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Open quantum systems beyond Fermi’s golden rule:
Diagrammatic expansion of the steady-state time-convolutionless master equations
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Steady-state observables, such as occupation numbers and currents, are crucial experimental signatures in
open quantum systems. The time-convolutionless (TCL) master equation, which is both exact and time-local, is
an ideal candidate for the perturbative computation of such observables. We develop a diagrammatic approach to
evaluate the steady-state TCL generator based on operators rather than superoperators. We obtain the steady-state
occupation numbers, extend our formulation to the calculation of currents, and provide a simple physical
interpretation of the diagrams. We further benchmark our method on a single noninteracting level coupled to
Fermi reservoirs, where we recover the exact expansion to next-to-leading order. The low number of diagrams
appearing in our formulation makes the extension to higher orders accessible. Combined, these properties
make the steady-state time-convolutionless master equation an effective tool for the calculation of steady-state
properties in open quantum systems.
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I. INTRODUCTION

Open quantum systems constitute a wide research area that
permeates both fundamental and applied physics [1,2]. Spe-
cific examples include transport phenomena in semiconductor
devices [3,4], quantum simulations based on cold atom exper-
iments [5–7], as well as quantum information processing with
trapped ions [8,9] or with superconducting circuits [10,11].
Given the recent developments in quantum technologies, such
systems promise great advances in computing [12,13], simu-
lation [14], and sensing [15–17]. Regardless of the specific
realization, open systems can all be broadly described as
containing a small system of central interest that is coupled
to a large environment. The presence of the environment can
fundamentally change the dynamics of the system [18–20],
while leaving it sufficiently coherent for quantum effects to
be crucial in explaining its behavior. In electronic mesoscopic
transport several phenomena, such as cotunneling [21–23] or
the Kondo effect [21–24], fall into this category.

The standard way to cope with open systems is to con-
struct the effective dynamics of the system by integrating
out the environmental degrees of freedom. A common phe-
nomenological approach to do so is based on the Lindblad
master equation [1], where the most general and physically al-
lowed Markovian evolution of the system is parametrized and
then constrained by physical assumptions and experimental
data. Conversely, bottom-up methods start from a microscopic
description of the entire setup including the system, the envi-
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ronment, and their coupling [21]. This latter approach is taken
in a breadth of numerical [25–35] and analytical [36–41] tools
and offers greater predictive power by reducing the number of
(or even eliminating the need for) fitting parameters [21]. Fur-
thermore, a microscopic description can be readily extended
to include higher-order effects.

In setting up such a microscopic formalism, several as-
sumptions have to be made about the environment’s state
and its coupling to the system. Commonly, we assume an
environment that is equilibrated and decoupled from the sys-
tem in the far distant past [21]. The coupling between the
system and the environment then involves a slow switch-on.
Technically, this is done with the introduction of a switch-on
rate η/h̄ that defines the time scale over which the system
and environment are coupled. Such a slow switch-on ap-
pears, explicitly or implicitly, in a range of methods, from the
functional renormalization group [42] to simpler perturbative
master equations [1,21,43]. The latter can be broadly cate-
gorized into three families. (i) Formally exact time-nonlocal
methods, such as the equivalent real-time-diagrammatic (RT)
method [44–51], Nakajima-Zwanzig (NZ) master equation
[37,38], and Bloch-Redfield (BR) master equation [52–54].
(ii) Formally exact time-local master approaches such as
the time-convolutionless master equation (TCL) [55–57]. (iii)
Approximate methods, that include approximations on top of
(i) and (ii) [1,21,58], in particular Fermi’s golden rule [21] and
the T -matrix master equation [59–61].

The T -matrix approach is often used to generalize Fermi’s
golden rule [21], however, it predicts unphysical divergences
in the switch-on rate h̄/η due to the time nonlocal nature of
the rates [43]. Deep in the perturbative regime, it has been
shown that a physically motivated regularization scheme for
the T matrix [59–61] becomes an acceptable approximation
when computing currents, but not occupation probabilities
[62,63]. On the other hand, the RT or NZ master equation is a
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time nonlocal method, that naturally avoids divergences in η

[44,45]. The TCL master equation provides a further formally
exact description, naturally free of divergences, and produces
a conceptually simpler time-local master equation [55–57,64].
Furthermore, the TCL has recently been combined with the
slow switch-on approximation [64–66] such that it can di-
rectly be used to compute a perturbative expansion of the
steady state; a development which we call the steady-state
time convolutionless STCL master equation.

In this work, we focus on the STCL master equation
approach and demonstrate that it serves as a practical tool
to compute the steady state of open quantum systems. We
provide a brief overview of current approaches to open sys-
tems dynamics and highlight the merits of using the STCL.
We then develop a diagrammatic approach to compute the
STCL generator with low complexity, similar to the T ma-
trix, but which nonetheless leads to formally exact results
equivalent to the RT method. We then use this diagram-
matic expansion to compute explicit rates up to fourth order
for quadratic environments. For practical applications, we
extend the STCL to the calculation of currents and again
perform the expansion explicitly to fourth order for quadratic
environments. We demonstrate the implementation of our
formalism on a noninteracting setup that serves as a test
bed.

The paper is structured as follows. In Sec. II, we briefly
highlight and discuss the main results of this work. In Sec. III,
we review the state of the art in the field. We introduce the
T -matrix approach in both the usual operator formalism and
in terms of superoperators. The real-time-diagrammatic and
steady-state time-convolutionless master equations then are
directly formulated in the superoperator language. En route,
we show that the STCL, which relies on a switch-on process
in the distant past, is suitable to compute the steady state,
order by order, whereas it cannot directly be used to compute
dynamics without further assumptions. In Sec. IV, we develop
a diagrammatic formulation of the STCL generator S . We use
both the operator and superoperator formalisms to minimize
the complexity of the diagrams. In Sec. V, we apply the STCL
master equation to setups with quadratic environments and
take advantage of Wick’s theorem [67]. We then show how
the STCL recovers exact results for the occupation numbers
in a noninteracting setup. In Sec. VI, we extend the STCL to
compute currents flowing through the system in steady state,
and again show that we recover exact results for the currents in
a noninteracting setup. Finally, in Sec. VII, we summarize the
results of our work and give an outlook on future applications
for the STCL master equation.

II. MAIN RESULTS

We start with a short tour through our main results and
discuss their implications. The goal of the present work is to
develop a practical, though exact at every order, method to
calculate steady-state probability distributions and transport
currents in driven open quantum systems, see e.g., Fig. 1,
where we illustrate the electronic mesoscopic setup serving
as our physical motivation. We achieve this goal with the
help of the steady-state time-convolutionless master equation
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FIG. 1. Open quantum system, device schematic and model.
(a) Sketch of a gate-defined quantum dot device. The semiconductor
heterostructure defines a two-dimensional electron gas (2DEG) at the
boundary (green) between two semiconductor layers (transparent)
[22]. The gold top gates (cent|inser, biased with a set of gate voltages
VG) deplete the 2DEG and form a quantum dot (purple), which is
coupled to metallic leads on each side. These are, in turn, contacted
with wires (gold, sides) that impose a bias voltage (source VS and
drain VD) across the device. The latter drives the measurable current
I through the dot. A magnetic field B can be applied to the entire
setup making the setup spinless for large fields. (b) Generic setup for
an open quantum system out of equilibrium, see Eqs. (2) and (3). A
system (purple disk) is coupled (via Vr) to the n different reservoirs
(grey ovals) constituting the environment. Each individual reservoir
r is at equilibrium with a temperature Tr and a chemical potential μr .
The environment is usually assumed to be out of equilibrium, e.g.,
μr �= μr′ and/or Tr �= Tr′ .

[55,56,65,66]

∂tρp(t ) = − i

h̄
L0ρp(t ) + S (t, η)ρp(t ), (1)

for the (projected) density matrix ρp(t ), with L0 the Liouvil-
lian of the uncoupled system–environment setup, S the STCL
generator and η → 0 a slow switch on rate, see the discussion
around Eq. (41). Specifically, we perform three steps.

(i) We construct a set of diagrammatic rules to compute the
STCL generator S for arbitrary system–environment setups,
order by order in the system–environment coupling V . The
results are found in Eqs. (61)–(63) describing the recursive
expansion of the STCL generator S in terms of the propagator
G presented in Eq. (67). The latter involves the expansion
of the evolution operator in Eq. (14). The corresponding di-
agrammatic representation is depicted in Figs. 4, 5, and 7.

(ii) We apply the diagrammatic expansion to setups
with quadratic environments, where Wick’s theorem greatly
simplifies the calculations, and use the corresponding dia-
grammatic formulation from Figs. 10 and 11 to obtain explicit
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fourth-order rates for the STCL. These rates are reported in
Eqs. (99), (103)–(105), and (B13)–(B15). In Fig. 18, we high-
light the result of computing these rates for a noninteracting
setup and then calculating the steady state occupation P1 of
a single-level in a noninteracting quantum-dot at equilibrium.
We compare this analysis (up to next-to-leading order) to the
expansion of the exact result and find perfect agreement.

(iii) We extend the STCL to compute steady-state currents
for setups with quadratic environments. We modify the dia-
grammatic formulation to include so-called current rates. This
provides us with the results in Eq. (125) for the currents as
expressed through the current generator (139), and the charge
transfer propagator (130), see also Fig. 21. In Fig. 24, we
again show up to fourth order, that these results recover the
exact results for a noninteracting single-level setup.

The diagrammatic expansion presented here can be sys-
tematically expanded beyond fourth order, e.g., we predict
that only three times more diagrams appear at sixth order as
compared with what we have computed at fourth order. There
are several effects, such as measurement backaction [68] and
the Kondo effect [21], that manifest at sixth order, motivating
further development of our diagrammatic scheme. Lastly, we
highlight that the STCL lends itself to resummation schemes,
similar in spirit to those that have already been developed for
the RT method [44–46,50], see Ref. [63] for a brief discussion.

III. BACKGROUND

We consider a setup composed of a system and an en-
vironment as shown in Fig. 1, and compute its steady-state
properties. To this end, we focus on the time evolution of
the system after a slow switch-on using a master equation.
Expanding the rates that govern this evolution order-by-
order in the system–environment coupling V , we obtain a
power series for the steady-state properties of interest. In
this section, we provide an introduction to the T -matrix
[21] and steady-state time-convolutionless [55–57,66] mas-
ter equations. Concurrently, we comment on the relationship
between these methods and the real-time diagrammatic ap-
proach [1,37,38,44–48].

A. General properties

The system is assumed to be small, i.e., it is described
by a finite Hamiltonian Hsys which we can solve exactly,
e.g., via numerical techniques, providing eigenstates |i〉sys and
eigenenergies χi. The environment may be large/infinite, is
described by the Hamiltonian Henv, and is commonly assumed
to be noninteracting such that it is exactly solvable. It has
eigenstates |u〉env with eigenenergies ξu. The combined un-
perturbed Hamiltonian describing the decoupled system and
environment reads

H0 = 1env ⊗ Hsys + Henv ⊗ 1sys, (2)

with eigenstates |u, i〉 = |u〉env ⊗ |i〉sys and eigenenergies ξu +
χi. Throughout this work, we omit system and environment
subscripts at times when it improves readability (we use
indices i, j, f , g, n, m for system states whereas u, v are re-
served for environment states).

U(t, t0)

U(t0, t)

ρ(t0)ρ(t)

t

FIG. 2. The Keldysh contour; graphical representation of Eq. (6).
The density matrix ρ(t0) of the entire setup at time t0 is evolved to a
later (leftward) time t by unitary time-evolution operators (triple line)
for the coupled system–environment setup on each of the Keldysh
branches. Note that, on the lower branch, the evolution is given
by U (t0, t ) = U †(t, t0 ), corresponding to the different directions of
propagation on the two branches.

The environment is composed of multiple reservoirs r
that are individually at equilibrium (with corresponding
temperatures Tr and chemical potentials μr) but mutually out-
of-equilibrium. Each reservoir may be composed of fermions
or bosons (or particles with exotic statistics). They are coupled
to the system by individual perturbations Vr , the sum of which
makes up the total perturbing Hamiltonian

V =
∑

r

Vr . (3)

The total Hamiltonian H = H0 + V which governs the
physics of the full setup is the sum of the unperturbed part
and the system–environment coupling.

1. Unitary time evolution

The state of the full setup is described by the density matrix
ρ, which evolves according to the von Neumann equation [15]

∂tρ = − i

h̄
[H (t ), ρ]. (4)

Here, we allow the Hamiltonian H to be time dependent to
account for the switch-on of the perturbation V . Making use
of the unitary time-evolution operator

U (t, t0) = T exp

[−i

h̄

∫ t

t0

dt ′H (t ′)
]
, (5)

with the time-ordering operator T , the differential equation
(4) can be formally integrated,

ρ(t ) = U (t, t0)ρ(t0)U †(t, t0). (6)

With the density matrix composed of elements ∝ |u, i〉〈v, j|,
the forward-evolution U acts on the density matrix ρ(t0) from
the left and propagates a state |u, i〉 from time t0 to t ; it
is commonly referred to as the forward Keldysh branch of
the time evolution. Concurrently, the backward evolution U †

acts on ρ(t0) from the right and propagates a conjugate state
〈v, j| forward in time, commonly referred to as the backward
Keldysh branch. These two branches, shown pictorially in
Fig. 2, form the basis for our diagrammatic representation in
Sec. IV. Combining the von Neumann equation (4) with an
initial condition ρ(t0) at a time t0 fully specifies the density
matrix of the system–environment setup at a later time t .
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2. Distant past

We assume that in the distant past t0 → −∞, the system
and environment were decoupled. Such an initial condition
implies that the density matrix

ρ(t0) = ρ0
env ⊗ ρsys(t0), (7)

at time t0 can be decomposed into the product of the system’s
density matrix ρsys(t0) and a locally equilibrated distribution
of the environment

ρ0
env ≡

∑
u

Penv
u |u〉〈u|env. (8)

Here, the probability distribution Penv
u describes the thermal-

equilibrium configuration of each reservoir in the environ-
ment.

The large size of the environment makes the direct calcu-
lation of the density matrix ρ(t ) from the initial condition (7)
and the von Neumann equation (4) intractable. To tackle this
problem, two steps are commonly applied: (i) expand the time
evolution operator (5) as a perturbation series in V and (ii)
integrate out the environment dynamics to be left with only
the system behavior. As we will see in Eqs. (14) and (15),
the expansion is incompatible with the t0 → −∞ limit for a
time-independent perturbation V . To circumvent this problem,
we introduce the slow switch-on assumption

V → lim
η→0

eηt/h̄V, (9)

where η/h̄ is an infinitesimal switch-on rate. The system and
environment are in contact for an effective timescale h̄/η →
∞ before the present time t = 0, and thus if a steady state
exists it will have been reached.

3. Expanding U

The expansion of the time evolution operator (5) can be
written in the form

U =
∞∑

ν=0

Uν, (10)

where the terms Uν of order V ν can be found using the recur-
rence relation

Uν (t, t0) = −i

h̄

∫ t

t0

dt1U0(t, t1)Veηt1/h̄Uν−1(t1, t0), (11)

with the first term U0 specified by the free evolution of the
unperturbed Hamiltonian H0 in Eq. (2),

U0(t, t0) = exp

[−i

h̄
(t − t0)H0

]
. (12)

We perform the integral in the recurrence relation (11), keep-
ing a finite switch-on rate h̄/η and assuming t0 → −∞ such
that

|t0| � h̄/η. (13)

This relation is assumed to remain true when taking the sec-
ond limit η → 0 later on. We work in the eigenbasis |u, i〉 of
the unperturbed Hamiltonian H0 and repeatedly insert identity

operators to obtain

Uν (t, η) |u, i〉 = eηt/h̄

χi+ξu−H0+iνη
VUν−1 |u, i〉 , (14)

where Uν now depends on t and η (but not on t0 → −∞) due
to the slow switch-on. There is no clear notion of intermediate
times in Eq. (14), however a specific operator ordering for
the coupling events V is inherited from the time-ordering in
Eq. (11). Note that each time the recurrence (14) is applied,
an additional factor of exp(ηt/h̄) appears, which is the reason
for the ν-fold enhancement of η in the denominator. Further-
more, the rightmost operator in the recurrence is always an
unperturbed time-evolution U0. The recurrence relation (14)
is undefined at η = 0 as the real part of the denominator of
the free propagator

�±
0 (ω, νη) = 1

ω − H0 ± iνη
, (15)

vanishes for states |u, i〉 that fulfill χi + ξu = ω. The resulting
divergences motivate the introduction of the slow switch-on
(9) with a finite η > 0.

Making use of the perturbative expansion (10), we can now
integrate out the environment. The T matrix, usually familiar
from scattering theory [21], provides a standard approach to
achieve this goal: It is commonly used to construct a rate
equation for the probabilities Pi of finding the system in a
state |i〉, i.e., the diagonal elements of the density matrix in
the system eigenbasis. Such a rate equation is also known as
a Pauli master equation, and can be used to study relaxation
in the system eigenbasis, i.e., the time scales on which the
system decoheres due to transitions between different states
[1,21]. In contrast, a full master equation can be used further
to study dephasing in the system eigenbasis, i.e., the decay
off-diagonal elements of the density matrix [1]. Next, we
sketch the derivation of the Pauli T -matrix rate equation as
it will allow us to effectively highlight its pitfalls.

B. Fermi’s golden rule and the T matrix

Let us consider the probability Psys
f |i of finding the system

in a state | f 〉 at time t , given that in a far distant past the
system was in an initial state |i〉. The environment is in equi-
librium at t0 and its state at time t is irrelevant. To compute
the probability Psys

f |i , we evolve the state |u, i〉 from t0 to t ,
square its overlap with a final state |v, f 〉, and sum over
the environment states u, v, weighted by the distribution Penv

u
of initial environment states. This procedure propagates the
system probabilities according to

Psys
f |i =

∑
u,v

Penv
u | 〈v, f |U (t, t0) |u, i〉 |2, (16)

and only depends on the original environment distribution,
implying that we have integrated out the effect of the envi-
ronment at all later times.

In order to obtain the T -matrix rate equation, we insert
the expansion (14) into the expression (16) for the propagated
system probability. We differentiate the result with respect to
time t which we set to t = 0 without loss of generality. Taking
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the limit η → 0, we obtain the transition rate


i f
T = 2π

∑
u,v

δ(δχi f + δξuv )| 〈v, f | TM |u, i〉 |2Penv
u , (17)

where we have introduced δχi f ≡ χi − χ f and δξuv = ξu − ξv

for compactness. The delta function in Eq. (17) ensures energy
conservation and arises from two occurrences of the leftmost
denominator in Eq. (14) due to the two occurrences of U in
Eq. (16). Furthermore, we have introduced the T matrix TM

that is defined by the self-consistency relation

TM |u, i〉 = V |u, i〉 + V
1

χi+ξu−H0+i0+ TM |u, i〉 , (18)

with 0+ a positive infinitesimal. Note that in the T -matrix rate
equation the infinitesimals 0+ in each denominator are usually
all taken equal, which is justified if 
T is convergent in the
η → 0 limit. However, this convergence is not guaranteed and
thus the prefactor ν of η in Eq. (14) is a crucial ingredient
that must be tracked in an exact method. At the lowest order,
TM ≈ V and the rates (17) are identical to Fermi’s golden gule.
At higher orders in V , the rates (17) are divergent in the limit
η → 0.

