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Braiding phases among topological excitations are key data for physically characterizing topological orders.
In this paper, we provide a field-theoretical approach toward a complete list of mutually compatible braiding
phases of topological orders in (3+1)D spacetime. More concretely, considering a discrete gauge group as
input data, topological excitations in this paper are bosonic particles carrying gauge charges and loops carrying
gauge fluxes. Among these excitations, there are three classes of root braiding processes: particle-loop braidings
(i.e., the familiar Aharonov-Bohm phase of winding an electric charge around a thin magnetic solenoid),
multiloop braidings [Wang and Levin, Phys. Rev. Lett. 113, 080403 (2014)], and particle-loop-loop braidings
(i.e., Borromean rings braiding in Chan et al. [Phys. Rev. Lett. 121, 061601 (2018)]). A naive way to exhaust
all topological orders is to arbitrarily combine these root braiding processes. Surprisingly, we find that there
exist illegitimate combinations in which certain braiding phases cannot coexist, i.e., are mutually incompatible.
Thus, the resulting topological orders are illegitimate and must be excluded. It is not obvious to identify these
illegitimate combinations. But with the help of the powerful (3+1)D topological quantum field theories (TQFTs),
we find that illegitimate combinations violate gauge invariance. In this way, we are able to obtain all sets of
mutually compatible braiding phases and all legitimate topological orders. To illustrate, we work out all details
when gauge groups are ZN1 ,ZN1 × ZN2 ,ZN1 × ZN2 × ZN3 and ZN1 × ZN2 × ZN3 × ZN4 . Finally, we concisely
discuss compatible braidings and TQFTs in (4+1)D spacetime.
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I. INTRODUCTION

The order parameter, which is designed for characteriz-
ing orders, is one of fundamental concepts of many-body
physics. Symmetry-breaking orders are characterized by lo-
cal order parameters—local functions of spacetime. However,
topological orders (e.g., fractional quantum Hall states) [1–4]
in gapped systems are characterized by intrinsically nonlocal
order parameters, such as adiabatic quantum phases accumu-
lated by braiding topological excitations (e.g., anyons) [5]. In
topological orders, topological excitations are usually geomet-
rically compact manifoldlike after taking continuum limits,
such as pointlike particle excitations, stringlike loop exci-
tations, etc.1 Braiding phases of topological excitations are
proportional to integer-valued invariants of knots or links
formed by world lines of particles and world sheets of
loops, thereby being quantized and robust against local per-
turbations. In addition to topological orders, braiding phases
have also been applied to characterization of symmetry-
protected topological (SPT) phases [7–11] despite that SPT
bulk excitations are topologically trivial. The core reason is
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1For nonmanifoldlike excitations, Ref. [6] provides some examples

in a class of exotic stabilizer codes that support spatially extended
excitations with restricted mobility and deformability.
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that SPTs can be properly dualized to specific topological
orders [7].

One quantitatively efficient and powerful approach
to braiding phases is topological quantum field theory
(TQFT) [12]. For example, braiding data of two-dimensional
topological orders are encoded in (2 + 1)D Chern-Simons
theory [2,5,13]. In this paper, we focus on deconfined phases
of (3 + 1)D discrete gauge theories2 [14–18] with Abelian
gauge group G = ∏n

i=1 ZNi , where n denotes the total num-
ber of cyclic subgroups. Such phases of matter are usually
called

∏n
i ZNi topological order. For example, the ground

state of the three-dimensional toric code model [19,20] admits
Z2 topological order. By using group representation and a
conjugacy class [21], we may label topological excitations
via gauge charges and gauge fluxes. More specifically, there
are totally

∏n
i=1 Ni distinct bosonic particles carrying gauge

charges and
∏n

i=1 Ni distinct loops carrying gauge fluxes.
Without loss of generality, it is enough to consider braid-
ing phases among n distinct elementary particles (denoted
as e1, e2, · · · , ei, · · · , en) carrying the unit gauge charge of
a specific gauge subgroup and n distinct elementary loops
(denoted as m1, m2, · · · , mi, · · · , mn) carrying the unit gauge

2To reconcile different conventions in condensed-matter physics
and high-energy physics, we take the following convention: gauge
theories and field theories are always associated with spacetime
dimensions but quantum states, Hamiltonian-type lattice models,
or topological phases of matter (topological order, SPTs, etc.) are
associated with spatial dimensions only.
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TABLE I. Compatible braiding phases and TQFTs when G = ZN1 and G = ZN1 × ZN2 . Each row represents a class of topological order(s).
Thefirst row stands for a topological order whose braiding data is given by {�H

i }ZN1
with i = 1, 2, 3. The second row represents topological

orders which are characterized by {�H
i , any combinations of compatible �3L’s}. The coefficient of AAdA term is given by qi j j = nNiNj

Ni j
, n ∈

ZNi j , which is determined by the large gauge invariance. χ and V are zero-form and one-form compact U (1) gauge parameters with
∫

dχ ∈
2πZ and

∫
dV ∈ 2πZ.

Compatible braiding phases TQFT actions Gauge transformations

�H
1 = 2π

N1
ZN1

∫ N1
2π

B1dA1
A1 → A1 + dχ 1

B1 → B1 + dV 1

�H
i = 2π

Ni

�3L
22|1 = −2 · �3L

12|2 = 4πq122
N1N2

�3L
11|2 = −2 · �3L

21|1 = 4πq211
N1N2

∫ 2∑
i=1

Ni
2π

BidAi + q122
(2π )2 A1A2dA2

+ q211
(2π )2 A2A1dA1

Ai → Ai + dχ i

B1 → B1 + dV 1

+ q122
(2π )N1

dχ 2A2 − q211
(2π )N1

dχ 2A1

B2 → B2 + dV 2

− q122
(2π )N2

dχ 1A2 + q211
(2π )N2

dχ 1A1

flux of a specific gauge subgroup. When more than one par-
ticle (loop) are simultaneously involved in the same braiding
process, superscripts will be added properly to ei (mi).

Among these elementary excitations, there exist three
classes of braiding processes that have been studied be-
fore: particle-loop braiding [15,16,22–25], multiloop braid-
ing [26–44], and particle-loop-loop braiding [i.e., Borromean
rings (BR) braiding] [45]. For the purposes of this paper, we
regard these braidings as root braiding processes. Within each
class of root braiding processes, depending on gauge group
assignment, there are still many different braiding phases
among which compatibility is crucial. To proceed further, let
us briefly introduce the three classes of root braidings.

In the first class, within each gauge subgroup, e.g., ZNi ,
there is a well-defined particle-loop braiding phase �H

i =
2π
Ni

mod 2π when the Hopf linking invariant is one.3 Here, the
Hopf link is formed by an elementary particle’s trajectory γei

and an elementary loop mi. This braiding phase always exists
since it physically encodes the cyclic group structure of ZNi .
For the whole gauge group, the root braiding phases of the first
class form a set {�H

i }G with i = 1, · · · , n. A subscript G is
added for specifying gauge group G. Apparently, all braiding
phases in the set belong to distinct gauge subgroups, thereby
being mutually compatible and linearly independent. In the
language of TQFT, one may compute braiding phases from
gauge-invariant correlation functions of Wilson operators of
the topological BF theories with action SBF = ∫ ∑

i
Ni
2π

Bi ∧
dAi (abbreviated as BdA) [16,46–49]. Here, the one-form Ai

and two-form Bi are compact U (1) gauge fields describing the
loop current ( 1

2π
∗ dAi) and particle current ( 1

2π
∗ dBi) degrees

of freedom, respectively. As a natural higher-dimensional gen-
eralization of the Chern-Simons theory, the BF theory has
been broadly applied to condensed matter systems, such as
superconductors [16], bosonic and fractional topological in-
sulators, and more general 3D SPTs [49–53].

3The superscript H in �H
i stands for Hopf. As an angle, the 2π

period is important but obvious, so we will not write it explicitly
hereafter. To characterize topological orders, it is sufficient to con-
sider braiding processes in which the linking number is unit.

In the second class, i.e., multiloop (three or four) braidings,
all objects involved in the braidings are loops. More specifi-
cally, a three-loop braiding [26] consists of three elementary
loops and lead to a set of braiding phases {�H

i ; �3L
j,k|l}G, where

G = ∏n
i=1 ZNi with n � 2. As mentioned above, when G is

given, �H
i always exists. Here j, k, l indicate that three ele-

mentary loops (denoted by m1
j , m2

k , mb
l ), respectively, carry the

elementary gauge flux of ZNj ,ZNk ,ZNl gauge subgroups. Ge-
ometrically, the loop mb

l right after the symbol |, which carries
the elementary gauge flux of the ZNl gauge subgroup, is called
base loop [26]. The latter is simultaneously hopfly linked to
the other two loops, i.e., m1

j , m2
k . Under this geometric setting,

the three-loop braiding can be regarded as an anyonic braiding
process on the Seifert surface bounded by the base loop.
Braiding phases in the set {�H

i ; �3L
j,k|l}G satisfy a series of

remarkably elegant constraints such that mutually compatible
braiding data sets can be unambiguously determined. The
result was obtained in Ref. [26] by means of general properties
of the discrete gauge group and adiabaticity of braiding pro-
cesses. The same result can also be obtained from TQFTs with
topological terms of BdA + AAdA form [27–34,44]. More-
over, in the second class, if we consider four loops from four
distinct gauge subgroups, the four-loop braiding phases form
a set {�H

i ; �4L
j,k,l,m}G, where G = ∏n

i=1 ZNi , with n � 4, and
the four loops carry elementary gauge fluxes of four different
gauge subgroups ZNj ,ZNk ,ZNl ,ZNm respectively. The four-
loop braiding is associated with the quadruple linking number
of surfaces, thereby being quantized [28]. The correspond-
ing TQFTs can be symbolically expressed as BdA + AAAA
[27–34,44].

In the third class, i.e., the particle-loop-loop braiding
or BR braiding [45], an elementary particle carrying unit
gauge charge of ZNk gauge subgroup moves around two
loops (denoted by m1

i , m2
j ) that, respectively, carry unit

gauge fluxes of ZNi and ZNj , such that the particle’s
trajectory γek and the two loops together form aBR link,
or general Brunnian link. The corresponding braiding
phase is denoted as �BR

i, j|k , which is proportional to the
Milnor’s triple linking number μ̄ [45,54,55]. Likewise,
one may define a set of braiding phases: {�H

i ; �BR
j,k|l}G,

where G = ∏n
i=1 ZNi with n � 3. The corresponding
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TABLE II. Compatible braiding phases and TQFTs when G = ZN1 × ZN2 × ZN3 . Each row represents a class of topological orders which
are characterized by braiding data {�H

i ; combinations of compatible braiding phases}. Take the second row as an example: the sets of braiding
phases {�H

i ; �3L
3,3|2}, {�H

i ; �BR
2,3|1}, {�H

i ; �3L
3,3|2; �BR

2,3|1}, {�H
i ; �3L

3,3|2, �
3L
2,3|3, �

3L
2,2|3,�

3L
3,2|2; �BR

2,3|1}, etc., respectively, characterize a topological

order. The coefficients are given by qi jk = mNiNj

Ni j
, m ∈ ZNi jk , and pi j,k = li j,k NiNj Nk

Ni jk
, li j,k ∈ ZNi jk , as a result of large gauge invariance. li j,k = −l ji,k

and li j,k = 0 if any of the two indices are the same. The Levi-Civita symbol is defined by εa1a2 ···an = ∏
1�i< j�n sgn(aj − ai ) where sgn(x) = 1,

0, or −1 if x > 0, x = 0, or x < 0.

Compatible braiding phases TQFT actions Gauge transformations

�H
i = 2π

Ni

�3L
j, j|i = −2 · �3L

i, j| j = 4πqi j j

NiNj

�3L
2,3|1 = −�3L

1,3|2 = 2πq123
N1N2

�3L
3,1|2 = −�3L

2,1|3 = 2πq231
N2N3

∫ 3∑
i=1

Ni
2π

BidAi

+∑
i, j

qi j j

(2π )2 AiAjdAj

+ q123
(2π )2 A1A2dA3 + q231

(2π )2 A2A3dA1

Ai → Ai + dχ i

Bi → Bi + dV i

+∑
j

(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

+ 1
2πNi

(q123ε
i j3dχ jA3 + q231ε

i j1dχ jA1)

�H
i = 2π

Ni

�3L
3,3|2 = −2 · �3L

2,3|3 = 4πq233
N2N3

�3L
2,2|3 = −2 · �3L

3,2|2 = 4πq322
N3N2

�BR
2,3|1 = 2π p23,1

N1N2N3

∫ 3∑
i=1

Ni
2π

BidAi

+ q233
(2π )2 A2A3dA3 + q322

(2π )2 A3A2dA2

+ p23,1

(2π )2 A2A3B1

Ai → Ai + dχ i

−εi23 p23,1
2πNi

(χ 2A3 + 1
2 χ 2dχ 3)

+εi23 p23,1
2πNi

(χ 3A2 + 1
2 χ 3dχ 2)

Bi → Bi + dV i

+(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

−εi j1 p23,1
2πNi

(χ jB1 − AjV 1 + χ jdV 1)

�H
i = 2π

Ni

�3L
3,3|1 = −2 · �3L

1,3|3 = 4πq133
N1N3

�3L
1,1|3 = −2 · �3L

3,1|1 = 4πq311
N3N1

�BR
3,1|2 = 2π p31,2

N1N2N3

∫ 3∑
i=1

Ni
2π

BidAi

+ q133
(2π )2 A1A3dA3 + q311

(2π )2 A3A1dA1

+ p31,2

(2π )2 A3A1B2

Ai → Ai + dχ i

−ε1i3 p31,2
2πNi

(χ 3A1 + 1
2 χ 3dχ 1)

+ε1i3 p31,2
2πNi

(χ 1A3 + 1
2 χ 1dχ 3)

Bi → Bi + dV i

+(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

−εi j2 p31,2
2πNi

(χ jB3 − AjV 3 + χ jdV 3)

�H
i = 2π

Ni

�3L
2,2|1 = −2 · �3L

1,2|2 = 4πq122
N1N2

�3L
1,1|2 = −2 · �3L

2,1|1 = 4πq211
N1N2

�BR
1,2|3 = 2π p12,3

N1N2N3

∫ 3∑
i=1

Ni
2π

BidAi

+ q122
(2π )2 A1A2dA2 + q211

(2π )2 A2A1dA1

+ p12,3

(2π )2 A1A2B3

Ai → Ai + dχ i

−εi12 p12,3
2πNi

(χ 1A2 + 1
2 χ 1dχ 2)

+εi12 p12,3
2πNi

(χ 2A1 + 1
2 χ 2dχ 1)

Bi → Bi + dV i

+(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

−εi j3 p12,3
2πNi

(χ jB3 − AjV 3 + χ jdV 3)

TQFTs can be symbolically expressed as BdA + AAB
[45].

In this paper, we put all root braiding processes, which are
denoted by {�H

i ; �3L
j,k|l ; �4L

m,n,o,p ; �BR
q,r|s}G, in arbitrary combi-

nations and try to exhaust all topological orders. We find that
not all possible gauge group assignments (i.e., the subscripts
i, j, k, l, · · · ) are realizable. Not all braiding phases in a given
set are linearly independent. As we reviewed above, within
each class, compatible braiding phases have been studied
via various approaches. By compatible, we mean that these
braiding processes can be supported in the same system. In
other words, the compatible braiding phases together as a
set of braidings characterize a legitimate topological order.
If there are two mutually incompatible braiding processes
in the set, then both braiding processes must always lead to
two trivial braiding phases, i.e., 0 mod 2π regardless of the
values of linking numbers of the braidings. As we will show,
gauge invariance is broken if any one of two braidings has a
nontrivial braiding phase. Therefore, to exhaust all legitimate
topological orders, it is sufficient to find all sets of braidings
formed by mutually compatible braiding processes. For this

purpose, in this paper, through TQFT approach, we compute
all braiding processes in a unified framework and figure out all
cases of incompatibility that are tightly related to gauge nonin-
variance. Especially, we focus on cases of incompatibility that
occur when two or three distinct classes of root braiding pro-
cesses have nontrivial braiding phases. Compatible braiding
phases for different gauge groups are summarized in Table I
(G=ZN and (G=ZN1×ZN2 ), Table II (G=ZN1×ZN2×ZN3 ),
and Table III (G=ZN1×ZN2×ZN3×ZN4 ). More general cases
with more than four ZN gauge subgroups can be straightfor-
wardly analyzed by applying the results in these four tables,
as shown in Sec. III D. In addition to braiding phases, in
these tables, we also provide the corresponding TQFTs and
definitions of gauge transformations therein. All other sets
of braiding phases are incompatible and not realizable. Some
typical examples of incompatibility will be analyzed in detail
in this paper.

The remainder of this paper is structured as follows. In
Sec. II, we concretely analyze root braiding processes one
by one to lay the foundation for the forthcoming discussions
on compatibility. In Sec. III, by combining all root braiding
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TABLE III. Compatible braiding phases and TQFTs when G = ZN1 × ZN2 × ZN3 × ZN4 . Each row represents a class of topological orders
which are characterized by braiding data {�H

i ; combinations of compatible braiding phases}. Only 3 of 11 (see the main text) legitimate TQFT
actions are listed here. General expressions of legitimate TQFT actions and gauge transformations are given in Table IV. By properly assigning
the indices in the general expressions, one can obtain all legitimate TQFT actions for G = ∏4

i=1 ZNi . Coefficients are given by qi jk = mNiNj

Ni j
,

m ∈ ZNi jk ; qi jkl = nNiNj Nk Nl

Ni jkl
, n ∈ ZNi jkl and pi j,k = li j,k NiNj Nk

Ni jk
, li j,k ∈ ZNi jk as a result of large gauge invariance. li j,k = −l ji,k and li j,k = 0 if any

of the two indices are the same. The Levi-Civita symbol is defined by εa1a2 ···an = ∏
1�i< j�n sgn(aj − ai ) where sgn(x) = 1, 0, or −1 if x > 0,

x = 0, or x < 0.

