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Finding the fastest path to a desired destination is a vitally important task for microorganisms moving in
a fluid flow. We study this problem by building an analytical formalism for overdamped microswimmers on
curved manifolds and arbitrary flows. We show that the solution corresponds to the geodesics of a Randers
metric, which is an asymmetric Finsler metric that reflects the irreversible character of the problem. Using the
examples of spherical and toroidal surfaces, we demonstrate that the swimmer performance that follows this
“Randers policy” always beats a more direct policy. Moreover, our results show that the relative gain grows
significantly when specific structures related to either the geometry or the flow are exploited by the swimmer. A
study of the shape of isochrones reveals features such as self-intersections, cusps, and abrupt nonlinear effects.
Our work provides a link between microswimmer physics and geodesics in generalizations of general relativity.
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I. INTRODUCTION

Artificial micro- and nanoswimmers [1] with active ex-
ternal controls (e.g., via chemical [2,3] and electromagnetic
fields [4–6], feedback loops [7,8], and geometric features of
boundaries [9]) can increasingly be engineered to execute
specialized tasks in complex environments. These have crucial
technological and medical applications ranging from targeted
delivery of drugs [10], genes [11], or other cargo [12], to
prevention of dental biofilm [13]. In addition, it is beneficial
for microorganisms such as bacteria, algae, or spermatozoa to
employ sensing mechanisms equipped with adaptation strate-
gies to control their motility machinery in order to find the
fastest path towards a desired destination [14], e.g., when
tracking a food source [15] or seeking light [16]. Such nav-
igation typically takes place in the presence of a fluid flow
or an external force landscape, which can hinder or help their
motion. The optimal path is hence distinct from the shortest
path, rendering this a complex problem in the field of active
matter [17].

Optimal navigation was first addressed by Zermelo, who
studied a ship navigating in the presence of an external wind
[18]. Recent work has explored this problem for microor-
ganisms navigating on two-dimensional surfaces and shown
exact results for some classes of force fields (linear, shear,
or vortex fields) [19]. Other approaches include algorithmic
optimization procedures based on the application of machine
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learning to active motion [20–22]. Motion on curved surfaces
and the role of local geometry have recently gained significant
interest in the field of active matter [23] (e.g., in cells and
tissue organization [24], cell motility [25], or collective mo-
tion of active particles [26,27]). Here, we aim to develop an
analytical formalism for optimal navigation in an overdamped
system, which can be used on curved manifolds and arbitrary
stationary flows.

Adopting recent mathematical results from differential ge-
ometry [28,29], we show that this problem can be mapped
onto geodesics of a Finsler-type geometry with a Randers
metric [30]. Finsler spaces are more general than Riemannian
spaces since the tangent norms need not be induced by inner
products [31]. They have been used to construct geometric
descriptions in many areas of physics, with applications rang-
ing from electron motion in magnetic flows [32] to quantum
control [33] and test theories of relativity [34]. The partic-
ular choice of the asymmetric Randers metric allows us to
characterize the irreversibility of the optimal trajectory in this
nonequilibrium problem.

We start by illustrating the formalism and discussing
some general properties of the system. Then, we apply these
concepts to some specific setups and study how following
Randers geodesics can reduce the travel time to reach a tar-
get compared to when the microswimmer heads constantly
towards it. Lastly, we analyze the isochrones—curves of equal
travel time—to investigate more generally the shape of opti-
mal paths.

