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Higher-order topology and fractional charge in monolayer graphene
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Typical higher-order topological systems require the fine-tuning of hopping textures and external fields, which
considerably hinders their practical realization. Based on a simple picture that corners are “edges” of edges, we
determine that in the already-thoroughly-studied monolayer graphene, higher-order topological corner states
appear without introducing any additional effects. Unlike quadrupole insulators, owing to degenerate Dirac
points in graphene, the emergence of topological corner states depends on the corner angle and edge geometries.
We provide a useful expression for the indication of corner states in graphene by the product of Zak phases. We
also discuss the methods for experimental detection of the nontrivial higher-order topology in graphene such as
the fractional corner anomaly and the disparity of local density of states between trivial and nontrivial corners.
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The topology of energy bands offers us a new dimension
of designing solid-state materials with intriguing properties
[1–3]. One of the essential properties of topologically non-
trivial systems is the bulk-edge correspondence, where robust
edge and surface states appear at the interfaces that separate
two topologically distinct systems [4,5]. These topological
states are insensitive to local perturbations that preserve
bulk topological invariants, which is also called topologi-
cal protection. The recently proposed higher-order topology
has extended such bulk-edge correspondence to the more
general bulk-edge-corner correspondence, where the topo-
logical states of codimension larger than 1, i.e., topological
corner states in two-dimensional systems, appear [6,7]. The
higher-order topology has attracted considerable attention in
condensed matter physics owing to its fundamental scientific
importance and also because of its potential applications in
electronics. In particular, topological corner states allow us to
design laser cavity and quantum computation with topological
protection and maximized efficiency [8–11].

Based on several prototype models of higher-order topol-
ogy (e.g., the two-dimensional Su-Schrieffer-Heeger model,
quadrupole insulator, and breathing kagome lattice), non-
trivial higher-order topology usually requires the fine-tuning
of hopping textures and external fields [12–14]. Along this
line, several proposals (e.g., monolayer graphdiyne [15],
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Kekulé-like lattice [16], twisted bilayer graphene [17], and
topological insulators with the breaking of time-reversal
symmetry [18,19]) have been created. Unfortunately, the fine-
tuning of hopping textures is difficult to realize in solid-state
materials, owing to difficulties in the precise control of crystal
growth. In addition to the observation of topological corner
states in several artificial crystalline structures [20–29], the
realization of higher-order topological states remains elu-
sive in solid-state materials, especially in two-dimensional
materials.

Without the fine-tuning of hopping textures or apply-
ing external fields, it is hard to imagine the emergence of
higher-order topological states, especially in uniform sys-
tems. Motivated by a simple picture that corners are “edges”
of edges, we consider monolayer graphene as a possible
candidate for topological corner states. This occurs because
in graphene, topological edge states accompanied with the
perfectly conducting channel appear for various geometric
ribbons only except for the armchair edge [30,31]. Later, it
has been shown that the emergence of these edge states in
graphene is due to a nonzero geometric phase—the Zak phase
[32]. The Zak phase is a topological indicator for systems of
zero Chern number that corresponds to the bulk charge polar-
ization [33–37]. Under several crystalline symmetries such as
inversion symmetry, point group symmetries, and the chiral
symmetry, the Zak phase is quantized, which suggests that
the Zak-phase type of higher-order topological insulators is
a particular class of topological crystalline insulators [38–48].
Finite bulk charge polarization casts fractional surface charge
in the direction perpendicular to the edges and results in topo-
logical edge states [34]. When the Zak phases in graphene are
along the two directions, those that are perpendicular to the
edges forming the corner are both nontrivial; thus, a corner
state emerges.
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FIG. 1. (a) Top: Schematic of monolayer graphene with the primitive lattice vectors a1 = a(1/2,
√

3/2) and a2 = a(−1/2,
√

3/2). a is the
lattice constant of graphene. There are two choices of unit cells, which are indicated by shaded rhombuses. Magenta and cyan rhombuses
are called unit cells 1 and 2, respectively. Bottom: First Brillouin zone (shaded hexagonal region) with the reciprocal primitive vectors
b1 = 2π

a (1, 1/
√

3) and b2 = 2π

a (−1, 1/
√

3). The coordinates of high symmetric points are � = (0, 0), K = 2π

a ( 1
3 , 1√

3
), and K′ = 2π

a ( 4
3 , 0).

