(i)
S = 
. (9)

Equation (6) can be rewritten as

P(a|x) =
K∏

s=1

∫
�

(s)
S

dμs
[



(s)
S

]
P
[
as|xs,


(s)
S

]
. (10)

Denote the local expectation as〈
A(s)

xs

〉 =
∑

as=−1,1

P
[
as|xs,


(s)
S

]
. (11)

By K locality with the GLCM, we have

〈
A(1)

x1
. . . A(K )

xK

〉 =
K∏

s=1

〈
A(s)

xs

〉
. (12)
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Denote �±A(i) = 1
2 [〈A(i)

0 〉 ± 〈A(i)
1 〉]. Since −1 � 〈A(i)

xi
〉 � 1,

we have

−1 � �−A(i), �+A(i) � 1, (13)

and

|�+A(i)| + |�−A(i)| = max
{∣∣〈A(i)

0

〉∣∣, ∣∣〈A(i)
1

〉∣∣} � 1. (14)

On the receiving side, let n(m)
j

> 0 if j ∈ { j1, · · · , jkm
}

and n(m)
j

= 0 otherwise. In this case, R( j) receives the

hidden states 

(m)
R = (λ j1 ,· · · , λ jkm

) in the measure space
�

(m)
R = � j1 ⊗ · · · ⊗ � jkm

, where 1 � j1 < j2... < jkm � N .
In the measurement phase, R(m) performs the measurement
B(m)

ym
, ym ∈ {0, 1}, on the state 


(m)
R with the corresponding

outcome denoted by bm ∈ {1,−1}. We have

∣∣〈B(m)
ym

〉∣∣ =
∣∣∣∣∣
∫

�
(m)
R

∏
k

dμk (λk )
∑

bm=−1,1

bmP
[
bm|ym,


(m)
R

]∣∣∣∣∣ � 1.

(15)

B. Bell inequalities

The correlation strength in the proposed K-locality net-
work is evaluated by two quantities:

IK,M = 1

2K

〈
K∏

i=1

M∏
j=1

[
A(i)

0 + A(i)
1

]
B( j)

0

〉
, (16)

and

JK,M = 1

2K

〈
K∏

i=1

M∏
j=1

[
A(i)

0 − A(i)
1

]
B( j)

1

〉
. (17)

In the classical scenario, we have

|IK,M |GLCM

= 1

2K

∫
�

K∏
i=1

∣∣〈A(i)
0 + A(i)

1

〉∣∣ M∏
j=1

∣∣〈B( j)
0

〉∣∣ N∏
k=1

dμk (λk )

�
∫

�

K∏
i=1

∣∣�+A(i)
∣∣ N∏

k=1

dμk (λk ), (18)

and

|JK,M |GLCM

= 1

2K

∫
�

K∏
i=1

∣∣〈A(i)
0 − A(i)

1

〉∣∣ M∏
j=1

∣∣〈B( j)
1

〉∣∣ N∏
k=1

dμk (λk )

�
∫

�

K∏
i=1

|�−A(i)|
N∏

k=1

dμk (λk ), (19)

where the inequalities are from Eq. (15). Before proceeding
further, two useful lemmas are introduced as follows:

Lemma 1 (Mahler inequality). Let αk and βk be nonnegative
real numbers, and let p ∈ N; then

p∏
k=1

α
1/p
k +

p∏
k=1

β
1/p
k �

p∏
k=1

(αk + βk )1/p. (20)

The proof can be found in Ref. [17].
We obtain the following nonlinear Bell inequality:

|IK,M | 1
K
GLCM + |JK,M | 1

K
GLCM

�
{∫

�

K∏
i=1

[|�+A(i)| + |�−A(i)|]
N∏

k=1

dμk (λk )

} 1
K

=
{∫

�

K∏
i=1

(max{|〈Axi=0〉|, |〈Axi=1〉|})
N∏

k=1

dμk (λk )

} 1
K

�

⎡⎣∫
�

N∏
j=k

dμk (λk )

⎤⎦
1
K

= 1, (21)

where the first inequality is from Lemma 1, and the fourth line
is a consequence of Eq. (14).