The rate matrix 
T and its elements 

i f
T relate the change in

the probability Psys
f (0) (to find the system in state | f 〉 at time

t = 0) to the corresponding probabilities Psys
i (−∞) at time

t0 = −∞

∂t P
sys
f (t = 0) = 1

h̄

∑
i


i f
T Psys

i (−∞), (19)

where 
ii
T = −∑

f 

i f
T such that the total probability is con-

served. From here onwards we shall drop the “sys” label on
the system probabilities for brevity, while the “env” label will
remain to avoid ambiguity. Equation (19) with its (time non-
local) rates 


i f
T does not generate a time-local rate equation,

as pointed out in Ref. [43]. The equivalence at lowest order
between the T -matrix rates and Fermi’s golden rule means
that it is tempting to use the T -matrix rate equation (19) as a
higher-order generalization of Fermi’s golden rule [21]. To do
so, Eq. (19) is turned into an approximate time-local master
equation

∂t Pf (t ) ≈ 1

h̄

∑
i


i f
T Pi(t ), (20)

which at lowest nonvanishing order in V is identical to Fermi’s
golden rule.

This path is fraught with difficulties though, even for the
seemingly simple task of calculating the steady-state distribu-
tion of the system. The standard procedure [21,43,59–61] to
do this is to use (20) and assume that the system has reached
the steady state at t = 0 such that∑

n


nm
T Pn(0) = 0. (21)

It is then claimed that solving for Pn(0) in Eq. (21) gives us
the steady-state system distribution. However, we have in fact
solved for the distribution of system probabilities at t0 = −∞
that leads to the steady state at time t = 0, cf. Eqs. (19) and
(21) or see Ref. [43]. Furthermore, in the limit η → 0, every

distribution at t0 = −∞ leads to the steady state at t = 0,
as an infinite amount of time has elapsed, and the constraint
(21) becomes ill-defined. This manifests as divergences in
the T -matrix rates 
T, which signal the breakdown in the
approximation (20). Consequently, physically motivated reg-
ularization schemes for 
T have been developed [59–61] that
remove the divergences, but produce results which differ from
the exact expansion [69]. The STCL, on the other hand, takes
the step from Eq. (19) to (20) in a rigorous manner, which is
why we choose to use this approach in our present work.

C. Superoperator formulation

Next, we introduce the mathematical tools, specifically the
superoperators, which facilitate the calculations of the various
master equations [1]. We then briefly rederive the T matrix
in this more formal language and then provide a simplified
derivation of the STCL inspired by Refs. [64–66]. Addition-
ally, we discuss the relationships between the T -matrix, the
STCL, and the RT approaches.

1. Setup evolution

We start with the von Neumann equation (4) in superoper-
ator notation

∂tρ = − i

h̄
L(t )ρ, (22)

with the Liouvillian superoperator Lρ ≡ [H, ρ]. Every
Hamiltonian (H0,V ) is associated with a Liouvillian (L0,LV )
(we denote superoperators by calligraphic upper case letters1).
In analogy to (6), we formally integrate (22) to obtain the time
evolution

ρ(t ) = U (t, t0)ρ(t0), (23)

with the time evolution superoperator

U (t, t0) = T exp

[−i

h̄

∫ t

t0

dt ′L(t ′)
]
, (24)

which can also be written in terms of the unitary evolution
Uρ = UρU †. We expand the superoperator U = ∑∞

α=0 Uα in
the Liouvillian LV (equivalent to an expansion in V ) and
perform the integrals, in the limit t0 → −∞, as for the unitary
evolution, see Eqs. (5) and (11)–(14). The resulting recurrence
relation takes the form

Uα|u, i〉〈v, j|

= eηt/h̄

δχi j + δξuv − L0 + iαη
LVUα−1|u, i〉〈v, j|, (25)

which is similar to the one for the unitary time evolution
(14). Each time the recurrence is applied an additional fac-
tor of exp(ηt/h̄) appears, the rightmost superoperator is an
unperturbed evolution U0, and the superoperator ordering is
inherited from the time ordering in Eq. (24). By expanding
the time evolution of the density matrix in the operator (6)
and superoperator (23) representations and comparing order

1The time-ordering operator T acts on both operators and superop-
erators and is thus also calligrahic.
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by order, we obtain the identity

Uαρ =
∑

μ+ν=α

Uν ρ U †
μ, μ, ν ∈ [0, . . . , α]. (26)

Henceforth, a sum over μ + ν = α implies that each of the
indices ν, μ runs from 0 to α and in opposite direction for
the partner. Note that, the single term Uα in Eq. (25) con-
tains α Liouvillians LV , and hence α commutators with V .
When written explicitly, these commutators lead to 2α terms,
significantly more than the α + 1 terms on the right hand
side of Eq. (26). We thus conclude that Eq. (26) significantly
reduces the complexity of computing series expansions of the
evolution, and will use this feature in Sec. IV.

2. Projected space

Having specified the evolution in the superoperator lan-
guage, we proceed by integrating out the environment part of
the evolution. To this end, we define the projector P through
its action on a density matrix

Pρ(t ) = ρ0
env ⊗ Trenv[ρ(t )], (27)

where Trenv is the partial trace over the environment states
|u〉env. In effect, Eq. (27) projects any density matrix to the
space of valid initial conditions, such that

Pρ(t0) = ρ(t0). (28)

The projector P obeys the usual condition P2 = P , and it is
straightforward to verify that [L0,P] = 0 as well as

Tr[PO] = Tr O, (29)

where Tr is the trace over all setup (system and environment)
states |u, i〉 and O is any setup operator. We define the pro-
jected density matrix

ρp(t ) ≡ Pρ(t ), (30)

which carries only the system degrees-of-freedom but resides
in the Hilbert space of the full setup, i.e., we can write

ρp(t ) = ρ0
env ⊗ ρsys(t ). (31)

At this point, we can write down the projected time-evolution
superoperator UP = PUP , which directly propagates the pro-
jected density matrix

ρp(t ) = UP (t, t0)ρp(t0), (32)

from a decoupled initial time t0 up to time t . This projected
evolution will be central to the derivation of master equations
in the rest of this work.

To obtain the T -matrix master equation in the superoper-
ator formalism, we differentiate (32) with respect to time t
using the identity

∂t U (t, t0) = − i

h̄

(
L0 + eηt/h̄LV

)
U (t, t0), (33)

which follows from the definition of U in Eq. (24). We substi-
tute the result into the projected evolution (32), make use of
the commutator [L0,P] = 0 and obtain the T -matrix master
equation (describing both relaxation and dephasing) in the

(a)

(b)

ρp(t0)
∂tUP

∂tρp(t)

ρp(t)
U−1
P

ρp(t0)
∂tUP

∂tρp(t)

FIG. 3. Different master equations in a nutshell. (a) T -matrix
master equation functionality. The full density matrix at time t0,
where ρp = ρ, is propagated forward and differentiated with respect
to time and then brought into the projected space using the time
derivative of the projected evolution ∂tUP . (b) Steady-state time-
convolutionless master equation functionality. The projected density
matrix at time t and the inverse projected evolution U−1

P are used
to construct the projected density matrix at time t0, where ρp = ρ.
The result is then fed through the same procedure as in the T -matrix
master equation.

form

∂tρp(t ) = − i

h̄
L0ρp(t ) + R(t, η)ρp(−∞), (34)

see Fig. 3. Here, we have taken the limit t0 → −∞ and intro-
duced the T -matrix generator in its superoperator form

Rα (t, η) = − ieηt/h̄

h̄
PLVUα−1P, (35)

with R = ∑
α Rα . Its explicit perturbation expansion can be

obtained by inserting the expansion for the superoperator U ,
either from Eq. (25), or the one from Eq. (26) if the operator
representation is preferable. At higher orders, this leads to
divergences in η as for the usual T -matrix formulation, see
Sec. III A.

3. Pauli projected space

The master equation (34) tracks both relaxation and de-
phasing, i.e., on- and off-diagonal elements of the system
density matrix. On the other hand, Pauli master equations
describe only relaxation, and are thus sufficient to calculate
occupation probabilities. They require the introduction of the
Pauli projector P̃ , and Pauli projected space ρp̃, through

ρp̃ ≡ P̃ρ = ρ0
env ⊗ Diag{Trenv[ρ(t )]}, (36)

where Diag sets all nondiagonal elements of a matrix to
zero. The projector P̃ thus limits us to track only the system
probabilities

Pn(t ) = 〈n| Trenv[ρ(t )] |n〉 , (37)

which can in turn be used to reconstruct the Pauli projected
density matrix

ρp̃(t ) = ρ0
env ⊗

∑
n

Pn(t )|n〉〈n|. (38)

Assuming that the initial system condition is completely de-
phased

ρsys(t0) = Diagρsys(t0), (39)
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we can make use of the Pauli projected evolution UP̃ = P̃UP̃
to construct Pauli master equations.

As an example, the Pauli T -matrix master equation takes
on the form

∂tρp̃(t ) = R̃(t, η)ρp̃ (−∞), (40)

which is obtained by replacing each occurrence of the pro-
jector P in Eq. (34) by a Pauli projector P̃ , see Eq. (36).
Furthermore, we have used the property L0P̃ = 0, which can
easily be verified, and introduced the Pauli T -matrix gener-
ator R̃, which is obtained by replacing P → P̃ in Eq. (35).
This superoperator formulation of the T -matrix Pauli master
equation is identical to the one in Sec. III A, cf. Eqs. (19) and
(40) with t = 0.

D. Steady-state time-convolutionless approach

The steady-state time-convolutionless [1,55,56,64–66,70]
master equation is of the form (see below for the derivation)

∂tρp(t ) = − i

h̄
L0ρp(t ) + S (t, η)ρp(t ), (41)

with the superoperator S (t, η) depending on t and η but not on
t0, that has been sent to the distant past, t0 → −∞. Its time-
local property naturally sidesteps the issues that appear in the
T -matrix approach. As shown in Refs. [65,66], each term Sα

in the STCL series expansion S = ∑∞
α=1 Sα is convergent for

the setups we consider here and in the limit η → 0. The latter
limit, in combination with t0 → −∞ implies that the system
and environment have been in contact for an infinite amount of
time, such that the asymptotic state has been reached. Specif-
ically, the projected density matrix may display an oscillating
behavior which is basis dependent.

The Pauli projected density matrix, however, reaches a
basis dependent but constant steady state [65]. As for the
T -matrix scheme, the STCL master equation has a Pauli
equivalent

∂tρp̃(t ) = S̃ (t, η)ρp̃ (t ), (42)

which is of central importance to the present work. Simul-
taneously, the Pauli STCL superoperator is uniquely defined
by its matrix elements S̃ i f , which are the time-local transition
rates between system states |i〉 and | f 〉. Written in terms of
(diagonal) matrix elements, the Pauli STCL master equation
(42) becomes

∂t Pf (t ) =
∑

i

S̃ i f (t, η)Pi(t ), (43)

which we will use for practical calculations in Secs. V and VI.
As the Pauli STCL (42) is time local, a steady-state constraint
exists, and is obtained by setting the derivative in Eq. (43) to
zero ∑

n

S̃nm(0, η → 0)Pn = 0, (44)

where Pn is the steady-state probability distribution of the sys-
tem2 that also satisfies

∑
n Pn = 1. To avoid notational clutter,

2Strictly speaking and for η > 0, Eq. (44) gives rise to a quasi-
steady state, which is valid for a time window ∼h̄/η around t = 0.

we denote the steady-state system probability by Pn, simply
dropping the time dependence. By expanding Eq. (44) and
given an explicit representation for the perturbation series of
S̃ , we obtain a formally exact power series for Pn. In the next
section, inspired by Refs. [64–66], we present a simplified
derivation of the superoperator S .

1. Derivation of S
In order to find an expression for the STCL superoperator

S , we invert the projected time evolution (32) and insert it
back into the superoperator formulation of the T -matrix (34)
approach; the result

∂tρp(t ) = − i

h̄
L0ρp(t ) + RU−1

P ρp(t ), (45)

then provides the identification [64]

S = R U−1
P , (46)

see Fig. 3. Starting directly from Eq. (46) provides a signif-
icant technical advantage in deriving an expression for the
generator S as compared to previous derivations [65,66]. As
pointed out in Ref. [71], the operator UP is analytic in time
and finite dimensional as it evolves only the projected space
density matrix. It is thus invertible at all but isolated points
in time, see Ref [63]. This mathematical property guarantees
the existence of the STCL for any nonzero finite value of η or
t0. In the limit |t0| � h̄/η → ∞, the system and environment
have been in contact for an infinite time and the steady state
has been reached. The STCL we use in this work is there-
fore limited to steady-state calculations and cannot describe
dynamical properties.

To obtain a series expansion of the inverse U−1
P , it is con-

venient to introduce the time-local propagator

G = UPU−1
0 − I, (47)

where I is the identity superoperator, and its Pauli equivalent
G̃ obtained by replacing all occurrences of P by P̃ . The time-
local propagator G should only be used in the projected space,
where it encodes the nontrivial evolution and where its series
expansion G = ∑∞

α=1 Gα , is defined by

Gα = PUαU−1
0 P . (48)

The terms Gα are divergent in the limit η → 0 and must
therefore be computed as a Laurent series in η, i.e., a power
series that includes terms of negative powers of η.

In the projected space, we can recast the projected time
evolution (32) in terms of the time-local propagator

UP = (I + G)U0, (49)

Note that this representation of UP is only appropriate when
acting on projected density matrices as we have omitted the
projector P in the unperturbed evolution. It is then straight-
forward to write down the inverse of UP as a power series

U−1
P = U−1

0 (I + G)−1 = U−1
0 (I − G + G2 − · · · ). (50)

We take the limit η → 0 as a last step providing us with the exact
steady state.
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We insert Eq. (50) and the T -matrix generator (35) into
Eq. (45) and compare the result, order by order, with the STCL
master equation (41). As a result, we obtain the recurrence
relation

Sα = − ieηt/h̄

h̄
PLVUα−1U−1

0 P −
α−1∑
β=1

Sα−βGβ, (51)

for the expansion of the STCL generator. Both the T -matrix
and STCL generators, R and S , conserve probability (but not
necessarily positivity) at each order, i.e.,

Tr[Sαρp] = 0, (52)

which can be seen by first taking the trace over Eqs. (41)
or (34) (or their Pauli equivalents) and then performing an
expansion on both sides. The fact that probability must be
conserved (52) at each order, puts constraints on each term
Sα , which we will use to reduce the number of diagrams we
compute later on in Sec. V.

From Eqs. (51) and (35), we immediately infer that at
lowest nonvanishing order the Pauli (P̃U0 = P̃) STCL and T -
matrix superoperators coincide [65,66]. Hence, at the lowest
order the Pauli STCL is identical to Fermi’s golden rule. At
higher orders, the T matrix includes divergent terms, which in
the STCL are correctly subtracted by the recursion formula

Aloc
α = AαU−1

0 −
α−1∑
β=1

Aloc
α−βGβ, (53)

that generates a time-local version Aloc(t ) = ∑
α Aloc

α from
the expansion Aα of a propagating projected-space superop-
erator A(t, t0). The recursion (53) appears in (51) and was
derived in Ref. [66]. In the specific case of the T -matrix and
STCL master equations, it can be thought of as a regularisa-
tion procedure, which subtracts reducible contributions, and
guarantees that each term Sα in the expansion of the STCL
generator is convergent in the limit η → 0 [65,66]. We stress
that the regularization (53) leads to exact results for the power
series of steady-state system properties that are different from
those obtained by the more common, physically motivated,
regularization scheme [43,59–62,65].

2. Relation to real-time method

The real-time [44,45,47,48,48], Bloch-Redfield [52–54], or
Nakajima-Zwanzig [37,38] master equations are equivalent,
formally exact, and time-nonlocal, formulations of the dy-
namics of the projected-space density matrix. They encode the
evolution with

∂tρp(t ) = − i

h̄
L0ρp(t ) +

∫ t

t0

K(t, t1)ρp(t1)dt1, (54)

and are embodied by the kernel K. This approach is con-
ceptually more complex than the T -matrix or TCL master
equations as it involves an integral over all previous times;
it is often combined with physical assumptions to generate
a Lindblad master equation [1] or other more complex often
non-Markovian master equations [72]. Furthermore, a set of
powerful tools, including resummation schemes [46–50] and
renormalization group methods [73–78] have been developed

for these master equations. As for the T -matrix and STCL
approaches, Eq. (54) has a Pauli equivalent

∂tρp̃(t ) =
∫ t

t0

K̃(t, t1)ρp̃(t1)dt1, (55)

where K̃ is the Pauli Kernel. The derivation of either the full
K or Pauli K̃ kernels, can be found in a breadth of pedagogical
texts on the topic, see, for example, Refs. [1,62,63].

The RT method is commonly used to compute the
asymptotic-state of the projected-space density matrix. Here,
we focus on the Pauli case where the probabilities reach a
steady state and refer the interested reader to Ref. [63] for
a treatment of the off-diagonal terms. We combine Eq. (55)
with a steady-state assumption

ρp̃(t ) = ρ̄p̃, ∀ t0 � t � 0, (56)

and move the limit t0 → −∞ of the integral to the far distant
past. Making use of the steady-state assumption (56), we add
the qualifier steady state to the RT method (SRT), as we
already did for the TCL. We substitute Eq. (56) into the (Pauli)
real-time master equation (54) and obtain the condition

Z̃ρ̄p̃ ≡
[∫ 0

−∞
K̃(0, t1)dt1

]
ρ̄p̃ = 0, (57)

which when solved for, order-by-order in V , leads to the same
steady state as the STCL condition (44). In Eq. (57), we
introduce the Pauli SRT generator Z̃ , which is obtained by
performing the integral over time [44]. The series expansion
Z̃ = ∑

α Z̃α of the Pauli SRT generator

Z̃α = − i

h̄
P̃LV Ũα−1U−1

0 P̃, (58)

is closely linked to the expansions of the T -matrix and STCL
generators, see Refs. [1,44,62,63] for a derivation. Here, Ũα

is the Pauli version (u = v and i = j) of the expansion of the
full evolution minus secular contributions (I → I − P̃), such
that

Ũα = I − P̃
−L0 + iαη

LV Ũα−1, (59)

with the initial condition Ũ0 = U0, cf. Eq. (25) with t = 0. The
Pauli SRT generator Z̃ is thus composed of an unperturbed
backward propagation U−1

0 and a full forward propagation
minus the secular contributions. The same way the regular-
ising recurrence (53) guarantees that S is finite at each order,
the subtraction of secular contributions (through I → I − P̃)
guarantees that Z̃ is finite at each order. The full SRT genera-
tor Z is not as easy to obtain as in the STCL case due to the
oscillating off-diagonal elements, see, for example, Ref. [63].

Both the SRT and STCL methods lead to identical power
series for steady-state observables, through related but differ-
ent generators. This difference between the STCL and SRT
methods occurs because the STCL generator S carries a rem-
nant of the dynamics within it. The SRT master equation,
instead, includes an explicit steady-state assumption (56) and
therefore cannot be straightforwardly extended to an exact
time-local master equation. We choose to work with the STCL
over the SRT for three main reasons: (i) its conceptually
simpler form, (ii) its direct formulation in terms of UP , which
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we will use to considerably simplify the computation of rates,
and (iii) its potential to be extended to the TCL, a time-
local master-equation that can describe the dynamics after a
quench. Next, we proceed with the derivation of a diagram-
matic expansion of the STCL generator S .

