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Dynamical Coulomb blockade under a temperature bias
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We observe and comprehend the dynamical Coulomb blockade suppression of the electrical conductance
across an electronic quantum channel subjected to a temperature difference. A broadly tunable, spin-polarized
Ga(Al)As quantum channel is connected on-chip, through a micron-scale metallic node, to a linear RC cir-
cuit. The latter is made up of the node’s geometrical capacitance C in parallel with an adjustable resistance
R ∈ {1/2, 1/3, 1/4} × h/e2 formed by 2–4 quantum Hall channels. The system is characterized by three tem-
peratures: Temperatures of the electrons in the large electrodes (T ) and in the node (Tnode), and a temperature
of the electromagnetic modes of the RC circuit (Tenv). The temperature in the node is selectively increased by
local Joule dissipation, and characterized from current fluctuations. For a quantum channel in the tunnel regime,
a close match is found between conductance measurements and tunnel dynamical Coulomb blockade theory. In
the opposite near ballistic regime, we develop a theory that accounts for different electronic and electromagnetic
bath temperatures, again in very good agreement with experimental data. Beyond these regimes, for an arbitrary
quantum channel set in the far out-of-equilibrium situation where the temperature in the node significantly
exceeds the one in the large electrodes, the equilibrium (uniform temperature) prediction for the conductance
is recovered, albeit at a rescaled temperature αTnode.
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The conductance of a quantum conductor embedded into
an on-chip dissipative circuit is generally diminished at
low temperatures and voltages. This phenomenon originates
from the granularity of charge transfers across nonballistic
quantum conductors. The corresponding current shot noise
excites the electromagnetic modes of the surrounding circuit,
which suppresses the electrical conductance in proportion to
the coupling to modes of unavailable high energy (see [1]
for a review). Taking into account this so-called dynamical
Coulomb blockade (DCB) can be essential for the quantum
nanoengineering of circuits assembled from several quan-
tum components. However, the many previous DCB studies
mostly assumed a single, uniform temperature. In contrast,
driving composite nanocircuits usually involves an internal
Joule dissipation, notably at the interconnect nodes (see,
e.g., [2]), which results in temperature gradients. These gradi-
ents do not induce any thermoelectric currents in systems with
a preserved electron-hole symmetry. Nevertheless, they pro-
foundly change the probability to excite the electromagnetic
modes of the surrounding circuit, and therefore the DCB sup-
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pression of the electrical conductance. Here, we investigate
the DCB as a function of a quantitatively controlled temper-
ature difference (bias) across a quantum conductor. For this
purpose, we focus more specifically on the revealing linear
regime of small bias voltages.

The DCB was initially addressed theoretically and ex-
plored experimentally on tunnel junctions embedded into
circuits described by a linear impedance [3–15]. In this limit,
the junction can be treated as a small perturbation, thereby
giving access to a full theoretical solution, including differ-
ent temperatures for electrons on the large electrode side
and the node side of the junction (T and Tnode, resp.) and
also for the electromagnetic modes of the linear impedance
(Tenv). The tunnel DCB theory is experimentally well estab-
lished for arbitrary bias voltages and any uniform temperature
(T = Tnode = Tenv). This quantitative understanding allows
one to exploit DCB as a tool, for example as a primary
electron thermometer [16]. In addition, the DCB across a
tunnel junction in series with a relatively low resistance (R ∼
1.5 k� � RK = h/e2 � 26 k�, with h the Planck constant
and e the electron charge) was previously used as a probe
for the unknown energy distribution of electrons driven out
of equilibrium [17] (see [18] for a related theoretical devel-
opment). However, in that case, the validity of the tunnel
DCB theory beyond a uniform temperature was assumed.
Here, in a first step, we put to experimental test the tunnel
DCB theory in the presence of a thermal bias across the
junction.
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Second, beyond the limit of tunnel quantum conduc-
tors, the DCB theory itself remains very much incomplete
(for notable theoretical and experimental advances, see,
e.g., [19–35]). An important exception is for a single (spin-
polarized) quantum channel of arbitrary electron transmission
probability τ ∈ [0, 1] set in series with a linear resistance
R. Under those circumstances, a fruitful mapping has been
established with the problem of a spinless Luttinger liquid of
interaction parameter K = 1/(1 + R/RK ) with a single impu-
rity [24]. Exploiting the results for a Luttinger liquid [35–37],
this mapping provides the DCB conductance and all current
cumulants at arbitrary voltages and any uniform tempera-
ture well below the capacitive cutoff (eV, kBT � h/2πRC).
Remarkably, a crossover toward an insulating state in the
low temperature limit persists with any nonzero series resis-
tance R, even for a channel that is almost (but not perfectly)
ballistic above the DCB capacitive cutoff [24,28]. These the-
oretical predictions were found to be in precise quantitative
agreement with experiments [29,30,33,34] (as well as with
numerical functional renormalization group simulations of a
one-dimensional electron lattice [34] and also approximate
but remarkably accurate Luttinger liquid expressions [31]).
However, in the presence of a temperature bias across the
quantum conductor and/or the linear series resistance, the
DCB-Luttinger mapping breaks down and, consequently, so
do the resulting DCB solutions. The present work expands
the DCB predictions to encompass near ballistic quantum
conductors subjected to an arbitrary temperature bias (T ,
Tnode), with a linear series resistance characterized by a third,
“electromagnetic environment” temperature (Tenv), and estab-
lishes these predictions experimentally. In addition, beyond
the tunnel and near ballistic limits, we experimentally char-
acterize at arbitrary transmission τ the deviations induced
by a temperature bias, with respect to the conductance at
a uniform temperature. A simplification is found to oc-
cur for large temperature differences (Tnode � T ), where the
measured conductance approaches the uniform temperature
prediction, although at a rescaled value of the temperature
αTnode significantly above the mean value (α > 0.5). This
finding generalizes a behavior that we specifically derive the-
oretically in the tunnel and near ballistic limits.

The studied quantum conductor [see Fig. 1(a)] consists
of a single, fully tunable electronic channel realized by a
quantum point contact (QPC) formed by field effect in a high-
mobility Ga(Al)As two-dimensional electron gas (2DEG)
located 105 nm below the surface. The 2DEG is immersed in
a large perpendicular magnetic field B � 4 T, corresponding
to the integer quantum Hall regime at filling factor ν = 2. By
lifting the spin degeneracy, the applied B allows us to imple-
ment a single tunable channel. This generic short channel (red
dashed line) is connected on one side to a small floating circuit
node at a temperature Tnode [light gray central part and red disk
in Figs. 1(a) and 1(b), respectively], and further away on the
other side to a macroscopic electrode at a temperature T [right
rectangles in panels (a) and (b)]. The central node is also con-
nected through two different paths to additional macroscopic
electrodes at the same temperature T [left and top rectangles
in panel (a)], each path being composed of either one or two
ballistic quantum Hall channels (N1,2 ∈ {1, 2}). These parallel
ballistic channels implement altogether a precisely known

FIG. 1. (a) Device e-beam micrograph. A single generic chan-
nel of electron transmission probability τ ∈ [0, 1] (with τ/RK its
conductance; RK ≡ h/e2), as well as N1 and N2 fully transmitted
channels (N1 = N2 = 1 shown) are separately connected to a small
metallic island (light gray). The two quantum Hall edge channels
are represented as lines. A Joule heating of the island is realized
by applying balanced voltages across the fully transmitted channels
(N1V1 + N2V2 = 0), such that the island’s dc voltage 〈Vnode〉 remains
zero. The heated-up island temperature Tnode is monitored through
noise measurements. (b) Schematic representation. The total num-
ber of fully transmitted channels controls the series resistance R =
RK/(N1 + N2). The applied Joule power PJ results in a temperature
bias Tnode − T across the generic channel and also across R. In con-
trast with the thermally biased generic channel, the RC circuit is here
approximately modeled as a heated up electromagnetic environment
at a uniform temperature Tenv generally taken as (T + Tnode )/2.