II. CURVED MANIFOLDS AND FINSLER GEOMETRY

Consider a microswimmer that is free to move on a smooth
Riemannian manifold M [see Fig. 1(a)] equipped with a
positive definite metric h, such that the corresponding norm
of any tangent vector x ∈ TM can be calculated via |x|2h =
hi jxix j , where Einstein’s summation convention is used [35].
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FIG. 1. (a) Microswimmer trajectory r(τ ) (blue dashed line) on a Riemannian manifold M. The microswimmer moves in the tangent space
TM under the joint influence of the force f (black arrows) and its self-propelling velocity v0, which is marked with cyan arrows. (b) Fraction
of a spherical surface enclosed in the optimal forward-backward loop as a function of the force amplitude. The plot is in log-log scale. There is
a jump when the vortex is enclosed in the loop. This introduces a qualitative difference which is reflected in the change from linear to sublinear
scaling. There are two exemplar trajectories for given values of the force amplitude as indicated by dashed black arrows. The forward (blue
dashed) and backward (green dashed) paths connect the following two points: (θ0, φ0 ) = ( π

2 , 0) � (θ1, φ1) = ( 11π

12 , 14π

10 ). The arrows on top
of each trajectory indicate the heading direction of the microswimmer. The intensity (color) gradient on each sphere shows the force intensity,
while the solid black arrows show the force direction.

The Riemannian metric can also be used to define the scalar
product of any two tangent vectors x, y ∈ TM as hi jxiy j . Let
us now assume that the microswimmer moves on such a sur-
face with the self-propulsion velocity v0, which corresponds
to a constant speed |v0|h ≡ v0. The motion takes place in the
presence of a time-independent force field f (r), which may in
general include a contribution due to advection by the solvent
flow velocity (note that the friction coefficient is set to unity).
The overdamped motion of the microswimmer can therefore
be described as follows:

dr
dτ

= v0 + f [r(τ )], (1)

where τ is the swimmer (“proper”) time [see Fig. 1(a)]. We
neglect rotational noise and assume full control over the di-
rection of microswimmer propulsion as described by v0. This
means that the direction of propulsion is steered by a protocol
that selects the appropriate active angular velocity to make it
follow a prescribed path.

To show how Finsler geometry enters the optimal naviga-
tion problem on curved manifolds, we consider the time for a
microswimmer to go from one point rA to another rB on the
surface via the trajectory r(s) that is parametrized with s:

T =
∫ rB

rA

dτ =
∫ rB

rA

ds

v
≡

∫ rB

rA

dsL[s, r(s), ṙ(s)], (2)

where v ≡ ds
dτ

, ṙ ≡ dr
ds , and the Lagrangian L ≡ v−1 is defined

by identifying the traveling time as an action. Using Eq. (1),
we obtain the following expression for the Lagrangian (see
Appendix A):

L =
√

ai j ṙiṙ j + biṙ
i, (3)

where we have used the definitions ai j ≡ hi jλ + fi f jλ
2, bi ≡

− fiλ, and λ−1 ≡ v2
0 − hi j f i f j , with fi = hi j f j . We now make

the observation that the resulting Lagrangian has all the defin-
ing features to be a Finsler metric of Randers type [30], if and
only if the condition | f |h < v0 is fulfilled at any point on the

surface and any time (see Ref. [29] for a proof). This implies
that the self-propulsion is assumed to be able to overpower
the external force f at all points. Such a constraint ensures
that L is strongly convex and positive definite, two necessary
features for identification as a Randers metric [36–38].

III. RANDERS SPACES AND IRREVERSIBILITY

Randers spaces are often referred to as a special class of
nonreversible Finsler spaces [36]. This is due to the presence
of the second term in (3), namely, biṙi, which makes the
metric tensor manifestly asymmetric under time reversal, i.e.,
L(ṙi ) �= L(−ṙi ). Due to this asymmetry, in the presence of
an external force the optimal forward path (between rA and
rB) will in general be different from the backward one (rB

to rA). In other words, the optimal backward path is distinct
from the time-reversed forward path, which highlights the out-
of-equilibrium character of the navigation problem we study.
In contrast, Riemannian geodesics (in the absence of any
external force) are reversible since the corresponding metric
tensor h is symmetric [39]. This property of Randers metrics
is illustrated with a concrete example in Fig. 1(b) and studied
in more detail below.

