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Escape from an attractor generated by recurrent exit
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Kramer’s theory of activation over a potential barrier consists in computing the mean exit time from the
boundary of a basin of attraction of a randomly perturbed dynamical system. Here we report that for some
systems, crossing the boundary is not enough, because stochastic trajectories return inside the basin with a high
probability a certain number of times before escaping far away. This situation is due to a shallow potential. We
compute the mean and distribution of escape times and show how this result explains the large distribution of
interburst durations in neuronal networks.
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I. INTRODUCTION

In Kramers’ theory [1–4], the escape time over a potential
barrier consists in computing the mean first passage time
(MFPT) of a dynamical system perturbed by a small noise to
the boundary of a basin of attraction. The MFPT measures the
stability and provides great insight into the backward binding
rate in chemistry [5,6], loss of lock for phase controllers
in communication theory [7], escape of receptors from the
postsynaptic density at neuronal synapses, and is also used
to evaluate future derivatives in the financial market [8]. The
full distribution of exit times can be used to characterize both
short and intermediate time asymptotics relevant in polymer
physics [9], accelerating chemical reaction simulations [10],
or better characterizing the search for a small target in a
complex environment [11,12].

In the limit of small noise, a trajectory escapes a basin
of attraction with probability 1 [13], but the escape time is
exponentially long depending on the topology of the noiseless
dynamics [14,15] and its behavior at the boundary. In addition,
the distribution of exit points peaks at a distance O(

√
σ ) from

a saddle point, where σ is the noise intensity [2,7,16]. Inter-
estingly, when a focus attractor is located near the boundary
of the basin of attraction, the escape time deviates from an
exponential distribution because trajectories oscillate inside
the attractor before escape [17–21].

In these previous examples, the escape ends at the first time
a trajectory crosses the separatrix that delimits the basin of
attraction. Recurrent returns inside a basin of attraction can
be quantified by the Green’s function of the inner domain used
in the additive properties of the MFPT [22]. In their specific
case, where the escape time consists in the first crossing of the
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boundary of the basin of attraction and a second separatrix,
their results show a factor 2 between the escape time and the
exit from the basin of attraction. In dimension one, a recurrent
return can be quantified using a relaxation time computed
from the survival probability when it does not converge to zero
in the long times regime [23]. We show here that for some
shallow two-dimensional dynamical systems, trajectories can
first exit the basin of attraction, then make excursions outside
before coming back inside the domain, a behavior that occurs
several times before eventually escaping far away. This situ-
ation is peculiar and specific to dimensions greater than two
and these recurrent entries need to be taken into account in
computing the final escape time.

This paper reports such phenomenon. We present formulas
for the mean and distribution of escape times and we show
that these recurrent reentries inside the basin of attraction can
increase the escape time by a factor between 2 and 3. Finally,
we apply these results to explain the origin of long interburst
durations found in neuronal network models [24].

II. RECURRENT ESCAPE PATTERNS

We start with a generic two-dimensional system

ḣ = −αh + x2 + σ ω̇,

ẋ =
{

h − γ x for h � 0
−γ x for h � 0,

(1)

where α ∈]0, 1], γ ∈]0, α[, ω̇ is a Gaussian white noise, and
σ its intensity. The determinist part of this system has two
critical points: one attractor A = (0, 0) [Fig. 1(a), red star] and
one saddle point S = (γ 2α, γ α) [Fig. 1(a), cyan star], and the
separatrix � delimits the basin of attraction of A [Fig. 1(a),
solid black].

The escape of the basin of attraction occurs in two steps. (1)
A trajectory starting at A reaches � for the first time [Fig. 1(a),
black trajectory between A and the first exit point Exit no. 1,
light green). (2) The trajectory exits and crosses � several
times, which we count by using a round-trip (RT) num-
ber [Fig. 1(a), light-green and cyan loops] before eventually
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FIG. 1. Recurrent escape patterns. (a) Escaping trajectories reach
the separatrix � for the first time (step 1, black) and recross it
several times going back and forth inside and outside of the basin
of attraction (step 2 green, cyan) before eventually escaping far away
(pink). (b) Stochastic trajectories with one (yellow) and two (orange)
round-trips (RTs) before escape. (c) Distributions of exit points on �

(500 runs) for successive RTs. (d) Outer boundary layer C computed
as the convex hull of all trajectories reentering the basin of attraction
(red).

escaping far away [Fig. 1(a), pink]. To characterize the fi-
nal escape times and the distribution of crossing points
on �, we ran stochastic simulations of system (1) (five
hundred runs) [Fig. 1(b), trajectories exhibit one (yellow)
and two (orange) RTs before escape]. To further char-
acterize the recurrent crossing points, we plotted their
distributions [Fig. 1(c)] and found that they were peaked
near the saddle point. These recurrent excursions are
not due to a focus, since the saddle point S has only
real eigenvalues λ± = − 1

2 [−(α + γ ) ±
√

(α + γ )2 + 4αγ ],
λ+ ≈ 0.314, λ− ≈ −1.914 (with α = 1 and γ = 0.6). A pos-
sible explanation for this phenomenon is the very shallow
field tangent to the separatrix: only near the unstable manifold
[Fig. 1(a), yellow curve] trajectories can depart to infinity
when they are located inside the ensemble of points where
the two drift components are positive ẋ > 0 and ḣ > 0, thus
C∞ = {h > γ x and h < x2

α
} [Figs. 1(a) and 1(b), yellow area,

situated between the x nullcline (red) and the h nullcline (pur-
ple)]. Before reaching C∞, the noise pushes the trajectories
back and forth into the basin of attraction.