linear resistance R = RK/N , with N = N1 + N2 ∈ {2, 3, 4},
which is in series with the studied generic channel (see Ap-
pendix A for a discussion). As this resistance consists of N
chiral channels emitted from the heated node at Tnode (red on
Fig. 1) and N emitted from large Ohmic contacts at T (blue on
Fig. 1), it is also subjected to the same temperature bias as the
quantum conductor. In contrast, however, the electromagnetic
modes of the corresponding RC circuit are here modeled the-
oretically as being at a well defined, uniform electromagnetic
environment temperature Tenv. This approximation may be
justified by the relatively low effect of Tenv (see Appendix D 4
for a discussion). In practice, unless stated otherwise, the
plausible mean value Tenv = (T + Tnode)/2 [see Fig. 1(b)] is
systematically used for the data-theory comparison (together
with distinct T and Tnode across the studied channel). The
small floating node is effectively realized by a micron-size
metallic island that is thermally diffused into the Ga(Al)As
to make contact with the buried 2DEG. The small size of
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the metallic island results in a small geometrical capacitance
C � 2.5 fF. (Additional measurements with R = RK/2 were
performed on a different sample with C � 3.1 fF.) This is
essential for a well-developed DCB effect, as the capacitance
effectively short-circuits the series resistance for all possible
energy exchanges with the electromagnetic environment that
are comparable to or higher than the energy of one photon at
the cutoff frequency h/2πRC. In practice, for uniform temper-
atures (T � Tnode � Tenv) and low bias voltages (eV � kBT ),
the influence of the capacitance on the temperature depen-
dence of the conductance becomes notable when 3kBT �
h/2πRC (T � N × 30 mK for C ∼ 3 fF and R = RK/N).

The floating node (metallic island) is heated up by the lo-
cally dissipated Joule power PJ = (N1V 2

1 + N2V 2
2 )/2RK (note

the factor 1/2 [2]), with V1(2) the voltage feeding the path
along N1(2) quantum Hall edge channels [see Fig. 1(a)]. In
order to avoid the simultaneous buildup of a bias voltage
across the studied generic channel, we apply balanced volt-
ages of opposite signs N1V1 = −N2V2, such that the node
(island) remains at zero dc voltage 〈Vnode〉 � 0. Note that
the dc thermoelectric current through the generic channel is
directly measured and remains negligible (corresponding to
e|Vnode| < 0.01kBTnode), as expected from particle-hole sym-
metry (see, e.g., [38] for a discussion). The resulting increase
in the node temperature Tnode depends on heat evacuation
through each of the connected electronic channels and toward
the phonons (see [39] for an experimental investigation in-
volving one generic quantum channel). In practice, the strong
increase of the electron-phonon heat flow with temperature
limits us to Tnode � 100 mK.

The temperature Tnode can be experimentally determined
from the electrical current fluctuations emitted from the metal-
lic island [2,39,40]. It should be noted that the measured
noise involves the contributions of two sources of noise that
both depend on Tnode: The thermal fluctuations of the current
emitted from the metallic island and the shot noise induced
by the temperature difference across the studied nonballistic
quantum channel (also called δT noise [39,41,42]). Following
the procedure established in [39], we separate these two noise
contributions by performing two independent noise measure-
ments, on different electrodes. Then we determine the increase
in Tnode solely from the thermal fluctuations (see Appendix D).
Alternatively, it is also possible to calculate Tnode based on the
heat flow theory that was experimentally validated with a high
accuracy in [39] on a similar device. Here, the measured Tnode

are found to match calculated values within a negligible error
<4% (see Appendix Fig. 7). In the following, the displayed
node temperatures Tnode at base temperature T � 8 mK are
obtained from noise measurements, except for the limit case
of tunnel junctions. In that tunnel case, and also for higher
values of the large electrodes’ temperature T � 15 mK, the
calculated Tnode were used (as performing noise measurements
with sufficient resolution is time consuming).

We first focus on the tunnel limit of a quantum channel of
small intrinsic (not renormalized by DCB) transmission prob-
ability τ∞ � 1. This regime is described by the tunnel DCB
theory, also called P(ε) theory [1]. In this framework, the
transmission probability τ reduced by DCB (i.e., the channel’s
differential conductance in units of e2/h) can be expressed
as a function of the Fermi distributions fT(Tnode )(E ) in the

FIG. 2. Renormalized transmission probability versus bias volt-
age in the tunnel regime. Symbols represent, in a log-log scale versus
V − Vnode and for different uniform temperatures T � Tnode � Tenv,
the experimental values of τ/τ∞. Those are obtained from RK/τ =
1/G − R, with G the measured differential conductance of the sam-
ple including both tunnel contact and series resistance R = RK/3 (see
Appendix Fig. 9 for similar data at R = RK/2 and RK/4). The intrin-
sic (unrenormalized) transmission probability τ∞ depends on applied
gate voltages, and constitutes the only adjustable parameter in the
data-theory comparison. Black continuous lines: Full quantitative
predictions of the tunnel DCB theory [see Eq. (1) and Appendix B 1].
Red dashed line: Power law η(V − Vnode )2R/RK predicted for kBT �
e(V − Vnode ) � h/2πRC, using the quantitative theoretical value of
η [see Appendix Eq. (B4)].

electrodes at the temperatures T and Tnode on either side of
the tunnel contact, as well as of the probability PTenv (ε) that
the energy ε is absorbed (ε > 0) or emitted (ε < 0) by the
electromagnetic environment at a temperature Tenv:

τ/τ∞ = 1 +
∫

dε dE PTenv (ε) fT(E − e(V − Vnode))

× {∂E fTnode (E + ε) − ∂E fTnode (E − ε)},
(1)

where V is the bias voltage applied to the electrode behind the
generic channel (see Appendix B for full details and analytical
asymptotic solutions). We start by verifying the canonical
DCB behavior of the tunnel quantum channel in the well
established regime of a uniform temperature Tnode � T � Tenv

as a function of V . In practice, the transmission probability
renormalized by DCB is obtained from τ = RK/(1/G − R),
where G is the measured differential conductance across the
whole sample (generic channel in series with R). Note that
τ∞ is not accurately known experimentally (approximately
obtained from the channel’s conductance in e2/h units at
large voltage bias where the DCB renormalization is small).
Therefore, unless stated otherwise, τ∞ is considered as an
adjustable parameter applying globally to all the measure-
ments performed with the same setting of the device. As
shown in Fig. 2 for R = RK/3, a good agreement is observed
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FIG. 3. Renormalized transmission probability versus node tem-
perature in the tunnel regime (τ∞ � 1) at low bias voltage (V → 0).
Full symbols: Experimental τ/τ∞ at a uniform temperature (Tnode �
T � Tenv) for R = RK/3 (purple) and RK/4 (green). Gray dash-dotted
lines and black dashed lines: Full and asymptotic (kBT � h/2πRC)
predictions, respectively, both of them for a uniform temperature
T = Tnode = Tenv. Open symbols: Renormalized transmission prob-
ability data obtained in the presence of the series resistances R =
RK/2, RK/3 and RK/4, with a temperature bias Tnode − T � 0 de-
veloping from different fixed values of the temperature T . Black
continuous lines and red dashed lines: Full and asymptotic (kBT �
kBTnode � h/2πRC) predictions, respectively, both of them versus
Tnode at fixed T and assuming an electromagnetic environment at
Tenv = (T + Tnode )/2. For clarity, the data and theory results are
shifted vertically in this log-log plot by a factor of 2 (4) for R = RK/3
(RK/4).

between data and theoretical predictions without any other
adjustable parameters (see also Appendix Fig. 9 for R = RK/2
and RK/4). Henceforth, we focus on the conductance in the
linear regime (V → 0).

