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Hydrodynamic holes and Froude horizons: Circular shallow water profiles for astrophysical analogs
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Interesting analogies between shallow water dynamics and astrophysical phenomena have offered valuable
insight from both the theoretical and experimental point of view. To help organize these efforts, here we analyze
systematically the hydrodynamic properties of backwater profiles of the shallow water equations with 2D radial
symmetry. In contrast to the more familiar 1D case typical of hydraulics, even in isentropic conditions, a solution
with minimum-radius horizon for the flow emerges, similar to the black hole and white hole horizons, where the
critical conditions of unitary Froude number provide a unidirectional barrier for surface waves. Beyond these
time-reversible solutions, a greater variety of cases arises, when allowing for dissipation by turbulent friction
and shock waves (i.e., hydraulic jumps) for both convergent and divergent flows. The resulting taxonomy of the
base-flow cases may serve as a starting point for a more systematic analysis of higher-order effects linked, e.g.,
to wave propagation and instabilities, capillarity, variable bed slope, and rotation.
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I. INTRODUCTION

On January 16, 1630, Galileo Galilei sent a letter to Raf-
faello Staccoli, in which he stated: “(l’Idraulica), sempre da
me tenuta per difficilissima e piena di oscurità” (Hydraulics,
which I always reputed to be extremely difficult and obscure)
[1].

Browsing the recent literature on fluid analogies in astro-
physics [2,3], Galileo may object that his quote actually does
not refer to the darkness of the black holes, but to the myster-
ies of fluid dynamics, which still persist today. Indeed, it was
not until the early 1970s, that striking analogies between the
properties of black holes and thermodynamics were pointed
out, associating the area of a black hole event horizon with
the thermodynamic entropy. A kind of second law was proven
to hold [4–7] (see Ref. [8] for a review) and a correspondence
with hydrodynamic systems was observed [9]. Whether such
analogies are to be taken as expressions of bona fide thermo-
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dynamic properties was an issue at the time, and so remains
today [10–12].

In 1981, Unruh [2] noted that there exist well-understood
acoustic phenomena, reproducible in the laboratory, which
formally enjoy the same properties of black holes, as far as the
quantum thermal radiation is concerned (the acoustic metric is
conformal, but not identical, to the Painlevé-Gullstrand form
of the Schwarzschild geometry [3]). Independently, acoustic
analogies were considered also by other authors, notably, by
Moncrief [13] and Matarrese [14]. In particular, Unruh’s work
implies that exotic phenomena, such as black hole evapo-
ration, may be tested in controllable experiments on Earth!
The way was paved for a research line now known as analog
gravity [3], which has led to numerous experimental analogs
of cosmological gravitational phenomena.

Most notable for their beauty and variety are the hydraulic
experiments [15,16], which in turn are connected by analogy
to polytropic gasdynamics [17,18]. For instance, Ref. [19]
reports on a shallow water experiment mimicking the devel-
opment of a shock instability in the collapse of a stellar core,
which makes highly nonspherical the birth of a neutron star,
in spite of the underlying spherical symmetry. The element
of interest here is the 2-dimensional (2D) hydraulic jump, in
a convergent radial flow, which corresponds to the accretion
spherical shock that arises above the surface of the neutron
star when it is being generated. The diverging radial case is
instead associated to a white hole, a kind of time reversed
black hole [20,21], which is experimentally realized even
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with superfluids [22,23]. In Ref. [24], the scattering of sur-
face waves on an accelerating transcritical one-dimensional
(1D) flow are investigated, as corresponding to the space-
time of a black hole horizon, while in Ref. [25], gravity
waves have been used to investigate instabilities of both black
and white holes. These are but a few examples (see also
[26–28]) out of the many one can find in the specialized
literature.

Using the same mathematical framework to describe very
diverse physical situations has repeatedly proven successful.
Laplace considered Newtonian mechanics equally suitable to
describe the ‘movements of the greatest bodies of the universe
and those of the tiniest atom’ [29]. Classical mechanics is
effective not only when dealing with several macroscopic
objects, under nonrelativistic conditions, but it also constitutes
the basis of statistical mechanics, which deals with huge num-
bers of atoms and molecules. The planets orbiting the Sun
and the molecules in a glass of water are separated by 52
orders of magnitude in mass, and by 23 orders of magnitude
in numbers. The shallow water experiment and the collapse
leading to a neutron star [19] are separated, after all, by only
six orders of magnitude in size.