IV. DIAGRAMMATIC EXPANSION

Computing the rates in the superoperator S of the STCL
master equation (41) requires evaluating the expressions
PLVUU−1

0 P and G order by order in V , see Eq. (51). The
derivation in Sec. III D does not rely on the limits t0 → −∞
or η → 0, and Eq. (51) is valid for any initial time as long as
t0 is adapted correspondingly in G and U . We will now show
that, in the t0 → −∞ limit, the combination PLVUU−1

0 P can
be recast in terms of G and thus finding the latter is sufficient
for computing S . We then construct a novel diagrammatic
approach to compute G, inspired by T -matrix calculations
[21,59–61,79] and the simplifications in Ref. [62]. Specifi-
cally, we will perform the expansion of G using operators,
as it leads to a significant reduction in the number of terms
compared with the superoperator formulation, see Appendix
A. As G contains terms that diverge in 1/η and higher pow-
ers thereof, it is necessary to compute the Laurent series
(including negative powers of η) of G. Our diagrammatic
representation of G can then be used to construct a diagram-
matic expansion for S . The recurrence (53) then guarantees
that negative powers of η are subtracted from the expressions
for S . The complexity of computing a term Sα in the STCL
generator is then equivalent to that of computing the constant
term in the Laurent series of Gα .

A. t0 → −∞ limit

Our first goal is to simplify the expression (51) for Sα ,
and more specifically the term PLVUα−1U−1

0 P , by recasting
Eq. (51) in terms of Gα and L0 only. To do so we use the
relation

eηt/h̄LVUα−1 = iαηUα + [Uα,L0], (60)

which can easily be verified using Eq. (25). Substitution into
Eq. (51) provides us with the result

Sα = αη

h̄
Gα − i

h̄
[Gα,L0] −

α−1∑
β=1

Sα−βGβ, (61)

that only involves the expansion of G and and the Liouvillian
L0. The recursion in (61) is of the form (53) that provides us
with a regularized expression and guarantees that each order
Sα is convergent in the η → 0 limit. The first two terms in
Eq. (61) are generated by the time derivative; the first one

G ′
α ≡ αη

h̄
Gα, (62)

arises from the derivative of the explicit time dependence of
the perturbation V ∝ exp(ηt/h̄). The second term

Ġα ≡ − i

h̄
[Gα,L0] (63)

is similar to the von Neumann equation (4) but formulated in
the superoperator space; it can be thought of as the evolution

of the propagator G under the influence of the unperturbed
evolution L0.

The above derivation tells us that the expansion (48) of the
generator G is the key to computing the STCL generator order
by order. We use the Hamiltonian representation (26) of U to
reduce the number of terms in our computation by defining

Uα =
∑

ν+μ=α

Uνμ, (64)

where Uνμρ = Uν ρU †
μ is the contribution to the time evolu-

tion of ρ with ν (μ) occurrences of the perturbation on the
upper (lower) Keldysh branches. We apply this same proce-
dure to the expansion (48) of the generator G, such that

Gα =
∑

μ+ν=α

Gνμ, (65)

where Gνμ = PUνμU−1
0 P and ν + μ � 1. Similarly, the terms

Aα in the expansion of any superoperator A generated from G,
can be decomposed into terms Aνμ. This decomposition will
reduce the number of terms that we have to compute, from 2α

to (α + 1), in complete analogy to the diagrammatic grouping
in Ref. [62], see also Appendix A.

Next, we construct the terms Sνμ by generalising the
regularising recursion (61) to account for the two Keldysh
branches

Sνμ = G ′
νμ + Ġνμ −

∑
ν ′ + ν ′′ = ν

μ′ + μ′′ = μ

Sν ′μ′Gν ′′μ′′ . (66)

Here, each occurrence of the subscript α in the definitions (62)
and (63) of G ′ and Ġ is replaced by α → νμ. Simultaneously,
the prefactor α in Eq. (62) is replaced by α → ν + μ.

B. Diagrammatic rules

We develop our diagrammatic technique for the elements

S i j f g = Trenv
{〈 f |[S(

ρ0
env ⊗ |i〉〈 j|)]|g〉}, (67)

of the generator S . While these are in fact elements of a four
dimensional tensor, we will refer to them as matrix elements
to keep the nomenclature consistent between the full and
Pauli generators. They are indexed by four system indices
i, j, f , g, and are the rates that can then be used to compute
the steady state. Furthermore, they can be used to reconstruct
the superoperator through the identity

S
(
ρ0

env ⊗ |i〉〈 j|) =
∑

f g

S i j f g
(
ρ0

env ⊗ | f 〉〈g|). (68)

The matrix elements for other projected-space superoperators,
such as G, R, and L0, are defined in the same way (67) as
those for S . Simultaneously, these matrix elements can be
used to reconstruct their corresponding superoperators with
Eq. (68). The generator S is constructed from the propagator
G, see Eq. (61), and we have to consider the expansion of the
latter first. We use the decomposition (64) of Uα in terms of
unitary evolutions (14) in the definition (65) of the expansion
of G and insert the result into Eq. (67) to obtain

G i j f g
νμ = Trenv

( 〈g|UμU †
0 | j〉† 〈 f |Uν U †

0 |i〉 ρ0
env

)
. (69)
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Here, we immediately notice the strength of the operator
formulation, where Gα contains α + 1 terms, each with α

occurrences of V , see Eqs. (65) and (69). On the other hand,
the superoperator formulation (25) contains a single term with
α occurrences of the Liouvillian LV , which leads to 2α terms
once the commutators in the Liouvillians are written explic-
itly, see also Appendix A.

The operators Gν = Uν U †
0 in Eq. (69), propagate a hybrid

system–environment state |u, i〉 backwards in time with an
unperturbed evolution U †

0 , before propagating it forward in
time with ν system–environment scattering events. We use
the recurrence relation (14) for Uν to define the diagrammatic
rules (in energy space) for the matrix elements 〈v, f | Gν |u, i〉,
see Fig. 4(a).

(1) Act with a perturbation V , which mixes the system and
environment.

(2) Evolve forward freely using the decoupled system–
environment Green’s function (15).

(3) Repeat the steps 1 and 2 a total of ν times.
The operator Gν (G†

μ) appears on the upper (lower)
Keldysh branches, see Eq. (69) and Figs. 2 and 4(b). The
initial environment state |u〉 is the same on each of the Keldysh
branches and is summed over, weighted by the probability
Penv

u (encoded in ρ0
env) of finding the unperturbed environment

in the state |u〉, see Fig. 4(b) and Eq. (69). As the environment
is traced out in (69), the final environment state |v〉 is the
same on the upper and lower Keldysh branches as well, see
Fig. 4(b). We define a simpler diagrammatic form for G i j f g

νμ in
Fig. 4(c), where we merge the system and environment lines
for simplicity. Note that the decomposition (26), means that
scattering events on each Keldysh branch have an operator
order inherited from the temporal order, however, there is
no inherited ordering relation between the upper and lower
branches.

To construct a diagrammatic expansion of the STCL gener-
ator S , see Eq. (66), we require two further elements. The first
is the composition AB of two projected-space superoperators
A and B, which in matrix element form is

(AB)i j f g =
∑
nm

Anm f gBi jnm. (70)

Diagrammatically, we replace this product by a cut, see
Fig. 5(a), which can be understood as reset of the free prop-
agators �±

0 from Eq. (15). Namely, the counter ν for the
prefactor of η in the propagators �±

0 (ω, νη) returns to one,
and the energy ω becomes that of the system state at the cut
χn or χm plus the environment energy ξu of the unperturbed
environment state |u〉 (which are summed over, weighted by
the unperturbed distribution Penv

u ). The second new element
involves the commutator of a projected-space operator, e.g., G
with the unperturbed Liouvillian L0. In the projected space,
the matrix elements of the unperturbed Liouvillian are

(PL0)i j f g = (χi − χ j )δi f δ jg, (71)

which follows from the definitions of L0 in (22), of the pro-
jector P in (27), and of the matrix elements (67). To obtain
the matrix elements of the superoperator commutator [G,L0]
from Eq. (63), we combine Eqs. (71) and (70), leading to

[G,L0]i j f g = (χi − χ f + χg − χ j )G i j f g, (72)

Gijfg
νμ =

(a)

(b)

(c)

...

...

123

ν

μ

123

eηt/

χi + ξu − H0 + iβη

...
123ν

...

V
|u, iv, f |

†

|u, i

|u, j

v, f |

v, g|
v

env sys

...

...

123

ν

μ

123

Gijfg
νμ ≡

i

j

f

g

u

P env
u

+ ...++G =

(d)

β

FIG. 4. Diagrammatic rules for the propagator G of arbitrary
open setups. (a) Diagrammatic representation of the perturbative
evolution of a state |u, i〉. The system (red) and environment (blue)
evolve freely and independently (lines) between applications of
the system–environment coupling V (black dots). (b) Diagram for
the matrix elements G i j f g

νμ , see Eq. (69), which includes the initial
environment density matrix (open red circle) and trace over final
environment states (wiggly red line). The total operator on the lower
Keldysh branch (dashed box) appears as a Hermitian conjugate, see
Eq. (69). The states on the upper (lower) branch scatter a total of
ν (μ) times. (c) Simplified form of the diagram (b) for the matrix
elements G i j f g

νμ , where we have omitted the double lines and ref-
erences to the environment for clarity. The dashed arrow indicates
the operator ordering which appears in Eq. (69), once the Hermitian
conjugation has been performed. (d) Series expansion for G in the
diagrammatic representation, see Eqs. (48) and (65). Note that the
lowest order terms contain one occurrence of the coupling V (black
dot).

see Fig. 5(b) for a simple diagrammatic representation.
The diagrams for Sνμ are composed of three parts, see

Eq. (61) and Fig. 6. The first two are G ′
νμ and Ġνμ, which

are obtained by multiplying Gνμ by (ν + μ)η and −i(δχi j −
δχ f g)/h̄ respectively. The last part is the recursion scheme,
rearranged according to recursion depth, for which a more
abstract digrammatic representation has been suggested [70].
We adapt the scheme suggested in Ref. [70] to our diagrams
for Gνμ and thus arrive at rules to generate Sνμ directly from
Gνμ:
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(a)

(b)

m m

n n

≡
mn

...

...
= (χi − χf + χg − χj)

...

...

if

g j
−

− +

+

FIG. 5. Common diagrammatic operations. (a) Internal wiggly
lines (or cut) appearing in the multiplication of two projected-space
operators, see Eq. (70). The cut signals that there are actually two
distinct diagrams which must be multiplied. Alternatively, it is pos-
sible to formulate a set of rules for them and retain a single diagram,
see main text. (b) The commutator of G with L0, see Eq. (72), is
represented by the diagram for G with diamonds at each of the
corners, marking the four system energies χ . The ± signs mark
positive/negative contributions of the energies χ and are dropped
henceforth.

(1) Create every distinct composite diagram by introduc-
ing cuts into the diagram.

(2) The prefactor of the subdiagrams is multiplied by 1
(−1) for an even (odd) number of cuts.

(3) Transform the leftmost term G in each diagram into the
sum of its time differentiated versions Ġ and G ′.

Combining these three rules and the rules for G in Fig. 4,
we generate all terms which contribute to Sνμ. We exemplify
this scheme with a representation of S33 in Fig. 7. Its gener-
alization provides us with the diagrammatic expansion of the
full STCL generator S .

C. Pauli STCL

The Pauli STCL master equation (42) does not track the
off-diagonal elements of the system density matrix in ρp. Its
generator S̃ is obtained by replacing all occurrences of the
projector P → P̃ in the STCL generator Eq. (66), leading to

S̃α = αη

h̄
G̃α −

α−1∑
β=1

S̃α−β G̃β, (73)

where we have used that P̃L0 = 0. As for the full STCL
generator, we decompose the Pauli generator S̃ according
to the number of perturbations ν, μ on each of the Keldysh
branches

S̃νμ = (ν + μ)
η

h̄
G̃νμ +

∑
ν ′ + ν ′′ = ν

μ′ + μ′′ = μ

S̃ν ′μ′ G̃ν ′′μ′′ . (74)

The Pauli STCL generator (74) should be contrasted with the
Pauli T -matrix generator

R̃νμ = (ν + μ)
η

h̄
G̃νμ, (75)

which is not convergent in the η → 0 limit. Note that the
matrix elements G̃ i f

νμ of the Pauli superoperator G̃ are indexed
by only two system indices i and f , i.e., they are obtained by

Sνμ
(ν + μ)η

ν

μ
...

...

− i

...

...
ν

μ
+

+−

−
=

...

ν

μ − 1
...

...

μ − 1

ν − 1

...

...

μ

ν − 1

...

...

μ

ν − 2

...

...
ν

μ − 2
...

...

− − −

− −

Sνμ ≡
...

...
ν
μ

1
1

2
2

(a)

(b)

FIG. 6. Diagramatic representation of the STCL generator S,
see Eqs. (46), (51), and (61). (a) Definition of the diagram for Sνμ

exhibiting ν (μ) system-bath scattering events V on the upper (lower)
branch of the Keldysh contour. Compared to Gνμ, see Fig. 4, the
hatched area indicates that the recursion (66) and its associated cuts,
see Fig. 5, have not been applied. Furthermore, the hatched area has
dimension (time−1) as S is a rate whereas G is a propagator. (b) Rules
of the recursion (66) for Sνμ, where the first two terms refer to G ′

νμ

and Ġνμ, respectively. The remaining lines encode the recursive regu-
larization (66). The hatched parts again denote lower-order versions
of Sν′μ′ , which themselves must be evaluated using the recursion,
leading to diagrams with an increasing number of cuts.

enforcing

G̃ i f
νμ = δi jδ f gG i j f g

νμ , (76)

see Eqs. (36) and (48), as well as Fig. 8(a). In contrast, the
matrix elements S̃ i f of the Pauli STCL generator contain
multiple projectors and are obtained by combining the Pauli
propagators G̃ according to Eq. (74) and cannot be immedi-
ately obtained from S i j f g. In the diagrammatic representation,
we differentiate between G and its Pauli counterpart G̃ by a
single star � in the starting environment distribution. On the
other hand, S and S̃ additionally differ by a star at every
cut, see Fig. 8(b). The additional constraint (76) immediately
implies that the Ġ contributions vanish for the Pauli master
equation, see Fig. 8(c) and Eqs. (72) and (76).

There are several properties of the Pauli STCL generator
that can be used to reduce the number of diagrams that need
to be computed. First, note that matrix elements related by an
interchange of the number of scatterings on the two Keldysh
branches are complex conjugates of each other S̃ i f

νμ = S̃ i f ∗
μν .

Next, we show how the conservation of probability can be
used to avoid computing the diagrams with a vanishing index
ν = 0 or μ = 0. Just as for the full master equation, the
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S33 =
6η

+
i +

−η ... +
η ...+4+5 45 +4

... ...− i − i ++

...

...

(−1)0 (−1)1 (−1)2

FIG. 7. Diagrammatic construction of the STCL generator, exemplified on S33. By introducing every possible set of cuts in the diagrams,
we implement the recursion (66). At first the number of diagrams in S33 appears large, however we note that all contributions that contain a
cut are obtained from products of lower order diagrams, such that a single sixth order object (G33) must be computed. The prefactor is negative
(positive) for diagrams with an odd (even) number of iterations of the recursion, i.e., the number of introduced cuts.

conservation of probability (52) implies that

S̃ ii
α = −

∑
f �=i

S̃ i f
α . (77)

Here, S̃ ii has the usual interpretation as the inverse lifetime of
the system state |i〉. We use Eqs. (69) and (74) to conclude that
S̃ i f

α0 ∝ δi f (and similarly for S̃ i f
0α), and use this conclusion to

split (77), such that

S̃ ii
0α + S̃ ii

α0 = −
∑

f

α−1∑
ν=1

S̃ i f
νμ, μ = α − ν. (78)

Note that here, unlike in (77), the sum over the system states
f is arbitrary and does not exclude diagonal elements. Hence,
the sum of diagrams with a zero index follows from the
diagrams without vanishing indices, and at lowest order we
obtain the simplification S̃01 + S̃10 = 0. The rates of the form
S̃ ii

α0 or S̃ ii
0α are purely diagonal and, as we will see in Sec. VI,

they are not associated with a physical process, such that we
denote them as probability conserving rates.

...

...

if

if

= δijδfg

...

...

if

jg

(a)

(b) = 0S S̃→
...

... −
− +

+
(c)

FIG. 8. Diagrammatic rules for the Pauli steady-state master
equation. (a) For the Pauli version G̃ of the superoperator G the initial
and final system states must be the same on both Keldysh branches,
see Eq. (76). We introduce this property diagrammatically with a
symbol �, which is only shown in the open circle but is understood
to also act at the wiggly line. (b) The Pauli STCL generator S̃
diagrams are obtained by adding a star to each and every open circle
in the diagrams obtained from Fig. 7. (c) The commutator of the
Pauli propagator G̃ with the unperturbed Liouvillian L0 vanishes, see
Eq. (61) vs (73).

D. Discussion

We have developed a diagrammatic method for the
matrix elements of the STCL generator S and its
Pauli counterpart S̃ , which extends upon results from
Refs. [44–48,51,62,65,66,70]. Within our scheme, there is no
inherited time order between the two Keldysh branches, i.e.,
the vertices on each branch are ordered but are free to move
left or right with respect to the other branch. This should
be contrasted with the more common approach, where scat-
tering events on different Keldysh branches obey a specific
(left-right) ordering with respect to each other [44,45]. This
simplification drastically reduces the number of diagrams for
Gα to be evaluated, from 2α to α + 1. These results for Gα

can then be used in combination with products of lower order
diagrams to generate the expansion Sα of the STCL. We
achieved this simplification by using Eq. (26), which recasts
the evolution U of the full density matrix in terms of pairs of
the unitary evolution U . An alternative way to understand this
difference is to consider the unperturbed evolution between
two scattering events. In the ordered approach, both branches
evolve together using a superoperator, while in the unordered
approach, this propagation happens on each branch individ-
ually using operators, see Appendix A. We thus develop a
generalized STCL equivalent of the diagrammatic simplifica-
tion that was presented in Ref. [62] at fourth order for the
RT method. To illustrate the method, we draw the first- and
second-order Pauli diagrams in Fig. 9. In the next section, we
apply this formalism to setups with quadratic environments,
where Wick’s theorem allows for further simplifications, and
compute explicit rates up to fourth order for the Pauli STCL.

V. QUADRATIC ENVIRONMENTS

In the following, we focus on setups with quadratic
environments. We restrict ourselves to the case of system–
environment couplings that involve a single environment
particle, though our diagrams straightforwardly generalize to
multiparticle couplings (such as in the Kondo model [21]). We
use the Pauli STCL as it is sufficient (if it exists) to calculate
the steady-state distribution in the system eigenbasis and the
current through the system.

The strength of the (Pauli) STCL and our diagrammatic
approach is demonstrated at fourth order in V , with a natural
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S02 = −2η η

S11 = −2η η

S20 = −2η η

−η

˜

˜

˜

ηS10 =˜ ηS01 =˜(a)

(b)

FIG. 9. Diagrammatic construction of the Pauli STCL generator.
(a) The first-order Pauli diagrams (S00 does not exist), which due to
conservation of probability (78) vanish when summed. (b) Second-
order Pauli diagrams, which contain products of lower order terms.

and correct regularization and only five diagrams that need
to be computed. The fourth-order rates S̃ i f

4 are convergent
in the limit η → 0, as opposed to the T -matrix rates R̃i f

4

which diverge, see, e.g., Eq. (99) below. The rates S̃ i f
2 and

S̃ i f
4 provide the exact results for the first two terms P(0)

n and
P(2)

n in the expansion of the steady-state system probabilities
Pn. We validate our analysis through a comparison with the
exact solution of the noninteracting resonant level.