In Fig. 3, the transmission probability ratio τ/τ∞ is now
shown versus node temperature Tnode and in the presence of a
series resistance R = RK/N with N ∈ {2, 3, 4}. For a uniform
temperature (Tnode � T � Tenv), the data points displayed as
full symbols follow the power law T 2R/RK

node (black dashed lines)
predicted at kBTnode � h/2πRC [see Appendix Eq. (B9) for
an exact analytical expression]. Significant deviations from
the asymptotic power law are only expected to show up for
the largest uniform temperatures achieved at R = RK/2. This
can be seen in Fig. 3 by comparing the black dashed lines
with the full predictions of the tunnel DCB theory displayed as
dash-dotted gray lines [see Appendix B 1, and also Appendix
Eqs. (B5), (B6), and (B7) for a numerically more efficient
formulation of the linear conductance]. With this precise con-
firmation of the canonical tunnel DCB behavior of our device
versus uniform temperature, we can now investigate the influ-
ence of a temperature bias.

Measurements performed for a fixed T of either 8, 15,
or 28 mK, as a function of the heated-up Tnode, are shown
in Fig. 3 as open symbols. The transmission probability di-
rectly separates itself from the power law predicted at low
uniform temperatures (black dashed lines). Yet, we find that
the same power law T 2R/RK is recovered for large Tnode/T � 4,
although with a lower multiplicative factor (red dashed lines).
This behavior is expected from the tunnel DCB theory. We
derived an exact analytical expression, given in Appendix
Eq. (B15), for the conductance in the limit of large temper-
ature bias across the tunnel junction (Tnode � T ), assuming
the electromagnetic environment is at the average temperature
Tenv � Tnode/2 [see part (ii) of Appendix B 2 for a derivation].
The red dashed lines were obtained using this expression with-
out adjustable parameters. Compared to the power law at a
uniform temperature Tnode = T = Tenv, we find here the same
power law exponent of Tnode but with a multiplicative factor
reduced by (21−2R/RK /

√
π )�(1.5 + R/RK )/�(1 + R/RK ) (�

is the gamma function), in quantitative agreement with ex-
perimental observations. It is useful to note that the above
mentioned reduction factor on the conductance can be for-
mulated as a rescaling in temperature by a reduction factor
α (as we are in the presence of a power law). As discussed
later, such a formulation is better suited for extrapolation
beyond the tunnel regime. Remarkably, this Tnode rescaling
factor of approximately α = 0.637, 0.648, and 0.655 for R =
RK/2, RK/3, and RK/4, respectively (see Appendix B 3), is
markedly higher (∼ + 30%) than the 1/2 factor correspond-
ing to the asymptotic mean temperature Tnode/2. The tunnel
DCB theory also allows us to numerically evaluate τ/τ∞
over the complete span of Tnode � T . The black continu-
ous lines show such calculations performed assuming Tenv =
(T + Tnode)/2. (Note that our experimental accuracy does not
allow us to precisely resolve what is the most appropriate
choice for Tenv in our device, with a similarly good agreement
at Tenv ∈ [(T + Tnode)/2, Tnode]; see Appendix D 4 and Ap-
pendix Fig. 8.) As previously, the only adjustable parameter
in the data-theory comparison is τ∞, which is here set by
matching the theory at a uniform temperature with the lowest
Tnode data point (where Tnode � T ). The precision agreement
between data and full numerical calculations observed in
Fig. 3 establishes the validity of the tunnel DCB theory of
a temperature biased tunnel junction.

We now investigate the more general case of an elec-
tronic quantum channel of arbitrary electron transmission
probability (τ∞ ∈ [0, 1]) subjected to a temperature bias. The-
oretically, arbitrary values of τ∞ can be addressed through
the mapping of the DCB problem in the presence of a series
resistance R to that of one impurity in a Luttinger liquid [24],
which holds for uniform temperatures T � Tnode � Tenv and
arbitrary voltages V provided that eV, kBT � h/2πRC. The
corresponding Luttinger crossover toward an insulating state
at low temperatures and voltages was fully solved first for spe-
cial values of the resistance in the pioneer work [43] (reducing
to a simple analytical expression for R = RK; see, e.g., [28])
and recently for any value of R [35]. This solution takes,
in the linear regime V → 0, the form of a renormalization
curve Geq

R/RK
(T/TI ) for the sample conductance. It is called

“universal” because the influence of microscopic parameters,
such as the high-energy capacitive cutoff and the intrinsic
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FIG. 4. Conductance versus node temperature in the near ballis-
tic regime (1 − τ � 1). The difference Gmax − G, between ballistic
limit Gmax = N

N+1 R−1
K and sample linear conductance G(V → 0), is

plotted in a log-log scale as a function of the rescaled node tem-
perature Tnode/TI for R = RK/2, RK/3, and RK/4. Gray dash-dotted
lines: Full universal predictions at uniform temperatures (Tnode =
T = Tenv) [35]. Black and red dashed lines: Asymptotic (Gmax −
G → 0) power law predictions at uniform temperatures (black) and
in the limit Tnode � T with Tenv = Tnode/2 (red). Black continuous
lines: Predictions for a near ballistic junction temperature biased at
Tnode � T with T = 8 mK and Tenv = (T + Tnode )/2. Full and open
symbols: Measurements at a uniform temperature T � Tnode (full)
and in the presence of a temperature bias at fixed T � 8 mK (open),
respectively. The scaling temperature TI is set by adjusting to the
universal theory the lowest temperature point Tnode � 8 mK.

channel transmission τ∞ in the absence of DCB, are encap-
sulated into the single temperature scale TI. The previously
discussed tunnel regime corresponds to the power law ex-
pected when approaching the insulating low temperature limit
Geq

R/RK
(T/TI → 0) ∝ (T/TI )2R/RK .

In a first step, let us consider the near ballistic regime
(1 − τ � 1). For a Luttinger liquid with an impurity, a
duality is predicted between strong backscattering (tunnel
regime) with a Luttinger interaction parameter K , and weak
backscattering (near ballistic regime) with an interaction
parameter 1/K [36,44,45]. Thus the dual of the tunnel
conductance power law T 2/K−2 reads in the near ballis-
tic regime Gmax − G ∝ (T/TI )2K−2 ∝ (T/TI )−2R/(RK+R) with
Gmax = N

N+1 R−1
K [24]. Accordingly, as shown in Fig. 4 for

R = RK/N with N ∈ {2, 3, 4}, the Luttinger universal renor-
malization curves at equilibrium Geq

R/RK
(T/TI ) (dash-dotted

gray lines) asymptotically approach the corresponding power
laws (black dashed lines) as Gmax − G → 0 (Tnode/TI → ∞).
However, this duality is not expected to hold beyond the
regime of both low and uniform temperatures where the
DCB-Luttinger liquid mapping applies. Consequently, it is
not expected to give access to the quantitative multiplicative
factor for the conductance, as it depends on the capacitive

cutoff. Here, we overcome these limitations by providing
DCB predictions for near ballistic junctions (Gmax − G � 1).
As detailed in Appendix C 1, we obtain an exact analytical
expression for the conductance at low uniform temperatures
[Tnode = T = Tenv � h/2πkBRC; see Appendix Eq. (C4)], by
expanding upon the approach of [46]. Remarkably, the duality
tunnel–near ballistic regime is found to hold not only for the
power law exponent, but also for the numerical multiplicative
factor. In the presence of a temperature biased channel (T �=
Tnode �= Tenv � h/2πkBRC), predictions are obtained within
a different approach based on the Keldysh formalism [47],
and take the form of an integral readily evaluated numer-
ically (see Appendix C 3). The black continuous lines in
Fig. 4 display these predictions, obtained by assuming that
the electromagnetic environment is at the mean temperature
Tenv = (T + Tnode)/2 [see Appendix Eq. (C8)]. Similarly to
the tunnel regime, we predict that the power law dependence
of Gmax − G for uniform temperatures is recovered at Tnode �
T , with a change in the multiplicative factor displayed by the
shift in log-log scale between black and red dashed lines. This
factor change here applies to the difference Gmax − G, instead
of the channel’s conductance in the opposite tunnel regime.
For a quantitative comparison between these two regimes, the
factor change can also be recast as an effective reduction of
the node temperature Tnode → αTnode. We find α � 0.61, 0.62,
and 0.64 for R = RK/2, RK/3, and RK/4, respectively. Al-
though not exactly identical, the temperature reduction factor
α in the tunnel and quasiballistic regimes are very close to
one another, within 5% for each of the presently investigated
series resistances. However, larger differences between these
regimes are predicted to develop for larger series resistances.