Within this context, our contribution aims at providing a
systematic classification of the so-called backwater profiles
(i.e., the elevation of the free surface as a function of the
streamwise coordinate), possibly connected by shock waves
(i.e., the hydraulic jumps), as solutions of the shallow wa-
ter equations in circular symmetry. A simple but systematic
discussion of this type may have the merit of connecting
apparently different flow configurations. While most of the
shallow water literature refers to 1D streams, here we focus
on the role of the circular symmetry enforced by the continuity
equation, which opens the possibility for convergent or diver-
gent flows; we also pay attention to the role of dissipation,
provided not only by friction but also, when present, by shock
waves in the form of hydraulic jumps.

The astrophysics literature has mainly dealt with cases with
circular hydraulic jumps, either convergent [19] or divergent
[20,21], as well as with 1D currents with critical transitions
over obstacles [26,27]. While these dissipative cases are char-
acterized by strong energy losses due to the presence of
hydraulic jumps, and therefore are not symmetric with respect
to time or velocity inversion, here we also emphasize the
presence of an inviscid solution, which obeys this symmetry.
The corresponding analytical solution is of particular inter-
est, as it represents a close analog of the black hole; herein,
the subcritical (i.e., subluminal, in the analogy) convergent
current accelerates towards a ‘Froude horizon’, where the
velocity becomes critical (i.e., equal to the speed of the surface
waves). The white hole analogy emerges naturally, when the
flow velocity is reversed.

Turbulent friction, acting in the direction opposite to the
flow, allows for the appearance of a critical point in the dy-
namical system describing the free surface profiles, and thus
it indirectly allows for the presence of stable hydraulic jumps,
represented as sharp discontinuities in the surface profiles.
Depending on the boundary conditions, both converging and
diverging cases with no jumps (called here dissipative black
and white holes, respectively) are also found, along with the
corresponding cases with shock waves.

We confine our discussion to steady-state profiles, in both
inviscid and turbulent conditions, noticing, however, that the
laminar case presents no qualitative differences. While the
interesting effects of capillarity and rotation are left for future
work, we hope that the present analysis may be useful to
provide a classification of base flows to analyze systematically
the links between shallow water profiles and their astrophysi-
cal analogs.

II. GOVERNING EQUATIONS

The starting point of the analogy are the well-known shal-
low water equations [17,18], namely, the continuity equation

∂t h = −∇ · (hv) , (1)

where h is the water depth and v is the depth-averaged veloc-
ity, which obeys the momentum equation

∂tv + v · ∇v + g∇h = ∇zb − j, (2)

where g is the gravitational acceleration, considered constant,
zb is the bed elevation, and j is the frictional force.

Friction is modeled as

j = |v|α
C2hβ

v, (3)

where C2 is the Chezy’s coefficient, which is inversely pro-
portional to the friction coefficient.

In what follows, we will only consider horizontal stream
beds, ∇zb = 0, and will focus on the case of α = 1 and β = 1,
typical of fully developed turbulent flows. For simplicity, we
assume C2 to be constant, according to Bresse’s hypothe-
sis [30]. More complicated formulations [31–34], including
the laminar case with α = 0, β = 2 [35], do not change the
picture qualitatively. Other effects, such as rotation and cap-
illarity, although potentially very interesting, are neglected
here. We will return to a discussion of their effects and to
possible extensions of this work in the concluding section.

III. ISENTROPIC CASE

When reduced to a circularly symmetric problem, in steady
state and in the absence of friction, the continuity equation
becomes

2πrvh = Q, (4)

where Q is the total volumetric flowrate, while the momentum
equation takes the form

d

dr

(
h + v2

2g

)
= 0, (5)

and it can be integrated as

h + v2

2g
= H, (6)

where H is the constant head (energy per unit weight of fluid).
Eliminating the velocity from the previous equations,

h + Q2

2g(2πr)2h2
= H, (7)
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FIG. 1. Isentropic (inviscid) case. (a) Stream profiles as given by Eq. (8); the red point marks the critical condition ξmin = 3
√

3/2, y(ξmin ) =
2/3. (b) Behavior of the velocity (dashed lines) and Froude number (solid lines) in the subcritical (black lines) and supercritical (red lines)
conditions. (c) 3D view of the dimensionless water-level profile for the subcritical branch of the inviscid solution (8), corresponding to the
black hole. A qualitative rendering of the ‘light cones’ for the propagation of small waves is also shown.