A. Setup

Our setup consists of an arbitrary system, a quadratic en-
vironment, and a system–environment coupling that involves
only a single environment operator at each vertex. This last
assumption does not affect the diagrams from Sec. IV. It
does, however, influence the specifics of how Wick’s theorem
is applied, as seen later in this subsection.3 While we work
with a fermionic example, our approach is generic. To keep
the notation concise, we follow the convention developed in
the literature [74] and group all indices of the environment
into the index κ = (λκ, kκ ). Here, the indices of all discrete
degrees of freedom, such as particle/hole, reservoir r and spin
σ are encoded in the discrete multi-index λ = ±(r, σ, . . . ),
while k indexes momentum. The sign of the index λ (sgnκ ≡
sgnλκ ) indicates whether we are considering particle creation
(+) or annihilation (−) as viewed from the reservoir. The
environment Hamiltonian reads

Henv =
∑
κ>0

εκcκc−κ , (79)

where cκ (c−κ ) creates (annihilates) a particle with quantum
numbers κ and energy εκ . Note that the creation and annihila-
tion operators obey c†

κ = c−κ , and we define ε−κ = −εκ .

3In the case of multiparticle scattering, the coupling V must be
split into two (or more) consecutive single-particle scattering events
that happen immediately one after another. This procedure, known as
point splitting, guarantees that the correct sign will be maintained in
the case of fermionic environments [96].

A many-body environment eigenstate |u〉env is constructed
by repeatedly applying creation operators κ > 0 (in proper
order) on the vacuum

|u〉env =
∏
κ∈u

cκ |0〉env , (80)

where |0〉env is the environment vacuum, and u is a set of
positive indices κ . In a noninteracting environment, the single-
particle energies are additive, with the eigenenergy of the
many-body state |u〉 given by

ξu =
∑
κ∈u

εκ . (81)

In contrast to the environment, we keep the system general,
i.e., its Hamiltonian is

Hsys =
Nsys∑
n=1

χn|n〉〈n|sys, (82)

where Nsys is the number of eigenstates in the system. Further-
more, for simplicity, we assume that the microscopic coupling
between the system and environment involves a single envi-
ronment particle, allowing us to write

V =
∑
nm,κ

Vnmκcκ ⊗ |n〉〈m|sys, (83)

where the amplitudes V ∗
nmκ = Vmn−κ of the perturbation guar-

antee Hermiticity. Last, we assume that the amplitudes Vnmκ

do not depend on the continuous (momentum) part of the
subscript κ . We can thus interchange Vnmκ and Vnmλ whenever
it is convenient.

We insert the explicit representation of the setup (79)–
(83) into the expansion (69) for the propagator G, see
Fig. 10. Each system–environment scattering event V now
changes the system state and describes the emission or ab-
sorption of an environment particle, i.e., adding or removing a
particle in the environment, respectively. As usual [44,51,62],
we embody this emission (absorption) process by a thin line
attached to each vertex V in the diagrams 10(a). The additive
property (81) of the single-particle environment energies εκ

leads to a simplifications in the matrix elements G i j f g
νμ , cf.

Figs. 10(b), 10(c), and 4(b). The denominator of the recur-
rence relation (14) for the time evolution, which appears in
(69), now changes by one single-particle environment energy
εκ after each application of the perturbation V , see Fig. 10(b).
We thus use εκ to update the energy denominator due to the
environment δε±

β , which tracks the total number of particles
added to the environment after β applications of the pertur-
bation V on the upper (−) or lower (+) Keldysh branches.
We use a clockwise labeling of the environment indices, see
Fig. 10(a), and use V (V † = V ) on the upper (lower) Keldysh
branch, cf. Figs. 10(b) and 10(c). These last steps give rise to
an environment operator expectation value〈

cκ1 cκ2 . . . cκν+μ

〉 ≡
∑

u

Penv
u 〈u|cκ1 cκ2 . . . cκν+μ

|u〉, (84)

of ν + μ creation or annihilation operators cκ , where
∑

u Penv
u

corresponds to the open circle in our diagrammatic formula-
tion.
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mn

+ +
β

=
Vnmκeηt/ cκ

χi − χn − κ − −
β−1 + iβη

− −
β

κ

n m
β

Gijfg
νμ =

...

...

12

ν

μ

12

κ1κ2κμ

κμ+1 κμ+2 κμ+ν

n1n2nν−1

mμ−1 m1m2

if

jg

κ

n m
β

=
V ∗

mnκeηt/ c†κ
χj − χn + κ + +

β−1 + iβη

(a)

(b)

(c)

β ≤ μ

β ≤ ν

FIG. 10. Diagrammatic rules applied to the specific system–
environment setup described in (79)–(83). (a) The diagrams remain
structurally the same as those in Fig. 4 and we have explicitly
included the system states i, j, f , g, �n, �m for clarity. For each appli-
cation of the perturbation V , a (anti) particle with quantum numbers
κ is added to the environment. The environment indices κ1 . . . κμ+ν

are chosen to run clockwise (dashed arrow) through the diagram.
(b) A factor in the perturbative series on the upper branch, that
adds a particle with quantum numbers κ to the environment, while
changing the system state from |m〉 → |n〉. The operator cκ acts
on the environment, whereas all other factors are numbers. The
energy δε−

β tracks the total number of particles (on the upper branch)
that have been added to the environment. (c) Similar to (b) but for
the lower branch of the Keldysh contour. We use the fact that the
perturbation is Hermitian

∑
κ Vnmκcκ = ∑

κ V ∗
mnκc†

κ . Note, that the
Hermitian conjugation on the lower branch (see Fig. 4) both flips the
order of the environment operators and conjugates them individually
c†
κ → cκ . As a result, the environment correlator assumes the form

shown in Eq. (84).

1. Wick’s theorem

The evaluation of locally equilibrated environment corre-
lators to describe the steady state, is a great strength of the
STCL methodology. It is a consequence of the combination of
the back and forth propagation in Eq. (46). We can therefore
apply Wick’s theorem [67] when evaluating Eq. (84), which is
thus recursively reduced by

〈
cκ1 cκ2 . . . cκα

〉 =
α∑

p=2

(±1)p
〈
cκ1 cκp

〉〈 ∏
l �=1,p

cκl

〉
. (85)

The sign in Eq. (85) indicates fermionic (−) or bosonic (+)
environment modes.4 Note that the normal-order contribution
appearing in Wick’s theorem vanishes because the environ-
ment is locally equilibrated in the distant past [67,80]. We thus
reduce the α-point correlator (84) into a sum over products of
two point correlators

〈cκcκ ′ 〉 = δ−κ,κ ′nA(ε − μλ, Tλ), (86)

where nA is the Fermi-Dirac (A = F) or Bose-Einstein (A =
B) distribution, with μλ the chemical potential (0 for mass-
less bosons) and Tλ the temperature of the discrete degree
of freedom λ, δ is the Kronecker delta, and we again
use the fact that the environment is locally equilibrated
at t = −∞. Furthermore, in the far distant past, the envi-
ronment is in a mixture Penv

u of states |u〉env which each
have well defined particle numbers, see Eq. (80). There is
thus no coherent superposition of states with different num-
bers of particles, and expectation values 〈cκ〉 = 0 vanish
(as well as other odd correlators). Within a diagrammatic
formulation, Eqs. (85) and (86) are implemented by the
following.

(1) Create all possible sets of pairs of scattering events and
connect the vertices within each pair by an environment line.
For a connected pair of scattered environment, particles re-
place cκ . . . cκ ′ → . . . 〈cκcκ ′ 〉, i.e., the appropriate equilibrium
distribution function as given by Eq. (86).

(2) Crossing fermionic lines produce additional minus
signs.

In Fig. 11, we provide a specific example for the calcula-
tion of G31. Pairs that reside on the same Keldysh branch do
not influence the environment state, when considered together.
On the other hand, a pair connecting the upper and lower
branch is a physical process where the system emits a particle
(or antiparticle) into the environment, i.e., these diagrams will
contribute to the current flow in the steady state. Diagrammat-
ically, the (thin) Wick contraction lines act in the same way as
the (weighted) trace line with an open circle that appears on
the right of every diagram, see also Fig. 4.

Using the diagrammatic rules for the Wick decomposition,
we build each superoperator G̃νμ (or Gνμ) as the sum over its
Wick contributions

G̃νμ =
∑
w

G̃νμw, (87)

where we have introduced the Wick index w, see below for
an example. The Wick index w shows up in the same way
in the calculation of other superoperators such as R̃νμ (75)
or S̃νμ (74). At second order, there is only one contraction
〈cκ1 cκ2〉 and the Wick index can be dropped. At fourth (second
nonvanishing) order, the four-point correlator decomposes as〈

cκ1 cκ2 cκ3 cκ4

〉 = 〈
cκ1 cκ4

〉〈
cκ2 cκ3

〉 ± 〈
cκ1 cκ3

〉〈
cκ2 cκ4

〉
+ 〈

cκ1 cκ2

〉〈
cκ3 cκ4

〉
, (88)

4In mixed systems the sign is negative if, and only if, cκ1 is
fermionic and the number of fermionic operators between cκ1 and
cκp is odd.

023127-14



OPEN QUANTUM SYSTEMS BEYOND FERMI’S GOLDEN … PHYSICAL REVIEW RESEARCH 3, 023127 (2021)

++

cκ1cκ3 cκ2cκ4

cκ1cκ2 cκ3cκ4 cκ1cκ4 cκ2cκ3

±1

cκ1cκ2cκ3cκ4

= 0=
+1
−1

Bosons
Fermions

=
(a)

(b) (c)

FIG. 11. Wick’s theorem applied to the diagrams of Fig. 10 for
G31. (a) Expectation value of a four-point environment correlator. The
environment operators cκ are arranged clockwise starting in the bot-
tom right due to the hermitian conjugation of the lower branch, see
Figs. 4 and 10. Wick’s theorem (85) implies that we can decompose
the diagram by summing over every possible set of contractions (con-
nected thin lines). (b) A number p of crossed fermionic environment
lines produces a (−1)p sign. (c) Odd numbers of environment legs
result in a vanishing diagram because the unperturbed environment
density matrix is diagonal, see Eq. (8).

where the ± sign accounts for the bosonic (+) or fermionic
(−) nature of the particles, see Fig. 11(b). We denote the
three contractions in Eq. (88) by the Wick indices w = a, b, c,
respectively. Note that, the linear additivity of energies (81)
coupled with Wick’s theorem implies(

εκ1 + εκ2 + · · · + εκα

)〈
cκ1 cκ2 · · · cκα

〉 = 0, (89)

which we will use to simplify expressions for Gνμ later.
At this point, it is useful to recall the hierarchy

G =
∑

α

Gα =
∑

α

∑
ν+μ=α

Gνμ =
∑

α

∑
ν+μ=α

∑
w

Gνμw, (90)

of the indices α, ν, μ, and w as we will use them extensively
for explicit calculations of the rates. Furthemore, we note that
in the Pauli STCL rates, complex conjugation is equivalent to
flipping the upper and lower Keldysh branches. This means
that G̃ i f

νμ = G̃ i f ∗
μν , and that for each contraction w there exists

a contraction w′ such that G̃ i f
νμw = G̃ i f ∗

μνw′ . In some cases we
have w = w′, e.g., at second order where there is a single
contraction.

B. Explicit rates

We focus on the Pauli STCL as it is sufficient for the
purpose of calculating steady-state occupations and currents.
First, we show how to recover Fermi’s golden rule as encoded
in the leading (or second) order in V Pauli STCL master
equation with its associated rates S̃ i f

2 , see Eq. (94) and Fig. 12.
These rates involve the exchange of a single particle between
the system and an environment reservoir, and are commonly
dubbed sequential tunneling rates in mesoscopic research

FIG. 12. Second-order diagrams. (a) The second order G̃2 dia-
grams, where we have dropped the sums over system (n, m) and
environment (κ) variables for clarity. (b)–(c) Illustration of the var-
ious processes occurring in the diagrams of (a). The solid line in
(b) indicates a sequential tunneling process, where the initial and fi-
nal states of the system differ by one (anti) particle that has tunnelled
out of the environment. The dotted line in (c) indicates a probability
conserving process, where a (anti) particle tunnels back and forth
between the environment and system, leaving the setup unchanged.
(d) Second-order rates S̃2, where we have dropped all sums and
indices for clarity. Unlike the more general case in Fig. 9, due to
Wick’s theorem [see Fig. 11(c)], all odd-order diagrams (G̃01 and
G̃10) vanish and there are therefore no subtractions of products of
lower orders.

[21,22], see Figs. 12(b) and 12(c). We proceed with the fourth
order in V Pauli STCL, where the rates S̃ i f

4 are associated with
the exchange of up to two particles (potentially from different
reservoirs) between the system and the environment. These
rates include co- and pair tunnelling [21], see Figs. 13(b)
and 13(c), as well as virtually assisted sequential- tunneling
which are responsible for level broadening and renormal-
ization [45,62], see Fig. 14(b). The strength of the STCL
already manifests at this order: while such fourth-order rates
diverge in the T -matrix formulation [43,60], the STCL, by
construction, systematically removes these divergences [65].
For illustration, we will demonstrate a perfect agreement of
the STCL rates with exact results for a single-particle level,
see Fig. 18.

1. Fermi’s golden rule

Fermi’s golden rule [81] successfully describes transitions
in open quantum systems with weak couplings to large en-
vironments; it commonly includes solely the diagonal of the
system’s density matrix (Pauli) but can be extended to de-
scribe the system’s coherences as well. We consider the Pauli
STCL (42) at lowest nonvanishing (second) order in the per-
turbation V given in Eq. (83). The first-order term has an odd
number of environment operators cκ in the correlator (84) and
thus vanishes, see Fig. 11(c). At second order, we have three
diagrams for G̃. We apply the rules from Figs. 4, 5, 10, and 11
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FIG. 13. Co- and pair tunnelling. (a) Fourth-order Pauli dia-
grams for G̃22, see Eq. (96), where we have dropped the sums over
system (n, m) variables for clarity. (b) Illustration of the co- and
pair-tunnelling processes associated with the diagrams G̃22a and G̃22b.
A particle or antiparticle (black dot) tunnels into the system from
the environment simultaneously with a second particle or antiparticle
(white dot) from the same or a different reservoir. If both particles
tunneling to the system are electrons (or holes), this process is known
as pair tunneling. On the other hand, if one particle is a hole and the
other is an electron, the process is known as a cotunnelling event.
An elastic cotunnelling event is one which leaves the system state
unchanged while in an inelastic process the initial and final system
states differ. (c) Illustration of processes associated with the diagram
G̃22c. A particle or antiparticle tunnels back and forth between the
system and the environment along each of the Keldysh branches.
This process leaves the environment unchanged, while it can modify
the state of the system. (d) Diagrammatic representation of the three
contractions for S̃22 with all indices dropped.

to find

G̃ i f
11 =

∑
κ

|Vi f κ |2〈cκc−κ〉
(εκ + δχi f )2 + η2

,

G̃ i f
20 = δi f

1

2iη

∑
mκ

|Vimκ |2〈cκc−κ〉
εκ + δχim + iη

, G̃ i f
02 = (

G̃ i f
20

)∗
, (91)

that we display in Fig. 12(a) (recall δχnm ≡ χn − χm). The G̃11

diagrams are associated with a sequential tunneling event, see
Fig. 12(b), where a particle tunnels in or out of the system.
The G̃20 and G̃02 diagrams on the other hand are associated
with probability conserving events, see Eq. (78), where an
excitation tunnels back and forth between the system and
the environment along one of the Keldysh branches, with the
setup finally returning to the initial state. Note that in our
discussion, we will alternate between the superoperators S̃ , G̃
and their matrix elements S̃ i f , G̃ i f , according to convenience.

We substitute Eq. (91) into Eqs. (74) and (76) to compute
explicit values for the second-order Pauli STCL (equivalently,

Fermi’s golden rule) rates. We recall that κ = (λκ, kκ ) to con-
vert the sum over momentum kκ in Eq. (91) into an integral
over energy ∑

κ

→
∑

λ

∫
dεDλ�λ(ε), (92)

while maintaining the sum over discrete degrees of freedom λ.
The density of states Dλ�λ(ε) associated with λ is composed
of two parts. The first Dλ is energy independent and is a
typical scale of the density of states, while the second �λ(ε)
is a dimensionless function that encodes the dependence on
energy.

Furthermore, we evaluate the expectation value of the
(fermionic) environment operators using (86) and introduce
the real and dimensionless spectral function

Cλ(ε) = �λ(ε)nF(ε − μλ, Tλ). (93)

We can then write the second-order Pauli STCL (Fermi’s
golden rule) rates in the form

S̃ i f
2 = 2π

h̄

∑
λ

|Vi f λ|2DλCλ(δχ f i )

− 2π

h̄
δi f

∑
mλ

|Vimλ|2DλCλ(δχmi ), (94)

which is the sum of the three diagrams shown in Fig. 12(d).
The first term (S̃11) describes sequential tunneling and is
identical to the rates obtained from Fermi’s golden rule. The
second term

S̃ i f
20 + S̃ i f

02 = −δi f

∑
m

S̃ im
11 (95)

is a manifestation of conservation of probability, see Eq. (78).
The explicit rates for the lowest-order full (as opposed to
Pauli) STCL for quadratic environments is not required for
our discussion but can be found in Ref. [63].

2. Co- and pair-tunnelling

Fourth-order processes are those that arise from matrix
elements with ν + μ = α = 4. In contrast to the T -matrix
rates R̃4 ∼ 1/η associated with the same physical processes,
the STCL rates S̃4 ∝ η0 are convergent in the limit η → 0. We
start by computing Pauli STCL co- and pair-tunnelling rates
S̃22, before moving to the rates S̃31 and S̃13 which renormalize
the lower-order sequential-tunneling rate S̃11 from Fermi’s
golden rule. We avoid computing the rates S̃40 and S̃04, as
they are merely a manifestation of conservation of probability
(78).

The matrix elements

G̃ i f
22 =

∑
nm�κ

Vinκ1Vn f κ2Vf mκ3Vmiκ4(
δχi f + εκ1 + εκ2

)2 + 4η2

×
〈
cκ1 cκ2 cκ3 cκ4

〉
(
δχin + εκ1 − iη

)(
δχim − εκ4 + iη

) (96)

required to compute S̃22, contains two occurrences of the
perturbation on each of the Keldysh branches. We combine
Eq. (96) with the contractions (88) to obtain the matrix
elements of the superoperators G̃22a, G̃22b, and G̃22c, see
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Fig. 13(a). These matrix elements correspond to new pro-
cesses beyond sequential tunneling, where the initial and final
state differ by an even (possibly 0) number of particles. Co-
and pair tunnelling arise from the diagrams G̃22a and G̃22b, see
Fig. 13(b). In a cotunnelling process, an electron or hole tun-
nels onto the system while at the same time a second particle
of the same kind tunnels out of the system. These two particles
may originate from the same or different reservoirs, and a
cotunnelling process may change the system state, but not its
charge. If the initial and final system states are identical such a
process is termed elastic cotunnelling. A pair-tunnelling pro-
cess on the other hand, occurs when two electrons (or holes)
from the same or different reservoirs simultaneously tunnel
into the system, thus changing the state and charge of the
system. The G̃22c diagrams gives rise to processes where two
particles (electrons or holes), one on each Keldysh branch,
tunnel in and out of the system, leaving the environment
unchanged, see Fig. 13(c). The rates S̃22c associated with these
processes vanish, as we show in Eq. (105).

Noncrossing co- and pair tunnelling. We first consider the
type a Wick contraction from Eq. (88). We note that the
associated T -matrix co- and pair-tunnelling rates, evaluated
by substituting Eq. (75) into Eq. (96) for the a contraction,

scale as

R̃i f
22a = 4η

h̄
G̃ i f

22a ∝ 1

η
+ O(η0), (97)

and thus diverge in the limit η → 0 [65]. On the other hand,
combining the recurrence relation (74) for the STCL with the
same contraction provides us with the rates

S̃ i f
22a = 4η

h̄
G̃ i f

22a − 2η

h̄

∑
m

G̃ im
11 G̃

m f
11 ∝ η0, (98)

which contains corrections from two consecutive sequential-
tunnelling events G̃ im

11 G̃
m f
11 , see Fig. 13(d). These corrections

cancel the diverging part of (97) and leave the Pauli STCL
rates S̃ i f

22a convergent in the limit η → 0. Diagrammatically,
corrections due to products of lower order occur whenever a
diagram for G̃ can be cut vertically without slicing a contrac-
tion line.