Since L is a homogeneous function of degree one with
respect to ṙi, we can introduce the fundamental tensor

gi j ≡ 1

2

∂2L2

∂ ṙi∂ ṙ j
, (4)

which is also positive definite due to the convexity condition
[38]. For the Randers metric of Eq. (3), we find

gi j =
(

1 + biṙi√
ai j ṙiṙ j

)
(ai j − �i� j ) + (bi + �i )(b j + � j ),

(5)
where �i ≡ ai j ṙ j/

√
ai j ṙiṙ j . In order to determine the time-

minimizing paths, we solve the Euler-Lagrange equations
for the corresponding energy functional E = 1

2L2 = gi j ṙiṙ j ,
namely, d

ds ( ∂E
∂ ṙm ) = ∂E

∂rm . The paths minimizing
∫

ds E , which
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FIG. 2. Comparison between the Randers policy (RP, blue crosses) and the direct policy (DP, red circles) in terms of the arrival times T
in units of TR—the optimal navigation time in the absence of f —as a function of the force amplitude. For both strategies, the target counts as
reached when the microswimmer enters a region of radius ε = 0.01. On the left: analysis of the paths connecting the points (θ0, φ0 ) = ( π

2 , 0) →
(θ1, φ1) = ( 11π

12 , 14π

10 ). On the right: study of the paths linking two diametrically opposite points (θ0, φ0) = ( π

8 , 0) → (θ1, φ1) = ( 7π

8 , π ). In
either case the DP is suboptimal and there is a clear gain in following the RP, especially when the force is stronger. In the upper part of the
figure there are three different exemplar trajectories for given values of the force amplitude as indicated by the dashed black arrow. The dashed
lines on every sphere represent the paths for each navigation strategy (RP: blue; DP: red) and the arrows on top of them show the corresponding
heading direction of the microswimmer. The gradient on each sphere indicates the force intensity, while the solid black arrows represent its
direction.

also minimize the travel time T , satisfy the Randers metric
geodesic equation

r̈k + 
k
i j ṙ

i ṙ j = 0, (6)

where the Christoffel symbol 
k
i j is defined via 
k

i j ≡
1
2 gkm(gim, j + g jm,i − gi j,m ), with gkm being the inverse of the
fundamental tensor defined in (4) and gi j,m ≡ ∂mgi j . Thus, the
solutions of the geodesic equation (6) provide optimal naviga-
tion paths for a microswimmer moving in the presence of the
force field f on a generic Riemannian manifold M. Notably,
this formalism has the advantage of being sufficiently compact
and elegant to enable the analysis of complex scenarios as well
as possible generalizations. In what follows, we apply these
theoretical concepts to the case in which the motion takes
place on a sphere.

We can now directly compare the forward and backward
paths in this setup, by showing how the area of the portion of
sphere enclosed in the forward-backward loop varies with the
intensity of the external force, A. In Fig. 1(b), we show the
results obtained for one choice of initial and final points. The
area enclosed in the loop grows as the intensity of the force in-
creases, which is expected since both paths deviate more from
the Riemannian geodesic (the optimal path in the absence of
external force). Interestingly, the enclosed area undergoes a
jump when the vortex at the south pole is encircled, as beyond
a certain threshold in the force intensity the microswimmer
can exploit the vortex to reach the goal more quickly and this
causes an abrupt change in the shape of the optimal forward
path. The scaling with A is affected by this change, going from
being essentially linear (black dashed line) to sublinear.

IV. PERFORMANCE ASSESSMENT

We can now analyze the optimal paths obtained by fol-
lowing the Finsler geometry-based approach, which we call
the Randers policy (RP), in comparison with a benchmark,
which we refer to as the direct policy (DP), in which the
microswimmer always points in the direction of the target,
regardless of the force field [21]. To this end, we compute the
time T required to reach the target in units of the time TR it
would take in the absence of any external force, as a function
of the maximum force on the sphere.