consistently with [35–37], suggests a normalization with y =
h/H and ξ = r

R , where R = Q
2πH

√
2gH

is the radius at which

the given discharge passes with Torricellian velocity
√

2gH
and height H . As a result

ξ = 1

y
√

1 − y
, (8)

where, by definition, one has ξ > 0 and y ∈ (0, 1). The so-
lutions are reported in Fig. 1, along with the corresponding
velocity, obtained using

ν = 1

ξy
. (9)

Note that ξmin = 3
√

3
2 and y(ξ = ξmin) = 2

3 (see Eq. 40 in
Ref. [25]). Each branch of the solution represents two pos-
sibilities, since the flow direction can be inverted, because the
equations are invariant under changes in the flow direction. In
the astrophysical analogy, the top branch represents a black

hole, when the flow is convergent, and a white hole, when the
flow is divergent, both with no dissipation.

The occurrence of a minimum radius, ξmin, can be un-
derstood by considering the radian-specific discharge, Qu =
Q/2πr, or qu = 1/ξ in dimensionless form, which combined
with the stream profile (8) yields

qu = y
√

1 − y, (10)

showing that qu = qu(y) is a nonmonotonic relation, with
a maximum at y = 2/3, corresponding to qu = 1/ξmin. This
limit behavior arises because a stream approaching smaller
radii (flowing according to one of the two branches) can carry
that flow per radian only until the maximum value of qu is
attained, and the stream reaches the depth y = 2/3 at ξmin.
For smaller radii, the stream cannot carry that much energy
H and discharge Q, while conserving them. The condition of
maximum qu is called critical (i.e., y = 2/3 ≡ yc).
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By introducing the Froude number

Fr = v√
gh

= 1

ξ

√
2

y3
, (11)

the critical condition corresponds to Fr = 1, which is plotted
as the red line yc = (

√
2/ξ )

2
3 in Fig. 1. Accordingly, the up-

per (lower) branches showed in Fig. 1 are called subcritical
(supercritical) conditions. Notice that the Froude number is
the ratio between the stream velocity v, and the propagation
celerity of small-amplitude surface waves,

√
gh (first obtained

by Lagrange [38]). It follows that subcritical streams are
characterized by surface waves that can propagate against
the stream (Fr < 1); in contrast, waves can only propagate
in favor of current if streams are supercritical (Fr > 1). This
is also reflected in the ‘light cones’ drawn in Fig. 1 (lower
panel).

The interplay between the stream and the wave velocities
and the existence of a minimum radius are analogous to the
conditions of the Schwarzschild solution of the black hole.
Like the latter corresponds to a mass confined in a region,
whose escape velocity equals that of light, the minimum ra-
dius ξmin corresponds to the threshold at which surface waves
are no longer able to go up the current. As a subcritical current
flowing towards the central hole with decreasing water depth
h, the stream velocity v increases, while the wave celerity√

gh decreases. It follows that the Froude number gradually
approaches 1, and the stream reaches this critical value pre-
cisely at a ‘Froude horizon’, inside which the surface waves
are no longer able to go upstream, namely, to run away from
the hole. In this sense, the surface waves resemble the light
in the Schwarzschild problem. However, while in the black
hole the velocity of the falling observer decreases proportion-
ally to the square root of the radius and the light speed remains
constant, here (see top right panel in Fig. 1), the surface-wave
speed changes in space depending on the water depth; as
mentioned in Sec. I, the correspondence between the black
hole and the shallow water metrics is only conformal [3].

Note that modifying the dependence of the bottom slope
with the radius, the analogy could possibly be made tighter,
as also briefly noted [25] but this will not be pursued here.
Another interesting point for future work regards the condi-
tions beyond the minimum radius, namely, inside the Froude
horizon, where different solutions, similar to the so-called
interior Schwarzschild solution [39], might account for the
fact that the flow cannot take place with the same discharge
and energy.

IV. BACKWATER PROFILES DUE TO FRICTION

Allowing for the effects of turbulent friction, several addi-
tional configurations become possible. These can be obtained
considering, in terms of water depth, the combined continuity
and momentum equation as

dH

dr
= d

dr

(
h + v2

2g

)
= −v|v|

C2h
. (12)

Using the normalization v/
√

2gH0 = ν = 1/(ξy) (where H0

is the stream head at the boundary) and the other reference

scales introduced before yields

dy

dξ

(
1 − 2

ξ 2y3

)
= 2

ξ 3y2
− α

ξ 2y3
, (13)

where α = sgn(v)2g/C2. Thus α is positive for turbulent
flows proceeding along ξ (divergent) and negative for flows
that go against ξ (convergent). As a result, the slope of the
water depth is

dy

dξ
= 2y − αξ

ξ 3y3 − 2ξ
= N (ξ, y, α)

D(ξ, y)
. (14)

Figure 2 shows the phase plots for some values of α. In
these plots, three curves are highlighted: the profiles (8) cor-
responding to the inviscid case (black lines), and the solutions
of equations N (ξ, y, α) = 0 (green lines) and D(ξ, y) = 0 (red
lines). Since the physical domain is bound to ξ > 0, green
lines occur only if α > 0.