Compatible braiding phases TQFT actions Gauge transformations

�H
i = 2π

Ni

�3L
j, j|i = −2 · �3L

i, j| j = 4πqi j j

NiNj

�3L
i,i| j = −2 · �3L

j,i|i = 4πq jii

Nj Ni

�3L
j,k|i = −�3L

i,k| j = 2πqi jk

NiNj

�3L
k,i| j = −�3L

j,i|k = 2πq jki

Nj Nk

�4L
1,2,3,4 = 2πq1234

N1N2N3N4

∫ 4∑
i=1

Ni
2π

BidAi

+∑
i< j

qi j j

(2π )2 AiAjdAj

+∑
i< j

q jii

(2π )2 AjAidAi

+ ∑
i< j<k

qi jk

(2π )2 AiAjdAk

+ ∑
i< j<k

q jki

(2π )2 AjAkdAi

+ q1234
(2π )3 A1A2A3A4

Ai → Ai + dχ i

Bi → Bi + dV i

+∑
j

(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

+ ∑
m<n<l

qmnl
2πNi

(δi,mdχ nAl − δi,ndχmAl )

+ ∑
m<n<l

qnml
2πNi

(δi,ndχ l An − δi,l dχ nAm )

− 1
2

∑
j,k,l

q1234
(2π )2Ni

εi jkl A jAkχ l

+ 1
2

∑
j,k,l

q1234
(2π )2Ni

εi jkl A jχ kdχ l

+ 1
6

∑
j,k,l

q1234
(2π )2Ni

εi jklχ jdχ kdχ l

�H
i = 2π

Ni

�3L
j, j|i = −2 · �3L

i, j| j = 4πqi j j

NiNj

�3L
2,4|1 = −�3L

1,4|2 = 2πq124
N1N2

�3L
4,1|2 = −�3L

2,1|4 = 2πq241
N2N4

�BR
1,2|3 = 2π p12,3

N1N2N3

�BR
4,1|3 = 2π p41,3

N4N1N3

�BR
4,2|3 = 2π p42,3

N4N2N3

∫ 4∑
i=1

Ni
2π

BidAi

+ ∑
i �=3, j �=3

qi j j

(2π )2 AiAjdAj

+ q124
(2π )2 A1A2dA4 + q241

(2π )2 A2A4dA1

+ p12,3

(2π )2 A1A2B3

+ p41,3

(2π )2 A4A1B3

+ p42,3

(2π )2 A4A2B3

Ai → Ai + dχ i

−∑
a,b

pab,3
2πN3

δi,3(χ aAb + 1
2 χ adχ b)

Bi → Bi + dV i

+ ∑
i �=3, j �=3

[
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi]

+ ∑
i �=3, j �=3

( q124
2πNi

εi j4dχ jA4 + q241
2πNi

εi j1dχ jA1)

− ∑
i �=3, j �=3

pi j,3

2πNi
(χ jB3 − AjV 3 + χ jdV 3)

�H
i = 2π

Ni

�3L
2,2|1 = −2 · �3L

1,2|2 = 4πq122
N1N2

�3L
1,1|2 = −2 · �3L

2,1|1 = 4πq211
N2N1

�BR
1,2|3 = 2π p12,3

N1N2N3

�BR
1,2|4 = 2π p12,4

N1N2N4

∫ 4∑
i=1

Ni
2π

BidAi

+ q122
(2π )2 A1A2dA2 + q211

(2π )2 A2A1dA1

+ p12,3

(2π )2 A1A2B3 + p12,4

(2π )2 A1A2B4

Ai → Ai + dχ i

−( p12,i
2πNi

δi,3 + p12,i
2πNi

δi,4)(χ 1A2 + 1
2 χ 1dχ 2)

+( p12,i
2πNi

δi,3 + p12,i
2πNi

δi,4)(χ 2A1 + 1
2 χ 2dχ 1)

Bi → Bi + dV i

+ ∑
j �=3,4

(
qi j j

2πNi
dχ jA j − q jii

2πNi
dχ jAi )

−∑
j

p12, j

2πNi
δi,1(χ 2B j − A2V j + χ 2dV j )

+∑
j

p12, j

2πNi
δi,2(χ 1B j − A1V j + χ 1dV 3)

processes together, we study the corresponding TQFTs and
extract all sets of compatible braiding processes. Then, in
Sec. IV, some sets of incompatible braiding processes are
illustrated in some concrete examples. In Sec. V, along the
same line, we concisely discuss compatible braidings and
TQFTs in (4 + 1)-dimensional topological orders. Conclu-
sions are made in Sec. VI. Several technical details are
collected in the Appendices.

II. REVIEW ON ROOT BRAIDING PROCESSES
AND GAUGE TRANSFORMATIONS

In this section, we review TQFTs of root braiding pro-
cesses. We emphasize the correspondence between root
braiding processes, topological terms, and braiding phases,

which is illustrated as the following triangle:

Braiding Process

Topological Term Braiding Phase

A braiding process can be identified from a topological term
or a braiding phase, and vice versa. In this manner, we can
study the braiding processes within the framework of TQFT.
More concretely, to extract braiding phases from a TQFT,
one can either add gauge-invariant source terms [30,45] or
study algebra of Wilson operators [34,40], such that the braid-
ing phases of a given braiding process are connected to a
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linking or knot invariant formed by the spacetime trajectories
of particles and loops.

A. Microscopic origins of discrete gauge groups, topological
excitations, and TQFT actions

As our basic goal is to utilize TQFTs and braiding pro-
cesses to characterize and classify topological orders of
underlying quantum many-body systems, it is very important
to identify microscopic origins of input data of TQFTs and
braiding processes.

Hamiltonian realization, especially an exactly solvable
model proposal, is always the most powerful stimulus of the
progress of topological orders. For example, the toric code
model proposed by Kitaev [20] elegantly unveils all key prop-
erties of nonchiral Abelian topological orders in (2 + 1)D.
String-net models constructed by Levin and Wen [56] are
applied to exhaust non-Abelian topological orders in (2 +
1)D. In (3 + 1)D, topological orders that are within Dijkgraaf-
Witten cohomology classification [57] have Hamiltonian
realization in Ref. [38], which uses four-cocycles to cover
all particle-loop and multiloop braidings. However, exactly
solvable models for BR braiding [45] are not known, which
is an interesting future direction. References [58,59] present
strategies for constructing higher-dimensional Abelian and
non-Abelian topological phases via coupling quantum wires,
which may shed light on constructing exactly solvable lattice
model for BR braiding.

While exactly solvable models have Hamiltonian form,
the Hamiltonians often look very intricate and unrealistic
(four-spin, six-spin interactions, and more). Furthermore, it
is unclear for us to rigorously connect the Hamiltonians to
TQFTs. The latter have been proved to be a very powerful
machine to study topological orders since the discovery of
the fractional quantum Hall effect. But, to the best of our
knowledge, it is highly impossible to perform a standard
perturbation theory to renormalize the intricate interacting
electron system of the ν = 1/3 Laughlin state to a beau-
tiful Chern-Simons gauge theory

∫
3

4π
AdA, where A is an

emergent gauge field. Although there are many effective ways,
e.g., parton construction and hydrodynamical approach, to
handle strongly correlated physics, it is still kind of myste-
rious to derive emergent dynamical gauge fields from the very
beginning.

To identify microscopic origins, below we will provide
an effective way of thinking, following the spirit of previous
works [16,29,34,50,52,60]. From this effective derivation, we
can find how discrete gauge groups, topological terms, and
quantized Wilson integrals arise from a quantum many-body
system. We can also find that particle excitations and loop ex-
citations are gauge charges and gauge fluxes of gauge groups.
Below, we take

∫
BdA + AAB as an example by means of ex-

otic boson condensate and vortexline condensate. The detailed
derivation is given in Appendix A. Here we just briefly sketch
the key idea.

We start from a multilayer condensate in 3D space in
which one layer is in the vortexline condensation phase (from
disordering a 3D superfluid) while the others are in charge
condensation phases (bosonic superconductors): The former
can be regarded as the Higgs phase of two-form gauge fields
while the latter can be regarded as the usual Higgs phase of
one-form gauge fields,

L = ρ3

2

(
∂[μ�ν] − N3B3

μν

)2 + ρ1

2

(
∂μθ1 − N1A1

μ

)2

+ ρ2

2

(
∂μθ2 − N2A2

μ

)2 + i�εμνλρ
(
∂[μ�ν] − N3B3

μν

)
× (

∂λθ
1 − N1A1

λ

)(
∂ρθ

2 − N2A2
ρ

)
, (1)

where ∂[μ�ν] = ∂μ�ν − ∂ν�μ. The vectorlike phase angle
�μ describes the phase field of vortexline condensation [50],
while θ1 and θ2 are the usual phase angles of boson conden-
sation. The coefficients ρ1, ρ2, ρ3 represent phase rigidity of
condensates. The last term of the above Lagrangian couple
three condensates together in a gauge-invariant fashion. By
introducing Hubbard-Stratonovich fields �3

μν , j1, j2 and La-
grange multiplier fields ξ I and ηI , we obtain

L = 1

2ρ1
( j1)2 − iθ1∂λ j1

λ − iN1A1
λ j1

λ + 1

2ρ2
( j2)2 − iθ2∂ρ j2

ρ − iN2A2
ρ j2

ρ + 1

8ρ3

(
�3

μν

)2 − i�μ∂ν�
3
μν − i

1

2
N3B3

μν�
3
μν

+ i�εμνλρ
[
2�μ∂ν

(
N1N2A1

λA2
ρ

)+ θ1∂λ

(
N2A2

ρN3B3
μν

)+ θ2∂ρ

(
N3B3

μνN1A1
λ

)]
+ iη1

λ

[
ξ 1
λ − �εμνλρ · 1

2
∂ρθ

2N3B3
μν

]
+ iθ1∂λξ

1
λ + iη2

ρ

[
ξ 2
ρ − �εμνλρ · 1

2
∂λθ

1N3B3
μν

]
+ iθ2∂ρξ

2
ρ

+ iη3
μν

[
ξ 3
μν − �εμνλρ

(
2∂λθ

1N1A2
ρ + 2∂ρθ

2N1A1
λ

)]+ i�μ∂νξ
3
μν − iN1N2N3�εμνλρA1

λA2
ρB3

μν + boundary terms. (2)

Integrating out �μ, θ1 and θ2 yields constraints in the path-integral measure. These constraints can be solved by introducing
one-form gauge field A3, two-form gauge fields B1 and B2, respectively:

�3
μν = 1

2π
εμνλρ∂λA3

ρ + ξ 3
μν − �εμνλρ × 2N1N2A1

λA2
ρ,

j1
λ = 1

4π
ελρμν∂ρB1

μν + ξ 1
λ − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)
,

j2
ρ = 1

4π
ερλμν∂λB2

μν + ξ 2
ρ − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)
. (3)
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FIG. 1. Particle-loop braiding described by B1dA1 and �H
1 . m1 is

an elementary loop that carries unit gauge flux of ZN1 gauge group.
γe1 is the closed trajectory of an elementary particle e1 that carries
unit gauge charge of ZN1 gauge group.

The physical meaning of �3
μν is the current of loop while

those of j1
λ and j2

ρ are the currents of particles of layers 1
and 2, respectively. In this manner, one can figure out the mi-
croscopic origins of particle and loop excitations. Substituting
�3

μν , j1
λ, and j2

ρ into Lagrangian Eq. (2) and integrating out the
Lagrange multiplier fields, we end up with

L = iN1

4π
εμνλρB1

μν∂λA1
ρ + iN2

4π
εμνλρB2

μν∂λA2
ρ

+ iN3

4π
εμνλρB3

μν∂λA3
ρ + iN1N2N3�εμνλρA1

μA2
νB3

λρ. (4)

Finally, we effectively obtain the TQFT action for a BR braid-
ing: S = ∫

Ldxdt ∼ ∫ ∑3
i=1

Ni
2π

BidAi + A1A2B3.
In this theory, the particle excitations are e1, e2, e3, car-

rying gauge charges of ZN1 ,ZN2 ,ZN3 and minimally couple
to A1, A2, A3. The loop excitations are m1, m2, m3, carry-
ing gauge fluxes of ZN1 ,ZN2 ,ZN3 , and minimally couple to
B1, B2, B3.

B. Particle-loop braiding and BdA term

The particle-loop braiding is essentially a quantized
Aharonov-Bohm effect in a discrete gauge theory where local
interactions are completely screened and long-range statistical
interactions lead to nontrivial braiding phases. Given a ZN1

gauge subgroup, an elementary particle e1 is braided around
a static elementary loop m1. The trajectory γe1 and m1 as a
whole form a Hopf link, as shown in Fig. 1. The corresponding
braiding phase is given by �H

i = 2π
Ni

for unit Hopf linking
number. The classification of equivalent trajectories of e1 is
essentially related to the mathematics of fundamental group
and link homotopy, which was preliminarily introduced in the
Supplemental Material of Ref. [45]. The corresponding TQFT
is the following multicomponent BF action4 (F = dA, ∧ is
omitted):

S =
∫ n∑

i=1

Ni

2π
BidAi, (5)

where Ni are positive integers that specify the discrete gauge
group G. {Ai = ∑

μ Ai
μdxμ} and {Bi = 1

2!

∑
μν Bi

μνdxμdxν}
are one-form and two-form compact U (1) gauge fields,
respectively. Although one may expect a general matrix for-
malism ∼Ki jBidAj , the matrix K can always be sent to a

4In this paper, each summation is indicated by a
∑

symbol.

FIG. 2. Three-loop braiding process described by A1A2dA2 and
�3L

2,2|1. In this case, the base loop mb
1 carries the ZN1 gauge flux; Both

m1
2 and m2

2 carry the ZN2 gauge flux.

diagonal matrix with positive elements via two independent
GL(n,Z) transformations. The two transformations, respec-
tively, act on B fields and A fields (a relevant discussion on
basis transformations can be found in Refs. [30,53]). The
action Eq. (5) keeps invariant up to boundary terms under
gauge transformations

Ai →Ai + dχ i,
(6)

Bi →Bi + dV i,

where {χ i} and {V i} are, respectively, zero-form and one-
form compact U (1) gauge parameters with

∫
dχ ∈ 2πZ and∫

dV ∈ 2πZ. Once these integrals are nonzero, the corre-
sponding gauge transformations are said to be large. The
coefficient quantization, i.e., N1 is integral and is guar-
anteed by the invariance of the partition function Z =∫

DBDAei
∫ N1

2π
BdA under large gauge transformations on any

compact oriented manifold.

C. Multiloop braiding and AAdA, AAAA terms

Next, we consider three-loop and four-loop braiding pro-
cesses introduced in Sec. I. The minimal number of gauge
subgroups is two: G = ZN1 × ZN2 . For this gauge group, we
consider a three-loop braiding process (Fig. 2) with braiding
phase denoted as �3L

2,2|1. The TQFT action for this three-loop
braiding process is

S =
∫ 2∑

i=1

Ni

2π
BidAi + q122

(2π )2 A1A2dA2. (7)

S is invariant up to boundary terms under gauge transforma-
tions

Ai →Ai + dχ i,

B1 →B1 + dV 1 + q122

2πN1
dχ2A2,

B2 →B2 + dV 2 − q122

2πN2
dχ1A2. (8)

The coefficient q122 is quantized and periodic: q122 = kN1N2
N12

,
where k ∈ ZN12 and N12 is the greatest common divisor (GCD)
of N1 and N2.

When G = ZN1 × ZN2 × ZN3 , we consider a three-loop
braiding process (Fig. 3) associated with the braiding phase
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FIG. 3. Three-loop braiding process described by A1A2dA3 and
�3L

2,3|1. In this case, the base loop mb
1 carries the ZN3 gauge flux, m1

2

carries the ZN2 gauge flux, and m2
3 carries the ZN3 gauge flux.

�3L
2,3|1. The corresponding TQFT action is

S =
∫ 3∑

i=1

Ni

2π
BidAi + q123

(2π )2 A1A2dA3. (9)

The gauge transformations are defined as

Ai →Ai + dχ i,
(10)

Bi →Bi + dV i + q123

2πNi
εi j3dχ jA3,

where ε is the Levi-Civita symbol with ε123 = −ε213 = 1. The
coefficient is q123 = kN1N2

N123
where k ∈ ZN123 and N123 is the

GCD of N1, N2, and N3. When G = ZN1 × ZN2 × ZN3 × ZN4 ,
four-loop braiding processes are realizable, in which four
loops carry the unit gauge fluxes of ZN1 ,ZN2 ,ZN3 ,ZN4 gauge
subgroups, respectively. The corresponding TQFT action is

S =
∫ 4∑

i=1

Ni

2π
BidAi + q1234

(2π )3 A1A2A3A4. (11)

The action Eq. (11) is invariant up to boundary terms under
gauge transformations

Ai →Ai + dχ i,

Bi →Bi + dV i

− 1

2

∑
j,k,l

q1234

(2π )2Ni
εi jkl A jAkχ l

+ 1

2

∑
j,k,l

q1234

(2π )2Ni
εi jkl A jχ kdχ l

+ 1

6

∑
j,k,l

q1234

(2π )2Ni
εi jklχ jdχ kdχ l , (12)

where ε is the Levi-Civita symbol with ε1234 = −ε1324 =
1. The coefficient is q1234 = kN1N2N3N4

N1234
, where k ∈ ZN1234 and

N1234 is the GCD of N1, N2, N3, and N4. Until now, we have
only reviewed gauge transformations in this review section.
It is hard to visualize four-loop braiding in three-dimensional
real space. We recommend Fig. 6 of Ref. [28].

FIG. 4. Borromean rings braiding described by A1A2B3 and
�BR

1,2|3. m1
1 and m2

2, respectively, carry unit gauge flux of ZN1 and
ZN2 gauge subgroup. e3, carrying unit gauge charge of ZN3 gauge
subgroup, moves around m1

1 and m2
2, such that the trajectory of e3

(denoted as γe3 ) and other two loops form a Borromean ring link.