III. BELL NONLOCALITY OF A QUANTUM NETWORK

A. Review of stabilizer states and SQECC

Let the state |ψ(i)〉 emitted from the quantum source i be
an ni-qubit stabilizer state. By definition, an ni-qubit stabi-
lizer state is one that is stabilized by a stabilizer which is a
nontrivial subgroup of the Pauli group. If |ψ(i)〉 as a codeword
of [ni, ki, di] SQECC, denote the last (kith) logical qubit as
|0i〉 and |1i〉 and the corresponding logical bit- and phase-flip
operators as X (i) and Z (i). Without loss of generality, we have

|ψ(i)〉 =
∑

z∈{0,1}⊗ki

az|z〉 = cos φi

∣∣ϕ0
i

〉|0i〉 + sin φi

∣∣ϕ1
i

〉|1i〉,

(22)
where 〈ϕ0

i |ϕ1
i 〉 ∈ R, and 〈ϕ0

i |ϕ0
i 〉 = 〈ϕ1

i |ϕ1
i 〉 = 1. In addition,

X (i)|0i〉 =|1i〉, X (i)|1i〉 = |0i〉, (23)

Z (i)|ci〉 =(−1)c|ci〉(c ∈ {0, 1}). (24)

In what follows, we exploit g(i) and g′
(i) as useful stabilizing

operators, and X (i) and Z (i) as useful logical operators. Denote
the Pauli set of qubit (i, j) as P(i, j) = {X(i, j), Y(i, j), Z(i, j),
I(i, j)}, where X(i, j) = σx, Y(i, j) = σy, Z(i, j) = σz, and I(i, j) =
I . Let h(i) ∈ {X (i), g′

(i)} and h′
(i) ∈ {X (i), Z (i)}. Note that

[g(i), h(i)] = [
g(i), h′

(i)

] = 0, (25)

and since g(i), h(i), and h′
(i) are ni fold tensor products of the

Pauli operators, we have

g(i) =
ni∏

j=1

ŝ(i, j), h(i) =
ni∏

j=1

t̂(i, j), h′
(i) =

ni∏
j=1

t̂ ′
(i, j), (26)

where ŝ(i, j), t̂(i, j), and t̂ ′
(i, j) ∈ P(i, j) ∀i, j.

Before proceeding further, some notations are
introduced as follows: Denote the qubit index sets as
Di = { j|{̂s(i, j), t̂(i, j)} = 0} and Hi = { j|[̂s(i, j), t̂(i, j)] = 0},
where Di ∩ Hi = ∅, and |Di| + |Hi| = ni. The qubits
belonging to the sets D1, · · · , DN play substantial roles
in the proposed Bell inequalities of the quantum networks.
Note that qubit (i, j) is called idle if (i, j) ∈ Hi and
(i, j) → R(k) for some k, and the nonidentity operator
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of ŝ(i, j) or t̂(i, j) is denoted by ô(i, j), which will be
repeatedly measured on qubit (i, j) in the Bell test. Let
the indicator δD

(i, j) = 1 if qubit (i, j) ∈ Di, and 0 if
(i, j) ∈ Hi. According to Eq. (25), we have∑ni

j=1 δD
(i, j) mod 2 = 0, and hence,

N∑
i=1

ni∑
j=1

δD
(i, j) mod 2 = 0. (27)

Here, we focus on quantum networks fulfilling the follow-
ing conditions: Regarding the qubits held by S (k),

ek∑
i=ek−1+1

ni∑
j=1,(i, j)∈S(k)

δD
(i, j) mod 2=1 ∀k = 1, 2, · · · , K , (28)

and regarding the qubits held by R(k),∑
i, j,(i, j)∈R(k)

δD
(i, j) mod 2 = 1 ∀ j = 1, · · · , M. (29)

Combining the constraints in Eqs. (27)–(29), the value K + M
must be even. According to the qubit distribution, it is very
flexible to choose suitable g(i), h(i), and h′

(i) to implement local
observables.