A. Optimal navigation on a sphere

Let us first consider a sphere of radius unity embedded in
R3. The position of the microswimmer on this surface can
be written in spherical coordinates as r = (θ, φ). The corre-
sponding Riemannian metric h in spherical coordinates has
the components hθθ = 1, hφφ = sin2 θ , and hθφ = hφθ = 0.
The force field is then f (r) = fθ (θ, φ)êθ + fφ (θ, φ)êφ .

1. Force field with two vortices

As a first example, we choose fθ (θ, φ) = 0 and fφ (θ, φ) =
Aθ

π sin θ
, where A sets the amplitude of the field, which is

constrained as A < v0. This divergence-free force field is
characterized by a pair of vortices at the poles of the sphere
and its intensity is maximum (minimum) at the south (north)
pole. We can then write the explicit expression of the Randers
metrics L in our case as follows:

L =
√

v2
0 sin2 θφ̇2 + (

v2
0 − A2θ2/π2

)
θ̇2 − Aφ̇θ sin θ/π

v2
0 − A2θ2/π2

.
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FIG. 3. Comparison between the arrival times of the Randers policy (RP, blue crosses) and the direct policy (DP, magenta circles) as a
function of the maximum force intensity on the sphere. On the left: analysis of the paths connecting the points (θ0, φ0) = ( π

2 , 0) → (θ1, φ1) =
( 5π

6 , 3π

2 ). On the right: study of the paths linking the points (θ0, φ0) = ( π

2 , 0) → (θ1, φ1) = ( π

2 , 5π

3 ). In either case the DP always takes longer
than the RP, which gets more advantageous the stronger the force. In the upper part of the figure there are two examples of how the trajectories
look for a given value of the force as indicated by the dashed black arrow.

It is then possible to determine the fundamental tensor gi j ,
the relative Christoffel symbols 
k

i j , and the corresponding
geodesic equations using their definitions in (4) and (6). We
further choose the following initial conditions: θ (0) = θ0,
φ(0) = φ0, θ̇ (0) = − sin ϕ0 + fθ (θ0, φ0), and φ̇(0) = cos ϕ0

sin θ0
+

fφ (θ0, φ0). Here, (θ0, φ0) is the starting position while ϕ0

represents the initial heading direction of the microswimmer
(measured counterclockwise with respect to the êφ direction),
which we scan when using the shooting method, selecting the
one that takes the shortest time. Moreover, we parametrize
the trajectory using the proper time of the microswimmer
(i.e., we set s = τ ), which implies that L will be a conserved
quantity along these paths. A clear advantage of using this
parametrization is that it is independent of the choice of a
coordinate system and does not impose any restrictions on the
shape of the trajectories.

In Fig. 2 we show the results obtained for two different
choices of the initial and final points. In either case, for small
values of the force, the two strategies do not show substantial
differences in terms of performance. However, for the exam-
ple shown on the left in Fig. 2, two particular situations can
be observed. For larger values of the force (yellow and green
regions) the RP (blue crosses) exploits the presence of the

vortex at the south pole and at the same time the relative gain
with respect to the DP (red circles) grows. In fact, following
the former strategy makes it possible for the microswimmer
to take up to 40% less time to reach the target. Moreover,
for sufficiently large values of the force intensity (green re-
gion), the DP also includes the vortex. This slightly helps the
swimmer, although just for a small range of values (see the
local minimum in the green region). In addition, the relative
gain following the RP is substantial (up to about 20% in terms
of arrival time) even when this strategy does not imply the
exploitation of any specific force field structures (see the plot
on the right in Fig. 2).

2. Force field with a sink and a spiral

As a second example, let us consider a more com-
plicated force field described by fθ (θ, φ) = A√

μ
(θ − π )

and fφ (θ, φ) = A√
μ

(θ + π ), where we have defined μ =
maxθ [sin2 θ (θ + π )2 + (θ − π )2], so that A sets the force am-
plitude, which is then constrained as A < v0. This force field
is characterized by a singular point (sink) at the north pole and
a spiral with null intensity in its center at the south pole.