We substitute the matrix elements G̃ i f
22a [combining

Eqs. (96) and (88)] and G̃ i f
11 from (91) into Eq. (98), transform

the sums over momenta to integrals over energy and assume
constant density of states (92). We then evaluate the expecta-
tion values (86) for environment operators and take the η → 0
limit to obtain the expression

S̃ i f
22a = 2π

h̄

∑
n �= m
λ1λ2

Vinλ1Vn f λ2Vf m−λ2Vmi−λ1

δχnm
Dλ1 Dλ2

[
I−
λ1λ2

(δχin, δχ f n) − I+
λ1λ2

(δχim, δχ f m )
]

(99a)

+ 2π

h̄

∑
m

λ1λ2

∣∣Vimλ1

∣∣2∣∣Vm f λ2

∣∣2
Dλ1 Dλ2∂χm�I+

λ1λ2
(δχim, δχ f m) (99b)

+ 2π

h̄

∑
m

λ1λ2

∣∣Vimλ1

∣∣2∣∣Vm f λ2

∣∣2
Dλ1 Dλ2�

[
Cλ2 (δχ f m)∂χi J

+
λ1

(δχim) + Cλ1 (δχmi )∂χ f J
+
λ2

(δχm f )
]
, (99c)

with dimensionless integrals I and J defined in Eqs. (100) and
(101). To arrive at this formula, several lengthy but straight-
forward steps are required. These are outlined in detail in
Appendix B. Eq. (98) is a typical example of the subtraction
of reducible contributions (53), where two canceling diverging
terms in 1/η appear (one from G̃22a and one from the product
G̃11G̃11). In the course of this calculation, we have expanded
the expressions in Eq. (99) as Laurent series in η before taking
the η → 0 limit; in doing so, we have replaced the derivatives
with respect to η arising from this expansion by derivatives
with respect to χ .

The first line (99a) in the cotunnelling rate S̃ i f
22a is a con-

vergent contribution which is attributed to tunneling through
two different system states n �= m on each of the Keldysh
branches, see Fig. 13(a). The same contribution appears in the
T -matrix rate R̃i f

22a. The second and third lines (99b) corre-
spond to a co- or pair-tunelling process where the intermediate
states on both Keldysh branches are the same, i.e., n = m. The
second line coincides with the contribution obtained in the
T -matrix approach using the phenomenological regularization
scheme developed in Ref. [60], see Ref. [63]. The third line

(99c) contains additional corrections which are of the same
order as (99b) but are missing in the regularization of
Ref. [60], see also Refs. [43,59,62,79]. For a detailed discus-
sion comparing Eqs. (99) to the corresponding result using the
SRT approach, we refer the reader to Ref. [63].

In Eqs. (99), we introduced two dimensionless integrals
I and J . To evaluate them, we assume constant densities of
states �λ(ε) = 1 for each environment degree of freedom and
further assume a constant temperature T across the entire
environment in the distant past. Under these assumptions, the
first integral I is (see Appendix C)

I±
λ1λ2

(δ1, δ2) = lim
η→0

∫
Cλ1 (ε − δ1)Cλ2 (δ2 − ε)

ε ± iη
dε

= nB

(
δ2 − δ1 − μλ1 − μλ2

)[
nψ

(∓δ2 ± μλ2

)
− nψ

(∓δ1 ∓ μλ1

)]
, (100)

where nB is the Bose-Einstein distribution at temperature T
and nψ (δ) = ψ (1/2 + iδ/2πT ) is a generalized distribution
in terms of the digamma function ψ . Note that, the latter is re-
lated to both the Fermi-Dirac and Bose-Einstein distributions,

023127-17



FERGUSON, ZILBERBERG, AND BLATTER PHYSICAL REVIEW RESEARCH 3, 023127 (2021)

see Appendix C. Furthermore, we have dropped the explicit
dependence on temperature T in all distribution functions nA,
as we assume all temperatures in the setup to be equal. The
second integral J is (see Appendix C)

J±
λ (δ) = lim

η→0

∫
nF(ε − δ − μλ)

ε ± iη
dε

= ∓iπnF(−δ − μλ)+ �nψ (δ + μλ)

+ ln(�λ) + O
(
�−1

λ

)
, (101)

where �λ is an ultraviolet cutoff for the continuum variable
k in the environment reservoir λ. Typically, in electronic sys-
tems, this is the bandwidth of the Fermi reservoirs. Due to
the derivatives with respect to χ acting on the integrals J in
Eq. (99c), the ultraviolet cutoffs do not affect the rates S̃22a in
the wide band limit � → ∞, see Appendix C.

Crossing co- and pair tunnelling. Next, we consider the b
contraction, see Eq. (88), which we combine with Eqs. (74)
and (75) to obtain

S̃ i f
22b = R̃i f

22b = 4η

h̄
G̃ i f

22b. (102)

This process includes crossing contraction lines, see Fig. 13,
and thus depends on the particle statistics (in the present
case fermions). For the b contraction it is not possible to
cut the G̃22b diagram vertically without cutting a contraction
line, see Figs. 13(a) and 13(d). Thus there are no corrections
from second-order products in Eq. (102) and the associated
T -matrix, STCL, and SRT rates are identical and convergent
as η → 0. Combining Eqs. (96), and (102), the evaluation of
this term yields

S̃ i f
22b = 4η

h̄
G̃ i f

22b = 2π

h̄

∑
mnλ1λ2

Vinλ1Vn f λ2Vf m−λ1Vmi−λ2

δχm f + δχni

[
I−
λ1λ2

(δχin, δχ f n) − I−
λ1λ2

(δχm f , δχmi )
]
. (103)

No tunnelling. We now turn to the third contraction c for the
rates associated with G̃22. These are associated with processes
that do not change the state of the environment. Substituting
the contraction c into the expression for the matrix elements
of G̃22, see Eq. (96), we find that the associated T -matrix rates
(75) scale as

R̃i f
22c = 4η

h̄
G̃ i f

22c ∝ δi f

η
+ O(η). (104)

This expression diverges in the η → 0 limit for equal initial
and final states and vanishes otherwise. It therefore does not
contribute to the rate equation (or current rates see Sec. VI)
and was therefore discarded in the phenomenological regular-
ization scheme of Ref. [60]. The corresponding STCL rates,
see Fig. 13(d), are properly regularized,

S̃ i f
22c = 4ηG̃ i f

22c − 4ηδi f G̃ ii
20G̃ ii

02 ∝ η, (105)

and vanish in the η → 0 limit, further justifying the omission
of R̃i f

22c in Ref. [60].
The two contributions S̃22a and S̃22b to the STCL rates

are associated with co- and pair-tunnelling, which are distinct
from the sequential-tunnelling process at second order. In
the following, we study further contributions at fourth order,
that renormalize the lower-order rates and are interpreted as
virtually assisted sequential tunneling. These contributions
arise from the G̃31 and G̃13 superoperators (65) and are as
important as the cotunnelling rates (99) and (103) in an
exact expansion.

3. Virtually assisted sequential tunnelling

We now compute the virtually assisted sequential-
tunnelling rates S̃31 and S̃13 in the Pauli STCL master
equation, see Eqs. (74) and (76). To this end, we use our

diagrammatic rules for G̃ from Sec. V A to write

G̃ i f
31 =

∑
nm�κ

Vi f κ1Vf nκ2Vnmκ3Vmiκ4(
δχi f + εκ1 − iη

)(
δχi f + εκ1 + 3iη

)
×

〈
cκ1 cκ2 cκ3 cκ4

〉
(
δχin − εκ3 − εκ4 + 2iη

)(
δχim − εκ4 + iη

) , (106)

with G̃ i f
13 = G̃ i f ∗

31 . We combine (106) with the contractions
(88) to obtain the three propagators G̃31a, G̃31b, and G̃31c, see
Figs. 14(a) and 14(b), which can be understood as sequential-
tunnelling processes where one of the Keldysh branches takes
an indirect path to the final state. We use the recurrence rela-
tion (74) and the contractions (88) to obtain

S̃ i f
31a = 4η

h̄
G̃ i f

31a − 2η

h̄
G̃ i f

11G̃ ii
20, (107a)

S̃ i f
31b = 4η

h̄
G̃ i f

31b, (107b)

S̃ i f
31c = 4η

h̄
G̃ i f

31c − 2η

h̄
G̃ i f

11G̃
f f
20 , (107c)

see Fig. 14(c). For each contraction w there is a w′ such that
S̃ i f

13w = S̃ i f ∗
31w′ . For the 31 ↔ 13 diagrams the pairs (w,w′) are

(a, c), (b, b), and (c, a). As for S̃22b (102), the b contraction
(107b) does not involve products of the lower-order terms as
this diagram cannot be split. The explicit calculations of the
rates (107) involve similar methods as the calculation of the
cotunnelling rates S̃22 and can be found in Appendix B.

We have now computed all fourth-order rates that are as-
sociated to physical processes. The remaining fourth-order
contributions S̃40 and S̃04 ensure conservation of probability.
Their sum can be obtained from the superoperators S̃22, S̃31,
and S̃13 or calculated explicitly as for the other fourth-order
rates. We take the former route though, for completeness, we
now briefly discuss the general structure of S̃40 and S̃04.
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FIG. 14. Virtually assisted sequential-tunnelling processes.
(a) Fourth-order diagrams for G̃31. (b) Illustration of the physical
processes associated with the diagrams in (a): a particle or
antiparticle (black dot) tunnels into (full arrow) the system on each
of the Keldysh branches. Simultaneously, a second (anti) particle
(white dot) enters (dotted arrow) the system before returning to the
environment (along the upper Keldysh branch). These processes
renormalize the sequential tunneling (94) and are thus often ignored
[61]. (c) Diagrams for S̃31.

4. Probability conservation at fourth order

The probability conserving processes at fourth order in-
volve the propagator

G̃ i f
40 = δi f

∑
nmo�κ

Vioκ1Vonκ2Vnmκ3Vmiκ4

(4iη)
(
δχio + εκ1 + 3iη

)
×

〈
cκ1 cκ2 cκ3 cκ4

〉
(
δχin − εκ3 − εκ4 + 2iη

)(
δχim − εκ4 + iη

) , (108)

with G̃ i f
04 = G̃ i f ∗

40 , see Fig. 15(a). Combined with the contrac-
tions (88), the matrix elements (108) correspond to physical
processes where the system goes through three intermediate
states on one of the branches of the Keldysh contour, before
returning to the initial state. This can be thought of as two
particles, that tunnel in and out of the environment only to
return to the original state, see Fig. 15(b). We combine these
fourth-order terms with the pairs of second-order terms ac-
cording to the recurrence rule (66), see Fig. 15, to obtain

S̃ ii
40a = 4η

h̄
G̃ ii

40a, (109a)

S̃ ii
40b = 4η

h̄
G̃ ii

40b, (109b)

S̃ ii
40c = 4η

h̄
G̃ ii

40c − 2η

h̄
G̃ ii

20G̃ ii
20, (109c)

FIG. 15. Probability conserving diagrams Sα0 at fourth order
α = 4. (a) Fourth-order diagrams for G̃40. These terms each contain
a Kronecker delta, which enforces identical initial (i) and final ( f )
system states. (b) Illustration of processes described by the diagrams
in (a) resembling those for G̃22c in Fig. 13(c), except for the fact that
now the entire setup, rather than just the environment, initial and final
states must be the same. The different diagrams in (a) correspond to
different time orderings of the events in (b). (c) Diagrams for S̃40.

where we note that S̃ i f
40w = δi f S̃ ii

40w for each contraction w.
Instead of computing the terms in (109), we make use of the
conservation of probability (78) to compute the sum

S̃ i f
40 + S̃ i f

04 = −δi f

∑
m

(
S̃ im

22 + S̃ im
31 + S̃ im

13

)
. (110)

5. Steady-state system probability distribution

We now have all expressions needed for the computation of
the Pauli STCL rates up to fourth order. The latter then give
us access to the steady-state probability distribution

Pn =
∞∑

α=0

P(2α)
n , (111)

of finding the system in state |n〉. Here, P(2α)
n denote the

contributions of order 2α to the probabilities Pn (with odd
terms vanishing, see Fig. 11). This is the first observable
quantity that we can compute and showcases the strength of
the STCL. We insert the formal expansions for Pn and S̃nm

into the steady-state condition (42) and solve it order by order
(all odd orders vanish) to obtain the conditions

0 =
∑

n

S̃nm
2 P(0)

n , (112a)

0 =
∑

n

(
S̃nm

4 P(0)
n + S̃nm

2 P(2)
n

)
. (112b)
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FIG. 16. Noninteracting lead-dot-lead setup and processes.
(a) The setup involves two reservoirs/leads at temperature T and
chemical potentials ±μ/2, that are connected by a hopping ampli-
tude J/

√
2 to a single noninteracting fermionic mode (the dot-level)

with energy ε0, see the discussion around Eqs. (113)–(115). (b) Ad-
dition spectrum of relevant processes at equilibrium, combining two
reservoirs into a single one (grey shaded area). In a sequential tunnel-
ing process, a particle (or hole) enters the system (thin full arrow) and
leaves a hole (particle) behind. In the probability conserving trivial
processes (S̃20 and S̃02), a particle (or hole) visits the environment
(dotted arrow) and returns back. A fourth order, virtually assisted
sequential tunneling combines the two preceding processes coher-
ently. (c) Cotunnelling process in an out-of-equilibrium setup. A
particle or hole exits the system on one side, while another enters on
the other (or same) side. This process leaves the system unchanged
and its contribution to probabilities is compensated by a probability
conserving rate (110).

In order to test our scheme and for illustration, we calculate
the STCL rates up to fourth order for a noninteracting model
and compare the results of Eq. (112) with the expansion of the
exact solution.

C. Noninteracting system

In noninteracting setups, the steady-state probability distri-
bution of the system states and current between the reservoirs
through the system can be computed exactly, e.g., using equa-
tions of motion for Green’s functions or scattering matrices
[21,82–84], see also Appendix D. The noninteracting setup,
see Fig. 16(a), is thus an ideal platform to test the STCL.

1. Setup

The noninteracting resonant level, i.e., a single fermionic
level (or quantum dot) coupled to Fermi leads, see Fig. 16, can
be realized in gate-defined electronic devices, see Fig. 1(a).
Its Hamiltonian is composed of the same three parts as our
generic model in Sec. III A with a quadratic environment as
described in Sec. V, see Fig. 16(a) for a sketch. The system
involves a single fermionic mode (with energy ε0) and is

described by the Hamiltonian

H NI
sys = ε0 d†

0 d0 , (113)

where d†
0 (d0 ) creates (annihilates) an electron in the system.

The environment is composed of left (l = L) and right (l = R)
leads and is described by

H NI
env =

∑
l,k

εk c†
lkclk, (114)

where c†
lk (clk) creates (annihilates) a particle with momentum

k and energy εk in lead l . The left and right environments are
assumed to be at the same temperature T and have chemical
potentials μ/2 and −μ/2, respectively, with the total bias
given by μ. The system–environment coupling is given by the
tunneling Hamiltonian

V NI = J√
2

∑
l,k

(d†
0 clk + c†

lkd0 ), (115)

that couples the system to each reservoir in the environment
with hopping amplitude J/

√
2. We choose this tunneling am-

plitude such that in the case μ = 0 the setup is equivalent to a
single mode coupled to a single reservoir with amplitude J .

2. Diagrams

We consider the STCL rates up to fourth order in the per-
turbation, including the expressions (94) for Fermi’s golden
rule, co- and pair tunnelling (99), (103), (105), virtually as-
sisted sequential tunneling (B13)–(B15), and the fourth-order
probability conserving rates (110), see Fig. 16. As there are
only two system states for the noninteracting level, empty
|0〉 or full |1〉, there are only a small number of diagrams
contributing to the STCL rates, see Fig. 17. The sequential
tunneling rates S̃11, familiar from Fermi’s golden rules change
the occupation of the dot from full (|1〉) to empty (|0〉) or vice
versa, see Figs. 16(b) and 17(a). During a virtually assisted
sequential-tunnelling process, an (anti) particle is removed
from the environment and changes the system state on both
Keldysh branches, while another (anti) particle is removed
from the environment before returning on one of the two
Keldysh branches, see Figs. 16(b) and 17(b). There are only
elastic cotunnelling rates in the noninteracting setup, i.e., rates
that leave the system unchanged and therefore do not con-
tribute to the rate equation (42), see Figs. 16(c) and 17(c).
These elastic processes do, however, contribute to the steady-
state current through the system as we will see in Sec. VI C.

3. Equilibrium

We start with the equilibrium situation μ = 0. In the steady
state, the exact probability P1 of the level being occupied is
[85] (see also Appendix D)

P1 = 1

2
+ 1

π
�ψ

(
1

2
+ 
0 − 2iε0

4πT

)
, (116)

where we have introduced the width 
0 = 2π |J|2D. The exact
probability (116) can be expanded in powers of V ∝ J , or
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(a)

(b)

(c)

S̃01
11 =

2η
01

01

S̃00
22a =

4η −2η
0

0

1

1

0

0

0

0

0

0

1

1

S̃01
31a =

4η

S̃01
31c =

4η

−2η
0

0

101

1

0 0

0

11

1

−2η
0

0

101

1

0 0

0

11

1

FIG. 17. Relevant diagrams for the noninteracting setup.
(a) STCL diagram for a sequential tunneling event, where an electron
from the environment enters the system, changing the latter from
empty |0〉 to full |1〉. (b) STCL diagram for virtually assisted sequen-
tial tunneling events where an electron from the environment enters
the system. Simultaneously this electron leaves and returns to the
environment (potentially in a different location). The b contraction
does not contribute for the noninteracting setup. (c) Diagram for an
elastic cotunnelling rate, where an electron enters the system before
leaving again. These rates do not contribute to the rate equation as
they leave the system invariant (elastic process) and are compensated
by a probability conserving rate (110). They do however contribute
to the current as we will see in Sec. VI. As for the virtually assisted
processes, the b contraction does not contribute to the noninteracting
setup rates, while the S̃22c contributions always vanish.

equivalently 
0 ∝ |J|2 as odd terms vanish, and thus serves as
a benchmark for the STCL results, which we now compute.

We insert the model (113)–(115) into our expressions for
the sequential rates (94) and obtain

S̃01
2 = 
0nF(ε0)/h̄, S̃10

2 = 
0nF(−ε0)/h̄, (117)

where the temperature in the Fermi-Dirac distribution nF is
implicit. These rates are familiar from Fermi’s golden rule
and correspond to an electron entering (leaving) the sys-
tem on both the upper and lower Keldysh branches, see
Fig. 17(a). The second-order diagonal elements of the rate ma-
trix S̃00

2 = −S̃01
2 and S̃11

2 = −S̃10
2 are obtained directly from

the conservation of probability (77). We solve the lowest-
order steady-state constraint (112a) and obtain

P(0)
1 = nF(ε0), P(0)

0 = nF(−ε0), (118)

where P(0)
1 (P(0)

0 ) is the zeroth-order probability of finding the
system in the occupied (empty) state |1〉 (|0〉). At this order,
the results of the STCL and T -matrix approaches coincide and
both give rise to the same result as the one obtained from
Fermi’s golden rule (118), see Fig. 18(a). Furthermore, the
result coincides with the expansion of the exact result (116),
see Appendix D. For an infinitely sharp noninteracting level,
the result (118) is exact, however, the coupling to the environ-

1

0

P
(0)
1

P
(2)
1

P
(0)
1 + P

(2)
1P1

0/T−5 50

P ex
1exact expansion

FIG. 18. Probability P1 of finding the noninteracting single level
occupied, see Eqs. (116), (118), and (120). The lowest order (blue
dashed), and first correction (green dotted), for 
0/T = π were cal-
culated with the STCL. The corresponding (blue and green) crosses
are obtained from an expansion of the exact result and must coincide
with any formally exact method. For completeness we show the sum
of the first two terms (black dotted-dashed) and the exact result (full
black).

ment broadens the levels [21], which manifests at fourth order
in the rates.