In the α = 0 case (i.e., no energy dissipation), the inviscid
solution reproduces the only possible stream profiles compat-
ible with energy conservation: Depending on the boundary
condition, the subcritical or the supercritical reach is selected
[notice that the critical condition, where the reaches join,
lies on the curve D(ξ, y) = 0]. Differently, when dissipation
occurs (i.e., α �= 0), the curve representing the flow starts from
the boundary with energy H0 and flows dissipating energy
according to the Eq. (12). Since H0 was chosen as a reference
energy to normalize the problem, it follows that the boundary
condition lies on the inviscid solution, where H (ξbc)/H0 = 1,
ξbc being the radial position of the boundary. The remaining
part of the stream profile follows the curve of the phase space,
departing from the boundary condition. In other words, the
black curve corresponding to the solution (8) now becomes
the locus of the initial conditions of the backwater profiles.
As expected, the phase trajectories are tangent to the inviscid
solution only for α = 0.

Becuase of dissipation, the flows are characterized by (h +
v2/2g) � H0, that in dimensionless form reads

y + 1

ξ 2y2
� 1. (15)

Such a condition is satisfied only in the region of the phase
space enclosed by the inviscid solution (8), that is the area
inside the black curve in Fig. 2. Therefore, physically mean-
ingful current profiles correspond to phase lines in this region.
The curve D(ξ, y) = 0 marks the critical condition and sep-
arates the upper reach of the phase lines corresponding to
subcritical streams (Fr < 1) from the lower one that refers
to supercritical streams (Fr > 1). It is interesting to note that
this critical divide does not depend on the friction parame-
ter α. In the case of α > 0 (i.e., diverging streams, flowing
along increasing ξ ), the phase space contains a focus where
N = D = 0, with coordinates {ξ f = 5

√
24/α3, y f = 5

√
α2/2}.

The latter falls within the physically meaningful domain only
if α < 8/(9

√
3).

The transition from supercritical to subcritical streams
takes place through the formation of a hydraulic jump. Typ-
ically, these appear as turbulent bores, although a series of
standing waves (the so-called undular jump) can occur when
the two streams before and after the jump are close to the
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FIG. 2. Phase space for α increasing in steps of 0.4, starting from –0.4 (top left). The red line is D = 0, while the green is N = 0; the black
line is the solution of the inviscid case [Eq. (8)].

critical condition (not considered here). The radial position
of the hydraulic jump is obtained by applying the momentum
principle along the flow direction to a short reach of circular
sector of stream. This yields

γ

2
h2φr + βρ(φrq)v = const., (16)

where the two addends refer to the hydrostatic and dynam-
ical force, respectively, γ is the fluid specific weight, φ is
the central angle of the circular sector, β is the momentum
coefficient, and ρ is the fluid density. In the previous relation,
bed friction and lateral hydrostatic components have been
neglected.

By introducing the dimensionless quantities and assuming
turbulent motion (β � 1), the previous relation (16) gives

y2 + 4

ξ 2y
≡ F (ξ, y) = const., (17)

namely, the (dimensionless) specific force F that the two
streams have to balance immediately before (Fr > 1) and after
(Fr < 1) the hydraulic jump [40], i.e., F (ξ j, y1) = F (ξ j, y2),
where the subscripts 1 and 2 refer to the supercritical and
subcritical depths at the radial position, ξ j , of the hydraulic
jump. A minimum of the specific force, F = Fmin, occurs at
y = 3

√
2/ξ 2, in correspondence to the critical condition D = 0.