The expression of the corresponding Randers metrics L
[using its definition in (3)] is a bit more involved:

L=
√[

v2
0 − A2

μ
(θ − π )2

]
sin2 θφ̇2 + [

v2
0 − A2

μ
sin2 θ (θ + π )2

]
θ̇2 + 2 A2

μ
sin2 θ (θ2 − π2)φ̇θ̇ − A√

μ
[sin2 θ (θ + π )φ̇ + (θ − π )θ̇ ]

v2
0 − A2

μ
[sin2 θ (θ + π )2 + (θ − π )2]

.

Then, once again we can determine the fundamental ten-
sor gi j , the Christoffel symbols 
k

i j , and the corresponding
geodesic equations simply using their definitions (4) and (6).
Finally, we shall equip the obtained ordinary differential equa-
tion (ODE) system with the proper initial conditions and solve
the navigation problem.

Notably, also with this choice of the force, we observe
that there is always a clear gain in following the Randers
policy. The comparison with the performance achieved us-
ing the direct policy is shown in Fig. 3 where the displayed
results correspond to two different choices of the target
position.
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Concerning the example on the left in Fig. 3, you can see
how exploiting the presence of the spiral allows the swimmer
following the RP to take up to 30% less time to reach the target
when compared to the DP.

Remarkably, the relative gain achieved by following the RP
becomes extremely more significant (up to about 85% in terms
of arrival time) when the RP implies the swimmer makes a full
turn around the sphere, as you can see from the example on
the right in Fig. 3 (blue region). This large difference between
the two strategies is also due to the fact that following the DP
entails the swimmer having to point against the force direction
where it is most intense (on the equator), making this policy
highly disadvantageous.

B. Optimal navigation on a torus

Let us now show how one can use the same formalism
to address the problem of optimal navigation in a different
geometry. The motion takes place on a torus and the position
of the microswimmer on its surface can be defined by

x(θ, φ) = (R + r cos θ ) cos φ,

y(θ, φ) = (R + r cos θ ) sin φ,

z(θ, φ) = r sin θ,

in terms of the angles θ and φ; respectively, the poloidal and
toroidal directions (see Fig. 4). Let us fix the two characteristic
radii of the torus to be R = 2 and r = 1 without loss of
generality. The corresponding Riemannian metric h has the

FIG. 4. Scheme of the parametrization of a toroidal surface.

components hθθ = 1, hφφ = (2 + cos θ )2, and hθφ = hφθ = 0.
The force field is then f (θ, φ) = fθ (θ, φ)êθ + fφ (θ, φ)êφ . For
the sake of illustration, we consider a force field described by
the following equations:

fθ (θ, φ) = A√
2

sin φ,

fφ (θ, φ) = A√
2

cos θ

(2 + cos θ )
, (7)

where A sets its amplitude, which is constrained as A < v0.
This force field is characterized by a pair of vortices and
another of saddle points with null intensity in their centers.

We can now write the expression of the Randers metrics L
in this new case. Using the definitions in (3) and (7), we get to

L =
√

(2 + cos θ )2
(
v2

0 − A2

2 sin2 θ
)
φ̇2 + (

v2
0 − A2

2 cos2 θ
)
θ̇2 + A2 sin φ cos θ (2 + cos θ )φ̇θ̇ − A√

2
[cos θ (2 + cos θ )φ̇ + sin φθ̇ ]

v2
0 − A2

2 (cos2 θ + sin2 φ)
.

As already done for the sphere, it is then possible to determine
the fundamental tensor gi j , the Christoffel symbols 
k

i j , and
the corresponding geodesic equations using their definitions
reported in the previous section.