(b) Bottom panels: Density plots of φ(k) in the momentum space for the unit cells I (left) and II (right), where black circles indicate the �

point. For zigzag and bearded ribbons with the period of T = a2, Z (k) = π when the path P(k) passes through the discontinuities of φ(k),
as indicated by yellow. The upper structures show the unit cells of (left) zigzag and (right) bearded ribbons, which are produced by repeating
the unit cells I and II with T = a2, respectively. (c) Energy band structure for the zigzag graphene ribbon (left) and bearded graphene ribbon
(right), where the range has a nontrivial topological phase (indicated by yellow). The range is k′, which is [−π,−2π/3) ∪ (2π/3, π ] for the
zigzag ribbon and [−2π/3, 2π/3] for the bearded ribbon. The width of zigzag and bearded ribbons is set to 15

√
3a for the calculation of

energy band structures. (d) Graphene corner with angle θ formed by two edges along kj and kn, where ki and km are perpendicular to kj and kn,
respectively. The corner state appears when an imaginary solution of k along both i and m exists. (e) Schematic of the corner states indicator
Zθ

im in graphene. An imaginary solution of k along i and m exists when both kj and kn are in their corresponding nontrivial ranges k′
j and k′

n.
Following the relation that kn = π sin θ + kj cos θ , the above-mentioned condition can be fulfilled when there is an overlap between the range
k′

j cos θ + π sin θ and k′
n.

In monolayer graphene, the geometries of edges (ribbons)
can be characterized by a chosen unit cell with the period
T = ma1 + na2 [31,32]. Here, a1 and a2 are the primitive
lattice vectors of graphene, as shown on the upper panel
of Fig. 1(a),and m, n are coprime. We set |T| = 1 for later
discussions. For example, we obtain a zigzag (bearded) rib-
bon by repeating the unit cell I (II) shown in Fig. 1(a) with
T = a2. The nontrivial Zak phase in graphene originates
from the degenerate Dirac points at K and K ′ in the first
Brillouin zone, as shown on the lower panel of Fig. 1(a),
where b1 and b2 are the reciprocal lattice vectors. These
Dirac points in graphene can be described well by the tight-
binding model with nearest-neighbor hopping, i.e., H (k) =
Re(ρ)σx + Im(ρ)σy with ρ ≡ |ρ|e−iφ(k) and σi Pauli matrix
[49]. The bulk topology of graphene is encoded in φ(k).
For the ribbon with period T, its Zak phase is given by the
winding of φ along P(k) as Zi(k) = 1

2π

∫
P(k) dφ(k), where P

in the direction i is a straight path that is perpendicular to
T and P × T = b1 × b2 [32]. Of note, for different choices
of the unit cell, φ changes correspondingly. Because of the
chiral symmetry, Zi(k) is either 1 or zero in graphene and
thus serves as a topological indicator. Figure 1(b) shows the
density plots of φ(k) for zigzag and bearded ribbons, respec-

tively. Figure 1(b) shows that when φ(k) passes through the
discontinuities along P(k), Zi(i) is nontrivial, and edge states
appear at the corresponding k in their energy band structures,
as shown in Fig. 1(c). For the nontrivial k range, we mark
them as k′. For k in k′, an imaginary wavenumber solution
ki = π + iηi along i exists for the boundary condition, e.g.,
sin(kiN ) + 2 cos(k/2) sin[ki(N + 1)] = 0 of a width-N zigzag
ribbon, where ηi is the inverse of the localization length of
the edge state [32,50]. For the emergence of corner states,
an imaginary wave-vector solution k is required. This con-
dition is fulfilled if Zi(kj) and Zm(kn) are both nontrivial.
Unlike higher-order topological insulators, in graphene Zi(kj)
and Zm(kn) are not independent, as Dirac points separate the
wavenumber space into several topologically distinct areas as
shown in Figs. 1(b) and 1(c), and j, n are also not orthogonal.
Here, j and n are directions paralleling edges forming the
corner of angle θ ∈ [0, π ), and i, m are the corresponding
orthogonal directions, as shown in Fig. 1(d). Following the
simple picture that a corner is the “edgeof an edge,” we
assume Zi(kj) is nontrivial without loss of generality, and
have the relation that kn = π sin θ + k′