At fourth order, there are three types of rates, see Figs. 13–
15. The virtually assisted sequential tunneling rates S̃31 and
S̃13, change the configuration of the system, see Fig. 17(b).
We use the formulas (B13)–(B15) in Appendix B to com-
pute the virtually assisted sequential-tunnelling diagrams, see
Fig. 17(b), for the noninteracting setup. We obtain the fourth-
order correction

S̃01
4 = − 
2

0

4π2h̄T
�ψ ′

(
1

2
+ i

ε0

2πT

)
, (119)

to the rate for changing the system state from empty to oc-
cupied, where ψ ′ is the trigamma function. The rate S̃10

4 for
the reverse process can be found by replacing ε0 → −ε0 in
Eq. (119). The probability conserving (S̃40 + S̃04) rates at
fourth order are again found by enforcing Eq. (78). We insert
(119) and (117) into the constraint (112) for the next-to-
leading order steady-state probability distribution correction
P(2) and obtain

P(2)
1 = 
0

4π2T
�ψ ′

(
1

2
− i

ε0

2πT

)
, (120)

as well as P(2)
0 = −P(2)

1 as required by conservation of proba-
bility. The expression (120), is identical to the one obtained
from an expansion of the exact result (116) and is plot-
ted in Fig. 18 for the specific case 
0/T = π . The result
(120) decays as ∝ 
0/ε0 for large onsite energies (such that
ε0 exp(−ε0/T ) � 
0) and thus embodies the broadening of
the level due to its coupling to the environment, see, for
example, Refs. [21,85] for a detailed overview.

We conclude that the STCL approach provides a useful tool
to perturbatively compute the steady-state distribution of open
systems. It defines a time-local master equation with proper
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rates S̃ i f that are convergent in the η → 0 limit. In a next step,
we take the setup out of equilibrium μ �= 0 and investigate the
current flowing through the system.

VI. CURRENTS

The most common transport observable in mesoscopic re-
search is the electrical current [20,22,86–88], where electric
charge is flowing in or out of leads attached to the system.
Other types of currents can be defined that are associated with
the environment reservoirs, e.g., in the case of a spin-full elec-
tronic system, each lead l is further split into two reservoirs
r = l, σ by the spin degree of freedom σ . It is then possible
to consider both electrical and spin currents. Here, we ex-
tend the diagrammatic formulation of the STCL rates S from
Secs. IV and V to include current flow out of equilibrium.

A. Definition and derivation

In our discussion, we consider currents to (from) the
reservoirs that contain a mean number of particles Tr(ρNλ),
where

Nλ =
∑

k

cλkc−λk, (121)

denotes the reservoir number operator and we use λ = +r,
and −λ = −r (with the + describing particles) instead of just
r to keep the notation compatible with previous sections. The
particle current ∂t Tr(ρNλ) can always be thought of as an an-
tiparticle current flowing in the other direction ∂t Tr(ρN−λ) =
−∂t Tr(ρNλ). Furthermore, the particle currents ∂t Tr(ρNλ) in
and out of the different reservoirs, multiplied by the charge q
carried by each particle, give rise to physical and measurable
currents Iλ. For electrical currents, the charge of each particle
(electron) is −e, with the elementary charge e, while for spin
currents the ‘charge’ of each particle is ±h̄/2, depending on
the reservoir, i.e., the charge qr may depend on the reservoir
(or even the momentum k in the case of a heat current). This
leads us to define the charge operator

Qλ = qλNλ, (122)

which is the charge operator associated with the reservoir λ

and the single particle charge qλ. Note that the number (and
charge) operators commute with the unperturbed Hamiltonian
[H0, Nλ] = 0. In fact, our considerations apply for any en-
vironment operator Qenv that satisfies [Qenv, Henv] = 0. This
criterion, allows us to unambiguously promote the operator
Nλ to a superoperator when desired, see Appendix E. Further-
more, the vanishing commutator [H0, Nλ] = 0 implies that no
currents flow when the system and environment are decou-
pled, i.e., when the Hamiltonian V → 0 vanishes.

The current Iλ(t ) is defined as the time derivative of the
expectation value of the charge

Iλ(t ) = Tr[Qλ∂tρ(t )], (123)

where the density matrix ρ describes the coupled system–
environment setup. Working in the Schrödinger picture, the
time derivative acts solely on ρ(t ). An alternative path, par-
ticularly common in the RT approach, uses the Heisenberg

equation of motion, and thus [H, Qλ] to encode the time
dependence with a static ρ.

In the limit η → 0 and t0 → −∞, the system is in the
steady state at t ≈ 0 (∂tρp = 0), though out-of-equilibrium
with a finite current flow across the system (∂tρ �= 0). The
large environment inhibits a direct solution of Eq. (123), cf.
the similar challenge in solving the von Neumann equation
(4). Ostensibly, we would like to replace ρ by the projected
density matrix ρp in Eq. (123). However, the latter does not in-
clude the evolution of the environment as it has been projected
out, i.e., Tr[Qλρp] = Q0

λ is constant for all ρp. Furthermore,
the projected space has reached the steady state ρ̄p for t ≈ 0
and therefore does not encode any dynamics. Either of the
latter two arguments is sufficient to show that a simple sub-
stitution ρ → ρp in Eq. (123) leads to vanishing currents and
contains no information

∂t Tr[Qλρp(t )] = 0 = ∂t Tr[Qλρ̄p]. (124)

The determination of currents thus starts from the full
density matrix ρ which includes the nontrivial evolution of
the environment. Even though the projected space has reached
a steady state, the full setup has not. Common treatments of
currents (as in the T -matrix approach) rely on transition rates,
in the form of a rate matrix, acting on steady-state populations
[21]. These transition rates change the environment charge
and produce finite currents into and out of the reservoirs. In
the following, we obtain a similar description for the STCL.
Specifically, we find a set of current rates Sλ, such that

Iλ = qλTr[Sλ(0, η)ρ̄p], (125)

where we add the reservoir index λ to the generator; we will
show below that the rates Sλ can be obtained directly from the
STCL rates S by filtering/weighting different processes.

1. The current generator Sλ

We follow a similar program as in the derivation of the
STCL generator S in Sec. III D. First, we construct the full
density matrix at time t from the projected one at time t0
using the evolution U from Eq. (23). We then use the inverse
projected evolution (50) to obtain the full density matrix at
time t from the projected one at the same time

ρ(t ) = Uρp(t0) = UU−1
P ρp(t ). (126)

Here, U−1
P = U−1

0 (I + G)−1 propagates the projected density
matrix ρp(t ) back in time to t0, where ρp(t0) = ρ(t0), cf.
Eqs. (32) and (50). The full density matrix ρ(t ) is then forward
propagated using the time evolution U . Note that, unlike in
Sec. III, we do not immediately apply the projector again once
we arrive at time t .

We substitute (126) into Eq. (123) to obtain a time-local
expression for the currents in terms of the projected density
matrix

Iλ = ∂t Tr
[
PQλUU−1

P ρp
]
, (127)

where we used TrP = Tr, see Eq. (29), to insert a projector
before the trace and thus define the projected space superop-
erators PQλUU−1

P .
At this point, it seems that it were sufficient to compute

the matrix elements (PQλUU−1
P )i j f g, order by order in V ,
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to reconstruct the current Iλ. Unfortunately, these matrix ele-
ments diverge in the limit η → 0 (irrespective of the derivative
∂t ), even though the trace over them, and therefore the cur-
rent, is finite. We overcome this problem by a subtraction
of superoperators whose matrix elements diverge identically
to PQλUU−1

P but that vanish when traced. We will thus be
left with a set of convergent rates S i j f g

λ . Furthermore, we
will show that the resulting rates S i j f g

λ evaluated for quadratic
environments are obtained by adding a set of Kronecker deltas
to the diagrams used to compute the STCL rates S i j f g. This
filter in the calculation of diagrams implies that the currents
Iλ can be obtained with little additional effort as compared
with the determination of the distribution ρp.

The charge transfer propagator. As the current is the time
derivative of the expectation value of the charge, we can
subtract the (vanishing) time derivative of the charge at time
t0

∂t 〈Qλ〉(t0) = ∂t Tr
[
UQλU−1

P ρp
] = 0, (128)

where, different from (127), the charge operator Qλ is now ap-
plied prior to the forward propagation in time U . Subtracting
(128) from (127) we obtain

Iλ = qλ∂t Tr[Gλ(I + G)−1ρp], (129)

where we have used TrP = Tr to insert the projector P , made
use of the definition (50) of U−1

P , used [Qλ,U0] = 0, and
introduced the charge-difference propagator

Gλ = P
[
Nλ,UU−1

0

]
P . (130)

Physically, Eq. (129) can be understood as propagating the
projected density matrix ρp backward in time to the distant
past, before evolving it forward again. On the way forward,
the charge transfer propagator in Eq. (130) tracks the number
of particles in reservoir r that have been created minus the
ones that have been annihilated. This physical interpretation
of the propagator Gλ is commonly used in T -matrix calcula-
tions of currents [21].

Applying the derivative. We apply the time derivative ∂t

in Eq. (129), and use the simplification (60) (which is valid
at t0 → −∞). The expressions then all become time inde-
pendent in the limit η → 0 and we thus use the steady-state
projected density matrix to obtain

Iλ = qλTr[(G ′
λ + Ġλ)(I + G)−1ρ̄p]. (131)

Here, we have introduced the time-differentiated counterparts
G ′

λ and Ġλ of the charge transfer propagator Gλ. These two
terms are obtained via the expansion Gλ = ∑

α Gλα in com-
bination with G ′

λα = αηGλα/h̄ and Ġλ = −i[Gλ,L0]/h̄, in full
analogy to the steps in Eqs. (60)–(63) for the propagator G in
Sec. IV. Notice that Eqs. (131) and (125) are very similar, but
that the matrix elements

lim
η→0

[(G ′
λ + Ġλ)(I + G)−1]i j f g, (132)

of the projected space superoperator in Eq. (131) are not well
defined in the limit η → 0 (even though the current is), just as
was the case for (127). The easiest way to verify that (132)
is ill defined in the limit η → 0 is to evaluate the matrix
elements explicitly at fourth order, which can be done using
the methods developed in Sec. V and Appendix B.

Adding zero. In order to obtain convergent rates, we add
a compensating term to Eq. (131), that vanishes when traced
over, but contains divergent matrix elements that cancel the
diverging part of Eq. (132). In Eq. (131), the projected space
superoperators that propagate backwards (I + G)−1 do not
contain any occurrences of Nλ, whereas those that propa-
gate forward with G ′

λ + Ġλ do. This asymmetry between the
backward and forward propagation is the root causing the di-
verging matrix elements (132). We therefore add the vanishing
term

qλTr{(G ′ + Ġ)[(I + G)−1]λρp} = 0, (133)

to the current (127), where we have introduced the backward
charge transfer propagator

[(I + G)−1]λ ≡ −Gλ + GλG + GGλ − · · · (134)

It will become clear later, when adapting our diagrammatic
approach to the currents, how the term (133) regularizes the
matrix elements (132). To verify that Eq. (133) is indeed
vanishing, we rewrite G ′ and Ġ in terms of G using Eqs. (62)
and (63), and expand all occurrences of G in powers of V . All
of the resulting terms take on the form

Tr[GαAρp] = 0, (135)

where A is composed of a product of charge transfer propaga-
tors Gλβ and regular propagators Gβ . To verify that Eq. (135)
vanishes, we rewrite

Tr[GαAρp] = Tr
[
UαU−1

0 PAρp
]
, (136)

where we used TrP = Tr, see Eq. (29). We then use the invari-
ance of the trace of an operator under unitary transformation
to write

Tr[UA] = TrA = Tr[U0A], (137)

with A an arbitrary operator and Tr[UA] = Tr[UAU †] and
similarly for U0. Expanding U in powers of V in Eq. (137)
we then immediately obtain Tr[UαA] = 0 for α �= 0. Defining
the operator A = U−1

0 PAρp then tells us that Eq. (135) holds
true.

We sum Eqs. (131) and (133), expand the result in V , and
compare it order by order with (125). We thus arrive at the
series expansion for the STCL current generator

Sλα ≡G ′
λα + Ġλα −

α−1∑
β=1

[SλβGα−β + (G ′
β + Ġβ )Gλα−β ],

(138)

which can be used to reconstruct the STCL current generator

Sλ =
∑

α

Sλα. (139)

The expansion of the current generator (138) is very similar
to the expansion (61) for the STCL generator S but with
an additional regularising term in the sum. Constructing the
formally exact convergent current rates (138) is one of the
main results of this work.
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FIG. 19. Current generator Sλ. (a) The diagram for the charge
transfer propagator Gλνμ (142) involves the commutator of the num-
ber operator Nλ (open diamond) with the propagator UμU †

0 . As
a convention, we choose to place the commutator on the lower
branch; choosing the upper branch would lead to the same result.
(b) Diagramatic representation (black dot with open diamond) of the
commutator [Nλ,V ]. (c) The μ diagrams that each differ by one
commutator [Nλ,V ] from Gνμ. When summed, these μ diagrams
give rise to Gλνμ. (d) The Sλνμ diagrams, obtained by producing μ

copies of Sνμ, with each of the scattering events on the lower branch
replaced by a commutator [Nλ,V ].

2. Diagrammatics

We now develop a diagrammatic approach to compute the
(divergent) matrix elements of Gλνμ and thereof the (conver-
gent) matrix elements of Sλνμ. Here, as for Gνμ, the νμ indices
indicate the number of scattering events on the upper and
lower branches respectively, and thus

Gλ =
∑

α

Gλα =
∑

α

∑
ν+μ=α

Gλνμ, (140)

cf. Eq. (90). We insert the expansion (26) of U in terms of the
expansion (10) of the unitary evolution U into Eq. (130) and
obtain

G i j f g
λνμ = Trenv

[
Nλ 〈 f |Uν U †

0 |i〉 ρ0
env 〈 j|U0 U †

μ |g〉 ]
− Trenv

[ 〈 f |Uν U †
0 |i〉 Nλρ

0
env 〈 j|U0 U †

μ |g〉 ]
. (141)

Next, we use the cyclic nature of the trace and the fact that the
charge operator commutes with the unperturbed environment
distribution [Nλ, ρ

0
env] = 0, to obtain

G i j f g
λνμ =Trenv

[ 〈g| [Nλ,UμU †
0 ] | j〉†〈 f |Uν U †

0 |i〉 ρ0
env

]
, (142)

which is identical to G i j f g
νμ in Eq. (69) up to the commutator

with Nλ.
Diagrammatically, the commutator in Gλνμ is obtained by

taking the difference of two terms, where we insert Nλ to
the far left on one of the Keldysh branches, and the second
with Nλ inserted to the far right on the same Keldysh branch,
cf. Figs. 10(a) and 19(a). On the other hand, mathemati-
cally, we could deal with the commutator [Nλ,UμU −1

0 ] by
separately evaluating the two terms NλUμU −1

0 and UμU −1
0 Nλ

before subtracting them. Here, we make use of the struc-
ture of Uμ to simplify the commutator before performing
any explicit calculation. We insert the expansion (10) into
the commutator from (142) and obtain an expression of the
form [

Nλ,UμU −1
0

] = [Nλ,�0V �0V . . . �0V ], (143)

where �0 are the free propagators, see Eq. (15). The num-
ber operator Nλ commutes with the unperturbed Hamiltonian
H0 and therefore also with the free propagator [Nλ,�0] = 0,
allowing us to rewrite Eq. (143) as a sum of terms[

Nλ,UμU −1
0

] = �0[Nλ,V ]�0V . . . �0V

+ �0V �0[Nλ,V ] . . . �0V + · · ·
+ �0V �0V . . . �0[Nλ,V ], (144)

each with one occurrence of the perturbation V replaced by
the commutator [Nλ,V ], see Fig. 19(b). Diagrammatically,
Eq. (144) means that we go from Gνμ to Gλνμ by drawing μ

copies of Gνμ and replacing one of the system–environment
scatterings (V ) on the lower Keldysh branch by [Nλ,V ], see
Fig. 19(c). We could equivalently choose the upper Keldysh
branch and create ν copies, leading to the same final result.

Convergent matrix elements of Sλνμ. Thanks to the addi-
tion of the vanishing terms (133), the relationship between
Sλνμ and Sνμ is identical to the relation between Gλνμ and
Gνμ, cf. Figs. 19(c) and 19(d). Transforming from the usual
superoperator to the current (λ) superoperator, we again draw
μ copies of the diagram and replace scattering events V on
the lower branch with commutators [Nλ,V ] (without the van-
ishing terms (133), commutators [Nλ,V ] would only replace
scattering events to the left of the leftmost cut, see Fig. 20).
As the dependence on the slow switch-on parameter η lies
entirely within the unperturbed propagator �0, the exact form
of the scattering events does not influence the convergence in
the limit η → 0. Thus if the matrix elements S i j f g

νμ are finite,
the same will be true for the matrix elements S i j f g

λνμ of the
current generator.

3. Quadratic environment and Wick’s theorem

We now consider the specific case of quadratic environ-
ments with linear coupling, see Sec. V. Here, the commutator
[Nλ,V ] assumes a particularly simple form

[Nλ, cκ ] = (
δλλκ

− δλ−λκ

)
cκ , (145)

which can be thought of as a filter associated with the envi-
ronment operators cκ , see Figs. 21(a). Each contribution to
the filter is a Kronecker delta which constrains the discrete
degree of freedom λκ associated with a scattering event to
either λ or −λ. In the diagram for Gλ, we have to insert this
commutator subsequently for every scattering event on the
lower branch of Gλνμ, see Fig. 19(c). As a result, we obtain
a simple diagrammatic rule that takes us from G to Gλ via the
substitution〈

cκ1 . . . cκν+μ

〉 → δλ(λ1, λ2, . . . , λμ)
〈
cκ1 . . . cκν+μ

〉
, (146)
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FIG. 20. Diagrams for the current generator Sλνμ. These are

obtained by replacing the dashed area in Fig. 19 by diagrams with
different sets of cuts and prefactors according to the rules in Fig. 7.
Notice that the terms with a commutator (black dot and open dia-
mond) to the left of the leftmost cut arise from Eq. (129). On the other
hand, any diagram with a commutator to the right of the leftmost cut
arises from the term (133). These latter terms ensure that the matrix
elements of Sλνμ are convergent. Specifically they are a regularising
contribution to the corresponding diagram with no cuts. For example,
the right diagram in the third row of this figure is a regularising
contribution to the top right diagram, and would not exist without
the addition of the term in Eq. (133).

in the unperturbed environment correlator (84), with the filter-
ing function

δλ(λ1, . . . , λμ) ≡
μ∑

s=1

[
δλ−λs − δλλs

]
, (147)

and the shorthand notation λs ≡ λκs . The additional minus
sign when compared to Eq. (145) arises from the Hermitian
conjugation on the lower branch, see Fig. 4 in Sec. IV.