D. Borromean rings braiding and AAB term

Last, we consider the particle-loop-loop braiding or BR
braiding with its braiding phase denoted as �BR

i, j|k [45]. Like-
wise, the input data of BR braiding are Abelian gauge group
G = ∏n

i=1 ZNi but with n � 3, such that all particles and
loops can be labeled by gauge charges and gauge fluxes
in a specific gauge subgroup ZNi . This braiding is beyond
Dijkgraaf-Witten gauge theory classification H4(G,U (1)).
The latter only includes braiding phases of particle-loop braid-
ings and multi-loop braidings. By further taking BR braiding
into account, we need to study proper combinations of all
braidings together to exhaust all topological orders.

The corresponding topological term of BR braidings is
AiAjBk . For example, consider a BR braiding process shown
in Fig. 4, the corresponding TQFT action is

S =
∫ 3∑

i=1

Ni

2π
BidAi + p12,3

(2π )2 A1A2B3, (13)

where p12,3 = l12,3N1N2N3

N123
, l12,3 ∈ ZN123 , N123 is the GCD of N1,

N2 and N3. Ref. [45] points out that l12,3 = −l21,3 and li j,k = 0
if any of the two indices are same. The quantization of p12,3 is
due to the large gauge invariance. The gauge transformations
for (13) are

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3 + X 3,

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3,

(14)

where

X 3 = − p12,3

2πN3

(
χ1A2 + 1

2
χ1dχ2

)

+ p12,3

2πN3

(
χ2A1 + 1

2
χ2dχ1

)
,

Y 1 = − p12,3

2πN1
(χ2B3 − A2V 3 + χ2dV 3),

Y 2 = p12,3

2πN2
(χ1B3 − A1V 3 + χ1dV 3). (15)
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X 3, Y 1 and Y 2 are so-called shift terms. The Dirac quantization
of A3, B1 and B2 requires that 1

2π

∫
dX 3 ∈ Z, 1

2π

∫
dY 1 ∈

Z and 1
2π

∫
dY 2 ∈ Z. The ZNi cyclic group structures are

encoded in the cyclic Wilson integrals of A1, A2 and B3 re-
spectively:

∮
A1 ∈ 2π

N1
ZN1 ,

∮
A2 ∈ 2π

N2
ZN2 and

∮
B3 ∈ 2π

N3
ZN3 .

III. COMPATIBLE BRAIDING PROCESSES

Since we have reviewed the correspondence between topo-
logical terms, braiding processes and braiding phases, we may
naively think that we can design a system which can support
arbitrary combinations of braiding processes. However, this
is not true. In other words, there are illegitimate combinations
in which the braiding processes are mutually incompatible.
Such incompatibility reveals that some topological terms are
forbidden to form a legitimate TQFT action.

In this section, we will compute the sets of compatible
braiding phases for different gauge groups, from which the
compatible braiding processes can be read out. For this pur-
pose, we seek for a legitimate TQFT action consisting of as
many topological terms as possible for a given gauge group.

In order to verify a TQFT action is legitimate or not,
we need to take care of the following aspects. First of all,
a legitimate TQFT action should be invariant up to bound-
ary terms under proper gauge transformations. Second, the
gauge transformations are required to preserve the ZNi cyclic
group structure. This requirement means that, if the ZNi cyclic
group structure is encoded in

∮
Ai ∈ 2π

Ni
ZNi (

∮
Bi ∈ 2π

Ni
ZNi ),

Ai (Bi ) must have the standard gauge transformation: Ai →
Ai + dχ i(Bi → Bi + dV i ) such that the Wilson integrals of
Ai (Bi ) are gauge-invariant. χ i and V i are zero-form and 1-
form compact U (1) gauge parameters with

∫
dχ i ∈ 2πZ and∫

dV i ∈ 2πZ respectively. From the perspective of micro-
scopic origins (Sec. II A), if Ai has the above standard gauge
transformation, the i-th layer condensate must be a charge-Ni

boson condensate that higgses the Wilson integrals of Ai down
to ZNi , and Bi comes from the duality transformation shown
in Sec. II A and Appendix A; likewise, if Bi has the above
standard gauge transformation, the i-th layer condensate must
be a charge-Ni vortexline condensate that higgses the Wilson
integrals of Bi down to ZNi , and Ai comes from the dual-
ity transformation shown in Sec. II A and Appendix A. In
summary, in a legitimate action, at least one of gauge fields
(Ai and Bi), for a given i, should have the above standard
gauge transformations and thus have the ZNi quantized Wilson
integrals. For example, see Eqs. (6), (8), (10), (12), and (14).

Next, the gauge transformation of each gauge field should
respect the Dirac quantization. Last but not least, a legitimate
TQFT action should consist of topological terms with non-
trivial coefficients. If the coefficient of a topological term is
identical to 0, otherwise the action cannot be gauge invariant
under gauge transformations, this topological term is actually
incompatible with others in the action.

A. G = ZN1 and G = ZN1 × ZN2

When G = ZN1 , the elementary particle (loop) is e1(m1)
carrying unit gauge charge (flux) of ZN1 gauge group. The
only nontrivial braiding process in this case is the particle-

loop braiding described by

S =
∫

N1

2π
B1dA1. (16)

The gauge transformations for Eq. (16) are

A1 →A1 + dχ1,

B1 →B1 + dV 1.
(17)

The braiding phase of this particle-loop braiding is

�H
1 = 2π

N1
. (18)

When G = ZN1 × ZN2 , the elementary particles (loops) are
denoted as e1 and e2 (m1 and m2) carrying unit gauge charge
(flux) of ZN1 and ZN2 gauge subgroups, respectively. Beside
particle-loop braidings, three-loop braidings can be supported.
There are four kinds of three-loop braiding phases in this case,
described by two linearly independent AAdA terms:

(1) �3L
2,2|1: mb

l , m1
j , and m2

k , respectively, carry unit gauge
fluxes of ZN1 , ZN2 , and ZN2 gauge subgroups.

(2) �3L
1,2|2: mb

l , m1
j , and m2

k respectively, carry unit gauge
fluxes of ZN2 , ZN1 and ZN2 gauge subgroups.

(3) �3L
1,1|2: mb

l , m1
j , and m2

k , respectively, carry unit gauge
fluxes of ZN2 , ZN1 , and ZN1 gauge subgroups.

(4) �3L
2,1|1: mb

l , m1
j , and m2

k , respectively, carry unit gauge
fluxes of ZN1 , ZN2 , and ZN1 gauge subgroups.

The first two braiding processes are described by A1A2dA2

and the remainder by A2A1dA1. All these three-loop braidings
and particle-loop braidings are compatible, described by a
TQFT action

S =
∫ 2∑

i=1

Ni

2π
BidAi

+ q122

(2π )2 A1A2dA2 + q211

(2π )2 A2A1dA1, (19)

where q122 = kN1N2
N12

, k ∈ ZN12 , and q211 = k′N2N1
N12

, k′ ∈ ZN12 .
N12 is the GCD of N1 and N2. The gauge transformations for
Eq. (19) are

Ai →Ai + dχ i,

B1 →B1 + dV 1 + q122

(2π )N1
dχ2A2 − q211

(2π )N1
dχ2A1,

B2 →B2 + dV 2 − q122

(2π )N2
dχ1A2 + q211

(2π )N2
dχ1A1. (20)

The phases of particle-loop braidings and three-loop braidings
are

�H
i =2π

Ni
, (21)

�3L
2,2|1 =4πq122

N1N2
, (22)

�3L
1,2|2 = − 2πq122

N1N2
, (23)

�3L
1,1|2 =4πq211

N1N2
, (24)

�3L
2,1|1 = − 2πq211

N1N2
. (25)

023132-8



COMPATIBLE BRAIDINGS WITH HOPF LINKS, … PHYSICAL REVIEW RESEARCH 3, 023132 (2021)

Legitimate TQFT actions for G = ZN1 and G = ZN1 × ZN2

are summarized in Table I. The sets of compatible braiding
phases for G = ZN1 and G = ∏2

i=1 ZNi are, respectively,{
�H

1 = 2π

N1

}
ZN1

(26)

and {
�H

i ; �3L
2,2|1,�

3L
1,2|2,�

3L
1,1|2,�

3L
2,1|1

}∏2
i=1 ZNi

, (27)

where the underlines denote the linear dependence of two
braiding phases, for example, �3L

2,2|1,�
3L
1,2|2 indicates that

�3L
2,2|1 = −2 · �3L

1,2|2.

B. G = ZN1 × ZN2 × ZN3

When G = ZN1 × ZN2 × ZN3 , the elementary particles
(loops) are e1, e2, and e3 (m1, m2, and m3) carrying unit
gauge charges (fluxes) of ZN1 , ZN2 , and ZN3 gauge subgroups,
respectively. In addition to the particle-loop braidings and
three-loop braidings discussed in Sec. III A, BR braidings
described by AAB terms and three-loop braidings described by
AmAndAo terms (m, n, o are mutually different) are realizable.
For the reason BR braiding is absent when G = ∏2

i=1 ZNi , one
can refer to Sec. IV A.

The compatibility issues of G = ∏3
i=1 ZNi are discussed as

follows. First, if we neglect BR braidings, all particle-loop
braidings and three-loop braidings are compatible, we can
write a legitimate TQFT action for all root braiding processes
except BR braidings:∫ 3∑

i=1

Ni

2π
BidAi + q122

(2π )2 A1A2dA2 + q211

(2π )2 A2A1dA1

+ q133

(2π )2 A1A3dA3 + q311

(2π )2 A3A1dA1 + q233

(2π )2 A2A3dA3

+ q322

(2π )2 A3A2dA2 + q123

(2π )2 A1A2dA3 + q231

(2π )2 A2A3dA1,

(28)

where qi jk = lNiNj

Ni j
, l ∈ ZNi jk , Ni j (Ni jk) is the GCD of Ni,

Nj (and Nk). Next, we consider a BR braiding, say, �BR
1,2|3

described by an A1A2B3 term. All particle-loop braidings are
compatible with this BR braiding. However, among three-loop
braiding phases, only �3L

2,2|1, �3L
1,2|2, �3L

1,1|2, and �3L
2,1|1 are

compatible with �BR
1,2|3. Other �3L

i, j|k’s with one index equal
to 3 are not compatible with �BR

1,2|3. The reasons for this in-
compatibility between three-loop braidings and BR braidings
are discussed in Secs. IV C–IV E. The total TQFT action for
�BR

1,2|3 and its compatible braiding processes is

∫ 3∑
i=1

Ni

2π
BidAi + p12,3

(2π )2 A1A2B3

+ q122

(2π )2 A1A2dA2 + q211

(2π )2 A2A1dA1, (29)

where p12,3 = lN1N2N3
N123

, l ∈ ZN123 , and qi j j = l ′NiNj

Ni j
, l ′ ∈ ZNi j .

Furthermore, if we consider two different BR braidings, we

find that it is impossible to write a legitimate TQFT ac-
tion which contains two different AAB terms. The reason
is explained in Sec. IV B. Nevertheless, if the gauge group
is G = ∏n

i=1 ZNi with n � 4, legitimate TQFT actions for
two different BR braidings are possible, which is detailed in
Sec. III C.

By checking all combinations of braiding processes with
the criteria of compatibility, we summarized all legitimate
TQFT actions for G = ZN1 × ZN2 × ZN3 and corresponding
gauge transformations in Table II. The sets of compatible
braiding phases for G = ∏3

i=1 ZNi can be summarized as{
�H

i ; �3L
j, j|i,�

3L
i, j| j,�

3L
2,3|1,�

3L
1,3|2,�

3L
3,1|2,�

3L
2,1|3

}∏3
i=1 ZNi

,

(30){
�H

i ; �3L
3,3|2,�

3L
2,3|3,�

3L
2,2|3,�

3L
3,2|2; �BR

2,3|1
}∏3

i=1 ZNi
, (31){

�H
i ; �3L

1,1|3,�
3L
3,1|1,�

3L
3,3|1,�

3L
1,3|3; �BR

3,1|2
}∏3

i=1 ZNi
, (32)

and {
�H

i ; �3L
2,2|1,�

3L
1,2|2,�

3L
1,1|2,�

3L
2,1|1; �BR

1,2|3
}∏3

i=1 ZNi
, (33)

where the underlines denote the linear dependence be-
tween two compatible braiding phases: �3L

3,3|2 = −2 × �3L
2,3|3,

�3L
2,3|1 = −�3L

1,3|2, etc.

C. G = ZN1 × ZN2 × ZN3 × ZN4

Similar to the case in Sec. III B, particle-loop braidings and
multiloop braidings are compatible with each other when G =∏4

i=1 ZNi . The TQFT action for them is∫ 4∑
i=1

Ni

2π
BidAi +

∑
i< j

[
qi j j

(2π )2 AiAjdAj + q jii

(2π )2 AjAidAi

]

+
∑

i< j<k

[
qi jk

(2π )2 AiAjdAk + q jki

(2π )2 AjAkdAi

]

+ q1234

(2π )3 A1A2A3A4. (34)

The set of compatible braiding phases for Eq. (34) is{
�H

i ; �3L
j, j|i,�

3L
i, j| j,�

3L
i,i| j,�

3L
j,i|i,

�3L
j,k|i,�

3L
i,k| j,�

3L
k,i| j,�

3L
j,i|k ; �4L

1,2,3,4

}∏4
i=1 Zi

, (35)

where i < j < k and {i, j, k} ⊂ {1, 2, 3, 4}.
When G = ∏4

i=1 Zi, if we take BR braidings into account,
we need to treat them carefully. If these BR braidings involve
only one kind of elementary particles, say, e1, corresponding
to A2A3B1, A2A4B1 and A3A4B1 terms, the legitimate TQFT
action is∫ 4∑

i=1

Ni

2π
BidAi +

∑
i, j �=1

qi j j

(2π )2 AiAjdAj

+ q234

(2π )2 A2A3dA4 + q342

(2π )2 A3A4dA2

+ p23,1

(2π )2 A2A3B1 + p24,1

(2π )2 A2A4B1 + p34,1

(2π )2 A3A4B1, (36)
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corresponding to the set of compatible braiding phases{
�H

i ; �3L
s,s|r,�

3L
r,s|s,�

3L
3,4|2,�

3L
2,4|3,

�3L
4,2|3,�

3L
3,2|4;�BR

4,2|3; �BR
2,4|1; �BR

3,4|1
}∏4

i=1 Zi
, (37)

with r �= 1 and s �= 1. In other words, any multiloop braiding
which involves elementary loop m1 is incompatible with BR
braidings which involve elementary particle e1.

If we consider BR braidings which involve two kinds of
elementary particles, e.g., e1 and e2, the legitimate TQFT
action is∫ 4∑

i=1

Ni

2π
BidAi + q344

(2π )2 A3A4dA4 + q433

(2π )2 A4A3dA3

+ p34,1

(2π )2 A3A4B1 + p34,2

(2π )2 A3A4B2, (38)

which excludes multiloop braidings which involve elementary
loops m1 and m2. The compatible braiding phases form a set:{

�H
i ; �3L

4,4|3,�
3L
3,4|4,�

3L
3,3|4,�

3L
4,3|3; �BR

3,4|1; �BR
3,4|2

}∏4
i=1 ZNi

.

(39)
Notice that when we write down a BR braiding which involves
one kind of elementary particles, we have four choices since
there are four distinct gauge subgroups. If we consider two
BR braidings with two kinds of elementary particles, we have
six different combinations of these two different elementary
particles. Therefore, there are total 1 + 4 + 6 = 11 legitimate
TQFT actions, i.e., 11 different sets of compatible braiding
phases, when G = ∏4

i=1 ZNi . Due to the limiting space of
page, Table III only list three examples of TQFT actions and
their gauge transformations. By properly reassigning the in-
dices of the TQFT actions listed in Table III, we can construct
all legitimate TQFT actions and corresponding gauge trans-
formations. One can find details in Appendix B and Table IV
therein.

D. Results for general gauge groups

In fact, our previous discussions can be easily generalized
to the case where the number of ZNi subgroups are arbitrary.
As we can see in the previous text, compatibility is always
guaranteed for particle-loop braidings and multiloop braidings
or particle-loop braidings and BR braidings. The general rule
of incompatibility is that if two braiding processes (multiloop
braiding and BR braiding, or two different BR braidings)
involve particles and loops that carry gauge charge and gauge
fluxes of the same ZNi gauge subgroup, these two braiding
processes are incompatible with each other. In the language of
TQFT, a ZNi gauge subgroup is associated with a topological
term BidAi. In a legitimate TQFT action, given the BF term
BidAi, only Ai or Bi, not both, can appear in the twisted terms
(i.e., AAdA, AAAA, and AAB). Otherwise, the TQFT action
would be illegitimate, e.g., violating the gauge invariance.

Viewed from the microscopic origin of topological terms,
the rule of incompatibility is natural. Each layer of conden-
sate (corresponding to each ZNi gauge subgroup) is either in
the charge condensation or in the vortexline condensation,
never both. The ZNi charge condensation implies particles
that carry gauge charge ei (corresponding to Ai), while the

ZNi string condensation results in loops that carry gauge
flux mi (corresponding to Bi). If a multiloop braiding or BR
braiding involves the ZNi particle, it is incompatible with
other braiding process that involves the ZNi loop, and vice
versa.

IV. INCOMPATIBLE BRAIDING PROCESSES

In Sec. III, we discuss the compatible braiding processes in
different cases. We find that, when the gauge group is given,
the set of compatible braiding processes is only a subset of
{all possible root braiding processes}. This means that some
braiding processes are mutually incompatible. For example,
when G = ∏3

i=1 Zi (see Sec. III B), a set of compatible braid-
ing phases is {�H

i ; �3L
2,2|1,�

3L
1,2|2,�

3L
1,1|2,�

3L
2,1|1; �BR

1,2|3}∏3
i=1 ZNi

.