j cos θ as suggested in
Fig. 1(d). When kn ∈ k′

n, an imaginary k along both i and n
exists. In a compact form, the indicator of graphene corner
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FIG. 2. (a) Topological corner states appear in the π/6 zigzag-
zigzag corner and in the π/3 zigzag-bearded corner and are absent
in the π/3 zigzag-zigzag corner. The size of circles indicates the
local amplitude of the wavefunction, and blue and red are their signs.
The red in the middle parts is the non-Hermitian mask where an
imaginary on-site potential −0.005t is assumed. The inset shows a
magnified view of the topological corner state in the π/3 zigzag-
bearded corner. (b) Graphic representations of Zθ

im for three types
of corners in (a). From left to right, they are for the π/6 zigzag-
zigzag corner, π/3 zigzag-zigzag corner, and zigzag-bearded corner,
respectively.

states can be presented as

Zθ
im = ∨

kj>0
Zi(kj)Zm(kj cos θ + π sin θ ), (1)

where ∨
kj>0

is the logical “or” for all possible k j > 0 within the

first Brillouin zone. Figure 1(e) is the graphic explanation of
Eq. (1), where if the projection of k′

j on n after a π sin θ shift
overlaps with k′

n, Zθ
im is nontrivial. Of note, Zθ

im and Zθ
mi are not

equivalent in general; only when neither of them is nontrivial,
the corner state is absent. Equation (1) reduces to the product
of Zak phases in higher-order topological insulators. Different
from previously studied topological quadrupolar semimetals
[51–59], the nontrivial higher-order topology in graphene
originates from Dirac points protected by the chiral symmetry
and we dub this type of higher-order topological semimetal a
higher-order topological Dirac semimetal.

To demonstrate Eq. (1), we use the zigzag-zigzag corner
as an example. There are two possible angles for the zigzag-
zigzag corners, which are π/3 and π/6 [60,61]. Topological
corner states appear in the π/6 zigzag-zigzag corners and are
absent in the π/3 corners, as shown in Fig. 2(a). By replacing
one zigzag edge with the bearded edge in the π/3 zigzag-
zigzag corner, the topological corner state reappears in the
π/3 zigzag-bearded corner, as shown on the right of Fig. 2(a).
Such appearance and disappearance of corner states in various
geometric edges and corner angles shown in Fig. 2(a) can be
characterized well by Zθ

im. Figure 2(b) graphically shows the
indicator Zθ

im for these three types of corners: from left to right

FIG. 3. (a) Left: Integrated density of states of a graphene sample
with both π/6 and π/3 zigzag-zigzag corners over E � 0. Right:
Local density of states spectrum located at edge, and π/6 and π/3
zigzag-zigzag corners, which are indicated by the arrows in left
panel. The stars mark the maxima at zero energy. (b) Left: Frac-
tional corner anomaly for the C3-symmetric graphene sample at the
half-filling case. The fraction of total state density considering spin
degeneracy in each hexagonal cell is shown in purple with white text.
Right: Density of states spectrum for the C3-symmetric graphene
sample, where the color indicates the half-filling case.

they are are Zθ
im for the π/6 zigzag-zigzag corner, π/3 zigzag-

zigzag corner, and π/3 zigzag-bearded corner, respectively.
Because of the opposite projection directions, Zθ

im is nontrivial
in the π/6 zigzag-zigzag corner and trivial in the π/3 zigzag-
zigzag corner. The topological corner state reappears in the
π/3 zigzag-bearded corner because the bearded ribbon has a
complementary k′ range compared to the zigzag ribbon.