Wick’s theorem. The environment correlator (146) for the
charge transfer propagator Gλνμ is identical to the one for Gνμ,
Eq. (84), up to the prefactor δλ composed of a set of Kronecker
deltas for the discrete degrees of freedom λs associated with
the scatterings on the lower Keldysh branch. Hence, we can
apply Wick’s theorem in the same way as before and write
Gλνμ in terms of a sum over contractions with Wick index w,

Gλνμ =
∑
w

Gλνμw. (148)

As a further simplification, we note that the filters associated
with two contracted scattering events κs and κt on the lower
Keldysh branch, such that κs = −κt , vanish(

δλ−λs − δλλs + δλ−λt − δλλt

)〈
cκs cκt

〉〈. . .〉 = 0, (149)

(b)

(c)

(d)

λ
= − λ−λ

≡λ

+

(a)

...
κs = −κtλ

...
κs = −κt λ

κ

κ = (λκ, kκ)

= 0

κ κ

κ k

(λ, k)

Gνμw(λp, λq, ...) ≡
...

...
λp λq

FIG. 21. Charge difference propagator diagrammatics, for a
quadratic environment. (a) Diagrammatic representation of the com-
mutator [Nλ,V ]. Each commutator gives rise to two contributions,
where the discrete degree of freedom λκ is associated with Kronecker
deltas (small open squares) to the particle reservoir λ or antipar-
ticle reservoir −λ, see Eqs. (145) and (147). (b) Definition of the
constraining symbol (small open square). A constrained contraction
line only contains the specific discrete degree of freedom λ, i.e.,
the symbol acts as a Kronecker delta. (c) The commutators of two
terms contracted on the same Keldysh branch (s, t � μ) vanish, see
Eq. (149). As a result, only contractions that connect the upper and
lower Keldysh branches contribute to the charge difference. (d) Di-
agrams for the constrained propagator Gνμw (λp, λq, . . . ). All sums
over environment degrees of freedom (discrete and continuous) are
implicit except for the sums over the discrete part of contractions
that connect the upper and lower Keldysh branches (λp, λq, . . . ). Not
performing the latter allows us to obtain both Gλνμw and Gνμw from
Gνμw (λp, λq, . . . ), see Fig. 22.

see Fig. 21(c). Thus the only filters that contribute to Gλνμ are
those associated with contractions that connect the upper and
lower branch.

To unify the calculation of both Gλνμw and Gνμw, we
introduce the constrained propagator Gνμw(λp, λq, . . . ), see
Fig. 21(d). This constrained propagator is identical to the
propagator Gνμw except for the fact that the sum over discrete
degrees of freedom λp, λq, . . . associated to contractions that
connect upper and lower Keldysh branches are not performed.
Once Gνμw(λp, λq, . . . ) has been computed one can imme-
diately obtain either the charge difference propagator or the
usual propagator

Gλνμw =
∑

λp,λq,...

δλ(λp, λq, . . . )Gνμw(λp, λq, . . . ), (150a)

Gνμw =
∑

λp,λq,...

Gνμw(λp, λq, . . . ), (150b)

see Fig. 22. The relationships between the rates
Sνμw(λp, λq, . . . ), Sνμw and Sλνμw are identical to the
relationships between the corresponding propagators G (and
similarly for Pauli equivalents). This conclusion follows from
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...

...
λp λqGλνμw=

λp,λq,...

δλ(λp, λq, ...)

Gνμw =
λp,λq,...

...

...
λp λq1

FIG. 22. The filtering scheme that produces Gνμw and Gλνμw from
the constrained propagator Gνμw (λp, λq, . . . ). Of all the sums over
κ1, κ2, . . . κν+μ, we make explicit the sums over the discrete part
λp, λq, . . . of contractions that connect upper and lower Keldysh
branches, while all other sums (over discrete and continuous degrees
of freedom) are implicit.

equivalence of the rules for rates and propagators shown in
Figs. 19(c) and 19(d).

The filtering rules (146), (149), and (150) that distinguish
the Pauli rates S̃ i f from the current rates S̃ i f

λ are the same ones
that are commonly employed in T -matrix calculations [21,89]
or the RT approach [46] and provide an intuitive physical
description of the processes that contribute to currents: one
simply counts the change in the environment’s charge during
a process to identify its contribution to transport.

4. Steady-state currents between reservoirs

We proceed with the calculation of the steady-state current
Iλ flowing out of the reservoir λ using the current rates S̃nm

λα

and the steady-state probability distribution Pn as obtained
from the rates S̃nm

α in Sec. V. We remind the reader that we
work with the index λ > 0 instead of the reservoir index r in
order to keep the notation consistent. The Pauli equivalent to
(125), written in matrix element form, reads

Iλ = qλ

∑
nm

S̃nm
λ Pn. (151)

We expand this expression order by order and obtain

I (2)
λ = qλ

∑
nm

S̃nm
λ2 P(0)

n , (152a)

I (4)
λ = qλ

∑
nm

S̃nm
λ2 P(2)

n + qλ

∑
nm

S̃nm
λ4 P(0)

n , (152b)

which allows us, along with P(0)
n and P(2)

n from Eq. (112), to
compute the current from a reservoir λ in any setup with a
quadratic environment up to fourth order.

B. Current rates

We now apply the diagrammatic rules for the current gen-
erators, see Figs. 19–23, and obtain explicit expressions for
the associated current rates; the latter are closely related to the
Pauli STCL rates we computed in Sec. V.

Fermi’s golden rule. At second order, there are three dia-
grams S̃11, S̃20, and S̃02 for the STCL rates. The first of these
three is Fermi’s golden rule, while the latter two contributions
ensure conservation of probability (78). Summing up these
three terms gives rise to the second-order STCL contribution

λ1S̃11(λ1) =
2η

−2η
λ1 λ1

S̃31a(λ1) =
4η

−2η
λ1 λ1S̃31c(λ1) =

4η

λ1
S̃31b(λ1) =

4η

−2η
λ1λ2 λ1λ2S̃22a(λ1, λ2) =

4η

λ1λ2S̃22b(λ1, λ2) =
4η

FIG. 23. Constrained Pauli diagrams, up to fourth order, that
contribute to the current for quadratic environments and linear cou-
pling. S̃11(λ1): Sequential tunneling rates involving an environment
particle in reservoir λ1. The probability conserving rates S̃20 and S̃02

do not contribute to the current as the two vertices lie on the same
Keldysh branch and thus the initial and final environment states are
the same, see Fig. 21(c). S̃31(λ1): The virtually assisted sequential
tunneling diagrams that contribute to the current. These rates only
have one leg connecting the upper and lower branches and therefore
only one constrained environment index λ1. S̃22(λ1, λ2): The co- and
pair-tunnelling diagrams that contribute to the current. Note that each
leg that connects the upper and lower branches counts once, leading
to two contributions per diagram.

S̃2. The current rates S̃ i f
λ only contain contributions from con-

strained diagrams that connect the upper and lower Keldysh
branches. At second order, there is only one such diagram
S̃2(λ1) = S̃11(λ1), see Fig. 23(a). We compute the constrained
diagram for Fermi’s golden rule rates by not performing the
discrete environment sum in Eq. (94) and obtain

S̃ i f
11(λ1) = 2π

h̄

∣∣Vi f λ1

∣∣2
Cλ1 (χ f − χi ). (153)

We then use the filtering scheme (150) to obtain the second-
order current rates

S̃ i f
λ2 = 2π

h̄
|Vi f λ|2Cλ(δχ f i ) − 2π

h̄
|Vf iλ|2C−λ(δχ f i ), (154)

which describes sequential tunneling where a particle of
type λ tunnels out of (first term) or into (second term) the
environment.

Fourth order. At fourth order, there are three types of
constrained contributions, S̃31(λ1), S̃13(λ1), and S̃22(λ1, λ2).
The first two contain exactly one contraction that connects
the upper and lower branch, irrespective of the Wick index
w, see Fig. 23. These three diagrams are identical to the ones
for S̃31w or S̃13w, except for the fact that we do not sum over
the discrete degrees of freedom that connect upper and lower
Keldysh branches, as in Eq. (153). We determine these con-
strained rates in Appendix B, along with the corresponding
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STCL rates and can use them to reconstruct the current rates

S̃ i f
λ31 =

∑
w,λ1

δλ(λ1)S̃ i f
31w(λ1), (155)

and similarly for S̃ i f
λ13.

The co- and pair-tunnelling current rates S̃ i f
λ22 arise only

from the a and b contractions, see Fig. 23. These dia-
grams have two contractions connecting the upper and lower
Keldysh branches, in contrast to the c contraction which has
none, see Fig. 13. We constrain the contractions (λ1 and λ2)
that connect the upper and lower branches

S̃ i f
22w :

∑
λ1λ2,...

→ S̃ i f
22w(λ1, λ2) :

∑
����λ1λ2 ,...

, (156)

in Eqs. (99) and (103), for w = a, b. Here the crossed out
sum indices λ1, λ2 indicate that we do not sum over any
discrete environment degree of freedoms. We then again use
the filtering scheme (150) to obtain the co- and pair-tunnelling
current rates

S̃ i f
λ22 =

∑
λ1,λ2

δλ(λ1, λ2)
[
S̃ i f

22a(λ1, λ2) + S̃ i f
22b(λ1, λ2)

]
. (157)

Summing the contributions from S̃31, S̃13, and S̃22, we obtain
the total fourth-order current rate

S̃ i f
λ4 = S̃ i f

λ22 + 2�S̃ i f
λ31. (158)

We are now in a position to calculate both the steady-state
system probability distribution and the environment currents
to next-to-leading order. The former is calculated as detailed
in Sec. V and then used along with the current rates (154)
and (158) in the expression (152) for the currents up to fourth
order.

C. Noninteracting model

As a first application and test of the formalism, we focus
on the noninteracting resonant-level (113)–(115) and take the
setup out of the equilibrium (μ �= 0), implying that a steady-
state current will flow across the device, see Fig. 24. As for
the (equilibrium) probability distribution (116), it is possible
to compute the resulting (out-of-equilibrium) current exactly.
This can be done using a scattering matrix or Green’s function
approach [21,84] and produces a current

IR = e
0

4π h̄

[
�ψ

(
1

2
+ 
0 − 2iε0 + iμ

4πT

)

− �ψ

(
1

2
+ 
0 − 2iε0 − iμ

4πT

)]
, (159)

into the right (R) reservoir with e the unit charge, see
Appendix D for a brief sketch of the calculation. The setup
is fully described by the level width 
0 = 2π |J|2D, the single
level energy ε0, the chemical potential difference μ between
the leads, and the temperature T .

The expression (159) can be expanded in powers of V (or
equivalently 
0), leading to

I (2)
R = e
0

4h̄
[nF(ε0 − μ/2) − nF(ε0 + μ/2)] (160)

I(2) + I(4)

Iex

      exact
expansion

0

0/T

I(2)

I(4)

0

+

3−3

μ

6−6

0 μ

I
/e

T

0.5

FIG. 24. The noninteracting resonant level out of equilibrium,
for 
0/T = π and μ/T = 6. The inset provides a sketch of the
configuration. The chemical potentials in the two leads are offset by
μ. The level moves with ε0, and passes through the bias window,
when it lies between the two chemical potentials. The main figure
shows the current flowing through the level when the system is driven
out of the equilibrium, lowest order (blue dashed), first correction
(green dotted), their sum (black dotted-dashed), and the exact result
(black full). The corresponding (blue and green) crosses are obtained
from an expansion of the exact result and have to be matched by any
formally exact perturbative method.

at lowest order. This same result can be obtained from the
STCL. First we compute the steady-state probability P(0)

1

(P(0)
0 ) of finding the level occupied (empty) as in Sec. V C,

but under finite bias conditions. We then use these probabil-
ities and the sequential current rates (154) in the expressions
(152a) for the lowest-order current. As for the probabilities in
Sec. V C, this lowest-order result (160) is exact in the case of
infinitely sharp levels. At higher orders, see Refs. [21,89], the
broadening of the level due to its coupling to the environment
manifests. A straightforward but lengthy calculation using the
fourth-order STCL rates provides the current I (4)

R and recovers
the exact expansion, see Fig. 24.

VII. CONCLUSION AND OUTLOOK

In this work, we developed an operator-based diagram-
matic approach to the steady-state time-convolutionless mas-
ter equation. We greatly reduced the number of diagrams
to be computed at any given order α when compared to a
superoperator formulation, from 2α to α + 1. We thus kept
the complexity of STCL calculations as low as in the T -matrix
approach, while remaining formally exact as in the real-time
master equation. Going beyond the analysis of a steady-state
system distribution, we extended the STCL to perturbatively
evaluate the steady-state current through the system. We then
applied our diagramatic approach to setups with noninteract-
ing environments and a bilinear system–environment coupling
for both steady-state distributions and currents. As an exam-
ple, we verified our methodology on a noninteracting setup,
a single-level coupled to leads, where we demonstrate perfect
agreement between our expansion and the expansion of the
exact result. These results show that the STCL is a versatile
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tool which can be used for practical perturbative calculations.
The method is applicable to a broad set of devices from gate
defined quantum dots [22,23,90] to hybrid superconducting
devices [11,91] or carbon nanotubes [92,93]. In particular, we
plan to apply the method to complex artificial molecules in
two dimensional electron gases [20,23,88,94].

We further identify a number of future research topics
within the STCL method based on the work presented here.
These will enable the application of the STCL to yet more
setups and include three key examples: extensions to higher
orders, resummation schemes, and dynamics. A sixth order
analysis is well within reach as there are only 45 new diagrams
to be computed. Specifically, these are G̃33w, G̃42w, and G̃51w

for the fifteen Wick contraction contractions w at sixth order.
The sixth order Pauli STCL rates S̃6, where Kondo signatures
are expected to become apparent [21], can then be constructed
from these (and lower-order) terms. This is also the order at
which certain backaction effects are expected to appear [68].
Furthermore, the STCL provides a formally exact expansion
for the steady-state observables, and can therefore be used
as a base for resummation schemes. While existing resum-
mation schemes for the SRT method [45–47] can be directly
applied to the superoperator formulation of the STCL, our
operator-based approach enables the resummation of different
sets of diagrams. Finally, while this work was exclusively
concerned with steady-state properties, our operator-based
simplifications can readily be applied to the TCL description
of dynamics after a quench [57,63]. We conclude that the
time-convolutionless master equation still holds many sur-
prises and a large potential for future applications.
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APPENDIX A: ORDER ON THE KELDYSH CONTOUR

In this Appendix, we compare two approaches to diagrams
for the propagator G. Our diagrams from Sec. IV are based
on a decomposition of the density matrix evolution Uα into
unitary evolutions (Uν and U †

μ) on each Keldysh branch. They
therefore do not rely on ordering (inherited from time order-
ing) between the upper and lower branches and we term them
unordered. In contrast, the common diagrammatic formula-
tion of the RT method [44,62], which can also be applied to
the STCL or the propagator G, relies directly on superopera-
tors Uα . In these latter diagrams there is an ordering relation
between events on different Keldysh branches inherited from
the superoperator time-ordering, such that we term this formu-
lation ordered. This ordered description of the STCL (SRT)
contains significantly more diagrams (2α versus α + 1) than
the unordered version. The ordered formulation, however, has
other strengths, for example, in the proof of the convergence

i

j

f

g

1
δχij − L0 + iβη

12|z|

...

...

...

...

Gijfg
(↓,...,↑,...,↑,↓) =

−V

V

β

FIG. 25. Diagram for Gz, to be contrasted with the diagrams for
Gνμ, see Fig. 4. The upper and lower branch are now linked by the
free propagator of the density matrix (upper and lower dashed lines
combined, example highlighted by the rectangle). The counter for the
prefactor of η is shared between the upper and lower branches and
runs from 1 to |z|. Here the specific index is z = (↓, . . . , ↑, . . .↑, ↓).
Note the lack of Hermitian conjugation on the lower branch (cf.
Fig. 4), the minus sign on the lower branch scatterings, and the free
propagator to the left of the leftmost scattering.

of the expansion of S (Z) [62,65], or in the resummation of
certain diagrams [44–46,50]. In essence, in the ordered for-
mulation, Gνμ is replaced by related propagators Gz, where the
discrete index z tracks the upper/lower Keldysh branch which
the liouvillian LV acts on, see Fig. 25 and the discussion below
for details. As a safety check, we have computed the fourth-
order rates using both of these diagrammatic formulations and
find proper agreement.

1. Ordered diagrams

The ordered diagrams are constructed by inserting the ex-
pansion (25) of the evolution U into the definition (51) of the
STCL generator S . First, we construct Gα in this way. We
substitute the expansion (25) for U into the expression (48)
for Gα , and obtain

G i j f g
α = eαηt/h̄(δχi j − δχ f g + αiη)−1

× Trenv〈 f |[V, (δχi j − L0 + i(α − 1)η)−1
[
V, . . .

. . .
[
V, (δχi j −L0 + iη)−1

[
V, |i〉〈 j| ⊗ ρ0

env

]]]]|g〉,
(A1)

where the commutator [V, ρ] is always evaluated before the
unperturbed Liouvillian L0 is applied. For each order α, there
are then 2α diagrams for Gα , due to the α commutators with
V arising from α occurrences of LV . We therefore introduce a
new multi-index z, which keeps track of the specific sequence
of the commutators and thus replaces α in a similar way that
the indices νμ replaced α in Sec. IV. This is best illustrated
with an example, such as z = (↑,↓) that gives rise to the
contribution

G i j f g
(↑,↓) = −eαηt/h̄(δχi j − δχ f g + αiη)−1

×Trenv〈 f |[V (δχi j −L0 + iη)−1
(|i〉〈 j| ⊗ ρ0

envV
)]|g〉 ,

(A2)

where we consider the positive part of the leftmost (latest in
time) commutator, and the negative part of the rightmost (ear-
liest in time) commutator. Note the negative sign in Eq. (A2),
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(a)

(b)

(c)

mn

Gijfg
z =

...

...
1

κ1κ2κμ

κμ+1

n1nν−1

mμ−1 m1m2

Vn2n1κcκ

δχin2 − δχjm − κ + β−1 + iβη

β

κ

n2
n1

β

m

=

β

=
κ

m1
m2

n
β Vm1m2κcκ

δχin − δχjm2 − κ + β−1 + iβη

3 2α α − 1

|z| = ν + μ = α

κα

−

i

j

f

g

FIG. 26. Ordered diagram for Gz, to be contrasted with the diagrams for Gνμ, see Fig. 10. As in Sec. V, the Wick index w is added by
creating all pairings of the different environment operators. (a) The full diagram, which is related to Fig. 25 in the same way as Fig. 10(a) is
related to Fig. 4(c). The scattering events V (black dots) pick up a contraction line (thin vertical lines) which are indexed clockwise from the
bottom right. The system indices along the free propagation (dashed lines on upper and lower branch) are identical to those in Fig. 10(a),
while the counter from 1 to α is shared between the upper and lower branch. [(b) and (c)] Factors that contribute to the diagram in (a) with a
scattering event on the upper (b) or lower (c) Keldysh branch. Unlike in the unordered case of Fig. 10 the environment energy counter δεβ is
shared between the branches. Note the negative sign when the scattering event lies on the lower branch (c).

which arises from the negative sign in the rightmost commuta-
tor. We use ↑ and ↓, for the individual commutators, because
the positive (negative) contributions act on the upper (lower)
Keldysh branch.

To obtain one full order of the propagator we sum over
the index z with the condition |z| = α, i.e., the total number
of entries in z is α. Similarly, we can obtain the νμ contri-
bution to the propagator G by summing over the Gz terms
that fulfill the constraint |z↑| = ν (|z↓| = μ), i.e., the total
number of scattering events on the upper (lower) Keldysh
branch is ν (μ). These two rules are summarized mathemati-
cally by

Gα =
∑
|z|=α

Gz, and, Gνμ =
∑

|z↑|=ν,|z↓|=μ

Gz, (A3)

which complement the existing relationships (90) between
indices for G.