B. Violation of the Bell inequalities in a quantum network

To implement the local observables on the source side, we
assign

Ŝ(k) =
∏

i, j, (i, j)∈S(k)

ŝ(i, j) → 1

2 cos μ

[
A(k)

0 + A(k)
1

]
, (30)

and

T̂ (k) =
∏

i′, j′, (i′, j′ )∈S(k)

t̂(i′, j′ ) → 1

2 sin μ

[
A(k)

0 − A(k)
1

]
. (31)

Since A(k)
xk

= A(k)†
xk

and [A(i)
xi ]2 = A(i)

xi
A(i)†

xi = I , A(k)
xk

is a unitary
Hermitian with an eigenvalue of either 1 or −1. On the re-
ceiving side, the local observables B(l )

yl
for observer R(k) are

B(l )
yl

=(1 − yl )
∏

i, j, (i, j)∈R(l )

ŝ(i, j)+yl

∏
i′, j′, (i′, j′ )∈R(l )

t̂(i′, j′ ), (32)

where {B(k)
0 , B(k)

1 } = 0 according to Eq. (29). In the measuring
phase, S (k) [R(k)] randomly measures either the observable
A(k)

0 or A(k)
1 [B(k)

0 or B(k)
1 ] with an outcome of either 1 or −1. In

practice, if the qubit (i′′, j′′) → R(k) is idle, R(k) can always
measure the observable ô(i′′, j′′ ) in each round and discard the
outcome in postprocessing if ŝ(i′′, j′′ ) = I or t̂(i′′, j′′ ) = I .

To evaluate the correlation strength, let |�〉 =∏N
i ⊗|ψ(i)〉, and we have

|IK,M |Q = 1

2K

∣∣∣∣∣
1∑

x1,···xM=0

〈
A(1)

x1
· · · A(K )

xK

M∏
j=1

B( j)
0

〉∣∣∣∣∣
= 1

2K

∣∣∣∣∣
〈

K∏
i=1

[
A(i)

0 + A(i)
1

] M∏
j=1

B( j)
0

〉∣∣∣∣∣

=
∣∣∣∣∣∣
〈

K∏
k=1

cos θk

∏
i, j, (i, j)∈S(k)

ŝ(i, j)

×
M∏

l=1

∏
i′, j′, (i′, j′ )∈R(l )

ŝ(i′, j′ )

〉∣∣∣∣∣∣
=

∣∣∣∣∣
K∏

k=1

cos θk

〈
N∏

i=1

g(i)

〉∣∣∣∣∣
=

∣∣∣∣∣
K∏

k=1

cos θk

∣∣∣∣∣, (33)

where 〈·〉 = 〈�| · |�〉, and hence, 〈∏N
i=1 g(i)〉 = 1. In

addition,

|JK,M |Q = 1

2K

∣∣∣∣∣
1∑

x1,···xM=0

(−1)
∑

x j

〈
A(1)

x1
· · · A(n)

xn

M∏
j=1

B( j)
1

〉∣∣∣∣∣
= 1

2K

∣∣∣∣∣
〈

K∏
i=1

[
A(i)

0 − A(i)
1

] M∏
j=1

B( j)
1

〉∣∣∣∣∣
=

∣∣∣∣∣∣
〈

K∏
k=1

sin θk

∏
i, j, (i, j)∈S(k)

t̂(i, j)

×
M∏

l=1

∏
i′, j′, (i′, j′ )∈R(l )

t̂(i′, j′ )

〉∣∣∣∣∣∣
=

∣∣∣∣∣
K∏

j=1

sin θ j

N∏
i=1

〈h(i)〉
∣∣∣∣∣. (34)

A useful lemma is introduced as follows:
Lemma 2. For any θ1, θ2, · · · , θK ∈ [0, π

2 ],

∣∣∣∣∣
K∏

j=1

sin θ j

∣∣∣∣∣
1
K

� sin θ and

∣∣∣∣∣
K∏

j=1

cos θ j

∣∣∣∣∣
1
K

� cos θ, (35)

where θ = 1
K

∑K
j=1 θ j . The proof can be found in Ref. [20].

Let ci = 〈h(i)〉 � 1 and C = |∏N
i=1 ci|

1
K . We have

|IK,M | 1
K
Q + |JK,M | 1

K
Q

=
∣∣∣∣∣

K∏
k=1

cos θ j

∣∣∣∣∣
1
K

+
∣∣∣∣∣

K∏
k=1

sin θ j

∣∣∣∣∣
1
K

|C|

�
∣∣cos θ

∣∣ + ∣∣sin θ
∣∣|C|

�
√

1 + C2, (36)

where the first inequality in Eq. (36) follows from Lemma
2, and the second inequality follows from the Cauchy-
Schwarz inequality. To reach the maximal violation, by setting
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θ1 = . . . = θK = θ , and tan θ = C, we obtain

max
(
|IK,M | 1

K
Q + |JK,M | 1

K
Q

)
=

√
1 + C2 > 1. (37)