Comparing theory and experiment in the near ballistic
regime, first for uniform temperatures (Tnode � T � Tenv), we
find a very good agreement between the full universal theory
curves (dash-dotted gray lines) and the data (full symbols)
for R = RK/3 and RK/4. The only fit parameter is the value
of TI, determined by matching the data point at the lowest
temperature with the predicted value Geq

R/RK
(Tnode/TI ) (see

Appendix C 2 and Appendix Fig. 6 for a parameter-free com-
parison, limited by the experimental uncertainty on τ∞). Note
that a good match with the corresponding asymptotic power
law (black dashed lines) is observed up to the highest uniform
temperature of about 100 mK. Second, the node temperature
is now changed while T � 8 mK is kept fixed to create a
temperature bias. The corresponding Gmax − G data points
(blue open symbols) depart from the predictions at a uni-
form temperature Tnode = T = Tenv (dash-dotted gray lines
and black dashed lines). In contrast, a precise agreement is
observed with the presently developed DCB predictions for
a temperature-biased near ballistic channel, here evaluated at
fixed T = 8 mK and assuming Tenv = (T + Tnode)/2 (black
continuous lines).

Does an effective temperature rescaling at Tnode � T per-
sist for an arbitrary transmission probability τ ∈ [0, 1] across
the generic quantum channel, beyond the tunnel and near
ballistic limits? First, as previously demonstrated [33,34],
we find a good agreement over the full range of conduc-
tance 0 < G < Gmax between the universal renormalization
curves at uniform temperatures Geq

R/RK
(Tnode/TI ) (gray dash-

dotted lines in Fig. 5 and Appendix Fig. 11) and the sample
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FIG. 5. Conductance for arbitrary channel tunings and R = RK/3
versus node temperature. Open symbols: Measured sample conduc-
tance G at T � 8 mK versus heated-up Tnode. Different tunings (τ∞)
of the channel are shown using different symbols and colors. For
each tuning a unique value of TI is determined by matching the
lowest temperature data point at Tnode � T � 8 mK with Geq

1/3(T/TI ),
the universal prediction at uniform temperatures (gray dash-dotted
line). The black line corresponds to the universal prediction with
the temperature reduction factor Tnode → αTnode predicted to apply
for large temperature bias in the tunnel regime [α � 0.648, see Ap-
pendix Eq. (B17)]. Insets: Magnified view for intermediate channel
tunings.

conductance measured at Tnode � T (see Appendix Fig. 10
for a comparison). Now turning to the regime of a tempera-
ture bias Tnode � T , we focus in Fig. 5 on the representative
R = RK/3 at T � 8 mK for clarity (see Appendix Fig. 11 for
R = RK/2 and RK/4). The measured conductance G across
the whole sample—nonballistic channel and R—is displayed
as open symbols, with each identical set of symbols of the
same color corresponding to a fixed tuning of the quantum
channel (a fixed τ∞, see insets in Fig. 5 for two data sets
each corresponding to a different tuning). A single value of
the scaling temperature TI is associated with a fixed tuning
of the channel, together with a specific RC environment. It
is here obtained by matching the equilibrium Geq

1/3(Tnode/TI )
with the conductance measured for this tuning at the low-
est Tnode where the temperature is uniform (Tnode � T �
8 mK). As Tnode increases, a temperature bias develops and
the measured conductance moves away from Geq

1/3(Tnode/TI ).
Remarkably, we find that for large enough temperature bias
(Tnode/T � 4) the universal uniform temperature curve is re-
covered at the experimental resolution provided we apply a
temperature rescaling Tnode → αTnode. The temperature reduc-
tion factor in the tunnel and near ballistic regimes being very
close to one another (within 5%), we only display for this
comparison Geq

1/3(αTnode/TI ) with α the tunnel temperature re-
duction factor given by Appendix Eq. (B17) (black continuous
line).

The conductance reduction experienced by a quantum con-
ductor when it is embedded into an on-chip dissipative circuit,
the so-called dynamical Coulomb blockade (DCB), has been
explored in the presence of temperature gradients. We exper-
imentally have established the existing tunnel DCB theory
under a temperature bias, and obtained analytical expressions
for the conductance. In the near ballistic regime, we have
developed the theory and provided quantitative predictions as
a function of the device parameters and for arbitrary temper-
atures differences, which have been verified experimentally.
More generally, beyond the tunnel and near ballistic limits, we
have observed that the equilibrium predictions apply to a good
approximation for large temperature differences, provided a
simple effective rescaling of the temperature is performed.
This work develops and establishes our understanding of ther-
mally inhomogeneous quantum circuits, a knowledge set to
play a role for the future engineering of functional quantum
devices involving local dissipation.
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APPENDIX A: SAMPLES

The sample was made in the same batch as the one used
in [16], with additional fabrication steps. It consists of a
Ga(Al)As two-dimensional electron gas buried 105 nm be-
low the surface, of density 2.5 × 1011 cm−2 and of mobility
106 cm2V−1s−1. Its nanostructuration is performed by stan-
dard e-beam lithography, dry etching, and metallic deposition.
The central metallic island [nickel (30 nm), gold (120 nm),
and germanium (60 nm)] was thermally annealed (440 ◦C for
50 s) to achieve a good Ohmic contact with the 2DEG.

The contact quality between the metallic island and the
2DEG is fully characterized, through the individual determi-
nation of the electron reflection probability at the interface for
each connected quantum Hall channel, with the same experi-
mental procedure previously detailed in Methods of [48]. We
find a reflection probability below �0.001% (the statistical
uncertainty) for all the used channels.

The typical electronic level spacing in the metallic is-
land is estimated to be negligibly small (δ ≈ kB × 0.2 μK),
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based on the electronic density of states of gold (νF ≈ 1.14 ×
1047 J−1m−3) and the metallic island volume (≈3 μm3).

Due to technical problems, the initial electrostatic gates
(shown on Fig. 1) were etched out, redefined and redeposited
with 40 nm of aluminum.

An important device parameter is the charging energy
EC ≡ e2/2C of the island. For this specific device, one of
the channels remains open and standard Coulomb diamond
determination of EC could not be performed. Instead, the value
EC � kB × 0.37 K is obtained by fitting the overall G(V )
tunnel data at a uniform temperature, at all T � Tnode � Tenv

(from 8 to 90 mK) and for all the series resistances RK/N with
N ∈ {2, 3, 4}. Note that this value is slightly higher (∼+20%)
than the one found in [16]. The reduced geometrical capaci-
tance C might come from imperfect new gates. However, note
also that EC is sufficiently large to have a relatively small
impact, notably in the data-theory comparison as a function of
a temperature bias. This can be seen in Fig. 3 from the small
difference between black continuous lines and red dashed
lines at the largest Tnode.