We further choose the following initial conditions: θ (0) =
θ0, φ(0) = φ0, θ̇ (0) = sin ϕ0 + fθ (θ0, φ0), φ̇(0) = cos ϕ0

(2+cos θ0 ) +
fφ (θ0, φ0), where the initial heading direction of the mi-
croswimmer ϕ0 is measured counterclockwise with respect to
the φ̂ direction. Once again, we find the time-optimal paths by
means of a shooting method and parametrize the microswim-
mer trajectories using its proper time, i.e., setting s = τ .

We can now directly compare the performance achieved
with the Randers policy (RP) with that of the direct policy
(DP). In Fig. 5 we show the analysis of the comparison be-
tween the arrival times obtained for two different choices of
the initial and final points on the torus.

In both cases, the swimmer following the RP has an in-
creasing gain as the intensity of the force grows, confirming
what has already been observed on the sphere. For the exam-
ple shown on the left in Fig. 5, you can see how exploiting
the presence of the vortex allows the swimmer which follows
the RP to reach the target faster (yellow and green regions).
In fact, following this strategy makes it possible for the mi-

croswimmer to take up to 20% less time when compared to
the DP. Moreover, for sufficiently large values of the force in-
tensity (green region), the DP also includes the vortex, slightly
helping the swimmer.

In addition, the relative gain achieved by following the
RP is even more significant (up to about 70% in terms
of arrival time) when the RP strategy implies the exploita-
tion of the topological properties of the surface, as you
can see from the example on the right in Fig. 5 (blue
region).

V. ISOCHRONE ANALYSIS

To study more generally the behavior and the shape of
the optimal trajectories coming from the RP, we analyze the
so-called isochrones in the illustrative examples of the sphere
introduced in Sec. IV A. These are curves of equal travel
time obtained by fixing the microswimmer initial position
(θ0, φ0) and varying the starting angle ϕ0 from 0 to 2π . They
can be seen as one-dimensional wave fronts of microswim-
mers that propagate onto the sphere following the Randers
geodesics (6).
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FIG. 5. Performance comparison between the Randers policy (RP, blue crosses) and the direct policy (DP, magenta circles). For both
strategies, the target counts as reached when the microswimmer enters a region of radius ε = 0.05. On the left: analysis of the paths connecting
the points (θ0, φ0) = (0, 3π

2 ) → (θ1, φ1) = ( π

2 , π

4 ). On the right: study of the paths linking the points (θ0, φ0) = (0, 3π

2 ) → (θ1, φ1) = ( π

2 , 3π

4 ).
In either case there is a clear gain in following the RP, especially when the force is stronger. In the upper part of the figure there are three
different examples of how the paths look for a given value of the force as indicated by the dashed black arrow. The dashed lines on every
sphere represent the paths for each navigation strategy (RP: blue; DP: magenta) and the arrows on top of them show the corresponding heading
direction of the microswimmer. The gradient on each sphere indicates the force intensity, while the solid black arrows represent its direction.

A. Force field with two vortices

In Fig. 6(a) we show some isochrones (solid lines) cor-
responding to the optimal paths starting from a point on the
equator (green circle), in the presence of the force field intro-
duced in Sec. IV A 1 with A = 1

2v0.
We observe that isochrones can feature self-intersections

[see the example at τ = 2.9v−1
0 on the right in Fig. 6(a)].

These are spots on the sphere for which there are multiple

solutions to the problem of optimal navigation. Moreover,
the isochrones can develop cusps, as highlighted in Fig. 6(a)
(see Supplemental Material [40], movie), which are points at
which neighboring geodesics meet. These cusp are analogs of
conjugate points in general relativity [41], and related to the
caustics in optics, as they represent domains on the isochrones
with a higher density of geodesics [42]. Remarkably, these
self-intersections and cusps occur only in the presence of

FIG. 6. Analysis of the isochrones starting from the point (θ0, φ0 ) = (π/2, 0) (green circle) in the presence of the force field characterized
by two vortices with A = 1