Some discussion is in order. The state |ψ(i)〉 can con-
tribute to the nonlocality of the quantum network through
different facets of its nonlocality. Loosely speaking, there are
C2ni−ki

2 ways of choosing suitable g(i) and g′
(i) and ki[22(ni−ki )]

ways of choosing suitable g(i) and X (i), which reflect the
flexibility of testing Bell nonlocality in the quantum net-
works. The maximum value of C = 1 (θ = π

4 ), and hence,

max(|IK,M |
1
K
Q + |JK,M |

1
K
Q ) = √

2, can be reached if ci = 1 ∀ i.
That is, h(i) stabilizes |ψ(i)〉 ∀ i. As shown in Eqs. (30) and
(31), one can benefit from the stabilizing operators in de-
signing local observables to achieve the maximal violations
of Bell inequalities in K-locality quantum networks. In de-
tail, ci = 1 if h(i) = X (i), |〈ϕ0

i |ϕ1
i 〉| = 1, and φi = π

4 . The Bell
nonlocality here is due to the superposition of |0i〉 and |1i〉;
if h(i) = g′

(i), ci is certain to be 1. The Bell nonlocality in
a network is due to that of either the stabilizer state or the
logical states of the stabilizer code [ni, ki, di]. Note that
such nonlocality involving the stabilizing operators g(i) and
g′

(i) can be also obtained even by using specific states stabi-
lized by the same stabilizing operators. For example, given
source i emitting a 4-qubit state with stabilizing operators
g(i) = σ⊗4

z and g′
(i) = σ⊗4

x , which both can also stabi-
lize the 4-qubit Smolin state ρSmolin = 1

4

∑
i j=0,1 |�i j〉〈�i j |,

where |�i j〉 = σ i
z ⊗ σ

j
x [ 1√

2
(|00〉 + |11〉)]. Eventually, Bell

nonlocality of at most |Di|-qubit entanglement in |ψ(i)〉 is
involved.

As an illustration, let K = N = 2 and M = 1, and let
sources 1 and 2 each emit the codeword states of [5, 1, 3]
SQECC with four stabilizer generators [the subscript qubit
index (i, j) is shortened as j]

g1 = X1Z2Z3X4I5, g2 = I1X2Z3Z4X5,

g3 = X1I2X3Z4Z5, g4 = Z1X2I3X4Z5. (38)

The well-known logical bit-flip and phase-flip operators are
X

′ = ∏5
i=1 Xi and Z

′ = ∏5
i=1 Zi. Observers S (1) and S (2) hold

qubits (1, 1) and (2, 1), respectively, while observer R(k)

holds the other 8 qubits, as shown in Fig. 2. Note that, in the
following examples, the bilocal inequality is√

I2,1 + √
J2,1 � 1, (39)

which is exactly the bilocal inequality for binary inputs and
outputs in Ref. [21].

Example (a). Let |ψ(1)〉 = |ψ(2)〉 = cos φ|0〉 + sin φ|1〉.
Here, we choose the useful operators g(i) = g1g2g3g4 =
Z1Z2X3I4X5 and h(i) = X = X

′
. In this case, |Di| = 2,

and (i, 3), (i, 4), (i, 5) are idle qubits. Here, A(i)
xi

=
1√
2
[Z(i,1) + (−1)xi X(i,1)], B(1)

0 = ∏2
i=1 Z(i,2)X(i,3)X(i,5), and

B(1)
1 = ∏2

i=1 X(i,2)X(i,3)X(i,4)X(i,5). Note that I2,1 and
J2,1 here are formally equivalent to I22 and J22 in
Ref. [21]. Denote the 5-qubit state |ϕ〉 = (cos φ|0〉1|0〉2 +
sin φ|1〉1|1〉2)|+〉3|+〉4|+〉5. It is easy to verify that

FIG. 2. A starlike quantum network with all states
|ψ(1)〉, . . . , |ψ(N )〉 being [5, 1, 3] codeword states.

g(i)|ϕ〉 = |ϕ〉 and 〈ψ(i)|h(i)|ψ(i)〉 = 〈ϕ|h(i)|ϕ〉. As a result,
the same violation can be obtained using either |ψ(1)〉|ψ(2)〉 or
|ϕ〉⊗2.