We can see that, among all possible root braiding phases,
�3L

i, j|k with one index equal to 3, �BR
2,3|1 and �BR

3,1|2 are excluded
from this set, because they are not compatible with �BR

1,2|3. In
this section, we will demonstrate several examples of such
incompatibility between braiding processes via the TQFT per-
spective. The basic idea is if an action consists of topological
terms corresponding to incompatible braiding processes, it
would never be a legitimate TQFT theory.

A. Absence of BR braidings when G = ∏2
i=1 Zi

In Sec. II D, we review the BR braiding in which a parti-
cle carrying unit ZN3 gauge charge moves around two loops
which carry unit ZN1 and ZN2 gauge fluxes, respectively.
Such a braiding process is only possible when there are three
distinct ZNi gauge subgroups. It is natural to ask: Why it is
impossible when there are only two ZNi gauge subgroups, i.e.,
G = ∏2

i=1 ZNi ? Without loss of generality, we can consider
the following braiding process: a particle e2 carrying unit
ZN2 gauge charge moves around two loops m1 and m2 which
carry unit ZN1 and ZN2 gauge fluxes, respectively, such that
the trajectory of e1 and two loops form a BR link. One may
naively think that this braiding process, along with its braiding
phase �BR

12,2, is described by the topological term A1A2B2,
analogous to the case in Sec. II D. The corresponding TQFT
action should be

S =
∫ 2∑

i=1

Ni

2π
BidAi + p

(2π )2 A1A2B2. (40)

However, the action Eq. (40) is not a legitimate TQFT action
because we cannot find gauge transformations which respects
gauge invariance and ZN cyclic group structure simultane-
ously. We are going to illustrate this in details.

In the action Eq. (40), B1 serves as a Lagrange multi-
plier imposing a local constraint dA1 = 0. This means that
the gauge transformation of A1 is A1 → A1 + dχ1. Thus, the
ZN1 cyclic group structure is encoded in

∮
Ai ∈ 2π

Ni
ZNi . The

ZN2 cyclic group structure requires that at least one of A2 →
A2 + dχ2 and B2 → B2 + dV 2 holds.

First, we assume that the gauge transformations are

Ai →Ai + dχ i,
(41)

Bi →Bi + dV i + Y i,
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TABLE IV. General expressions of compatible braiding phases, TQFT actions, and gauge transformations when G = ∏4
i=1 ZNi . The

definitions of coefficients and the Levi-Civita symbol are the same as those in Table III. By properly assigning (i, j, k, l ), one can
obtain all legitimate TQFT actions for G = ∏4

i=1 ZNi .First row: Since no AAB terms in the TQFT action, no assignment for (i, j, k, l ) is
needed.Second row: For actions with (AiAjBl + AiAkBl + AjAkBl ) terms, the assignments for (i, j, k, l ) are (1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2),
and (4, 1, 2, 3). For example, by taking (i, j, k, l ) = (4, 1, 2, 3), we reobtain the second TQFT action in Table III.Third row: For actions with
(AiAjBk + AiAjBl ) terms, there are six assignments for (i, j, k, l ): (3, 4, 1, 2), (2, 4, 1, 3), (2, 3, 1, 4), (4, 1, 2, 3), (3, 1, 2, 4), and (1, 2, 3, 4).
By taking (i, j, k, l ) = (1, 2, 3, 4), we reobtain the third TQFT action in Table III.

Compatible braiding phases TQFT actions Gauge transformations

�H
r = 2π

Nr

�3L
s,s|r = −2 · �3L

r,s|s = 4πqrss
Nr Ns

�3L
r,r|s = −2 · �3L

s,r|r = 4πqsrr
NsNr

�3L
s,t |r = −�3L

r,t |s = 2πqrst
Nr Ns

�3L
t,r|s = −�3L

s,r|t = 2πqstr
NsNt

�4L
1,2,3,4 = 2πq1234

N1N2N3N4

∫ 4∑
r=1

Nr
2π

BrdAr

+∑
r<s

[ qrss

(2π )2 ArAsdAs + qsrr

(2π )2 AsArdAr]

+ ∑
r<s<t

[ qrst

(2π )2 ArAsdAt + qstr

(2π )2 AsAt dAr]

+ q1234
(2π )3 A1A2A3A4

Ar → Ar + dχ r

Br → Br + dV r

+∑
s

( qrss
2πNr

dχ sAs − qsrr
2πNr

dχ sAr )

+ ∑
a<b<c

qabc
2πNr

(δr,adχ bAc − δr,bdχ aAc )

+ ∑
a<b<c

qbac
2πNr

(δr,bdχ cAb − δr,cdχ bAa)

− 1
2

∑
s,t,u

q1234
(2π )2Nr

εrstuAsAtχ u

+ 1
2

∑
s,t,u

q1234
(2π )2Nr

εrstuAsχ t dχ u

+ 1
6

∑
s,t,u

q1234
(2π )2Nr

εrstuχ sdχ t dχ u

�H
r = 2π

Nr

�3L
s,s|r = −2 · �3L

r,s|s = 4πqrss
Nr Ns

�3L
j,k|i = −�3L

i,k| j = 2πqi jk

NiNj

�3L
k,i| j = −�3L

j,i|k = 2πq jki

Nj Nk

�BR
i, j|l = 2π pi j,l

NiNj Nl

�BR
i,k|l = 2π pik,l

NiNk Nl

�BR
j,k|l = 2π p jk,l

Nj Nk Nl

∫ 4∑
r=1

Nr
2π

BrdAr

+ ∑
r �=l,s �=l

qrss

(2π )2 ArAsdAs

+ qi jk

(2π )2 AiAjdAk + q jki

(2π )2 AjAkdAi

+ pi j,l

(2π )2 AiAjBl

+ pik,l

(2π )2 AiAkBl

+ p jk,l

(2π )2 AjAkBl

Ar → Ar + dχ r

−∑
a,b

pab,l
2πN4

δr,l (χ aAb + 1
2 χ adχ b)

Br → Br + dV r

+ ∑
r �=l,s �=l

[ qrss
2πNr

dχ sAs − qsrr
2πNr

dχ sAr]

+ ∑
r �=l,s �=l

(
qi jk

2πNr
εrskdχ sAk + q jki

2πNr
εrsidχ sAi )

− ∑
r �=l, j �=l

prs,l
2πNr

(χ sBl − AsV l + χ sdV l )

�H
r = 2π

Nr

�3L
j, j|i = −2 · �3L

i, j| j = 4πqi j j

NiNj

�3L
i,i| j = −2 · �3L

j,i|i = 4πq jii

Nj Ni

�BR
i, j|k = 2π pi j,k

NiNj Nk

�BR
i, j|l = 2π pi j,l

NiNj Nl

∫ 4∑
r=1

Nr
2π

BrdAr

+ qi j j

(2π )2 AiAjdAj + q jii

(2π )2 AjAidAi

+ pi j,k

(2π )2 AiAjBk + pi j,l

(2π )2 AiAjBl

Ar → Ar + dχ r

−(
pi j,r

2πNr
δr,k + pi j,r

2πNr
δr,l )(χ iA j + 1

2 χ idχ j )

+(
pi j,r

2πNr
δr,k + pi j,r

2πNr
δr,l )(χ jAi + 1

2 χ jdχ i )

Br → Br + dV r

+ ∑
s �=k,l

( qrss
2πNr

dχ sAs − q jrr

2πNr
dχ sAr )

−∑
s

pi j,s

2πNr
δr,i(χ jBs − AjV s + χ jdV s )

+∑
s

pi j,s

2πNr
δr, j (χ iBs − AiV s + χ idV s )

where Y i is a shift term with
∮

Y i /∈ 2π
Ni
ZNi hence the ZN2

cyclic group structure is encoded in
∮

A2 ∈ 2π
N2
ZN2 . Under

the gauge transformations Eqs. (41), the variation of action
Eq. (40) (boundary terms are neglected) is

�S =
∫

N1

2π
Y 1dA1 + N2

2π
Y 2dA2

+ p

(2π )2 [(dχ1A2B2 + A1dχ2B2 + dχ1dχ2B2)

+ (A1A2dV 2 + dχ1A2dV 2 + A1dχ2dV 2)

+ (A1A2Y 2 + dχ1A2Y 2 + A1dχ2Y 2 + dχ1dχ2Y 2)],
(42)

which should be an integral of total derivative terms in order to
be gauge invariant. Focus on the dχ1dχ2B2 term which is not

a total derivative term: we want to eliminate it by subtraction
or by absorbing it into a total derivative term. If we want to
eliminate dχ1dχ2B2 by subtraction, the only way is to require

p

(2π )2 dχ1dχ2B2 + p

(2π )2 dχ1dχ2Y 2

= p

(2π )2 dχ1dχ2(B2 − B2 + · · · ), (43)

since dχ1dχ2Y 2 is the only term containing dχ1dχ2 in
Eq. (42). However, Eq. (43) means that Y 2 = −B2 + · · · , thus
the gauge transformation of B2 is

B2 → dV 2 + · · · , (44)

which is not a proper gauge transformation for B2. If we want
to absorb dχ1dχ2B2 to a total derivative term, we could make
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use of

d (χ1dχ2B2) = dχ1dχ2B2 − χ1dχ2dB2. (45)

However, this attempt fails since there is no −χ1dχ2dB2

term in �S. Therefore, Eqs. (41) are not the proper gauge
transformations for S.

Next, we assume that gauge transformations are

A1 →A1 + dχ1,

A2 →A2 + dχ2 + X 2, (46)

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2,

where X 2 and Y 1 are shift terms with
∮

X 2 /∈ 2π
N2
ZN2 and∮

Y 1 /∈ 2π
N1
ZN1 . The ZN2 cyclic group structure is encoded in∮

B2 ∈ 2π
N2
ZN2 . Under (46), the variation of action (40) is

�S =
∫

N1

2π
Y 1dA1 + N2

2π
B2dX 2

+ p

(2π )2
(dχ1A2B2 + A1dχ2B2 + dχ1dχ2B2)

+ p

(2π )2
(A1X 2B2 + dχ1X 2B2)

+ p

(2π )2
(A1A2dV 2 + dχ1A2dV 2 + A1dχ2dV 2)

+ p

(2π )2
(A1X 2dV 2 + dχ1X 2dV 2) (47)

which should be an integral of total derivative terms. Focus
on the dχ1A2dV 2 term: we want to eliminate it by subtraction
or by absorbing it into a total derivative term. If we want
to eliminate dχ1A2dV 2 by subtraction, the only way is to
require,

p

(2π )2 dχ1A2dV 2 + p

(2π )2 dχ1X 2dV 2

= p

(2π )2 dχ1(A2 − A2 + · · · )dV 2, (48)

which means that X 2 = −A2 + · · · hence

A2 → dχ2 + · · · , (49)

an ill-defined gauge transformation for A2. If we want to
absorb dχ1A2dV 2 into a total derivative term, we need a
χ1dA2dV 2 term since

d (χ1A2dV 2) = dχ1A2dV 2 + χ1dA2dV 2, (50)

but there is no a χ1dA2dV 2 term in �S, so this attempt fails.
Therefore, Eq. (46) is not the proper gauge transformations
for the action (40) either.

Since neither (41) nor (46) serves as proper gauge transfor-
mations, it is impossible to construct gauge transformations
respecting ZN2 cyclic group structure for the action (40). This
means that the action (40) is not a legitimate TQFT action.
Therefore, �BR

1,2|2 is not even a well-defined braiding phase,
not to mention its compatibility with other braiding phases.
In other words, when G = ∏2

i=1 ZNi , BR braidings cannot be
realized.

B. Incompatibility: �BR
1,2|3 and �BR

2,3|1

In previous sections, we have known that the A1A2B3 term
describes the BR braiding with a phase denoted as �BR

1,2|3.
One may expect that, in the same system, there could exist
another BR braiding process described by an A2A3B1 term
and its braiding phase �BR

2,3|1. Assuming that these two BR
braidings could be supported in the same system, the TQFT
action should be

S =
∫ 3∑

i=1

Ni

2π
BidAi + p12,3

(2π )2 A1A2B3 + p23,1

(2π )2 A2A3B1.

(51)
In the action Eq. (51), B2 is a Lagrange multiplier impos-
ing dA2 = 0, i.e., A2 → A2 + dχ2. Therefore the ZN2 cyclic
group structure is encoded in

∮
A2 ∈ 2π

N2
ZN2 . To preserve the

ZN1 and ZN3 cyclic group structure, at least one of Ai →
Ai + dχ i and Bi → Bi + dV i (i = 1, 3) is required. We find
that, if the gauge transformations preserve ZN1 and ZN3 cyclic
group structure, the action Eq. (51) would never be gauge
invariant, i.e., the braiding processes it describes are gauge
dependent. The reason is that no matter how we modify the
gauge transformations, there are stubborn terms in �S which
cannot be eliminated by subtraction nor be absorbed into a
total derivative term, meaning �S could never be 0 mod 2π .
The details of the calculation can be found in Appendix C 1.
Therefore, A1A2B3 and is incompatible with A2A3B1, i.e.,
�BR

2,3|1 is incompatible with �BR
1,2|3.

In the same manner, we can derive that any two of
(�BR

2,3|1,�
BR
3,1|2,�

BR
1,2|3) are mutually incompatible.

C. Incompatibility: �3L
3,3|1 and �BR

1,2|3
In this and following subsections, we investigate the in-

compatibility between three-loop braidings and BR braidings.
As the first example, we consider these two braiding pro-

cesses: a three-loop braiding with phase �3L
3,3|1, corresponding

to an A1A3dA3 term, and a BR braiding with phase �BR
1,2|3,

corresponding to an A1A2B3 term. If theses two braiding pro-
cesses are compatible, the total TQFT action should b

S =
∫ 3∑

i=1

Ni

2π
BidAi + q133

(2π )2 A1A3dA3 + p12,3

(2π )2 A1A2B3.

(52)
In the action Eq. (52), B1 and B2 serve as Lagrange multipli-
ers, imposing dA1 = dA2 = 0, i.e., A1,2 → A1,2 + dg1,2. The
ZN1 and ZN2 cyclic group structures are encoded in

∮
A1 ∈

2π
N1
ZN1 and

∮
A2 ∈ 2π

N2
ZN2 , respectively. For the ZN3 cyclic

group structure, we have two choices: we can encoded it in∮
A3 ∈ 2π

N3
ZN3 , corresponding to gauge transformations

Ai →Ai + dχ i,

Bi →Bi + dV i + Y i;
(53)

or
∮

B3 ∈ 2π
N3
ZN3 , corresponding to gauge transformations

A1,2 →A1,2 + dχ1,2,

A3 →A3 + dχ3 + X 3,

B1,2 →B1,2 + dV 1,2 + Y 1,2,

B3 →B3 + dV 3. (54)
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However, similar to the case in Sec. IV A and Sec. IV B,
neither Eqs. (53) nor Eqs. (54) could make the action Eq. (52)
gauge invariant up to boundary terms, due to the existence
of stubborn terms. Details of derivations can be found in
Appendix C 2. If the action is forced to be gauge invariant
up to boundary terms, the ZN3 cyclic group structure would be
violated. This dilemma reveals that Eq. (52) is not a legitimate
TQFT action. So we conclude that A1A3dA3 is incompatible
with A1A2B3, i.e., �3L

1,3|3 is incompatible with �BR
1,2|3.

D. Incompatibility: �3L
2,3|1 and �BR

1,2|3
In this subsection, we consider these two braiding pro-

cesses: a three-loop braiding corresponding to �3L
2,3|1 and an

A1A2dA3 term, and a BR braiding corresponding to �BR
1,2|3 and

an A1A2B3 term. If �3L
2,3|1 is compatible with �BR

1,2|3, the total
TQFT action should be

S =
∫ 3∑

i=1

Ni

2π
BidAi + q123

(2π )2 A1A2dA3 + p12,3

(2π )2 A1A2B3,

(55)

where the coefficients are q123 = k1N1N2
N12

, k1 ∈ ZN123 and

p12,3 = k2N1N2N3
N123

, k2 ∈ ZN123 , determined by the large gauge
invariance. In Eq. (55), B1 and B2 serve as Lagrange multipli-
ers, imposing dA1 = dA2 = 0, i.e., A1,2 → A1,2 + dχ1,2. We
can find a set of gauge transformations that seems to respect
both ZN3 cyclic group structure and gauge invariance (see
Appendix C 3 for derivation):

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3 + X 3,

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3,

(56)

where

X 3 = − p12,3

(2π )N3

(
χ1A2 + 1

2
χ1dχ2

)
+ p12,3

(2π )N3

(
χ2A1 + 1

2
χ2dχ1

)
,

Y 1 = q123

2πN1
dχ2A3 − p

(2π )N1
(χ2B3 − A2V 3 + χ2dV 3)

+ q123

(2π )2 · p12,3

(2π )N3
· 2π

N1
· [χ1A2dχ2 − (A1A2χ2 + A1dχ2χ2 + dχ1A2χ2 + dχ1dχ2χ2)],

Y 2 = − q123

2πN2
dχ1A3 + p12,3

(2π )N2
(χ1B3 − A1V 3 + χ1dV 3)

+ q123

(2π )2 · p12,3

(2π )N3
· 2π

N2
· [−d (A1χ1)χ2 + (A1A2χ1 + A1dχ2χ1 + dχ1A2χ1 + dχ1dχ2χ1)]. (57)

Nevertheless, the action Eq. (55) is still not a legitimate
TQFT theory: the coefficient of A1A2dA3 in Eq. (55) is ac-
tually identical to 0. To see this, we first integrate out A3 in
S, i.e., sum over all possible nontrivial compactness contribu-
tions from dA3, leading to a constraint∫

q123

(2π )2 A1A2 + N3

2π
B3 ∈ Z. (58)

Since the ZN3 cyclic group structure is encoded in
∮ N3

2π
B3 ∈

Z, Eq. (58) requires that

q123

(2π )2

∫
A1A2 ∈ Z, (59)

i.e., (consider a two-manifold M2 = S1 × S1)

q123

(2π )2

∫
M2

A1A2 = k1N1N2

(2π )2N12

∫
S1

A1
∫
S1

A2

= k1N1N2

(2π )2N12
× 2πm1

N1
× 2πm2

N2

= k1m1m2

N12
∈ Z, (60)

where k1 ∈ ZN123 , m1 ∈ Z, m2 ∈ Z. Since m1 and m2

can be arbitrary integers, the sufficient condition for
Eq. (60) is

k1 = lN12, l ∈ Z. (61)

On the other hand, N12 is the integral multiple of N123, thus

k1 = lN12 = l (nN123) = (ln)N123, (62)

where n = N12
N123

. Notice that k1 ∈ ZN123 , which means
that

k1 = (ln)N123 
 0. (63)

Therefore, the coefficient of A1A2dA3 term is required to be
identical to 0:

q123 = k1N1N2

N12

 0. (64)

So far, we have argued that to preserve the ZN3 fusion struc-
ture with arbitrary values of N1, N2, and N3, the coefficient
of A1A2dA3 term in Eq. (55) is required to be trivial. If
the coefficient of A1A2dA3 is nontrivial, the action Eq. (55)
cannot be gauge invariant up to boundary terms while the
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ZN3 cyclic group structure is preserved. The restriction on the
coefficient of A1A2dA3 indicates the incompatibility between
A1A2dA3 and A1A2B3, i.e., the incompatibility between �3L

1,2|3
and �BR

1,2|3.