2 v0. The red circle indicates the point diametrically opposite to the starting point and provides a guide to the eye. The
color code on each sphere shows the force intensity from small (blue) to high (red), while the black arrows represent its direction. The time τ is
reported in units of v−1

0 . (a) Isochrones (solid lines) at six different times. On the left: view of a region of stronger force. On the right: front view
with an enlargement of a cusp highlighted in red, a point with a high density of geodesics. Also, notice the presence of self-intersections, points
where two optimal paths collide. (b) Representation of four specific paths (dashed lines) passing close to the center of the vortex at the south
pole. The arrows on top of them show the corresponding heading direction of the microswimmer and their color refers to the starting angle
(green: ϕ0 = 4.7122; blue: ϕ0 = 4.7123; red: ϕ0 = 4.7124; yellow: ϕ0 = 4.7125). In the initial part where they overlap, the path is highlighted
in white. This shows a strong dependence on initial conditions for optimal trajectories passing close to the vortex at the south pole.
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FIG. 7. Isochrones (solid blue lines) at four different times starting from the point (θ0, φ0) = (π/2, 0) (green circle) in the presence of the
force field introduced in Sec. IV A 2 with A = 0.7v0. (a) On the left: front view. On the right: side view, where the two isochrones display
self-intersections, cusps, and a discontinuity due to the presence of the singularity at the north pole. (b) Representation of two specific paths
(dashed lines) passing close to the singularity at the north pole. The arrows on top of them show the corresponding heading direction of the
microswimmer and their color refers to the starting angle (red: ϕ0 = 1.5707; blue: ϕ0 = 1.5708). In the initial part where they overlap, the path
is highlighted in white.

a force field, as otherwise the isochrones on a sphere form
concentric circles.

The isochrones are considerably distorted after they en-
counter the vortex at the south pole [see the isochrone at
τ = 1.7v−1

0 in Fig. 6(a)]. The meaning of such deformation
can be understood by looking at Fig. 6(b). Here are shown four
optimal trajectories (dashed lines) starting from a point on the
equator (green circle) and ending at time τ = 2.2v−1

0 on the
corresponding isochrone (blue solid line). Their initial angles
ϕ0 differ only by �ϕ0 = 10−4. Such paths initially overlap
(white dashed line) and separate only once they reach the
south pole. The observed strong dependence on initial con-
ditions provides an interesting insight if one thinks of natural
extensions of the model, e.g., the introduction of rotational
noise. A direct implication of such abrupt nonlinear effects is
indeed that, in the presence of a singularity in the force field,
noise cannot be perturbatively included in the model and one
must therefore consider alternative approaches [43].

B. Force field with a sink and a spiral

In Fig. 7 we show the isochrones (solid lines) correspond-
ing to the optimal paths starting from a point on the equator
(green circle), in the presence of the force field introduced in
Sec. IV A 2 with A = 0.7v0.

Once again we find that there are spots on the sphere for
which there are multiple solutions to the problem of optimal
navigation (self-intersections) and others with a higher density
of geodesics (cusps) [see the example at τ = 3v−1

0 on the right
in Fig. 7(a)].

However, here we can see a new peculiar feature of
isochrones that has not been observed in the case illustrated
above: they can be discontinuous (e.g., see the isochrones
at τ = 2.5v−1

0 and τ = 3v−1
0 ). This is certainly due to the

presence of the singularity (sink) at the north pole and can be
better understood by looking at Fig. 7(b). Here are shown two
optimal trajectories (dashed lines) starting from the point on
the equator and ending at time τ = 3v−1

0 on the corresponding
isochrone (green solid line). Their initial angles ϕ0 differ only
by �ϕ0 = 10−4. Such paths initially overlap (white dashed
line) and separate only once they reach the north pole. Intu-

itively, since in its proximity there is an abrupt change in the
force field direction, even a very small difference in the mi-
croswimmer position and orientation can lead to very different
future scenarios. This prevents the use of perturbative meth-
ods to introduce noise into the model for trajectories passing
in the neighborhood of a singularity, as already pointed out
above.