The resistance in series with the studied, nonballistic chan-
nels is simply taken as the dc electrical resistance RK/N of the
constitutive N quantum Hall channels in parallel. In principle,
deviations from this value could occur at high frequencies.
However, these deviations are limited by the high-frequency
cutoff introduced by the capacitance C of the island. For
instance, such deviations could result from a nonzero con-
ductivity across the 2D bulk at the frequency ν when the
energy hν becomes comparable with the quantum Hall gap.
Yet, in our sample the quantum Hall gap is about two orders
of magnitude higher than h/RC = N × EC. Also, the tran-
sit time ttransit along the micron-scale distance between the
backscattering location in the nonballistic channel and the
island could lead to an inductive correction to R. Yet, given
the typical velocity of ∼105 m/s for the propagation of charge
along the quantum Hall edge, the associated energy scale
h/ttransit is about one order of magnitude higher than h/RC. In
practice, we check the validity of our RC circuit description
by comparing the conductance data with the DCB theory in
the well-established regimes of a uniform temperature (see
Figs. 2, 9, 10, and full symbols in Figs. 3 and 4).

APPENDIX B: P(E ) THEORY OF DYNAMICAL COULOMB
BLOCKADE FOR A TUNNEL JUNCTION

Here we focus on the predictions for the DCB renormal-
ization of the transmission probability τ across an electronic
channel in the tunnel regime (τ, τ∞ � 1), when it is em-
bedded in an RC circuit. These results can be applied to a
high-resistance tunnel junction including many such chan-
nels replacing τ/RK and τ∞/RK by, respectively, the junction
renormalized and intrinsic differential conductance.

1. Numerically efficient formulation at arbitrary voltage
and uniform temperature T = Tnode = Tenv

with an RC environment

Numerical calculations of the conductance of a coherent
conductor in the tunnel limit in presence of environmental
back-action were made with the efficient formulation of the

DCB theory for small tunnel junctions given in [49]. In this
section, we recapitulate the expressions used in the case of
uniform temperatures and finite bias voltages.

The transmission probability τ ≡ RKdI/dV across a short
electronic channel in the tunnel regime, embedded in an elec-
tromagnetic environment described by the series impedance
Z (ω), at a uniform temperature T = Tnode = Tenv, and for a
voltage V applied here across the channel [corresponding to
V − Vnode in Fig. 2, as shown in Fig. 1(a)] reads [11]

τ (V, T )/τ∞ − 1

=
∫ +∞

0
dt

2πt

sinh2 πtkBT
h̄

(
kBT

h̄

)2

Im[eJ (t )] cos
eV t

h̄
,

(B1)

with the channel intrinsic resistance RK/τ∞ assumed to
be very large compared to the environmental impedance,
Re[Z (ω)] � RK/τ∞.

For the simplified RC model of the electromagnetic envi-
ronment shown in article Fig. 1(b) [Z (ω) = R/(1 + iRCω)],
J (t ) reads

J (t ) = πR

RK

((
1 − e−|t |/RC

)(
cot

h̄

2RCkBT
− i

)

− 2kBT |t |
h̄

+ 2
+∞∑
n=1

1 − e−ωn|t |

πn[(RCωn)2 − 1]

)
,

(B2)

where ωn = 2πnkBT/h̄ are Matsubara’s frequencies and

2
+∞∑
n=1

1 − e−ωnt

πn[(RCωn)2 − 1]

= − 1

π

[
2γ + �(−x) + �(x) + 2 ln(1 − y)

+ y

1 + x
2F

1
(1, 1 + x, 2 + x, y)

+ y

1 − x
2F

1
(1, 1 − x, 2 − x, y)

]
, (B3)

where γ � 0.5772 is Euler’s constant, � is the logarithmic
derivative of the gamma function, 2F1 is the hypergeometric
function, y = exp( −2πtkBT

h̄ ), and x = ECRK/(2π2RkBT ) with
EC = e2/(2C) the charging energy.

2. Analytical asymptotic expressions versus V at
T = Tnode = Tenv = 0, and versus

T = Tnode = Tenv at V = 0

We detail here the derivation of analytical expressions at a
uniform temperature T = Tnode = Tenv for the asymptotic lim-
its kBT � eV � h̄/RC (abbreviated in equations as V → 0,
T = 0), plotted in Fig. 2, and eV � kBT � h̄/RC (abbrevi-
ated as T → 0, V = 0), plotted in Fig. 3.

Although the expression given by Eq. (B1) is conve-
nient for performing numerical evaluations in most practical
situations, the singularity of the integrand in Eq. (B1) is
troublesome when attempting to obtain analytical results. To
express asymptotic limits in the case of a RC environment,
other formulations are required.

(i) At T = Tnode � eV/kB, in [7], the conductance at low
voltages with respect to the capacitive cutoff (eV � h̄/RC)
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is obtained from a P(ε) formulation such as Eq. (1). The
transmission probability then reads

τ (T = 0,V → 0)

τ∞
� 1 + 2R/RK

�(2 + 2R/RK )

(
πR eV

eγ RKEC

)2R/RK

.

(B4)

(ii) For the linear conductance at eV � kBT , we have de-
veloped an equivalent formulation of the tunnel conductance
by extending the analysis to the complex plane in t , managing
the poles and shifting the integral contour. We then get

τ (V = 0, T )

τ∞
=

∫ +∞

0
dt

πkBT/h̄

cosh2 πtkBT
h̄

× eJ†(t,T ). (B5)

For the simplified RC model of the electromagnetic environ-
ment shown in Fig. 1(b), J† reads

J†(t, T ) = πR

RK

(
cos h̄

2RCkBT − e−t/RC

sin h̄
2RCkBT

− 2tkBT

h̄

)

+ 2R

RK

∞∑
n=1

1 − (−1)ne−ωnt

n
(
ω2

nR2C2 − 1
) .

(B6)

The sum over Matsubara’s frequencies then becomes

−
∞∑

n=1

1 − (−1)ne−ωnt

n
(
ω2

nR2C2 − 1
)

= �(x) + 1

2x
+ γ + ln

(√
y + 1√

y

)
+ πyx

2 sin(πx)

− y

2(1 + x)
2F

1
(1, 1 + x, 2 + x,−y)

− y

2(1 − x)
2F

1
(1, 1 − x, 2 − x,−y), (B7)

recalling for clarity that ωn = 2πnkBT/h̄ are Matsubara’s fre-
quencies, γ is Euler’s constant, � is the logarithmic derivative
of the gamma function, 2F1 is the hypergeometric function,
y = exp(−2πtkBT/h̄), and x = ECRK/(2π2RkBT ).

For the asymptotic limit kBT � h̄/RC, the low temper-
ature behavior is dominated by large values of t � RC in
Eq. (B5). We can thus use the long t , small T expansion [50]:

J†(t ) � − 2R

RK

(
ln

[
2 cosh

(
πtkBT

h̄

)]
+ ln(2x) + γ

)
.

(B8)

Inserting this expansion in Eq. (B5), we find the asymptotic
(eV � kBT � h̄/RC) analytical expression of the transmis-
sion probability:

τ (V = 0, T → 0)

τ∞
�

√
π

2

�(1 + R/RK )

�(1.5 + R/RK )

(
π2R kBT

eγ RKEC

)2R/RK

.

(B9)

Note that previously, in [16], we proposed a slightly dif-
ferent empirical expression extracted from [51], which differs
by a factor (πe−2γ )R/RK from the exact asymptotic expression
Eq. (B9) (this factor deviates from 1 by less than 1% for
R/RK � 1).

3. Extension to different bath temperatures T, Tnode, Tenv

We now focus on the case where the voltage-biased tunnel
contact is embedded between two electrodes L and R at dif-
ferent temperatures Tnode and T , and with an electromagnetic
environment at the temperature Tenv.

Following Joyez et al. and their notations [49], the relative
conductance reduction in the tunnel regime reads

τ

τ∞
− 1 =

∫
dE

∫
dε PTenv(ε) fTnode(E − eV )

× ∂

∂E
[ fT(E + ε) − fT(E − ε)],

(B10)

with PTenv(ε) the probability distribution to exchange the
energy ε with the electromagnetic environment [previously in-
troduced in Eq. (1)], and fTx the Fermi function at temperature
Tx with x ∈ {L, R}.