For experimental detection of the nontrivial higher-order
topology in graphene, we may use the scanning tunneling
microscope [62–64]. As displayed on the left of Fig. 3(a),
the nontrivial second-order topology in graphene manifests as
stronger density of states at paired edges that form the corner.
Furthermore, there also exists an obvious disparity of local
density of states at zero energy among nontrivial corner and
trivial corner sites, as displayed on the right of Fig. 3(a). Be-
sides density of states signals, there is also a fractional corner
anomaly in the C3-symmetric sample shown in Fig. 2(a) [65].
As displayed in left of Fig. 3(b), we have the fractional corner
anomaly

φ = ρ − (σ1 + σ2) = 0.34 − 7.04 = 0.3 ≈ 1
3 , (2)

considering the spin degeneracy with ρ and σi the corner and
edge sites densities. This fractional corner charge reveals the
nontriviality of higher-order topology in graphene. The right
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FIG. 4. (a) Dependence of the imaginary part of eigenenergy
for the topological corner state in the π/6 zigzag-zigzag corner
on the non-Hermitian mask size W . By increasing the size of the
non-Hermitian mask, the imaginary part of the eigenenergy of the
topological corner state in the π/6 zigzag-zigzag corner exponen-
tially approaches zero. (b) Complex energy spectra of the π/6
zigzag-zigzag corner sample with the non-Hermitian mask size W =
5 and π/3 zigzag-zigzag corner sample.

of Fig. 3(b) displays the density-of-states spectrum of the C3-
symmetric graphene sample of half filling.

For metallic systems, in general, the localized corner state
is buried in the bulk and edge states, which is also called a
bound state in continuum [66,67]. To pick the corner states
out, we use a non-Hermitian mask [67,68], i.e., an imagi-
nary on-site potential α = −0.005t , which is indicted by the
red shading in Fig. 2(a). In practice, the non-Hermitian part
presents the coupling with the environment, which can be
realized by the temperature control of the sample [68–70].
Using such a non-Hermitian mask, only topological corner
states remain nondecayed, while the bulk and edge states fade
out owing to the localization nature of corner states. As shown
in Fig. 4(a), the decaying rate of the topological corner state in
the π/6 zigzag-zigzag corner exponentially approaches zero
by increasing the area of the non-Hermitian mask. From the
complex energy spectrum of the π/6 zigzag-zigzag corner

sample [upper panel in Fig. 4(b)], we see that, except for
the topological corner states, all other eigenstates have finite
decaying rates. In the π/3 zigzag-zigzag corner sample, there
is no nondecayed state owing to the absence of topological
corner states [lower panel in Fig. 4(b)].

Finally, we mention that the emergence of topological cor-
ner states in graphene is due to the nontrivial Zak phases
along two nonparallel directions. The perturbations that break
the chiral symmetry only conceptually break the topological
protection and cannot completely suppress the corner states
[71]. The large spin-orbit coupling destroys the topological
corner states in graphene, because a finite Chern number for
a single spin channel breaks the monodromy of the Zak phase
[72,73]. It is fortunate that spin-orbit couplings are minimal in
graphene, and we can safely neglect them.

To summarize, we studied the higher-order topology of
monolayer graphene. We determined that topological corner
states exist in graphene for various geometric boundaries and
corner angles. These topological corner states in graphene
correspond to a twisted higher-order topological structure as-
sociated with the product of Zak phases in momentum space.
Our results provide a possible way of intrinsically localizing
electrons within atomic sizes with the topological protection
in metallic systems, and also yields a platform for detecting
fractional charge in electronic solid-state systems. Our predi-
cation is only based on monolayer graphene without substrate
effects and spin-orbit couplings; we believe that the experi-
mental observation of topological corner states in graphene is
possible through the proposed methods.
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