Example (b). Let |ψ(1)〉 = |0〉, |ψ(2)〉 = |1〉. Here, we
choose the useful operators g(i) = g1g2g3g4 = Z1Z2X3I4X5

and h(i) = g1 for any i ∈ {1, 2}. In this case, the local observ-
ables A(i)

xi
and B(1)

0 are the same as those in example (a), while

B(1)
1 = ∏2

i=1 Z(i,2)Z(i,3)X(i,4). Here, |Di| = 2 and (i, 2), (i, 4),
(i, 5) are idle qubits. However, note that g(i)|ϕ′〉 = h(i)|ϕ′〉 =
|ϕ′〉, where |ϕ′〉 = 1√

2
(|0〉1|+〉3 + |1〉1|−〉3)|0〉2|+〉4|+〉5. The

maximal violation can be obtained using either |ψ(1)〉|ψ(2)〉 or
|ϕ′〉⊗2.

Consequently, although the two 5-qubit logical states |0〉
and |1〉 and the codeword states are genuinely entangled
[32,33], one can replace the genuinely entangled state with
a state involving 2-qubit entanglement, either |ϕ〉 or |ϕ′〉, to
reach the same correlation strength. It is not known whether
the Bell nonlocality of genuine entanglement can be revealed
in a K-locality quantum network. Specifically, it is not known
whether the genuine entanglement of |ψ(i)〉 can be deduced
from violations of variant Bell inequalities of a quantum net-
work involving different stabilizing operators.

IV. BELL INEQUALITIES TAILORED FOR NONMAXIMAL
ENTANGLED STATES IN A QUANTUM NETWORK

If ci < 1 for at least one i, |�〉 cannot achieve the maximal
violation of the nonlinear Bell inequality in Eq. (21). To ex-
plore the Bell inequalities maximally violated by |�〉, recall
that, in the 2-qubit case (N = K = M = 1, n1 = 2), the tilted
CHSH operator Bβ-CHSH = βB0 + BCHSH is exploited using
the logical phase-flip operator B0 with appropriate parame-
ter β. Although it is unlikely that

∏M
m=1 B(m)

0 = ∏N
i=1 Z (i)

in quantum networks, it will be shown that the logical
phase-flip operators are still useful in finding the tilted
Bell inequalities. Denote two index sets C = {i|ci = 1} and
c = {i′|ci′ < 1}, where C ∩ c =∅ and |C| + |c| = N . Without
loss of generality, let i ∈ C for 1 � i � |C| and i ∈ c for
|C| + 1 � i � |C| + |c| = N . Denote |�C〉 = ∏|C|

i=1 |ψ(i)〉 and
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|�c〉 = ∏N
i=|C|+1 |ψ(i)〉; hence, we have |�〉 = |�C〉 ⊗ |�c〉.

Given i′ ∈ c, set the suitable operator h′
(i′ ) = Z (i′ ) =∏ni′

j′=1 t̂ ′
(i′, j′ ) that fulfills the following conditions: (i) if

(i′, j′) → S (k), then t̂ ′
(i′, j′ ) = I; and (ii) if (i′, j′) → R(k),

then either qubit (i′, j′) is idle, or t̂ ′
(i′, j′ ) = ŝ(i′, j′ ) if qubit

(i′, j′) is not idle. The logical phase-flip operator can be re-
vised as

Z (i′ ) =
∏

j′, (i′, j′ ):on the source side

ŝ(i′, j′ )

∏
j′′, (i′, j′′ ):idle

ô′
(i′, j′′ ), (40)

where ô′
(i′, j′′ ) ∈ {̂o(i′, j′′ ), I}. Instead of measuring B(k)

0 directly,
the agent R(k) measures

B
(k)
0 = B(k)

0

∏
(i′, j′ )→R(k)

ŝ(i′ , j′ )=I

t̂ ′
(i′, j′ ). (41)

The outcome of B(k)
0 can be obtained from that of B

(k)
0 by drop-

ping any outcome of the local observables t̂ ′
(i′, j′ ) in Eq. (41);

the outcome of
∏

i′,i′∈c Z (i′ ) can be obtained from that of∏K
k=1 B

(k)
0 by dropping any outcome of the qubit (i′, j′′) if (i)

i′ ∈ C or (ii) i′ ∈ c and ô′
(i′, j′′ ) in Eq. (40) is the unit matrix.