It is important to note that the hydraulic jump is a
strongly dissipative phenomenon, related to the formation
of turbulence and vorticity. In dimensionless terms, the en-
ergy dissipation of the hydraulic jump can be calculated
as the difference in total energy across the jump, [�(� +
2y1)/(y2

1y2
2ξ j ) − �], where � = (y2 − y1) is the depth differ-

ence across hydraulic jump.
In terms of astrophysical analogs, the introduction of

friction in the shallow water dynamics brings about additional
cases, exemplified in Fig. 3: a neutron star (left column) and

an analog of the dissipative white hole (right column); two
other analogs are depicted in the same figure (with dotted
lines) and correspond to dissipative forms of the black and
white holes. In the case of the neutron-star analog, shown
on the left of Fig. 3, the flows proceeds towards the center.
Practically speaking, the fluid enters the domain from a
circular sluice gate, placed along the external radius, and
is drained through a central hole (of dimensions larger
than ξmin). The flow is initially supercritical and becomes
subcritical after a hydraulic jump. The center and bottom
panels show that the Froude number, Fr, and the stream
velocity, v, decrease in the supercritical reach and then
increases when the stream becomes subcritical. The reason
for this lies in the hydraulic constraint that the current must
become critical at the edge of the central hole, as shown in the
right center panel, where the stream reaches Fr = 1 on the
hole edge placed at ξ = 7.5. Accordingly, also the velocity
shows a nonmonotonic behavior. Finally, the left-lower
panel highlights that the hydraulic jump entails an abrupt
energy dissipation, which occurs where the specific forces of
supercritical and subcritical streams are equal.

In the case of the dissipative white hole, illustrated in the
right panels of Fig. 3, the fluid flows along increasing values
of ξ (e.g., as if coming from a vertical jet impinging the bed
close to ξ = 0) and it is initially in supercritical conditions;
a hydraulic jump then connects the profile to the subcritical
one downstream. The center and bottom panels show that
both the Froude number, Fr, and the stream velocity, v, de-
crease monotonically along the radius (although they would
start increasing again, if the profile were to be continued),
with a step change at the hydraulic jump. The condition of
equality of the specific force dictates the radial position of the
hydraulic jump, where a localized energy dissipation occurs.
The subcritical profile y(ξ ) can be nonmonotonic, since a
maximum can occur depending on whether the subcritical
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FIG. 3. Dissipative solutions. The columns (see solid and dashed lines) refer to neutron star (α = −0.1) and white hole (α = 0.1) cases,
respectively. The first row shows stream profiles y (solid lines; blue arrows indicate flow direction); the central row reports behaviors of velocity
v (dashed lines) and Froude number Fr; the lower row displays behaviors of specific force F (dashed lines) and stream head H (referred to the
initial stream energy, H0). In the lower row, the red and black lines refer to the supercritical and subcritical streams, respectively. In all panels,
dotted lines refer to profiles with no hydraulic jumps: the drain case (left column) and the spring case (right column).

reach intersects or does not intersect the line N = 0, which
is the green line in Fig. 2.

For both cases, the dissipative behavior across the hy-
draulic jump becomes evident when comparing the depen-
dence of the specific energy H on the water depth y at the
radial position corresponding to the hydraulic jump (Fig. 4);
note that, unlike the 1D case [16] where these force and
energy curves do not depend the streamwise coordinate, here
they change with the radius. Figure 3 also reports the profiles
occurring when water drains or flows from a central hole or
spring, without hydraulic jumps. Such profiles, corresponding
to dissipative black holes, are characterized by subcritical
streams shown as dotted lines. In the drain case (left panels),
the flow originates from an external circular reservoir, then

it accelerates converging towards the center and finally enters
the hole in critical conditions. In the spring case (right panels),
a profile, analogous to a dissipative white hole, starts from
the critical condition (Fr = 1, where water emerges), gradu-
ally slows down, and joins the subcritical profile previously
described in the case of white hole with shock.

These last two subcritical analogs with no hydraulic jumps
are similar to those discussed in the isentropic case. However,
the presence of a maximum in the curve y = y(ξ ) of the spring
case, which does not occur in isentropic situations, highlights
an interesting class of profiles, connecting two critical hori-
zons, that is peculiar to the viscous case. An example of a
white hole confined between two horizons (see [25], Sec.
XI) is shown in Fig. 5, where the flow springs from critical
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FIG. 4. Dissipative behavior across the hydraulic jump in the case of the neutron-star (a) and white hole (b) analogs. Black curves show
the dependence of the specific energy H on the water depth y at the radial position corresponding to the hydraulic jump (ξ = 9.33 in case of
neutron star and ξ = 6.03 in case of white hole), while red curves refer to the specific force F at the same radial coordinates. Both H (y) and
F (y) are referred to their minimun values (Hmin and Fmin) that correspond to the critical depth. Depths y1 and y2 indicate the supercritical and
subcritical depths at the radial position of the hydraulic jump, respectively. Red points mark the equal value of the specific force in y1 and y2;
black points highlight the stream energy at the entrance and exit of the hydraulic jump: The local dissipation due to the jump is evident.

conditions, reaches a maximum, and then decreases returning
to the critical condition before jumping off from the outer edge
of circular plate.