VI. CONCLUDING REMARKS

We formulate and discuss a geometric description of the
optimal navigation problem for microswimmers on curved
manifolds. We show that this problem can be solved by finding
the geodesics of a nonreversible Finsler metric of Randers
type, providing a link between microswimmers physics and
generalizations of general relativity. Our proposed geometric
approach provides tools for solving the optimal navigation
problem in as yet unexplored, as well as more complex
scenarios, such as paths for microswimmers escaping from
harmful regions [44]. Here, we assumed to have full control
over the microswimmer heading direction. However, our
results could still be used to deal with rotational diffusion.
We can indeed continuously adjust the orientation of the
microswimmer to make it stay close to the optimal path of
the noise-free system. Another assumption we made is that
of stationary flow. Although this constraint cannot be relaxed
as is necessary to keep the analogy with Randers spaces and
compute the corresponding geodesic equation (6), our results
still hold true as long as there is a separation of timescales,
with the characteristic timescale of the flow being much larger
than the navigation time.

Further research might use this analytical approach to
benchmark numerical optimization procedures relying on ma-
chine learning algorithms [20,21,45] and should generalize it
by including noise in the model. It would also be interesting to
relax the constraint on the force amplitude, possibly leading to
the study of both timelike and spacelike trajectories [46]. Fi-
nally, one can study how microswimmers can sense curvature
by considering finite-size swimmers able to estimate spatial
derivatives and the metric [47,48].
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APPENDIX A: DETAILS ON THE ANALYTICAL
DERIVATION OF THE RANDERS METRIC

The aim of this section is to show all the calculations
leading to the expression of the Randers metric L.

First of all, we have to rewrite the equation of motion of
the microswimmer in a covariant form:

ṙiv = vi
0 + f i ,

where ṙi = dri

ds and v = ds
dτ

. If we now isolate vi
0, square both

sides of the equation and then multiply them by the metric
tensor h, we get to the following expression:

hi j (ṙ
iv − f i )(ṙ jv − f j ) = hi jv

i
0v

j
0 .

Notice that the rhs represents the self-propelling speed of the
microswimmer. Therefore, we can solve this equation for v

and obtain:

v =
±

√
hi j ṙiṙ jhlm

(
vl

0v
m
0 − f l f m

) + (hi j ṙi f j )2 + hi j ṙi f j

hi j ṙi ṙ j
.

We can now select just the solution with the + in front of
the square root. Indeed, for f = 0 we correctly obtain v > 0,
while the other solution would give v < 0.

Lastly, we can get the desired expression for the Randers
metric L by simply computing the reciprocal of v:

L = hi j ṙiṙ j√
hi j ṙiṙ jhlm

(
vl

0v
m
0 − f l f m

) + (hi j ṙi f j )2 + hi j ṙi f j
,

and then multiplying both the numerator and denominator by√
hi j ṙiṙ jhlm(vl

0v
m
0 − f l f m) + (hi j ṙi f j )2 − hi j ṙi f j , to get the

final expression:

L =
√

hi j ṙiṙ jhlm
(
vl

0v
m
0 − f l f m

) + (hi j ṙi f j )2 − hi j ṙi f j

hi j
(
vi

0v
j
0 − f i f j

) .

(A1)
To simplify the latter expression, we can define some new
quantities (using the same notation as in the main text): v2

0 ≡
hi jv

i
0v

j
0, λ−1 ≡ v2

0 − hi j f i f j , ai j ≡ hi jλ + fi f jλ
2, bi ≡ − fiλ.

This leads us to:

L =
√

ai j ṙiṙ j + biṙ
i , (A2)

which is the sought compact expression of the Randers metric
L.
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