Equivalently, in the time domain, the relative conductance
reduction reads

τ (V, Tnode, Tenv, T )

τ∞
− 1

=
∫ +∞

0
dt 2πt Im[eJ (t,Tenv )]

kBT/h̄

sinh(πtkBT/h̄)

× kBTnode/h̄

sinh(πtkBTnode/h̄)
cos

eV t

h̄
.

(B11)

In the limit T = 0, one finds

τ (V, Tnode, Tenv, T = 0)

τ∞
− 1

= 2
∫ +∞

0
dt Im[eJ (t,Tenv) ]

kBTnode/h̄

sinh(πtkBTnode/h̄)
cos

eV t

h̄
.

(B12)

A natural approximation for the environment temperature
is the average temperature Tenv = Tnode/2; if eV � kBTnode,
Eq. (B12) then simplifies to

τ (V = 0, Tnode = 2Tenv, Tenv, T = 0)/τ∞ = eJ†(0,Tenv ).

(B13)

Note that Eq. (B13) is equivalent in the energy domain to

τ (V = 0, Tnode = 2Tenv, Tenv, T = 0)/τ∞

=
∫ ∞

−∞
dε

2PTenv(ε)

1 + eε/2kBTenv

=
∫ ∞

−∞
dεPTenv(ε)e−ε/2kBTenv . (B14)

When Tenv = Tnode/2 � h̄/kBRC, we have J†(0, Tenv) �
− 2R

RK
[ln(2x) + γ ]. The low temperature asymptotic behavior

of Eq. (B13) then reads

τ (V = 0, Tnode � h̄/kBRC, Tenv = Tnode/2, T = 0)/τ∞

�
(

π2R kBTnode

2 eγ RKEC

)2R/RK

.

(B15)

Equation (B15) with one null temperature and Eq. (B9)
with uniform temperatures are both temperature power laws
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with the same exponent 2R/RK. They correspond to, respec-
tively, the red and black dashed lines plotted in Fig. 3. The
constant ratio between these limits allows us to calculate the
temperature rescaling factor α discussed in the main paper:

τ (V = 0, Tnode � h̄/kBRC, Tenv = Tnode/2, T = 0)

τ (V = 0, Tnode = Tenv = T � h̄/kBRC)

= 2√
π

�(1.5 + R/RK )

�(1 + R/RK )
2−2R/RK = α2R/RK .

(B16)

Consequently, the temperature reduction factor α reads, in the
tunnel regime,

α = 1

2

[
2√
π

�(1.5 + R/RK )

�(1 + R/RK )

]RK/2R

. (B17)

For the implemented series resistances R = RK/2, RK/3, and
RK/4, we obtain α � 0.637, 0.648, and 0.655, respectively.

APPENDIX C: DYNAMICAL COULOMB BLOCKADE
THEORY IN THE NEAR BALLISTIC REGIME

1. Quantitative predictions at a uniform temperature
T = Tnode = Tenv

The power law exponent in the vicinity of the ballistic
regime is known from the duality predicted between strong
backscattering (tunnel) and weak backscattering (near bal-
listic) regimes across an impurity in Luttinger liquids of
interaction parameters K and 1/K , respectively [36,44,45].
The corresponding prefactor is nonetheless not universal and
depends on the microscopic details, such as the high fre-
quency capacitive cutoff. It has been inferred in the particular
case R = RK (K = 1/2) in [33], adapting [46]. We extend
here such a quantitative prediction to R = RK/N with N ∈ N.
Remarkably, we find that the duality also exactly applies to
the prefactor.

Following Ref. [46], we assume an energy-independent
backscattering at the contact in the absence of DCB, and
describe the N fully ballistic channels and the weakly reflected
one with bosonic variables φ j (x) ( j = 1, . . . , N + 1). The
nearly ballistic (weakly reflected) edge channel is denoted by
j = 1. Each channel has a fictitious right(left)-moving part,
corresponding to the edge path before (after) entering the
charged island in the region x > 0. The island electric charge
is thus

Q̂ = − e

π

N+1∑
j=1

∫ +∞

0
dx∂xφ j (x) = e

π

∑
j

φ j, (C1)

where we set the notation φ j ≡ φ j (0). It is in fact easier
to work with the (properly normalized) total charge field
φ̃1 = 1√

N+1

∑
j φ j . Employing current conservation, the Kubo

formula can be written as

G = Gmax
2ωn

π
〈φ̃2(ωn)φ̃2(−ωn)〉iωn→0+ , (C2)

where the imaginary (Matsubara) frequency ωn = 2πnkBT/h̄
is analytically continued to the real axis and then sent to
zero. Here we have introduced a second linear combination
of the original fields φ̃2 = √

N/(N + 1)(φ1 − 1
N

∑
j �=1 φ j ),

with coefficients orthogonal to those of φ̃1. The advantage
of performing this orthogonal change of variables is that the
Hamiltonian then couples only the two fields φ̃1 and φ̃2. We
can factor out the other linear combinations φ̃ j ( j � 2) for the
evaluation of the Kubo formula.

With this formulation, the Euclidean action that gov-
erns the dynamics of the two relevant bosonic fields is
S = ∑

j=1,2

∑+∞
n=0 φ̃ j (iωn)Kj φ̃ j (−iωn) + SBS with the inverse

Green’s functions πKj = |ωn| + δ j,1(N + 1)EC/π and the
backscattering term

SBS = D
√

1 − τ∞
π

∫ h̄/kBT

0
dτ cos

(
2φ̃1(τ ) + 2

√
N φ̃2(τ )√

N + 1

)
,

(C3)

with D the edge electrons’ energy bandwidth that is neces-
sarily introduced in bosonization. D acts as a high-energy
regularization which cancels out when evaluating the conduc-
tance.

Equipped with this action, we follow Appendix A 1 from
Ref. [46] and compute the conductance to leading nonvanish-
ing order in the backscattering amplitude

√
1 − τ∞ � 1. We

find the analytical result

Gmax − G = RK
√

π (1 − τ∞)

2(R + RK )2

�[RK/(R + RK )]

�[1/2 + RK/(R + RK )]

×
[

eγ EC(1 + RK/R)

π2kBT

] 2R
R+RK

,

(C4)

where we recall that Gmax = (R + RK )−1. We obtain the
desired temperature scaling T 2K−2 also predicted from the
duality tunnel–near ballistic with, in addition, an exact pre-
diction for the prefactor in terms of the transmission τ∞,
the charging energy EC = e2/2C, and the ratio of resistances
RK/R corresponding to the number of ballistic channels con-
necting the island.

Remarkably, although this was not expected to our knowl-
edge, we find that the duality between tunnel and near ballistic
regimes also applies for the exact value of the multiplicative
factor, despite the dependence of this prefactor on the capac-
itive cutoff. More precisely, we compare the expressions of
τ/τ∞ in the tunnel regime [obtained from Eq. (B9)], with
(Gmax − G)/(Gmax − G∞) in the near ballistic regime [ob-
tained from Eq. (C4)], where G∞ ≡ (RK/τ∞ + R)−1 is the
device conductance in the absence of DCB renormalization.
It turns out that these two expressions map exactly onto one
another provided K = RK/(R + RK ) is replaced by 1/K =
R/RK + 1. This remarkable robustness of the duality also
suggests that Eq. (C4), which was obtained for R = RK/N ,
may apply for arbitrary values of R (a theoretical treatment of
arbitrary R is in preparation [47]).