By inspecting (A1) and comparing it to the expression (69)
for Gνμ, we notice a few key differences, which we encode
diagrammatically, cf. Figs. 25 and 4. (1) Replace the single
branch free propagator by a double branch free propagator.
(2) Keep track of the order between upper and lower scatter-
ing events. (3) Introduce an additional prefactor −1 to each
scattering event on the lower branch, thus accounting for the
sign of the commutators. (4) Remove the Hermitian conjugate
operation on the lower branch.

These diagrammatic considerations carry over directly to
the specific example of quadratic environments which we
considered in Sec. V, see Fig. 26. In contrast to our unordered
diagrams, the diagrams in Fig. 26 contain a single environ-
ment energy counter δε, which is incremented by scattering
events both on the upper and lower branches. We can further
apply Wick’s theorem to the diagrams for Gz to obtain the
diagrams Gzw in exactly the same way as for the Gνμ. The
STCL generator terms Szw, are generated from the diagrams
Gzw in exactly the same ways as Sνμw are generated from
Gνμ. Due to the ordering relation between upper and lower
branches in the ordered diagrams, any cut must be vertical.

APPENDIX B: FOURTH-ORDER STCL RATES

In this Appendix, we show the steps that lead to the explicit expressions for the fourth-order rates. We will take care to include
the η dependence and only take the η → 0 limit for convergent expressions. We start with the S̃22a rate, as it includes most of
the technical difficulties which arise. We first write down the diagram from Fig. 13(a) as

S̃ i f
22a = 4ηG̃ i f

22a − 2η
∑

m

G̃ im
11 G̃

m f
11

=
∑
mn�κ

Vinκ1Vn f κ2Vf mκ3Vmiκ4

〈
cκ1 cκ4

〉〈
cκ2 cκ3

〉
(
δχin + εκ1 − iη

)(
δχim + εκ1 + iη

)
[

4η(
δχi f + εκ1 + εκ2

)2 + 4η2
− 2ηδnm(

δχm f + εκ2

)2 + η2

]
, (B1)

where the second term in the bracket (∝δnm) arises from the diagram with a cut. As a next step, we change the environment
sums into sums over the discrete parts of the environment and integrals over the continuous parts. We then perform a change of
variables such that both terms in the bracket have the same denominator

S̃ i f
22a =

∑
nmλ1λ2

∫
2ηVinλ1Vn f λ2Vf m−λ2Vmi−λ1Cλ1 (ε1)

(δχin + ε1 − iη)(δχim + ε1 + iη)

[
Cλ2 (2ε2 − ε1 + δχmi + δχm f ) − δnmCλ2 (ε2)

(ε2 + χm − χ f )2 + η2

]
dε1dε2. (B2)
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We then split this expression into two, evaluate the Kronecker delta, and perform some manipulations on the (convergent) n �= m
sum

S̃ i f
22a = 2π

∑
n �= m
λ1λ2

Vinλ1Vn f λ2Vf m−λ2Vmi−λ1

χn − χm

∫
Cλ1 (ε)

[
Cλ2 (χ f − χi − ε)

χi − χn + ε − iη
− Cλ2 (χ f − χi − ε)

χi − χm + ε + iη

]
dε (B3)

+ 2
∑

mλ1λ2

∣∣Vimλ1

∣∣2∣∣Vm f λ2

∣∣2
∫

Cλ1 (ε1)η
Cλ2 (2ε2 − ε1 + 2χm − χ f − χi ) − Cλ2 (ε2)

[(χi − χm + ε1)2 + η2][(χm − χ f + ε2)2 + η2]
dε1dε2. (B4)

In the n �= m sum, we have performed the ε2 integral in the η → 0 limit and taken a partial fraction decomposition of the
remaining denominator. The remaining integral is common in higher-order rate equation calculations. In Appendix C, we outline
one way of performing it analytically which leads to the expression in Eq. (99a).

The second line (B4) with m = n is also convergent, which we will now show, before computing it explicitly. We rewrite
Eq. (B4) in the functional form

F [g, η] = 1

η

∫
L(ε1, η)L(ε2, η)g(ε1, ε2)dε1dε2, with, L(ε, η) = η

ε2 + η2
, (B5)

where we have extracted a 1/η factor to guarantee that the integral is convergent, irrespective of the function g. The latter is
given by

g(ε1,ε2) = 2
∑

mλ1λ2

∣∣Vimλ1

∣∣2∣∣Vm f λ2

∣∣2
Cλ1 (ε1 − δχim)

[
Cλ2 (2ε2 − ε1 − δχm f ) − Cλ2 (ε2 − δχm f )

]
. (B6)

We find the convergence condition on F by multiplying (B5) by η and use L(ε, η) = πδ(ε) + O(η) to obtain

ηF [g, η] = π2g(0, 0) + O(η) = O(η), (B7)

which confirms that Eq. (B4) is convergent in the η → 0 limit. As a consequence of L’Hôpital’s rule and the fact that F is
convergent in the limit η → 0, we can write

lim
η→0

F [g, η] = lim
η→0

∂η{ηF [g, η]} = π lim
η→0

∂η

∫
L(ε, η)[g(ε, 0) + g(0, ε)]dε, (B8)

where we have further made use of the product rule of differentiation and L(ε, η) = πδ(ε) + O(η). We substitute the expression
(B6) for g back into this latest expression and obtain

(B4) = 2π
∑

mλ1λ2

∣∣Vimλ1

∣∣2∣∣Vm f λ2

∣∣2
∂η

∫
η

[
Cλ1 (ε)Cλ2 (δχ f i − ε)

(δχim + ε)2 + η2
+ Cλ1 (δχmi )Cλ2 (ε)

(δχm f + ε)2 + η2
− Cλ1 (ε)Cλ2 (δχ f m)

(δχim + ε)2 + η2

]
dε, (B9)

which is valid in the η → 0 limit. The first integrand in the last expression is the same contribution as the regularized T -matrix
integral, see Ref. [63], whereas the next two are corrections. In Appendix C, we show how these can be cast into the expressions
in Eqs. (99b) and (99c).

The S̃ i f
22b = 4ηG̃ i f

22b diagram is much simpler

S̃ i f
22b = ±

∑
nm�κ

4ηVinκ1Vn f κ2Vf mκ3Vmiκ4(
δχi f + εκ1 + εκ2

)2 + 4η2

〈
cκ1 cκ3

〉〈
cκ2 cκ4

〉
(
δχin + εκ1 − iη

)(
δχim + εκ2 + iη

) (B10)

= ∓2π
∑

mnλ1λ2

Vinλ1Vn f λ2Vf m−λ1Vmi−λ2

∫
Cλ1 (ε)Cλ2 (δχ f i − ε)

(δχin + ε − iη)(δχm f + ε − iη)
dε, (B11)

where in the second line, we performed the ε2 integral, a partial fraction decomposition, and relabelled ε1 → ε. The ± sign is +
for bosons and − for fermions. The remaining integrals, after a partial fraction decomposition, are again standard and an analytic
expression for them can be found in Appendix C. We thus obtain the expression in Eq. (103). The last S̃22 contribution arises
from the c contraction

S̃ i f
22c = 4ηG̃ i f

22c − 4ηδi f G̃ ii
20G̃ ii

02 = (1 − δi f )
∑
nm�κ

4ηVinκ1Vn f κ2Vf mκ3Vmiκ4

〈
cκ1 cκ2

〉〈
cκ3 cκ4

〉
(
δχin + εκ1 − iη

)(
δχim + εκ3 + iη

)
[(δχi f )2 + 4η2]

= 0 + O(η), (B12)

and vanishes in the η → 0 limit.
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We can now repeat the same steps as above but for the S̃31 and S̃13 diagrams. For the first contraction a, we obtain

S̃ i f
31a =

∑
nm�κ

Vi f κ1Vf nκ2Vnmκ3Vmiκ4

〈
cκ1 cκ4

〉〈
cκ2 cκ3

〉
(
δχi f + εκ1 − iη

)(
δχim + εκ1 + iη

)[
4η(

δχin + εκ1 + εκ2 + 2iη
)(

δχi f + εκ1 + 3iη
) + iδm f(

δχ f n + εκ2 + iη
)]

= 2π
∑
λ1

∣∣Vi f λ1

∣∣2 ∑
nλ2

m �= f

Vf nλ2Vnm−λ2Vmi−λ1

(χ f − χm)Vf i−λ1

Cλ1 (δχ f i )J
+
λ2

(δχ f n) (B13a)

− 2π
∑
nλ1λ2

∣∣Vi f λ1

∣∣2∣∣Vf nλ2

∣∣2
Cλ1 (δχ f i )∂χn J+

λ2
(δχ f n) − i

∑
nλ1λ2

∣∣Vi f λ1

∣∣2∣∣Vf nλ2

∣∣2
∂χi J

+
λ1

(δχi f )J+
λ2

(δχ f n), (B13b)

where we have again used L’Hôpital’s rule and the integrals from Appendix C. The b contraction is again simpler, leading to

S̃31b
i f = ±

∑
nm�κ

4ηVi f κ1Vf nκ2Vnmκ3Vmiκ4(
δχi f + εκ1 − iη

)(
δχi f + εκ1 + 3iη

)
〈
cκ1 cκ3

〉〈
cκ2 cκ4

〉
(
δχin + εκ1 + εκ2 + 2iη

)(
δχim + εκ2 + iη

)
= ±2π

∑
nmλ1λ2

Vi f λ1Vf nλ2Vnm−λ1Vmi−λ2Cλ1 (δχ f i )
J+
λ2

(χ f n) − J+
λ2

(χim)

χi − χ f + χn − χm
, (B14)

where the ± differentiates bosons (+) and fermions (−). The last S̃31 contribution arises from the c contraction. It requires the
use of L’Hôpital’s rule and the integrals from Appendix C to obtain

S̃ i f
31c =

∑
nmκ

Vi f κ1Vf nκ2Vnmκ3Vmiκ4

〈
cκ1 cκ2

〉〈
cκ3 cκ4

〉
(δχin + 2iη)

(
δχim + εκ3 + iη

)(
δχi f + εκ1 − iη

)
[

4η(
δχi f + εκ1 + 3iη

) − δin2η(
δχi f + εκ1 + iη

)
]

= 2π
∑

mλ1λ2
n �= i

Vi f λ1Vf n−λ1Vnmλ2Vmi−λ2Cλ1 (δχ f i )
J+
λ2

(δχim)

δχin
− i

∑
mλ1λ2

∣∣Vi f λ1

∣∣2∣∣Vimλ2

∣∣2
∂χ f J

+
λ1

(δχi f )J+
λ2

(δχim). (B15)

The S̃13 = S̃∗
31 terms are obtained by complex conjugation. We do not compute the S̃40 or S̃04 terms as their sum can be obtained

easily from the conservation of probability, see Eq. (78).
The last terms in each of S̃ i f

31a and S̃ i f
31c contain a J integral which is not differentiated. They thus include ultraviolet

divergences �, which we will show cancel in physical setups in the wide-band limit. We sum the two contributions

S̃ i f
31a + S̃ i f

31c =O(�0) − i
∑
nλ1λ2

∣∣Vi f λ1

∣∣2[
∂χi J

+
λ1

(δχi f )
](∣∣Vf nλ2

∣∣2 − ∣∣Vinλ2

∣∣2)
�λ2 (B16)

and focus on the terms that are linear in � to obtain the condition∑
nλ

|Vinλ|2�λ = K, ∀ i, (B17)

where K is a constant. If we assume that the environment is approximately particle–hole symmetric, the two ultraviolet cutoffs
�λ ≈ �−λ are related. We can then further simplify the constraint (B16) to∑

n

(|Vinλ|2 + |Vniλ|2) = |Vλ|2, ∀ i, λ, (B18)

where Vλ are reservoir dependent constants. This is the case in any setup constructed purely from second quantized operators,
such as the noninteracting level considered in this work or Anderson’s impurity model. It is, however, possible to make the
ultraviolet cutoff relevant. One method to do so is to introduce a large (of order unity compared to the bandwidth) particle–hole
asymmetry, which breaks the assumption allowing us to go from Eq. (B16) to Eq. (B18). Alternatively, we can discard system
states that are considered to be at very high energies. In the Kondo model, for example, high energy intermediate system states
are not included, as their presence is purely encoded in an effective coupling. This leads to a bandwidth-dependent Kondo-
temperature [21]. On the other hand, a Kondo temperature computed directly from the Anderson impurity, where the empty and
doubly occupied states are included does not depend on the bandwidth [95].

1. Current rates

Finally we find the current rates for the S̃13 contributions. We use the diagrammatic rules from Fig. 21 and thus immediately
conclude that we must replace the sums over the reservoir index that connects the two Keldysh contours

S̃31 :
∑

λ1λ2,...

→ S̃31(λ1) :
∑

��λ1λ2,...

. (B19)
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APPENDIX C: USEFUL INTEGRALS AND PROPERTIES

In this Appendix, we provide a collection of useful in-
tegrals, many of which can be found in similar form in
Refs. [61,89]. These are used extensively when computing co-
tunnelling rates of electronic setups. The integrals I±

λ1λ2
(δ1, δ2)

and J±
λ (δ), from Sec. V B 2 and Appendix B, can be evaluated

analytically in terms of digamma functions ψ . The latter is
closely related to the Fermi-Dirac distribution nF and Bose-
Einstein distributions nB as both distributions can be written
in terms of digamma functions

2πnF(z) = π + iψ

(
1

2
+ iz

2πT

)
− iψ

(
1

2
− iz

2πT

)
,

2πnB(z) = −π − 2πT

z
− iψ

( iz

2πT

)
+ iψ

(
− iz

2πT

)
. (C1)

Here, we work with fermionic environments and a constant
temperature T across the entire environment. To avoid nota-
tional clutter, we introduce the integral

I−
0 (μ1, μ2, γ ) =

∫ ∞

−∞
dε

nF(ε − μ1)nF(μ2 − ε)

ε − iγ
, (C2)

and its complex conjugate I+
0 = I−∗

0 , where γ > 0. This inte-
gral is related to the ones in Sec. V B 2 by

I±
λ1λ2

(δ1, δ2) = lim
η→0

I±
0

(
δ1 + μλ1 , δ2 − μλ2 , η

)
, (C3)

J±
λ (δ) = lim

η→0
I±
0 (δ + μλ,−�λ, η), (C4)

where we have introduced the reservoir dependent cutoff �λ

for the continuous degree of freedom. In a physical system
this cutoff is finite due to the bandwidth of the electronic
environment and can thus be properly accounted for. Here,
however, we restrict ourselves to the wide band limit where
�λ → ∞, which is justified as long as � is much larger than
all other energy scales in the setup and all observables remain
finite in the limit. We use the substitution

1

K
=

∫ ∞

0
e−Kt dt, (C5)

to replace the denominator in Eq. (C2) and thus obtain

(C2) = i
∫ ∞

−∞
dε

∫ ∞

0
dt nF(ε − μ1)nF(μ2 − ε)e−iεt−γ t .

We then perform the Fourier transform of the product of
Fermi distributions using contour integration and the residue
theorem to obtain

(C2) = nB(μ2 − μ1)
∫ ∞

0
dxe−(1/2+γ̃ )x e−iμ̃2x − e−iμ̃1x

1 − e−x
,

where we used the notation ã = a/(2πT ), for a = γ , μ1, μ2.
We can then use the integral representation of the digamma
function

ψ (z) =
∫ ∞

0

(
e−t

t
− e−zt

1 − e−t

)
dt, (C6)

to conclude that

I−
0 (μ1, μ2, γ ) = nB(μ2 − μ1) ×

[
ψ

(
1

2
+ γ + iμ1

2πT

)

−ψ

(
1

2
+ γ + iμ2

2πT

)]
. (C7)

Inserting this last result into Eq. (C3), we obtain the expres-
sion (100) for the integral I in Sec. V B 2. Inserting the same
result into Eq. (C4), taking the large band limit, and using

ψ (i�λ) ≈ i
π

2
+ ln �λ, (C8)

we obtain an expression (101) for the J integral in Sec. V B 2.

APPENDIX D: EXACT METHODS FOR THE
NONINTERACTING SETUP

This Appendix contains a brief description of the exact
results for the noninteracting level that are derived in a broad
set of different pedagogical texts [21,85]. A key element, both
in and out of equilibrium, is the imaginary part of the retarded
Green’s function (spectral function)

A(ω) = 
0

(ω − ε0)2 + 
2
0/4

, (D1)

of the noninteracting level [21], recall 
0 = 2π |J|2D. It is
obtained in a straightforward manner using an equation of mo-
tion for Green’s functions approach, see, for example, chapter
9.2 of Ref. [21].

1. Equilibrium occupation

The probability P1 = 〈d†
0 d0 〉 of finding the level occupied

is the expectation value of the associated number operator
d†

0 d0 , which in equilibrium (μ = 0) is simply

〈d†
0 d0 〉 =

∫ ∞

−∞

dω

2π
A(ω)nF(ω), (D2)

the convolution of the spectral weight A and the occupation
probability nF, see, for example, Eq. (8.62) of Ref. [21]. Using
the integral from Eq. (C4) in the limit �λ → ∞ and a partial
fraction decomposition on A we arrive at the exact expression
(116) for the occupation probability P1.

2. Out-of-equilibrium current

The out-of-equilibrium( μ �= 0) current across a level is an
archetypal observable quantity. For a noninteracting system
it can be obtained [21,85] using scattering matrices or the
Green’s function formalism. Alternatively it can be derived
from the more general Meir-Wingreen formula [84], which is
valid for both interacting and noninteracting systems and takes
the Green’s function as an input. For the noninteracting level,
the current is given by the exact expression [89]

I = e
0

8π h̄

∫ ∞

−∞
dωA(ω)[nF(ω − μ/2) − nF(ω + μ/2)], (D3)

see, for example, Eq. (9) of Ref. [84]. Physically, the trans-
port occurs in an energy window of width μ, reduced by the
temperature T . Within this window the tunneling probability
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is proportional to the spectral function A of the noninteracting
level, i.e., how much weight the noninteracting level makes
available at a given energy. Using the integral Eq. (C4) in the
limit �λ → ∞ and a partial fraction decomposition on A, we
arrive at the exact expression (159) for the current across the
noninteracting level.

APPENDIX E: COMBINING OPERATORS
AND SUPEROPERATORS

In Sec. VI, we obtained expressions which contain both
superoperators and the number operator Nλ. To maintain an
unambiguous order, such expressions require large numbers
of brackets. For example the series AABBρ of operators A, B
and superoperators A,B acting on a density matrix ρ can be
bracketed in a multitude of ways including but not limited to

(AA)(BB)ρ, or {A[A(BB)]}ρ, or A{A[B(Bρ)]}, (E1)

which in general may produce different results. In this Ap-
pendix, we explain the notational shorthand we use to avoid
this large number of brackets.

Whenever an operator Nλ appears to the right of a projector
P (27), we define

PNλAρ ≡ P[Nλ(Aρ)] = P[(Aρ)Nλ], (E2)

where A is an arbitrary superoperator and we have used the
fact that Nλ is an environment operator and the cyclic property
of the environment trace in P . Similarly, whenever an operator
Nλ appears to the left of a projector we define

BNλPAρ ≡ B[Nλ(PAρ)] = B[(PAρ)Nλ], (E3)

where B is an arbitrary superoperator and we used both the
fact that Nλ is an environment operator and the fact that
[Nλ, H0] = 0 (which in turn implies [Nλ, ρ

0
env] = 0).
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