In this case, we propose the tilted Bell inequalities tailored for
|�〉

Gβ
N,K = β|PN,K | 1

K + |IN,K | 1
K + |JN,K | 1

K

c
� β + 1, (42)

where PN,K = ∏|C|
i=1 I⊗ni

∏N
i′=|C|+1 Z (i′ ). However, it is very

difficult to exploit sum-of-squares decomposition to find the
tailored Bell operators in quantum networks with an ex-
tremely large Hilbert space [16,34]. Our strategy is to simplify
Gβ

N,K as tilted CHSH inequalities. In detail, according to
Lemma 2, we have

Gβ
N,K � GN,K (β, φ, θ ) = β(cos 2φ)

|c|
K

+ cos θ + sin θ (sin 2φ)
|c|
K , (43)

where equality holds when θ1 = . . . = θN = θ . Let the pa-
rameter β satisfying ∂

∂θ
GN,K |(θmax,φ) = ∂

∂φ
GN,K |(θmax,φ) = 0 be

βmax. We have

tan θmax = (sin 2φ)
|c|
K , (44)

and

βmax = (tan 2φ)
2|c|
K −2√

(1 + tan2 2φ)
|c|
K + (tan 2φ)

2|c|
K

. (45)

As a result, the state |�C〉 ⊗ |�c〉 can maximally violate

the tailored Bell inequality Gβmax
N,K =

c

GN,K (βmax, φ, θmax) �
βmax + 1 by setting θ1 = . . . = θN = θmax. Note that Gβmax

N,K
coincides with the tilted CHSH inequality in the case that
|c|
K = 1 [16].

As an example, we consider the following “starlike” quan-
tum network, as shown in Fig. 2. Here, set K = N as an
odd integer and M = 1. For any i, let |ψ(i)〉 = cos φi|0i〉 +
sin φi|1i〉 be the codeword of the [5, 1, 3] QECC, where
i ∈ C if φi = π

4 and i ∈ c if φi = φ �= π
4 . The useful oper-

ators are g(i) = g4, h(i) = X
′
(i), and h′

(i) = Z (i) = g1g3Z
′
(i) =

−I(i,2)X(i,3)X(i,4)I(i,5)Z(i,1). On the source side, agent S (i) pos-
sesses qubit (i, 2), and using the cut-and-mix method, the local
observables are set as A(i)

xi
= cos θiZ(i, 2) + (−1)xi sin θiX(i, 2)

for any i = 1, .., N . On the receiving side, the only agent
R(1) possesses qubits ( j, 1), ( j, 3), ( j, 4), and ( j, 5), 1 �
j � N . Notably, t̂ ′

( j, 2) = I , t̂ ′
( j, 1) = ŝ( j, 1) = σz, and qubits

( j, 3), ( j, 4), and ( j, 5) are idle. Here, two local observ-
ables for R(1) are B(1)

0 = ∏N
j=1 X( j,3)I( j,4)X( j,5)Z( j,1) and B(1)

1 =∏N
j=1 X( j,3)X( j,4)X( j,5)X( j,1). In this case, one can set B

(1)
0 =

−B(1)
0

∏N
j=1 X( j,4). In practice, R(1) randomly measures σx or

σz on the qubits ( j, 1), ..., (N , 1) and always measures σx on
qubits ( j, 3), ( j, 4), and ( j, 5), 1 � j � N . In this scenario,
the numerical simulation shows that max Gβ

N,K = βmax.

V. CONCLUSIONS

In conclusion, we study the quantum networks with
sources emitting different stabilizer states. To characterize
Bell nonlocality, knowledge of the emitted entangled states is
demonstrated to be quite useful. Regarding qubit distributions
in quantum networks, nonlinear Bell inequalities are proposed
which can reveal variant facets of Bell nonlocality. On the
other hand, by fully exploiting the logical bit-flip and phase-
flip operators, we derive tilted nonlinear Bell inequalities
tailored for the codewords of [5, 1, 3] QECC with a specific
qubit distribution. It is interesting to construct the tilted non-
linear Bell inequalities maximally violated by |�〉 comprising
the generic codewords of QECCs in quantum networks.
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Independent Certification of Genuinely Entangled Subspaces,
Phys. Rev. Lett. 125, 260507 (2020).

[33] F. Baccari, R. Augusiak, I. Šupić, J. Tura, and A. Acín, Scalable
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