2. Comparison of quantitative predictions and experiments
at a uniform temperature T = Tnode = Tenv

In Fig. 6, we confront the predictions of Eq. (C4) with the
experimental conductance measured at equilibrium in the near
ballistic regime, for R = RK/3 and RK/4.
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FIG. 6. Insets: Symbols show illustrative measurements at τ∞ ∼
0.98 of G − Gmax for R = RK/N (top and bottom panels: N = 4 and
3, resp.) versus equilibrium temperature T at V = 0, with Gmax =

1
RK

N
N+1 (data also shown in Fig. 4). Continuous lines are quantitative

theoretical predictions of Eq. (C4), using τ∞ = τ (V = −58 μV)
without any fit parameter. Dashed lines are fits using τ∞ as a free
parameter adjusted by matching the data point at T = 90 mK. Main
panel: Symbols represent the fitted values of τ∞ versus the corre-
sponding large bias voltage measurements τ (V = −58 μV).

The insets display a direct comparison of the pre-
dicted (continuous lines) and measured (symbols) conduc-
tance at a representative channel tuning of τ∞ ∼ 0.98. The
quantitative predictions of Eq. (C4) are calculated without any
fit parameter, assuming τ∞ � τ (V = −58 μV) on the basis
that for such large dc bias voltage only a relatively small renor-
malization due to DCB is expected (V being of the order of
the capacitive cutoff NEC/πe = h/2πeRC). We observe here
relatively small quantitative discrepancies of ∼7% and ∼16%
for R = RK/4 and RK/3, respectively. These small discrepan-
cies could result from the experimental uncertainty on τ∞, due
to a residual DCB renormalization as well as a non-negligible
energy dependence of τ∞ at large bias voltages.

In the main panel, we perform a quantitative data-theory
comparison over a broad span of τ∞ ∈ [0.96, 1]. For this
purpose, the fitted value τ fit

∞ is obtained by matching the
prediction of Eq. (C4) with the conductance measured at
T � 90 mK. The resulting τ fit

∞ is plotted as symbols versus
the measured transmission probability at high bias volt-
age τ (V = −58 μV). In the ideal case where τ∞ = τ (V =
−58 μV), we would expect the τ fit

∞ points to fall on the con-
tinuous straight line corresponding to τ fit

∞ = τ (V = −58 μV).
We observe that the data points are relatively close to this
line, and that the distance reduces as τ∞ approaches 1.
This comparison establishes the quantitative predictions of
Eq. (C4) at a good relative accuracy, which we believe is
here limited by experimental discrepancies between τ∞ and
τ (V = −58 μV).

3. Near ballistic theory with different bath
temperatures T, Tnode, Tenv

The QPC is here coupled to two electrodes at temperatures
Tnode and T . In that case one cannot use the Euclidian action
employed at equilibrium, and an adapted Keldysh approach
is required. Here, we restrict ourselves to a simple resistance
R = RK/N in series with the QPC. A full analysis including
exactly the parallel capacitance C will be performed sepa-
rately [47].

The QPC is modeled by a weak local backscattering term
at x = 0:

HBS =
√

1 − τ∞ cos[2φ1(0)]/2πt0, (C5)

with 1 − τ∞ � 1, t0 a short time cutoff of the order of h̄/EC,
and φ1 the bosonic field introduced in Appendix C 1. We treat
the remaining N channels as a linear resistance R = RK/N
(note that the present approach applies to arbitrary values of
R). The coupling term between the QPC and this environment
reads eφ1(0)(V − û)/π , with V the voltage applied to the all
device (QPC and series resistance), eφ1(0)/π the total charge
transferred through the QPC, and û the voltage operator across
the resistance, whose fluctuations are given by ∂2

t J (t ) [see
Eq. (B2)] and are determined by R and Tenv.

First, we need to distinguish the right and left going elec-
tron fields �R,1, �L,1. �R,1 moves away from the island, at
a temperature Tnode. �L,1 moves toward it, corresponding to
electrons injected from the right electrode at temperature T
[see article Fig. 1(b)]. Second, we adopt a strategy similar to
Ref. [24] by integrating out the environment, ending up with
an effective Keldysh action for the bosonic field φ1(0) [47].

The mapping of this DCB problem to a one-dimensional
Luttinger liquid with an impurity breaks down (also when
including C, which corresponds to finite-range interactions as
discussed in the Supplemental Material of [30]). Yet, it is still
convenient to use the parameter K = (1 + R/RK )−1, which
determines the nondiagonal element of the Keldysh matrix
Green’s function for φ1(0):

Cneq(t ; Tnode, Tenv, T ) = K

2
[Ceq(t ; Tnode) + Ceq(t ; T )]

+ (1 − K )Ceq(t ; Tenv). (C6)

Here we use the Green’s function obtained at a
uniform temperature T in a Luttinger liquid with
parameter K and at the same cutoff t0: Ceq(t ; T ) =
−(K/2) ln [h̄ sinh {πkBT (−t + it0)/h̄}/πkBT t0].

To lowest order with respect to the backscattering am-
plitude

√
1 − τ∞, the Green’s function Cneq(t ; Tnode, Tenv, T )

determines fully the current as a function of the voltage V
and temperatures Tnode, Tenv, T . Here we restrict ourselves to
the experimentally measured linear conductance at zero dc
voltage, using an extension of Kubo’s formula [38,52]. We
find:

Gmax − G(Tnode, Tenv, T )

= −iK2 1 − τ∞
πt2

0 RK

∫ ∞

−∞
dt t e4Cneq(t ;Tnode,Tenv,T ). (C7)

We can determine the effective time cutoff t0 by comparison to
the prediction for a uniform temperature T given in Eq. (C4):
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t0 = h̄πKe−γ /EC, with γ the Euler’s constant. Note that this
prefactor can also be recovered from a complete analysis
including C, as will be detailed elsewhere [47].

Injecting Eq. (C6) into Eq. (C7) and restricting ourselves to
the experimental hypothesis Tenv = (T + Tnode)/2, we finally
obtain

Gmax − G

(
Tnode,

Tnode + T

2
, T

)
= 2K2(1 − τ∞)

πRK
sin πK

[
2eγ EC

π2KkB(Tnode + T )

]2(1−K )[ 8 TnodeT

(Tnode + T )2

]K2

×
∫ ∞

0
dt

t

(sinh t )2K (1−K )

[
cosh 2t −cosh

(
2t

Tnode − T

Tnode + T

)]−K2

.

(C8)

We recall that K = (1 + R/RK )−1 and Gmax = (R + RK )−1 =
K/RK. The integral in Eq. (C8) can be readily evaluated
numerically. This allows one to compute the conductance at
arbitrary values of T , Tnode, as long as both remain small
with respect to the high energy cutoff (T, Tnode � EC/kB)
and the backscattering remains weak (1 − G/Gmax � 1). The
continuous lines in Fig. 4 are the predictions of Eq. (C8).

APPENDIX D: EXPERIMENTAL ELECTRONIC
TEMPERATURES

Having a good knowledge of the different electronic tem-
peratures (base T and node Tnode) is crucial for the present
experiments. In this Appendix, we first summarize how these
temperatures are separately measured. Then we detail how
Tnode can be calculated based on the heat Coulomb blockade
theory previously established, and compare with our mea-
surements. Finally, we discuss the possible choices for the
temperature Tenv of the electromagnetic environment com-
posed of the series RC circuit.

1. Measurement of the electrons’ temperature T
in the large electrodes

Following [16], we have obtained T from shot noise mea-
surements in a device configuration where the metallic island
is bypassed [thanks to lateral gates visible in Fig. 1(a), which
are operated as short-circuit switches]. For temperatures T �
40 mK, we used the mixing chamber temperature measured by
a RuO2 thermometer, which was previously shown to match
very closely the electrons’ temperature in the same setup [16].