The stability of the hydraulic jumps occurring in both
analogs of Fig. 3 is an interesting matter. If one only considers
the specific forces F , they both appear spatially stable: Pertur-
bations of their radial position are absorbed by the consequent
imbalance between the upstream and downstream specific
forces, so that eventually the jumps return to their original
position. However, a more detailed momentum balance across
the jump, that included lateral hydrostatic pressures and bed
friction, could alter this picture (see also [34,41]), especially
in convergent cases [19], as in 1D streams in convergent or up-
ward sloping channels [42,43]. Finally, it is worth mentioning
that hydraulic jumps connecting supercritical to subcritical
streams are possible also in the isentropic case. However,
unlike the dissipative cases, their spatial position is undeter-
mined, being marginally stable [44].

V. CONCLUSIONS

The solutions of the shallow water equations present a
variety of configurations, which besides their direct fluid dy-
namic interest may also have useful implications as analogs

FIG. 5. 2-Horizon spring: Dissipative, subcritical profile con-
necting two horizons (α = 0.4, black line). Blue arrow indicates flow
direction, while red lines refer to the critical conditions (solid line)
and Froude number along the profile (dashed line), respectively.

of specific astrophysical phenomena. For conditions of cir-
cular symmetry, the resulting steady-state solutions have
been discussed with particular attention to the transition be-
tween subcritical and supercritical conditions. The main cases
are organized in Table I. These steady-state solutions may
be realized in the laboratory and used as base solutions
to explore the modes of propagation of disturbances and
instabilities.

Starting from these configurations, several avenues for fu-
ture research are suggested by the astrophysical analogies.
Of particular interest is the stability of the hydraulic jumps.
As already mentioned, this analysis is complicated by the
presence of bottom friction and, in particular, by the pressure
forces along the circumference of the shock, whose quantifi-
cation depends on the specific geometry of the hydraulic jump
[42,43]. Moreover, they may include oscillation and sym-
metry breaking instabilities [34,41], including those nicely
documented in the neutron star analog [19].

Along a similar line, one could conjecture the appearance
of roll waves, i.e., pulsing and breaking waves (see [18,45])
that could be realized in supercritical conditions with variable
bottom slope. Apparently, similar star-pulsation phenomena
are well known [46–48]. In general, modifications of the bed
slope (both downward and upward) introduce a degree of
freedom, which would allow for the interplay between energy
dissipation by friction and potential energy gain/loss to widen
the gamut of hydraulic profiles and shock behaviors.

Finally, including rotations would be of interest for both
Kerr-Newman black holes and for exploring wave generation
in vorticity-shock interactions [49,50], while capillarity ef-
fects are known to generate lower wave-number disturbances
in the upstream reach of obstacles [18], which have been
linked to the Hawking radiation of black hole evaporation
[27]. Extended thermodynamic formalism for turbulent flows,
shocks, and waves might also provide avenues to more con-
cretely link black hole entropy to classical thermodynamics
[51–53].
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TABLE I. List of shallow water analogs in circular symmetry (SUB, Subcritical flow; SUP, Supercritical flow; HJ, Hydraulic jump; SFH,
Smooth Froude Horizon).

Shallow water Astr. analog Flow dir. Flow types Energetics Eq./Fig. Reference

Circular jump Neutron star Convergent SUP > HJ > SUB Dissipative Eq. (14), Fig. 3 [19]
Drain Turbulent black hole Convergent SUB > SFH Dissipative Eq. (14), Fig. 3
Inviscid drain Black hole Convergent SUB > SFH Isentropic Eq. (8), Fig. 1 [25]
Inviscid spring White hole Divergent SUB > SFH Isentropic Eq. (8), Fig. 1 [25]
Spring Turbulent white hole Divergent SUB > SFH Dissipative Eq. (14), Fig. 3
2-Horizon spring Confined white hole Divergent SFH > SUB > SFH Dissipative Eq. (14), Fig. 4 [25], Sec. XI
Circular jump White hole with shock Divergent SUP > HJ > SUB Dissipative Eq. (14), Fig. 3 [21,22]
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