E. Incompatibility: �3L
3,1|2 and �BR

1,2|3
As the last example of the incompatibility between three-

loop braidings and BR braidings, we consider a three-loop
braiding corresponding to �3L

3,1|2 as well as an A2A3dA1 term,
and a BR braiding corresponding to �BR

1,2|3 as well as an
A1A2B3 term. The total action should be

S =
∫ 3∑

i=1

Ni

2π
BidAi + q231

(2π )2 A2A3dA1 + p12,3

(2π )2 A1A2B3,

(65)

where the coefficients are q231 = kN2N3
N23

, k ∈ ZN123 and p12,3 =
lN1N2N3

N123
, l ∈ ZN123 , determined by the large gauge invariance.

In the action Eq. (65), B1 and B2 serve as Lagrange multipli-
ers, imposing dA1 = dA2 = 0, i.e., A1,2 → A1,2 + dg1,2.

If the ZN3 cyclic group structure is encoded in
∮

A3 ∈
2π
N3
ZN3 , i.e., A3 → A3 + dχ3, we cannot find a set of

gauge transformations with Ai → Ai + dχ i (i = 1, 2, 3) under
which the action Eq. (65) is invariant up to boundary terms.
The reason is the same as those in Secs. IV A and IV C.

If we encode the ZN3 cyclic group structure in
∮

B3 ∈
2π
N3
ZN3 , i.e., B3 → B3 + dV 3, we can find a set of gauge trans-

formations under which Eq. (65) is invariant up to boundary
terms

A1 →A1 + dg1,

A2 →A2 + dg2,

A3 →A3 + dχ3 + p12,3

(2π )N3
(−χ1A2 + A1χ2 − χ1dχ2),

B1 →B1 + dV 1 − p12,3

(2π )N1
(χ2B3 − A2V 3 + χ2dV 3)

− q231

(2π )N1
(dχ2A3 + A2dχ3 + A2X 3 + dχ2X 3),

B2 →B2 + dV 2 + p12,3

(2π )N2
(χ1B3 − A1V 3 + χ1dV 3),

B3 →B3 + dV 3. (66)

At first glance, one may think that Eqs. (66) are a proper set of
gauge transformations for Eq. (65); thus the action Eq. (65) is
a legitimate TQFT action. However, we argue that this is not
true. We provide the following two arguments.

In the first argument, we consider the gauge transforma-
tions at limiting cases. Let us set p12,3 = 0, i.e., turn off the
A1A2B3 term, the action Eq. (65) becomes

S =
∫ 3∑

i=1

Ni

2π
BidAi + q231

(2π )2 A2A3dA1 (67)

and the corresponding gauge transformations should be

Ai →Ai + dχ i,

B1 →B1 + dV 1,

B2 →B2 + dV 2 + q231

2πN2
dχ3A1,

B3 →B3 + dV 3 − q231

2πN3
dχ2A1. (68)

According to Ref. [34], gauge transformations Eqs. (68) is
motivated by a microscopic derivation of the action Eq. (67).
However, if we set p12,3 = 0 in Eqs. (66), we cannot correctly
recover the gauge transformations to Eqs. (68). Therefore, we
claim that Eqs. (66) are not proper gauge transformations for
the action Eq. (65).

In fact, if we expect that by setting q231 = 0 or p12,3 = 0
the gauge transformations for the action Eq. (65) would re-
cover to Eq. (15) or Eq. (68), the gauge transformations for
the action Eq. (65) should take the form of

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3 + p12,3

(2π )2

2π

N3
(−χ1A2 + A1χ2 − χ1dχ2) + f 3

A (p12,3, q231)

B1 →B1 + dV 1 − p12,3

(2π )N1
(χ2B3 − A2V 3 + χ2dV 3) + f 1

B (p12,3, q231)

B2 →B2 + dV 2 + q231

2πN2
dχ3A1 + p12,3

(2π )N2
(χ1B3 − A1V 3 + χ1dV 3) + f 2

B (p12,3, q231)

B3 →B3 + dV 3 − q231

2πN3
dχ2A1 + f 3

B (p12,3, q231),

(69)

where the gauge parameters f 3
A (p12,3, q231) and f i

B(p12,3, q231)
with i = 1, 2, 3 are identical to 0 once p12,3 = 0 or q231 = 0.
We can see that the ZN3 cyclic group structure is no longer
preserved under gauge transformation Eqs. (69).

The second argument exploits the identity

A2A3dA1 = d (A1A2A3) − A3A1dA2 − A1A2dA3. (70)

Using Eq. (70) we can rewrite the action Eq. (65) as

S =
∫ 3∑

i=1

Ni

2π
BidAi + p12,3

(2π )2 A1A2B3

+ q231

(2π )2 [d (A1A2A3) − A3A1dA2 − A1A2dA3]. (71)
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Similar to the case in Sec. IV D, we can integrate out A3 and
obtain a constraint∫

N3

2π
B3 − q231

(2π )2 A1A2 ∈ Z. (72)

Since in the gauge transformations Eqs. (56) the ZN3 cyclic
group structure is encoded in

∮
B3 = 2π

N3
ZN3 , we require that∫

q231

(2π )2 A1A2 ∈ Z. (73)

In other words, we require that (consider M2 = S1 × S1)
q231

(2π )2

∫
M2

A1A2 = kN2N3

(2π )2N23

∫
S1

A1
∫
S1

A2

= kN2N3

(2π )2N23
· 2πm1

N1
· 2πm2

N2

= kN3m1m2

N1N23
∈ Z, (74)

where k ∈ ZN123 . Since m1 and m2 can be arbitrary integers,
we need

kN3

N1N23
∈ Z. (75)

Since N3
N23

∈ Z, the sufficient condition for Eq. (74) to hold is

k = mN1, m ∈ Z. (76)

Notice that N1
N123

∈ Z and k ∈ ZN123 , therefore

k = mN1 = mnN123 
 0, (77)

where n = N1
N123

∈ Z. We see that the coefficient of A2A3dA1 is
required to be identical to 0,

q231 = kN2N3

N23

 0, (78)

to ensure that the ZN3 cyclic group structure is preserved no
matter what the values of N1, N2, and N3 are. This restriction
on the coefficient of A2A3dA1 reveals that A2A3dA1 is in-
compatible with A1A2B3, hence �3L

31,2 and �BR
12,3 are mutually

incompatible.

F. Incompatibility: �4L
1,2,3,4 and �BR

1,2|4
Since we have demonstrated the incompatibility between

BR braidings and three-loop braidings, one may wonder
whether BR braiding is compatible with four-loop braiding or
not. The conclusion is that, when G = ∏4

i=1 ZNi , no BR braid-
ing is compatible with four-loop braiding, i.e., each �BR

i, j|k is
incompatible with �4L

1,2,3,4. The proof of this claim, which fol-
lows the same idea discussed in previous sections, is detailed
in Appendix C 4. Notice that, if G = ∏5

i=1 ZNi , �4L
1,2,3,4 is

compatible with �BR
i, j|5, as long as i �= 5, j �= 5 and i �= j. Such

compatibility due to an extra gauge subgroup can be checked
by applying the criteria for legitimacy of TQFT actions.

V. COMPATIBLE BRAIDINGS IN (4+1)D SPACETIME

In the above discussions, we have obtained compati-
ble braidings in (3 + 1)D spacetime. In the following, we
concisely discuss compatible braidings in (4+1)D space-
time. More systematic and quantitative studies will appear in
Ref. [61] separately.

A. Excitations and braiding processes in (4+1)D

We limit the gauge group to be G = ∏n
i=1 ZNi where n is

the total number of cyclic subgroups. In (4 + 1)D spacetime,
besides particles and loops, there is a kind exotic topolog-
ical excitations, dubbed membranes, which are closed 2D
surface objects in the continuum limit. The membrane ex-
citations in three-dimensional space is topologically trivial
because they are impenetrable hence identified as particle
excitations. However, in four-dimensional space, the interior
of a membrane excitation becomes accessible due to the extra
dimension. Therefore, nontrivial braiding processes involv-
ing particles, loops, and membranes are possible in (4 + 1)D
spacetime.

In field theory, a ZNi gauge theory is realized by a BF
term in the continuum limit. In (3 + 1)D spacetime, the ZNi

cyclic group structure is encoded in the BidAi term, the only
possible BF term in (3 + 1)D spacetime which corresponds
to the particle-loop braiding (see Sec. II B). In (4 + 1)D
spacetime, there are two kinds of BF terms with distinct
physical meanings: CidAi and B̃idBi, where the three-form Ci,
one-form Ai, two-form B̃i, and two-form Bi are, respectively,
compact U (1) gauge fields. Therefore, we can encode the
ZNi cyclic group structure either in CidAi, corresponding to
a particle-membrane braiding; or in B̃idBi, corresponding to
a loop-loop braiding. If we consider a

∏n
i=1 ZNi topological

order in (4 + 1)D spacetime, we can even encode some ZNi

gauge subgroups in CidAi terms while the others in B̃idBi

terms, which would lead to a more complicated situation in
which different gauge fields can couple together resulting in
many nontrivial braiding processes.

Since there are three kinds of topological excitations
in (4 + 1)D spacetime, we can classify the braiding pro-
cesses and identify the corresponding topological terms: (1)
particle-membrane braiding, CdA; (2) particle-membrane-
membrane braiding: CAA; (3) loop-loop braiding, B̃dB; (4)
loop-membrane braidings, BBA, BAdA, AAAB, and AAdB;
and (5) multimembrane braidings, AAAAA, AAAdA and
AdAdA.

B. An overview of compatible braiding processes in (4+1)D

Following the discussions in (3 + 1)D spacetime, we
can investigate the compatibility of braiding processes in
(4 + 1)D spacetime. In other words, we check the legiti-
macy of TQFT actions consisting of topological terms, then
distinguish compatible/incompatible braiding processes in
(4 + 1)D spacetime.

First, if all ZNi cyclic group structures are encoded in
particle-membrane braidings, i.e., CidAi terms, the compat-
ible braiding processes are multimembrane braidings and
particle-membrane-membrane braiding. Here are some exam-
ples. When G = ∏5

i=1 ZNi , one of the legitimate TQFT actions
is

S ∼
∫ 5∑

i=1

Ni

2π
CidAi + A1A2A3A4A5

+
5∑

i, j,k,l=1

AiAjAkdAl +
5∑

i, j,k=1

AidAjdAk, (79)
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where the quantized coefficients of topological terms are
neglected. The action Eq. (79) indicates the compatibility
of particle-membrane braidings and multimembrane braid-
ings when G = ∏5

i=1 ZNi . We believe that the TQFT action
Eq. (79) describes braiding processes within the Dijkgraaf-
Witten model. There are also braiding processes beyond the
Dijkgraaf-Witten model. Consider G = ∏3

i=1 ZNi , one of the
legitimate TQFT actions (coefficients neglected) is

S ∼
∫ 3∑

i=1

Ni

2π
CidAi + C3A1A2 (80)

as an analog of the BR braiding in (3 + 1)D, SBR ∼∫ ∑3
i=1 BidAi + A1A2B3. We have known that, in (3 + 1)D,

a BR braiding is incompatible with some of the multiloop
braidings (Secs. IV C–IV E). Similar incompatibility occurs in
(4 + 1)D. When G = ∏3

i=1 ZNi , a multi-membrane braiding
described by the A1A2A3dA1 term is incompatible with the
loop-membrane-membrane braiding described by the C3A1A2

term. Using the language of TQFT, we claim that a legitimate
TQFT action in (4 + 1)D can only include one of the C3A1A2

term and A1A2A3dA1 term. When G = ∏3
i=1 ZNi , two of the

legitimate TQFT actions are

S ∼
∫ 3∑

i=1

Ni

2π
CidAi +

2∑
i, j,k=1

AidAjdAk + C3A1A2 (81)

and

S ∼
∫ 3∑

i=1

Ni

2π
CidAi +

3∑
i=1

A1A2A3dAi +
3∑

i, j,k=1

AidAjdAk .

(82)

Next, we consider the case in which all ZNi cyclic group
structures are encoded in B̃idBi terms, i.e., loop-loop braid-
ings. In this case, the only topological excitations are loops,
thus only loop-loop braidings can be supported. We can sim-
ply write down the legitimate TQFT action:

S =
∫ n∑

i=1

Ni

2π
B̃idBi. (83)

Last, we tackle the more complicated yet more interesting
situation: some ZN cyclic group structures (e.g., ZNi gauge
subgroups) are encoded in Ni

2π
CidAi terms while the others

(e.g., ZKi gauge subgroups) in Ki
2π

B̃idBi terms. Different as-
signments for Ni’s and Ki’s correspond to different topological
orders in (4 + 1)D. In this case, there are particle, loop, and
membrane excitations in the system. All nontrivial braiding
processes in (4 + 1)D should be taken into consideration.
In the following, we will demonstrate several examples of
legitimate TQFT actions from which we can directly read out
compatible braiding processes in (4 + 1)D.

Consider a
∏3

i=1 ZNi case in which the ZN1 and ZN2 cyclic
group structures are encoded in CdA while the ZK1 cyclic
group structure in B̃dB, i.e., the gauge group is G = ZN1 ×

ZN2 × ZK1 , the legitimate TQFT actions is

S ∼
∫

N1

2π
C1dA1 + N2

2π
C2dA2 + K1

2π
B̃1dB1+

2∑
i, j,k=1

AidAjdAk

+
2∑

i=1

B1B1Ai +
2∑

j,k=1

B1AjdAk +
2∑

i, j=1

AiAjdB1. (84)

Consider again a
∏3

i=1 ZNi case but this time G = ZN1 ×
ZK1 × ZK2 , the corresponding legitimate TQFT action is

S ∼
∫

N1

2π
C1dA1 + K1

2π
B̃1dB1 + K2

2π
B̃2dB2 + A1dA1dA1

+
2∑

i=1

BiB jA1 +
2∑

i=1

BiA1dA1. (85)

Consider a
∏4

i=1 ZNi case in which G = ZN1 × ZN2 ×
ZN3 × ZK1 , the legitimate TQFT action is

S ∼
∫ 3∑

i=1

Ni

2π
CidAi + K1

2π
B̃1dB1 +

3∑
i, j,k=1

AidAjdAk

+ C3A1A2 +
2∑

i=1

B1B1Ai +
2∑

i, j=1

B1AidAj . (86)

Consider a
∏5

i=1 ZNi case in which G = ZN1 × ZN2 ×
ZN3 × ZK1 × ZK2 , the legitimate TQFT action is

S ∼
∫ 3∑

i=1

Ni

2π
CidAi +

2∑
i=1

Ki

2π
B̃idBi +

3∑
i, j,k=1

AidAjdAk

+
2∑

i, j=1

3∑
k=1

BiB jAk +
2∑

i=1

2∑
j,k=1

BiAjdAk + C3A1A2. (87)

We should point out that the BC term is also a topological
term in (4 + 1)D spacetime, but we do not regard that it
corresponds to any braiding process in the discussion above.
Naively, because the two-form B is related to the loop current
� via � = 1

2π
∗ dB and the three-form C is related to the

particle current J via J = 1
2π

∗ dC, one may think that BC
is related to the particle-loop braiding in (4 + 1)D. But we
argue that particle-loop braiding is actually trivial in (4 + 1)D
spacetime, thus the BC term does not describe the particle-
loop braiding. To show the triviality of particle-loop braiding
in (4 + 1)D spacetime, we can first consider the particle-
loop braiding in (3 + 1)D spacetime in which the Hopf link
formed by trajectory γe of the particle e and the loop m (e.g.,
Fig. 1) cannot be unlinked in 3D space. However, in 4D
space, due to an extra dimension, we can smoothly deform
γe such that it is unlinked with the loop m. This argument is
analog to the fact that the nontrivial particle-particle braiding
in (2 + 1)D spacetime becomes trivial in (3 + 1)D spacetime.
In this manner, we claim that the particle-loop braiding in
(4 + 1)D spacetime is trivial.

A question naturally arises: What is the physical effect
of the BC term? We noticed that there are topological terms
which can generate trivial fermions from a bosonic model:

k
4π

AdA with an odd integer k in (2 + 1)D and BB in (3 + 1)D.
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We conjecture that the effect of BC term is similar: The
emergence of trivial fermions is possible in a bosonic model
described by the action S ∼ ∫

CdA + B̃dB + BC.