2. Measurement of the electrons’ temperature
in the metallic island Tnode

Following [39], the temperature increase of the electrons in
the central node is inferred from two independent noise mea-
surements, performed on the electrodes 1 and 3 of Fig. 1(a).
Here, one noise measurement is realized behind the partially
transmitted channel (on electrode numbered 3, schematically
connected to an amplifier and resonator) and the other one
behind the N1 ballistic channels (on electrode numbered 1,
also schematically connected to an amplifier). Specifically, we
measure the difference with respect to equilibrium in the auto-
correlation signals �S11 and �S33, and in the cross-correlation
signal �S13. From current conservation and the negligible
charge accumulation in the device at the MHz measurement
frequencies, we find following [39,40] that the thermal noise

increase �Sth ≡ 2kB(Tnode − T )/RK is given by the excess
(increase in) noise signals:

�Sth = �S11
N1 + N2

N1N2
− �S33

N1

N2(N1 + N2)
(D1)

or alternatively

�Sth = �S11
N1 + N2

N1N2
+ �S13

N2
. (D2)

Note that both expressions allow one to extract Tnode − T
independently. We have checked that they were equivalent.
None of these expressions depend on τ .

In practice, each data point is averaged over about 10 min
to get a temperature resolution of ∼0.1 mK. At this resolution,
we are also sensitive at our lowest temperature to a small
heating of the central node by the spurious low-frequency
noise induced by vibrations. This noise, which depends on the
device configuration, is separately determined to be δVnoise ∼
0.4 μV. It results in a small heating of the central node of
�0.2 mK.

3. Calculation of the electrons’ temperature
in the metallic island Tnode

We also relied on our knowledge of heat flow in the de-
vice [39] to calculate Tnode. These calculated values were
used in the tunnel regime and also for the out-of-equilibrium
measurements performed at temperatures T larger than our
base temperature ∼8 mK.

The node temperature is determined by balancing the in-
jected Joule power in the metallic node (PJ) with the outgoing
heat currents, from electrons to phonons (JQ

ph) and through the

connected electronic channels (JQ
el ).

The electron-phonon heat flow is determined when the
device only hosts ballistic channels. We find

JQ
ph � 1.8 × 10−8

(
T 5.5

node − T 5.5
)

W. (D3)

The flow of heat across the electronic channels reads [39]

JQ
el = (N + τ )

π2k2
B

6h

(
T 2

node − T 2
) + (N + τ )

(N + τ 2)E2
C

π2h

×
[

I

(
(N + τ )EC

πkBT

)
− I

(
(N + τ )EC

πkBTnode

)]
, (D4)

with I (x) = 1
2 [ln ( x

2π
) − π

x − ψ ( x
2π

)].

Knowing the injected power PJ = N1V 2
1 +N2V 2

2
2RK

, N = N1 +
N2, the charging energy EC = kB × 370 mK and the tem-
perature T , we can solve the heat balance equation for each
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FIG. 7. Symbols: Relative difference between the calculated
node temperature T calc

node and the measured one T meas
node , shown at base

temperature T ∼ 8 mK for both R = RK/3 and R = RK/4, over the
full range of explored τ values.

measured point τ and thereby find the only unknown parame-
ter Tnode.

The relative accuracy of the heat Coulomb blockade theory
on the present device is tested at base temperature T ∼ 8 mK

10 100

0.1

1

Tnode (mK)

thy Tenv= (T+Tnode)/2
thy Tenv∈ [T,Tnode]

RK/2

RK/3

RK/4

T=8 mK

FIG. 8. Open symbols: Renormalized transmission probability
τ/τ∞ of the generic channel in series with resistances RK/2, RK/3,
and RK/4 versus the node temperature at V = 0 at the base temper-
atures T � 8 mK in a log-log scale. Black lines: Predictions of the
full tunnel DCB theory for different temperatures (see Appendix B 3)
calculated using T = 8 mK, Tnode, and Tenv = (T + Tnode )/2. τ∞ is
the only adjustable parameter per value of R/RK in the data-theory
comparison. The gray areas correspond to the predicted range of
conductance for Tenv ∈ [T, Tnode], using T = 8 mK and Tnode.

FIG. 9. Tunnel DCB theory-data comparison under a bias
voltage at RK/2 and RK/4. Symbols: Measured renormalized trans-
mission probability across the generic channel in series with a
resistance RK/2 (RK/4) plotted versus the channel bias voltage
V − Vnode at different temperatures T in a log-log scale. Black lines:
Full tunnel DCB theory calculated with the parameters C = 3.1 fF
(C = 2.5 fF) and the measured temperature T . Red dashed line:
Asymptotic power law predictions at zero temperature with no fit
parameter.

in Fig. 7, where we plot as symbols the relative difference
between calculated and measured node temperatures. The
agreement is better than 4% over the full τ and Tnode ranges.

4. Temperature of the electromagnetic environment Tenv

The environment temperature appears as a separate param-
eter Tenv in the tunnel DCB theory as well as in the theory
developed in the near ballistic regime (Appendix C 3). In the
main paper, we use the average value Tenv = (Tnode + T )/2.
Here, we determine the range of Tenv over which the tunnel
DCB theory is compatible with the data.

0.01 1 100 10000
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FIG. 10. Universal renormalization flow of the conductance at
equilibrium. Colored continuous lines represent the experimental
curves (green for RK/4 is shifted vertically by 0.1, purple shows
RK/3) obtained by averaging the ensemble of data measured from
T = 8 mK to T = 90 mK for each τ∞ configuration (see [33] for the
detailed procedure). The exact theoretical predictions Geq

R/RK
(T/TI )

derived in [35] are shown as black dashed lines. The full renormal-
ization curve has not been measured for R = RK/2.
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FIG. 11. Conductance of a generic channel in series with R = RK/2 [panel (a)] and RK/4 [panel (b)] under a temperature bias (Tnode � T )
at base temperature T � 8 mK. Open symbols: Measured sample conductance G for different channel settings of τ∞, each shown using a
different color and symbol shape. For a given channel setting, a unique value of the renormalization temperature TI is determined by matching
the first data point at equilibrium (Tnode � T ) with the predicted universal conductance curve at equilibrium Geq

R/RK
(Tnode/TI ) (gray dash-dotted

line). Black lines: Universal conductance curve at equilibrium with the same effective reduction in temperature expected at large Tnode/T from
the tunnel DCB theory, namely Geq

R/RK
(αTnode/TI ) with α given in Eq. (B17).

For this purpose, we show in Fig. 8 the same tun-
nel data points as in Fig. 3, and the black continuous
lines also correspond to the tunnel DCB theory predictions
with Tenv = (Tnode + T )/2. In addition, the gray areas en-
close the tunnel DCB predictions for the full interval Tenv ∈
[T, Tnode]. In practice the data points are close to or slightly
above the prediction for Tenv = (Tnode + T )/2, suggest-
ing that Tenv � (Tnode + T )/2. However, the interval Tenv ∈
[∼ (Tnode + T )/2, Tnode] remains within our experimental un-
certainty (approximately the size of the points).

APPENDIX E: COMPLEMENTARY DATA

1. DCB under a bias voltage in the tunnel regime
at RK/2 and RK/4

To complement Fig. 2 focusing on R = RK/3, we plot in
Fig. 9 the measured conductances (symbols) and DCB pre-

dictions (lines) in the tunnel regime for the series resistances
R = RK/2 and RK/4 at different temperatures T .

2. Full Tomonaga-Luttinger conductance renormalization
curve at equilibrium

As in [33,34], we show on Fig. 10 the pertinence of the
mapping to a TLL by comparing the measured conductance
G(V = 0, T ) versus T/TI at equilibrium (colored continuous
lines) to the predictions Geq

R/RK
(T/TI ) from [35] (black dashed

lines).

3. DCB of a generic channel under a temperature
bias with RK/2 and RK/4

Figure 11 complements the data at arbitrary channel tuning
shown in main text Fig. 5 for R = RK/3, with here the conduc-
tance measured at RK/2 [panel (a)] and RK/4 [panel (b)].
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