VI. CONCLUSION

In this paper, when a gauge group is given, we investigate
the compatibility between all three classes of root braiding
processes in (3 + 1)D spacetime, i.e., particle-loop braidings,
multiloop braidings, and BR braidings. We find that not all
root braiding processes are mutually compatible, which is
not so obvious on a superficial level. By incompatibility we
mean that two braiding processes cannot be supported in the
same system, i.e., there is no legitimate topological order in
(3 + 1)-dimensional spacetime characterized by incompatible
braiding phases. In the language of TQFT, a TQFT action
describing incompatible braiding processes is not gauge in-
variant while preserving the cyclic group structure of each
gauge subgroup. Our conclusions are drawn as follows.

When the gauge group is G = ZN1 , only one class of root
braiding processes, i.e., particle-loop braiding, is realizable.
Therefore, there is no incompatibility when G = ZN1 . The set
of compatible braiding phase is simply {�H

1 }ZN1
. The corre-

sponding TQFT action and gauge transformations are listed
in Table I.

When G = ∏2
i=1 ZNi , besides particle-loop braidings,

three-loop braidings are realizable. In this case, all braiding
processes are compatible with each other. The set of compat-
ible braiding phase is the collection of all possible braiding
phases: {�H

i ; �3L
2,2|1,�

3L
1,2|2,�

3L
1,1|2,�

3L
2,1|1}∏2

i=1 ZNi

. Table I lists

the TQFT action corresponding to compatible braiding phases
along with its gauge transformations.

As for G = ∏3
i=1 ZNi , the possible braiding processes are

particle-loop braidings, three-loop braidings, and BR braid-
ings. We find that particle-loop braidings are compatible with
three-loop braidings or BR braidings, respectively. However,
incompatibility occurs between three-loop braidings and BR
braidings, even between different BR braidings. In general
notations, a BR braiding phase �BR

i, j|k is incompatible with
three-loop braiding phases �3L

n,o|m in which one of the indices

{m, n, o} is equal to k. Moreover, in the case of G = ∏3
i=1 ZNi ,

�BR
i, j|k is incompatible with �BR

r,s|t (k �= t) if k = r or k = s.
From the viewpoint of TQFT, such incompatibility can be
explained by that there are no proper gauge transformations
for the TQFT action, which consists of topological terms
corresponding to incompatible braiding processes. Compati-
ble braiding phases and corresponding TQFT actions of G =∏3

i=1 ZNi are summarized in Table II.
For the case of G = ∏4

i=1 ZNi , besides the braidings men-
tioned above, four-loop braiding is realizable, classified as one
of multiloop braidings. Similar to the case of G = ∏3

i=1 ZNi ,
when G = ∏4

i=1 ZNi , particle-loop braidings are compatible
with multiloop braidings or BR braidings, respectively. How-
ever, the incompatibility between BR braidings and multiloop
braidings still exists. �BR

i, j|k is only compatible with those
�3L

s,t |r in which none of the indices {s, t, r} is equal to k. No
�BR

i, j|k is compatible with �4L
1,2,3,4. Different from the case of

G = ∏3
i=1 ZNi , when G = ∏4

i=1 ZNi , different BR braidings
may be compatible: For example, {�BR

1,2|4,�
BR
1,3|4,�

BR
2,3|4} and

{�BR
1,2|3,�

BR
1,2|4} is, respectively, a subset of the sets of com-

patible braiding phases. Tables III and IV list all possible
sets of compatible braiding phases, legitimate TQFT actions,
and corresponding gauge transformations in the case of G =∏4

i=1 ZNi .
Motivated by the compatibility of braiding processes in

(3 + 1)D spacetime, we initiate an attempt to the physics
of braiding processes in (4 + 1)D spacetime and their
compatibility. Several results are given in Sec. V. A compre-
hensive understanding of compatible braiding processes and
TQFTs in (4 + 1)D topological orders will be discussed in
Ref. [61].

There could be several interesting future investigations
based on the compatibility analysis of braiding phases. For ex-
ample, it would be interesting to study the connection between
incompatibility and quantum anomaly [32]. Meanwhile, we
have not considered the BB term [47,50,62–65], which can
switch self-statistics (either bosonic or fermionic) of parti-
cles. In this sense, adding a BB term may be useful when
considering compatible braiding phases of either fermionic
systems or bosonic systems with fermionic particle excitations
that carry nontrivial gauge charges. Our work focuses only
on topological orders where all particles are bosonic, so it is
unnecessary to consider BB. In addition, BB can drastically
change the gauge group. In other words, the gauge group G
is simultaneously determined by the coefficients of the BF
term and BB term. Nevertheless, this complexity leads to a
superfluous difficulty in determining gauge group and does
not provide new braidings among topological excitations. In
addition, from experiences in two-dimensional topological or-
ders, exhausting all non-Abelian braidings with non-Abelian
gauge groups is very challenging if still applying the present
field theory method. Algebraic tools from mathematics may
be a much better way. It is definitely interesting to explore how
to exhaust all legitimate topological orders with a non-Abelian
gauge group.
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APPENDIX A: MICROSCOPIC DERIVATION OF THE
TQFT ACTION S ∼ ∫ ∑3

i=1 BidAi + A1A2B3

We can derive the
∫

BdA + AAB action from a three-
layer 3D superfluid where layera 1 and 2 are in charge-N1

and charge-N2 particle condensations while layer 3 is in
charge-N3 vortexline condensation. To illustrate the vortexline
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condensation picture, we start with a normal superfluid state:

L3 = ρ3

2
(∂μθ3)2. (A1)

Separating the phase angle into a smooth part and singular
part θ3 = θ3

s + θ3
v and introducing a Hubbard-Stratonovich

auxiliary vector field J3
μ, the above L3 can be expressed as

L3 = 1

2ρ3

(
J3
μ

)2 + iJ3
μ

(
∂μθ3

s + ∂μθ3
v

)
. (A2)

Integrating out the smooth part θ3
s leads to a constraint ∂μJ3

μ =
0, which can be solved by introducing a two-form noncompact
U (1) gauge field B3

μν :

J3
μ = 1

4π
εμνλρ∂νB3

μν. (A3)

Thus, L3 is dualed to the following gauge theory:

L3 = 1

2ρ3

(
1

4π
εμνλρ∂νB3

μν

)2

+ i
1

4π
εμνλρ∂νB3

μν∂μθ3
v

= 1

2ρ3

(
1

4π
εμνλρ∂νB3

μν

)2

+ i

2
B3

μν · 1

2π
εμνλρ∂λ∂ρθ

3
v .

(A4)

The string current operator is defined by

�3
μν = 1

2π
εμνλρ∂λ∂ρθ

3
v . (A5)

Now consider a three-layer 3D superfluid where layers 1
and 2 are in particle condensation while layer 3 is in string
condensation. The Lagrangian is

L = ρ3

2

(
∂[μ�ν] − N3B3

μν

)2 + ρ1

2

(
∂μθ1 − N1A1

μ

)2 + ρ2

2

(
∂μθ2 − N2A2

μ

)2

+ i�εμνλρ
(
∂[μ�ν] − N3B3

μν

)(
∂λθ

1 − N1A1
λ

)(
∂ρθ

2 − N2A2
ρ

)+ LMaxwell

=ρ3

2

(
∂[μ�ν] − N3B3

μν

)2 + ρ1

2

(
∂μθ1 − N1A1

μ

)2 + ρ2

2

(
∂μθ2 − N2A2

μ

)2 + LMaxwell

+ i�εμνλρ∂[μ�ν]∂λθ
1∂ρθ

2 − i�εμνλρ∂[μ�ν]∂λθ
1N2A2

ρ − i�εμνλρ∂[μ�ν]∂ρθ
2N1A1

λ + i�εμνλρ∂[μ�ν]N1A1
λN2A2

ρ

− i�εμνλρN3B3
μν∂λθ

1∂ρθ
2 + i�εμνλρN3B3

μν∂λθ
1N2A2

ρ + i�εμνλρN3B3
μν∂ρθ

2N1A1
λ − i�εμνλρN1A1

λN2A2
ρN3B3

μν

=ρ3

2

(
∂[μ�ν] − N3B3

μν

)2 + ρ1

2

(
∂μθ1 − N1A1

μ

)2 + ρ2

2

(
∂μθ2 − N2A2

μ

)2 + LMaxwell + boundary terms

+ i�εμνλρ
[
2�μ∂ν

(
∂λθ

1N2A2
ρ

)]+ i�εμνλρ
[
2�μ∂ν

(
∂ρθ

2N1A1
λ

)]+ i�εμνλρ 1

2

[
θ1∂λ

(
∂ρθ

2N3B3
μν

)+ θ2∂ρ

(
∂λθ

1N3B3
μν

)]
− i�εμνλρ

[
2�μ∂ν

(
N1N2A1

λA2
ρ

)]+ i�εμνλρ
[−θ1∂λ

(
N2A2

ρN3B3
μν

)]+ i�εμνλρ
[−θ2∂ρ

(
N3B3

μνN1A1
λ

)]
− i�εμνλρA1

λA2
ρN3B3

μν, (A6)

where ∂[μ�ν] = ∂μ�ν − ∂ν�μ. Introducing Hubbard-Stratonovich fields �3
μν , j1 and j2:

L = 1

8ρ3
(�3

μν )2 + i
1

2
�3

μν

(
∂[μ�ν] − N3B3

μν

)+ 1

2ρ1
( j1)2 + i j1

λ

(
∂λθ

1 − N1A1
λ

)+ 1

2ρ2
( j2)2 + i j2

ρ

(
∂ρθ

2 − N2A2
ρ

)
+ i�εμνλρ

[
2�μ∂ν

(
∂λθ

1N2A2
ρ

)]+ i�εμνλρ
[
2�μ∂ν

(
∂ρθ

2N1A1
λ

)]+ i�εμνλρ 1

2

[
θ1∂λ

(
∂ρθ

2N3B3
μν

)+ θ2∂ρ

(
∂λθ

1N3B3
μν

)]
− i�εμνλρ

[
2�μ∂ν

(
N1N2A1

λA2
ρ

)]+ i�εμνλρ
[−θ1∂λ

(
N2A2

ρN3B3
μν

)]+ i�εμνλρ
[−θ2∂ρ

(
N3B3

μνN1A1
λ

)]
− iN1N2N3�εμνλρA1

λA2
ρB3

μν + LMaxwell + boundary terms. (A7)

Further introduce Lagrange multiplier fields ξ I and ηI to decouple terms like i�εμνλρ[−θ1∂λ(∂ρθ
2N3B3

μν )]:

L = 1

8ρ3

(
�3

μν

)2 − i�μ∂ν�
3
μν − i

1

2
N3B3

μν�
3
μν + 1

2ρ1
( j1)2 − iθ1∂λ j1

λ − iN1A1
λ j1

λ + 1

2ρ2
( j2)2 − iθ2∂ρ j2

ρ − iN2A2
ρ j2

ρ

+ i�εμνλρ
[
2�μ∂ν

(
N1N2A1

λA2
ρ

)+ θ1∂λ

(
N2A2

ρN3B3
μν

)+ θ2∂ρ

(
N3B3

μνN1A1
λ

)]− iN1N2N3�εμνλρA1
λA2

ρB3
μν

+ iη1
λ

[
ξ 1
λ − �εμνλρ · 1

2
∂ρθ

2N3B3
μν

]
+ iθ1∂λξ

1
λ + iη2

ρ

[
ξ 2
ρ − �εμνλρ · 1

2
∂λθ

1N3B3
μν

]
+ iθ2∂ρξ

2
ρ

+ iη3
μν

[
ξ 3
μν − �εμνλρ

(
2∂λθ

1N2A2
ρ + 2∂ρθ

2N1A1
λ

)]+ i�μ∂νξ
3
μν + LMaxwell + boundary terms

= 1

8ρ3

(
�3

μν

)2 + 1

2ρ1
( j1)2 + 1

2ρ2
( j2)2 − i

1

2
N3B3

μν�
3
μν − iN1A1

λ j1
λ − iN2A2

ρ j2
ρ

− i�μ∂ν

[
�3

μν − ξ 3
μν + �εμνλρ · 2N1N2A1

λA2
ρ

]+ iη3
μνξ

3
μν
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− iθ1∂λ

[
j1
λ − ξ 1

λ + �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]
+ iη1

λξ
1
λ

− iθ2∂ρ

[
j2
ρ − ξ 2

ρ + �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]
+ iη1

ρξ
1
ρ

− iN1N2N3�εμνλρA1
λA2

ρB3
μν + LMaxwell + boundary terms. (A8)

Integrating out �μ, θ1, and θ2 yields constraints

∂ν

[
�3

μν − ξ 3
μν + �εμνλρ · 2N1N2A1

λA2
ρ

] = 0, (A9)

∂λ

[
j1
λ − ξ 1

λ + �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]
= 0, (A10)

and

∂ρ

[
j2
ρ − ξ 2

ρ + �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]
= 0. (A11)

These constraints can be solved by

�3
μν = 1

2π
εμνλρ∂λA3

ρ + ξ 3
μν − �εμνλρ · 2N1N2A1

λA2
ρ, (A12)

j1
λ = 1

4π
ελρμν∂ρB1

μν + ξ 1
λ − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)
, (A13)

j2
ρ = 1

4π
ερλμν∂λB2

μν + ξ 2
ρ − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)
. (A14)

Then we obtain

L = − i
1

2
N3B3

μν

[
1

2π
εμνλρ∂λA3

ρ + ξ 3
μν − �εμνλρ · 2N1N2A1

λA2
ρ

]

− iN1A1
λ

[
1

4π
ελρμν∂ρB1

μν + ξ 1
λ − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]

− iN2A2
ρ

[
1

4π
ερλμν∂λB2

μν + ξ 2
ρ − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]

+ 1

8ρ3

[
1

2π
εμνλρ∂λA3

ρ + ξ 3
μν − �εμνλρ · 2N1N2A1

λA2
ρ

]2

+ 1

2ρ1

[
1

4π
ελρμν∂ρB1

μν + ξ 1
λ − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]2

+ 1

2ρ2

[
1

4π
ερλμν∂λB2

μν + ξ 2
ρ − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]2

+ iη1
λξ

1
λ + iη2

ρξ
2
ρ + iη3

μξ 3
μν − iN1N2N3�εμνλρA1

λA2
ρB3

μν + LMaxwell + boundary terms. (A15)

Let us write L = LA1 + LA2 + LB3 − iN1N2N3�εμνλρA1
λA2

ρB3
μν + LMaxwell, where

LB3 = − iN3

4π
εμνλρB3

μν∂λA3
ρ + i

1

2
�εμνλρN3B3

μν · 2N1N2A1
λA2

ρ + 1

8ρ3

[
1

2π
εμνλρ∂λA3

ρ − �εμνλρ · 2N1N2A1
λA2

ρ

]2

+ 1

8ρ3

(
ξ 3
μν

)2

+ 1

4ρ3
ξ 3
μν

[
i2ρ3

(
2η3

μν − N3B3
μν

)+ 1

2π
εμνλρ∂λA3

ρ − �εμνλρ · 2N1N2A1
λA2

ρ

]

LA1 = − iN1

4π
ελρμνA1

λ∂ρB1
μν + i�εμνλρN1A1

λ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)

+ 1

2ρ1

[
1

4π
ελρμν∂ρB1

μν − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]2

+ 1

2ρ1

(
ξ 1
λ

)2

+ 1

ρ1
ξ 1
λ

[
iρ1
(
η1

λ − N1A1
λ

)+ 1

4π
ελρμν∂ρB1

μν − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]
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LA2 = − iN2

4π
εμνλρA2

ρ∂λB2
μν + i�εμνλρN2A2

ρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)

+ 1

2ρ2

[
1

4π
ερλμν∂λB2

μν − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]
+ 1

2ρ2

(
ξ 2
ρ

)2

+ 1

ρ2
ξ 2
ρ

[
iρ2
(
η2

ρ − N2A2
ρ

)+ 1

4π
ερλμν∂λB2

μν − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]
. (A16)

Integrate out ξ 3
μν :

LB3 = − iN3

4π
εμνλρB3

μν∂λA3
ρ + i

1

2
�εμνλρN3B3

μν · 2N1N2A1
λA2

ρ + 1

8ρ3

[
1

2π
εμνλρ∂λA3

ρ − �εμνλρ · 2N1N2A1
λA2

ρ

]2

− 1

8ρ3

[
i2ρ3

(
2η3

μν − N3B3
μν

)+ 1

2π
εμνλρ∂λN3A3

ρ − �εμνλρ · 2N1N2A1
λA2

ρ

]2

= − iN3

4π
εμνλρB3

μν∂λA3
ρ + iN1N2N3�εμνλρB3

μνA1
λA2

ρ

+ ρ3

2

(
2η3

μν − N3B3
μν

)2 − i
1

2

(
2η3

μμ − N3B3
μν

)( 1

2π
εμνλρ∂λA3

ρ − �εμνλρ · 2N1N2A1
λA2

ρ

)

=ρ3

2

(
2η3

μν − N3B3
μν

)2 − i

2π
εμνλρη3

μν∂λA3
ρ + i�εμνλρη3

μν · 2N1N2A1
λA2

ρ. (A17)

Integrate out ξ 1
λ :

LA1 = − iN1

4π
ελρμνA1

λ∂ρB1
μν + i�εμνλρN1A1

λ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)

+ 1

2ρ1

[
1

4π
ελρμν∂ρB1

μν − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]2

− 1

2ρ1

[
iρ
(
η1

λ − N1A1
λ

)+ 1

4π
ελρμν∂ρB1

μν − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]2

= − iN1

4π
ελρμνA1

λ∂ρB1
μν + i�εμνλρN1A1

λ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)

+ ρ1

2

(
η1

λ − N1A1
λ

)2 − i
(
η1

λ − N1A1
λ

)[ 1

4π
ελρμν∂ρB1

μν − �εμνλρ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)]

=ρ1

2

(
η1

λ − A1
λ

)2 − i

4π
ελρμνη1

λ∂ρB1
μν + i�εμνλρη1

λ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)
. (A18)

Integrate out ξ 2
ρ :

LA2 = − iN2

4π
εμνλρA2

ρ∂λB2
μν + i�εμνλρN2A2

ρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)

+ 1

2ρ2

[
1

4π
ερλμν∂λB2

μν − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]

− 1

2ρ2

[
iρ2
(
η2

ρ − N2A2
ρ

)+ 1

4π
ερλμν∂λB2

μν − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]2

= − iN2

4π
εμνλρA2

ρ∂λB2
μν + i�εμνλρN2A2

ρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)

+ ρ2

2

(
η2

ρ − N2A2
ρ

)2 − i
(
η2

ρ − N2A2
ρ

)[ 1

4π
ερλμν∂λB2

μν − �εμνλρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)]

=ρ2

2

(
η2

ρ − N2A2
ρ

)2 − i

4π
ερλμνη2

ρ∂λB2
μν + i�εμνλρη2

ρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)
. (A19)
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We end up with

L =ρ3

2

(
2η3

μν − N3B3
μν

)2 − i

2π
εμνλρη3

μν∂λA3
ρ + i�εμνλρη3

μν · 2N1N2A1
λA2

ρ + ρ1

2

(
η1

λ − N1A1
λ

)2 − i

4π
ελρμνη1

λ∂ρB1
μν

+ i�εμνλρη1
λ

(
N2A2

ρN3B3
μν − 1

2
η2

ρN3B3
μν − 2η3

μνN2A2
ρ

)
+ ρ2

2

(
η2

ρ − N2A2
ρ

)2 − i

4π
ερλμνη2

ρ∂λB2
μν

+ i�εμνλρη2
ρ

(
N3B3

μνN1A1
λ − 1

2
η1

λN3B3
μν − 2η3

μνN1A1
λ

)
− iN1N2N3�εμνλρA1

λA2
ρB3

μν + LMaxwell

= − i

2π
εμνλρη3

μν∂λA3
ρ − i

4π
ελρμνη1

λ∂ρB1
μν − i

4π
ερλμνη2

ρ∂λB2
μν + ρ3

2

(
2η3

μν − N3B3
μν

)2 + ρ1

2

(
η1

λ − N1A1
λ

)2

+ ρ2

2

(
η2

ρ − N2A2
ρ

)2 + i�εμνλρ

[
2
(
η1

λ − N1A1
λ

)(
η2

ρ − N2A2
ρ

)(
η3

μν − 1

2
N3B3

μν

)
− 2N1N2N3η

1
λη

2
ρη

3
μν

]
+ LMaxwell. (A20)

Since we consider the vortexline condensation for ρ3 and particle condensation for ρ1 and ρ2, i.e., ρ3 → ∞, ρ1 → ∞ and
ρ2 → ∞ are taken. These limit conditions enforce that η1

λ = N1A1
λ, η2

ρ = N2A2
ρ and η3

μν = 1
2 N3B3

μν . So we obtain

L = − i

2π
εμνλρ 1

2
N3B3

μν∂λA3
ρ − i

4π
ελρμνN1A1

λ∂ρB1
μν − i

4π
ερλμνN2A2

ρ∂λB2
μν − iN1N2N3�εμνλρA1

λA2
ρB3

μν + LMaxwell

= − iN3

4π
εμνλρB3

μν∂λA3
ρ + iN1

4π
ελρμνB1

μν∂ρA1
λ + iN2

4π
ερλμνB2

μν∂λA2
ρ − iN1N2N3�εμνλρA1

λA2
ρB3

μν + LMaxwell

= − iN3

4π
εμνλρB3

μν∂λA3
ρ − iN1

4π
εμνλρB1

μν∂λA1
ρ − iN2

4π
εμνλρB2

μν∂λA2
ρ − iN1N2N3�εμνλρA1

μA2
νB3

λρ + LMaxwell. (A21)

The Maxwell kinetic term LMaxwell can be neglected since its scaling dimension is more irrelevant than the other topological
terms. Finally, we can drop the overall minus sign by relabeling indices and then obtain

L = iN1

4π
εμνλρB1

μν∂λA1
ρ + iN2

4π
εμνλρB2

μν∂λA2
ρ + iN3

4π
εμνλρB3

μν∂λA3
ρ + iN1N2N3�εμνλρA1

μA2
νB3

λρ. (A22)

APPENDIX B: ALL LEGITIMATE TQFT ACTIONS WHEN G = ∏4
i=1 ZNi

The general expression of legitimate TQFT actions and corresponding gauge transformations are listed in Table IV. By
properly reassigning the indices {i, j, k, l} (see the captions in Table IV), we can obtain all possible legitimate TQFT actions.
As discussed in Sec. III C, when G = ∏4

i=1 ZNi , the legitimate TQFT actions can be classified by the properties of BR braidings
they describe:

(1) S with no AAB terms. The set of compatible braiding phases is{
�H

r ; �3L
s,s|r,�

3L
r,s|s,�

3L
r,r|s,�

3L
s,r|r,�

3L
s,t |r,�

3L
r,t |s,�

3L
t,r|s,�

3L
s,r|t ; �

4L
1,2,3,4

}∏4
r=1 ZNr

, (B1)

where r < s < t and {r, s, t} ⊂ {1, 2, 3, 4}. The underlines denote the linear dependence between braiding phases: �3L
s,s|r =

−2 · �3L
r,s|s, �3L

s,t |r = −�3L
r,t |s, etc.

(2) S with AAB terms which involve one flavor of Bi. The set of compatible braiding phases is{
�H

r ; �3L
s,s|r,�

3L
r,s|s,�

3L
j,k|i,�

3L
i,k| j,�

3L
k,i| j,�

3L
j,i|k ; �BR

i, j|l ,�
BR
i,k|l ,�

BR
j,k|l
}∏4

r=1 Zr
, (B2)

where r �= s, r �= l , s �= l , and the assignments for (i, j, k, l ) are (1, 2, 3, 4), (2, 3, 4, 1), (3, 4, 1, 2), and (4, 1, 2, 3).
(3) S with AAB terms which involve two flavors of Bi. The set of compatible braiding phases is{

�H
r ; �3L

j, j|i,�
3L
i, j| j,�

3L
i,i| j,�

3L
j,i|i; �

BR
i, j|k,�

BR
i, j|l
}∏4

r=1 Zr
, (B3)

where the assignments for (i, j, k, l ) are (3, 4, 1, 2), (2, 4, 1, 3), (2, 3, 1, 4), (4, 1, 2, 3), (3, 1, 2, 4), and (1, 2, 3, 4).

APPENDIX C: SOME TECHNICAL DETAILS

1. Derivation for the incompatibility of A1A2B3 and A2A3B1

We try to find proper gauge transformations for this action:

S =
∫ 3∑

i=1

Ni

2π
BidAi + p12,3

(2π )2 A1A2B3 + p23,1

(2π )2 A2A3B1. (C1)
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TABLE V. Test gauge transformations with A1 → A1 + dχ 1 for S = ∫ ∑3
i=1

Ni
2π

BidAi + p12,3

(2π )2 A1A2B3 + p23,1

(2π )2 A2A3B1. The stubborn terms
are terms which cannot be eliminated by subtraction nor be absorbed into a total derivative term, making �S �= 0 mod 2π .

Test gauge transformations �S Stubborn terms

A1 → A1 + dχ 1

A2 → A2 + dχ 2

A3 → A3 + dχ 3

B1 → B1 + dV 1 + Y 1

B2 → B2 + dV 2 + Y 2

B3 → B3 + dV 3 + Y 3

∫ 3∑
i=1

Ni
2π

Y idAi + p12,3

(2π )2 (dχ 1A2B3 + A1dχ 2B3 + dχ 1dχ 2B3)

+ p12,3

(2π )2 (A1A2dV 3 + dχ 1A2dV 3 + A1dχ 2dV 3 + dχ 1dχ 2dV 3)

+ p12,3

(2π )2 (A1A2Y 3 + dχ 1A2Y 3 + A1dχ 2Y 3 + dχ 1dχ 2Y 3)

+ p23,1

(2π )2 (dχ 2A3B1 + A2dχ 3B1 + dχ 2dχ 3B1)

+ p23,1

(2π )2 (A2A3dV 1 + dχ 2A3dV 1 + A2dχ 3dV 1 + dχ 2dχ 3dV 1)

+ p23,1

(2π )2 (A2A3Y 1 + dχ 2A3Y 1 + A2dχ 3Y 1 + dχ 2dχ 3Y 1)

dχ 1dχ 2B3,

dχ 2dχ 3B1

A1 → A1 + dχ 1

A2 → A2 + dχ 2

A3 → A3 + dχ 3 + X 3

B1 → B1 + dV 1 + Y 1

B2 → B2 + dV 2 + Y 2

B3 → B3 + dV 3

∫ 2∑
i=1

Ni
2π

Y idAi + N3
2π

(dV 3dA3 + B3dX 3 + dV 3dX 3)

+ p12,3

(2π )2 (dχ 1A2B3 + A1dχ 1B3 + dχ 1dχ 2B3)

+ p12,3

(2π )2 (A1A2dV 3 + dχ 1A2dV 3 + A1dχ 1dV 3 + dχ 1dχ 2dV 3)

+ p23,1

(2π )2 (dχ 2A3B1 + A2dχ 3B1 + dχ 2dχ 3B1)

+ p23,1

(2π )2 (A2A3dV 1 + dχ 2A3dV 1 + A2dχ 3dV 1 + dχ 2dχ 3dV 1)

+ p23,1

(2π )2 (A2A3Y 1 + dχ 2A3Y 1 + A2dχ 3Y 1 + dχ 2dχ 3Y 1)

dχ 2dχ 3B1

We list all four possible test gauge transformations respecting the ZN1 and ZN3 cyclic group structure and corresponding
�S’s in Tables V and VI. We point out that there always exist stubborn terms which cannot be eliminated by subtraction nor
be absorbed into a total derivative term, making �S nonvanishing. If we impose that �S = 0 mod 2π , the ZN1 and ZN3 cyclic
group structures are no longer respected. Such a dilemma indicates that Eq. (C1) is not a legitimate TQFT action, thus A1A2B3

and A2A3B1 are incompatible.
For the second column of Table VI, it may not be so straightforward to see that �S is nonvanishing. Below we make some

illustration. The gauge transformations are

A1 →A1 + dχ1 + X 1,

A2 →A2 + dχ2,

A3 →A3 + dχ3 + X 3,

B1 →B1 + dV 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3. (C2)

TABLE VI. Test gauge transformations with B1 → B1 + dV 1 for S = ∫ ∑3
i=1

Ni
2π

BidAi + p12,3

(2π )2 A1A2B3 + p23,1

(2π )2 A2A3B1. The stubborn terms
are terms which cannot be eliminated by subtraction nor be absorbed into a total derivative term, making �S �= 0 mod 2π .

Test gauge transformations �S Stubborn terms

A1 → A1 + dχ 1 + X 1

A2 → A2 + dχ 2

A3 → A3 + dχ 3

B1 → B1 + dV 1

B2 → B2 + dV 2 + Y 2

B3 → B3 + dV 3 + Y 3

∫ N1
2π

dV 1dA1 + N1
2π

B1dX 1 + N1
2π

dV 1dX 1 +
3∑

i=2

Ni
2π

Y idAi

+ p12,3

(2π )2 (A1dχ 2B3 + dχ 1A2B3 + dχ 1dχ 2B3 + X 1A2B3 + X 1dχ 2B3)

+ p12,3

(2π )2 (A1A2dV 3 + A1dχ 2dV 3 + dχ 1A2dV 3 + dχ 1dχ 2dV 3 + X 1A2dV 3 + X 1dχ 2dV 3)

+ p12,3

(2π )2 (A1A2Y 3 + A1dχ 2Y 3 + dχ 1A2Y 3 + dχ 1dχ 2Y 3 + X 1A2Y 3 + X 1dχ 2Y 3)

+ p23,1

(2π )2 (A2A3 + dχ 2A3B1 + A2dχ 3B1 + dχ 2dχ 3B1)

+ p23,1

(2π )2 (A2A3dV 1 + dχ 2A3dV 1 + A2dχ 3dV 1 + dχ 2dχ 3dV 1)

+ p23,1

(2π )2 (A2A3Y 1 + dχ 2A3Y 1 + A2dχ 3Y 1 + dχ 2dχ 3Y 1)

dχ 1dχ 2B3

A1 → A1 + dχ 1 + X 1

A2 → A2 + dχ 2

A3 → A3 + dχ 3 + X 3

B1 → B1 + dV 1

B2 → B2 + dV 2 + Y 2

B3 → B3 + dV 3

∫ N1
2π

B1dX 1 + N1
2π

dV 1dX 1 + N2
2π

Y 2dA2 + N3
2π

B3dX 3 + N3
2π

dV 3dX 3

+ p12,3

(2π )2 (A1dχ 2B3 + dχ 1A2B3 + dχ 1dχ 2B3 + X 1A2B3 + X 1dχ 2B3)

+ p12,3

(2π )2 (A1A2dV 3 + A1dχ 2dV 3 + dχ 1A2dV 3 + dχ 1dχ 2dV 3 + X 1A2dV 3 + X 1dχ 2dV 3)

+ p23,1

(2π )2 (dχ 2A3B1 + A2dχ 3B1 + dχ 2dχ 3B1 + A2X 3B1 + dχ 2X 3B1)

+ p23,1

(2π )2 (A2A3dV 1 + dχ 2A3dV 1 + A2dχ 3dV 1 + dχ 2dχ 3dV 1 + A2X 3dV 1 + dχ 2X 3dV 1)

A1A2dV 3,

A2A3dV 1
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The variation of action (boundary terms neglected) is

�S =
∫

N1

2π
B1dX 1 + N2

2π
Y 2dA2 + N3

2π
B3dX 3 + p12,3

(2π )2 (A1dχ2B3 + dχ1A2B3 + dχ1dχ2B3 + X 1A2B3 + X 1dχ2B3)

+ p12,3

(2π )2 (A1A2dV 3 + A1dχ2dV 3 + dχ1A2dV 3 + X 1A2dV 3 + X 1dχ2dV 3)

+ p23,1

(2π )2 (dχ2A3B1 + A2dχ3B1 + dχ2dχ3B1 + A2X 3B1 + dχ2X 3B1)

+ p23,1

(2π )2 (A2A3dV 1 + dχ2A3dV 1 + A2dχ3dV 1 + A2X 3dV 1 + dχ2X 3dV 1). (C3)

If we want to eliminate the A1A2dV 3 term by subtraction, we can only require that

N3

2π
dV 3dX 3 + p12,3

(2π )2 A1A2dV 3 = p12,3

(2π )2

[
dV 3

(
N3

2π
· (2π )2

p12,3
dX 3 + A1A2

)]

= p12,3

(2π )2

[
dV 3

(
N3

2π
· (2π )2

p12,3
· (−A1A2 + · · · ) + A1A2

)]

= N3

2π
dV 3(· · · ), (C4)

which requires

dX 3 = −A1A2 + · · · . (C5)

However, Eq. (C5) is impossible since A1A2 is not exact in general. If we want to absorb A1A2dV 3 into a total derivative term, we
would need a (dA1A2V 3 − A1dA2V 3) term since d (A1A2V 3) = dA1A2V 3 − A1dA2V 3 + A1A2dV 3. We may have a −A1dA2V 3

term contributed by N2
2π

Y 2dA2, but we do not have a dA1A2V 3 term since no term containing dA1 in �S. Therefore, action

S = ∫ ∑3
i=1

Ni
2π

BidAi + p12,3

(2π )2 A1A2B3 + p23,1

(2π )2 A2A3B1 is not gauge invariant under Eqs. (C2).

2. Derivation of the incompatibility between A1A3dA3

and A1A2B3

The TQFT action is assumed to be

S =
∫ 3∑

i=1

Ni

2π
BidAi + q133

(2π )2 A1A3dA3 + p12,3

(2π )2 A1A2B3.

(C6)
First, we assume that the gauge transformations are

Ai →Ai + dχ i,
(C7)

Bi →Bi + dV i + Y i,

i.e., the ZN3 cyclic group structure is encoded in∮
A3 ∈ 2π

N3
ZN3 . (C8)

Under the gauge transformations, the variation of action
(boundary terms neglected) is

�S =
∫

N1

2π
Y 1dA1 + N2

2π
Y 2dA2 + N3

2π
Y 3dA3

+ q133

(2π )2
(dχ1A3dA3 + A1dχ3dA3)

+ p12,3

(2π )2
[(A1dχ2B3 + dχ1A2B3 + dχ1dχ2B3)

+ (A1A2dV 3 + A1dχ2dV 3 + dχ1A2dV 3)

+ (A1A2Y 3 + A1dχ2Y 3 + dχ1A2Y 3 + dχ1dχ2Y 3)].
(C9)

�S is expected to be boundary terms. However, we are going
to prove that this is impossible: The dχ1dχ2B3 term cannot be
eliminated by subtraction nor be absorbed into a total deriva-
tive term. If dχ1dχ2B3 can be eliminated by subtraction, it is
required that

dχ1dχ2B3 + dχ1dχ2Y 3 = dχ1dχ2(B3 − B3 + · · · ),
(C10)

i.e.,

Y 3 = −B3 + · · · , (C11)

but this is not allowed—otherwise the gauge transformation
of B3 is ill-defined. If dχ1dχ2B3 can be absorb into a total
derivative term, �S should (but in fact does not) contain a
−χ1dχ2dB3 term since

d (χ1dχ2B3) = dχ1dχ2B3 − χ1dχ2dB3. (C12)

Therefore, the action Eq. (C6) is impossible to be gauge in-
variant under gauge transformation Eqs. (C7), hence it is not
a legitimate TQFT action.

Next, we assume that the gauge transformations are

A1,2 →A1,2 + dχ1,2,

A3 →A3 + dχ3 + X 3,

B1,2 →B1,2 + dV 1,2 + Y 1,2,

B3 →B3 + dV 3. (C13)

023132-23



ZHI-FENG ZHANG AND PENG YE PHYSICAL REVIEW RESEARCH 3, 023132 (2021)

The ZN3 cyclic group structure is encoded in∮
B3 ∈ 2π

N3
ZN3 . (C14)

Under the gauge transformation, the variation of action is
(boundary terms neglected) is

�S =
∫

N1

2π
Y 1dA1 + N2

2π
Y 2dA2 + N3

2π
B3dX 3

+ q133

(2π )2
(dχ1A3dA3 + A1dχ3dA3)

+ q133

(2π )2
(A1X 3dA3 + dχ1X 3dA3)

+ q133

(2π )2
(A1A3dX 3 + dχ1A3dX 3 + A1dχ3dX 3)

+ q133

(2π )2
(A1X 3dX 3 + dχ1X 3dX 3)

+ p12,3

(2π )2
(dχ1A2B3 + A1dχ2B3 + dχ1dχ2B3)

+ p12,3

(2π )2
(A1A2dV 3 + dχ1A2dV 3 + A1dχ2dV 3).

(C15)

Similarly, �S is impossible to be boundary terms since the
term dχ1A3dA3 cannot be eliminated by subtraction nor be
absorbed into a total derivative term. The only way to elimi-
nate dχ1A3dA3 by subtraction is to require that

dχ1A3dA3 + dχ1X 3dA3 = 0, (C16)

which means that

X 3 = −A3 + · · · . (C17)

If so, the gauge transformation of A3 is

A3 → dχ3 + · · · , (C18)

which is not well-defined. If dχ1A3dA3 can be absorbed into a
total derivative term, �S should (but, in fact, does not) contain
a χ1dA3dA3 term since

d (χ1A3dA3) = dχ1A3dA3 + χ1dA3dA3, (C19)

Therefore, Eqs. (C13) cannot be the proper gauge transforma-
tions for Eq. (52).

So far, we have seen that if the ZN3 cyclic group structure
is respected, we cannot find a proper set of gauge transfor-
mations under which the action Eq. (52) is invariant up to
boundary terms. If the action is imposed to be gauge invariant
up to boundary terms, the ZN3 cyclic group structure would be

violated. This dilemma reveals that the action Eq. (52) is not
a legitimate TQFT theory. In other words, A1A3dA3 is incom-
patible with A1A2B3, i.e., �3L

3,3|1 is incompatible with �BR
1,2|3.

3. Derivation of gauge transformations for
S = ∫ ∑3

i=1
Ni
2π

BidAi + q123
(2π)2 A1A2dA3 + p12,3

(2π)2 A1A2B3

The action is

S =
∫ 3∑

i=1

Ni

2π
BidAi + q123

(2π )2 A1A2dA3 + p12,3

(2π )2 A1A2B3.

(C20)
First, we assume A3 → A3 + dχ3. The test gauge transfor-

mations are

Ai →Ai + dχ i,

Bi →Bi + dV i + Y i. (C21)

Under Eqs. (C21), the variation of action is (boundary terms
neglected)

�S =
∫ 3∑

i=1

Ni

2π
Y idAi

+ q123

(2π )2
(A1dχ2dA3 + dχ1A2dA3 + dχ1dχ2dA3)

+ p12,3

(2π )2
[(dχ1A2B3 + A1dχ2B3 + dχ1dχ2B3)

+ (A1A2dV 3 + dχ1A2dV 3 + A1dχ2dV 3)

+ (A1A2Y 3 + dχ1A2Y 3 + A1dχ2Y 3 + dχ1dχ2Y 3)].
(C22)

Notice that the term dχ1dχ2B3 cannot be eliminated by sub-
traction nor absorbed into a total derivative term. Therefore,
action Eq. (55) is not gauge invariant under transformation
Eqs. (C21).

Second, we assume B3 → B3 + dV 3. The test gauge trans-
formations are

A1,2 →A1,2 + dχ1,2,

A3 →A3 + dχ3 + X 3,

B1,2 →B1,2 + dV 1,2 + Y 1,2,

B3 →B3 + dV 3. (C23)

Under Eqs. (C23), the variation of action is (boundary terms
neglected)

�S =
∫

N1

2π
Y 1dA1 + N2

2π
Y 2dA2 + N3

2π
B3dX 3 + q123

(2π )2

⎛
⎝A1dχ2dA3 + dχ1A2dA3 + dχ1dχ2dA3︸ ︷︷ ︸

M

⎞
⎠

+ q123

(2π )2 (A1A2dX 3 + A1dχ2dX 3 + dχ1A2dX 3 + dχ1dχ2dX 3)︸ ︷︷ ︸
N

+ p12,3

(2π )2

⎛
⎝dχ1A2B3 + A1dχ2B3 + dχ1dχ2B3︸ ︷︷ ︸

O

⎞
⎠+ p12,3

(2π )2

⎛
⎝A1A2dV 3 + dχ1A2dV 3 + A1dχ2dV 3︸ ︷︷ ︸

P

⎞
⎠. (C24)
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We expect that �S is an integral of total derivative terms. For
this purpose, we need to properly construct the shift terms, i.e.,
X 3, Y 1, and Y 2, such that �S is zero up to boundary terms.

For the M term, notice that

A1dχ2dA3 + dχ1A2dA3 + dχ2A3dA1 − dχ1A3dA2

= dχ2d (A1A3) + dχ1d (A3A2), (C25)

thus we can let

Y 1 = · · · + q123

(2π )2

2π

N1
dχ2A3 + · · · (C26)

and

Y 2 = · · · + q123

(2π )2

2π

N2
(−dχ1A3) + · · · (C27)

to construct the total derivative terms in Eq. (C25).
For the O term, it cannot be absorbed into a total derivative

term since there is no term containing dB3 in �S. Therefore,
we have to eliminate the O term by subtraction. To do this,
one can assume that

N3

2π
B3dX 3 + p12,3

(2π )2 (dχ1A2B3 + A1dχ2B3 + dχ1dχ2B3)

= 0, (C28)

which leads to

dX 3 = p12,3

(2π )2

2π

N3
(−dχ1A2 − A1dχ2 − dχ1dχ2). (C29)

However, we cannot find a X 3 satisfying Eq. (C29). Alterna-
tively, we can add terms containing dA1 or dA2. We can let

X = p12,3

(2π )2

2π

N3
(−χ1A2 + A1χ2 − χ1dχ2), (C30)

hence

dX 3 = p12,3

(2π )2

2π

N3
(−dχ1A2 − χ1dA2 + dA1χ2

− A1dχ2 − dχ1dχ2). (C31)

Then we notice that

0 = N3

2π
B3dX 3 + p12,3

(2π )2 (dχ1A2B3 + A1dχ2B3 + dχ1dχ2B3)

+ p12,3

(2π )2 (χ1B3dA2 − χ2B3dA1). (C32)

Therefore, we can let

Y 1 = · · · + p12,3

(2π )2

2π

N1
(−χ2B3) + · · · (C33)

and

Y 2 = · · · + p12,3

(2π )2

2π

N2
(χ1B3) + · · · (C34)

to contribute the p12,3

(2π )2 (χ1B3dA2 − χ2B3dA1) term in
Eq. (C32).

The N term, with dX 3 known in Eq. (C31), is (the under-
lines and underbraces are used to identify terms between equal
signs)

N = q123

(2π )2 (A1A2 + A1dχ2 + dχ1A2 + dχ1dχ2)dX 3

= q123

(2π )2

p12,3

(2π )2

2π

N3

⎛
⎝A1A2︸︷︷︸

1st

+ A1dχ2︸ ︷︷ ︸
2nd

+ dχ1A2︸ ︷︷ ︸
3rd

+ dχ1dχ2︸ ︷︷ ︸
4th

⎞
⎠(−A1dχ2 − dχ1A2 − χ1dA2 + χ2dA1 − dχ1dχ2)

= q123

(2π )2

p12,3

(2π )2

2π

N3

⎡
⎢⎣
⎛
⎜⎝−A1A2χ1dA2 + A1A2χ2dA1 − A1A2dχ1dχ2︸ ︷︷ ︸

1st

⎞
⎟⎠+

⎛
⎜⎝−A1dχ2dχ1A2−A1dχ2χ1dA2 + A1dχ2χ2dA1︸ ︷︷ ︸

2nd

⎞
⎟⎠

+

⎛
⎜⎝−dχ1A2A1dχ2−dχ1A2χ1dA2 + dχ1A2χ2dA1︸ ︷︷ ︸

3rd

⎞
⎟⎠+

⎛
⎜⎝−dχ1dχ2χ1dA2 + dχ1dχ2χ2dA1︸ ︷︷ ︸

4th

⎞
⎟⎠
⎤
⎥⎦

= q123

(2π )2

p12,3

(2π )2

2π

N3

[−A1dχ2dχ1A2 + (A1A2χ2 + A1dχ2χ2 + dχ1A2χ2 + dχ1dχ2χ2)dA1

+ (−A1A2χ1 − A1dχ2χ1 − dχ1A2χ1 − dχ1dχ2χ1)dA2
]
. (C35)

Notice that

−A1dχ2dχ1A2 = A1A2dχ1dχ2 (C36)

and

A1A2dχ1dχ2 + χ1A2dχ2dA1 − d
(
A1χ1

)
χ2dA2 = − A1dχ1A2dχ2 + dA1χ1A2dχ2 − d

(
A1χ1

)
χ2dA2

= d (A1χ1)A2dχ2 − d (A1χ1)χ2dA2

= − d (A1χ1)d (A2χ2), (C37)

023132-25



ZHI-FENG ZHANG AND PENG YE PHYSICAL REVIEW RESEARCH 3, 023132 (2021)

we could have N1
2π

Y 1dA1 + N2
2π

Y 2dA2 + term N = total derivative terms, if

Y 1 = · · · + q123

(2π )2

p12,3

(2π )2

2π

N3

2π

N1
[χ1A2dχ2 − (A1A2χ2 + A1dχ2χ2 + dχ1A2χ2 + dχ1dχ2χ2)] + · · · (C38)

and

Y 2 = · · · + q123

(2π )2

p12,3

(2π )2

2π

N3

2π

N2
[−d (A1χ1)χ2 + (A1A2χ1 + A1dχ2χ1 + dχ1A2χ1 + dχ1dχ2χ1)] + · · · . (C39)

For the P term, notice that

d (A1A2V 3) + d (χ1A2dV 3) − d (A1χ2dV 3)

= dA1A2V 3 − A1dA2V 3 + χ1dA2dV 3 − dA1χ2dV 3 + A1A2dV 3 + dχ1A2dV 3 + A1dχ2dV 3︸ ︷︷ ︸
P

, (C40)

thus we can let

Y 1 = · · · + p12,3

(2π )2

2π

N1
(A2V 3 − χ2dV 3) + · · · (C41)

and

Y 2 = · · · + p12,3

(2π )2

2π

N2
(−A1V 3 + χ1dV 3) + · · · (C42)

to provide the (dA1A2V 3 − A1dA2V 3 + χ1dA2dV 3 − dA1χ2dV 3) term in Eq. (C40).
According to Eqs. (C26), (C27), (C33), (C34), (C38), (C39), (C41) and (C42), �S = ∫

(total derivative terms) or S is
invariant up to total derivative terms under transformation

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3 + X 3,
(C43)

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3

where

X 3 = − p12,3

(2π )N3

(
χ1A2 + 1

2
χ1dχ2

)
+ p12,3

(2π )N3

(
χ2A1 + 1

2
χ2dχ1

)
,

Y 1 = q123

2πN1
dχ2A3 − p12,3

(2π )N1
(χ2B3 − A2V 3 + χ2dV 3)

+ q123

(2π )2 · p12,3

(2π )N3
· 2π

N1
· [χ1A2dχ2 − (A1A2χ2 + A1dχ2χ2 + dχ1A2χ2 + dχ1dχ2χ2)],

Y 2 = − q123

2πN2
dχ1A3 + p12,3

(2π )N2
(χ1B3 − A1V 3 + χ1dV 3)

+ q123

(2π )2 · p12,3

(2π )N3
· 2π

N2
· [−d (A1χ1)χ2 + (A1A2χ1 + A1dχ2χ1 + dχ1A2χ1 + dχ1dχ2χ1)]. (C44)

4. Derivation of incompatibility between A1A2A3A4 and A1A2B4

If we assume that A1A2A3A4 are compatible with A1A2B4,
the TQFT action should be

S =
∫ 4∑

i=1

Ni

2π
BidAi + q1234

(2π )3 A1A2A3A4 + p12,4

(2π )2 A1A2B4.

(C45)
In the action Eq. (C45), B1, B2, and B3 serve as Lagrange
multipliers, imposing dA1 = dA2 = dA3 = 0, i.e., the gauge

transformations of A1, A2, and A3 are A1,2,3 → A1,2,3 +
dχ1,2,3. The ZN1 , ZN2 , and ZN3 cyclic group structures are
encoded in

∮
AI ∈ 2π

NI
ZNI , where I = 1, 2, 3. The remaining

ZN4 cyclic group structure can be encoded in
∮

A4 ∈ 2π
N4
ZN4

or
∮

B4 ∈ 2π
N4
ZN4 , corresponding to A4 → A4 + dχ4 or B4 →

B4 + dV 4, respectively. In the following text, we are going
to examine both cases. However, we will find that neither of
them would result in gauge transformations under which the
action Eq. (C45) is gauge invariant up to boundary terms.
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First, we assume that the gauge transformations are

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3,

A4 →A4 + dχ4,

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3 + Y 3,

B4 →B4 + dV 4 + Y 4. (C46)

Under Eqs. (C46), the variation of action is (boundary terms neglected)

�S =
∫ 4∑

i=1

Ni

2π
Y idAi + q1234

(2π )3 (dχ1A2A3A4 + A1dχ2A3A4 + A1A2dχ3A4 + A1A2A3dχ4

+ dχ1dχ2A3A4 + dχ1A2dχ3A4 + A1dχ2dχ3A4 + dχ1A2A3dχ4 + A1dχ2A3dχ4 + A1A2dχ3dχ4

+ A1dχ2dχ3dχ4 + dχ1A2dχ3dχ4 + dχ1dχ2A3dχ4 + dχ1dχ2dχ3A4 + dχ1dχ2dχ3dχ4)

+ p12,4

(2π )2 (A1dχ2B4 + dχ1A2B4 + dχ1dχ2B4) + p12,4

(2π )2 (A1A2dV 4 + A1dχ2dV 4 + dχ1A2dV 4 + dχ1dχ2dV 4)

+ p12,4

(2π )2 (A1A2Y 4 + A1dχ2Y 4 + dχ1A2Y 4 + dχ1dχ2Y 4). (C47)

We recognize that dχ1dχ2B4 is a stubborn term, i.e., it cannot be eliminated by substraction or be absorbed into a total derivative
term. Due to the existence of stubborn term, �S cannot be written as an integral of total derivative terms. Therefore, the action
Eq. (C45) is not gauge invariant up to boundary terms under Eq. (C46).

Next, we assume that the gauge transformations are

A1 →A1 + dχ1,

A2 →A2 + dχ2,

A3 →A3 + dχ3,

A4 →A4 + dχ4 + X 4,

B1 →B1 + dV 1 + Y 1,

B2 →B2 + dV 2 + Y 2,

B3 →B3 + dV 3 + Y 3,

B4 →B4 + dV 4. (C48)

Under Eq. (C46), the variation of action is (boundary terms neglected)

�S =
∫ 3∑

i=1

Ni

2π
Y idAi + N4

2π
B4dX 4 + q1234

(2π )3 (dχ1A2A3A4 + A1dχ2A3A4 + A1A2dχ3A4 + A1A2A3dχ4

+ dχ1dχ2A3A4 + dχ1A2dχ3A4 + A1dχ2dχ3A4 + dχ1A2A3dχ4 + A1dχ2A3dχ4 + A1A2dχ3dχ4

+ A1dχ2dχ3dχ4 + dχ1A2dχ3dχ4 + dχ1dχ2A3dχ4 + dχ1dχ2dχ3A4)

+ q1234

(2π )3 (A1A2A3X 4 + A1dχ2A3X 4 + dχ1A2A3X 4 + dχ1dχ2A3X 4)

+ q1234

(2π )3 (A1A2dχ3X 4 + A1dχ2dχ3X 4 + dχ1A2dχ3X 4 + dχ1dχ2dχ3X 4)

+ p12,4

(2π )2 (A1dχ2B4 + dχ1A2B4 + dχ1dχ2B4) + p12,4

(2π )2 (A1A2dV 3 + A1dχ2dV 3 + dχ1A2dV 3). (C49)
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We recognize that dχ1dχ2dχ3A4 cannot be eliminated by subtraction or be absorbed into a total derivative term. If we want to
eliminate dχ1dχ2dχ3A4 by subtraction, we could only expect that

dχ1dχ2dχ3A4 + dχ1dχ2dχ3X 4 = dχ1dχ2dχ3(A4 − A4 + · · · ), (C50)

which means that X 4 = −A4 + · · · , hence the gauge transformation of A4 is ill-defined:

A4 → dχ4 + · · · . (C51)

If we want to absorb dχ1dχ2dχ3A4 into a total derivative term, we need a χ1dχ2dχ3dA4 term in �S since

d (χ1dχ2dχ3A4) = dχ1dχ2dχ3A4 + χ1dχ2dχ3dA4. (C52)

However, this χ1dχ2dχ3dA4 term does not exist in �S. Therefore, due to the stubborn term dχ1dχ2dχ3A4, the action Eq. (C45)
is not gauge invariant up to boundary terms under Eq. (C46).

Finally, we can conclude that the action Eq. (C45) could never be gauge invariant up to boundary terms under gauge trans-
formations which respect ZNi cyclic group structures, hence it is not a legitimate TQFT action. Therefore, A1A2A3A4 (�4L

1,2,3,4)
is incompatible with A1A2B4 (�BR

1,2|4).
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