To conclude this part we shall summarize the escape dy-
namics:

(1) The distribution of exit points peaks at a distance
O(

√
σ ) from the saddle point (generically satisfied [16]).

(2) The shallow field near the separatrix allows the trajec-
tories to reenter with high probability.

(3) The peaks of the successive exit point distributions drift
towards the saddle point S [Fig. 1(c)].

(4) When the trajectories enter the escape cone C∞ [yellow
surface in Figs. 1(a) and 1(b)] where the field increases, they
eventually escape to infinity.

Finally, this escape pattern could not occur in dimension
one since conditions (1) and (3) cannot be satisfied.

III. CHARACTERIZING THE ESCAPE TIME

We compute here the total escape time. For that goal, we
decomposed it into the time to reach the separatrix � for the
first time plus the time spent to go back and forth around �

before the final escape. Using Baye’s law and conditioning on
the RT numbers, the mean escape time can be written as

〈τesc〉 =
∞∑

k=0

〈τ |k〉PRT (k), (2)

where 〈τ |k〉 [respectively, PRT (k)] is the mean time (re-
spectively, probability) to return k times inside the basin of
attraction. To estimate the escape probability p̃ for a trajectory
that had crossed � to escape to infinity, we ran N = 500
trajectories starting from A and lasting T = 300 s. We first
counted the proportion of trajectories reentering the basin of
attraction at least once and obtained 88%. We then reiterated
this process and counted the proportion of trajectories reen-
tering the basin of attraction one more time after each RT. We
found that this proportion was stable equal to 88%, leading
to p̃ = 0.12. We applied this process for values of the noise
intensity σ ∈ [0.21, 1.05] and found that p̃ did not depend
on σ . After T = 300 s all trajectories had escaped to infinity
(for all the values of σ ), thus choosing a higher value for T
would not change the value of p̃. This escape phenomenon
could be interpreted as follows: a trajectory has escaped when
it reaches a distance far away from the separatrix and to better
characterize such a distance outside the basin of attraction,
we generated empirical trajectories that will return (have not
yet escaped) and estimated their convex hull C [Fig. 1(d), red,
500 runs]. Formally, this is equivalent to looking at trajectories
starting at A conditioned to a return to the basin of attraction,
thus defining a sort of Brownian bridge. This procedure leads
to a bounded domain: any point inside C has a high probability
of reentering the basin of attraction while points further away
will escape to infinity.

Due to the strong Markovian properties, each RT can be
considered independent of the previous ones, thus the proba-
bility to escape after exactly k − RT is given by

PRT (k) = p̃(1 − p̃)k−1, (3)

and thus the mean escape time is

〈τesc〉 = 〈τ0〉 + (〈τext〉 + 〈τint〉) p̃
∞∑

k=1

k(1 − p̃)k−1

= 〈τ0〉 + 〈τext〉 + 〈τint〉
p̃

, (4)

where 〈τ0〉 is the mean time to reach the separatrix for the
first time and 〈τext〉 (respectively, 〈τint〉) is the time spent on
the outside (respectively, inside) of the basin of attraction of
A for each RT [Fig. 2(a)]. When the escape probability p̃
tends to zero, the escape time tends to infinity, corresponding
to trajectories that would be trapped in C. In our case, the
mean escape time is 〈τesc〉 ≈ 〈τ0〉 + 8.33(〈τext〉 + 〈τint〉). With
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FIG. 2. Distribution of RT and escape times. (a) Distributions
of a RT duration τRT,k = τext,k + τint,k for k ∈ [1, 10]. Inset: mean
time spent outside (respectively, inside) the basin of attraction 〈τext,k〉
(respectively, 〈τint,k〉) vs the RT number k. (b) Distributions of the RT
number around the separatrix before a trajectory eventually escapes
for various values of σ (with γ = 0.6 and α = 1). Five hundred
runs for each value of σ . Inset: mean RT number with respect to
the noise intensity σ . (c) Distributions f0 (upper), respectively, f1

(lower), of escape times for trajectories with zero and one RT. The
fit uses Eq. (8). (d) Distribution of exit times with the contribution of
each RT number compared to the analytical distribution [Eq. (7)].

the present parameters 〈τ0〉 ≈ 5.1 s and 〈τext〉 + 〈τint〉 ≈ 1 s
showing that the escape time is increased by a factor 2.6.
Interestingly, the noise intensity does not influence the number
of RTs before escape [Fig. 2(b)]. For the parameter value
γ = 0.6, we found that a trajectory performs eight RTs on
average [Fig. 2(b), inset]. These results indicate that the noise
intensity does not directly influence the probability to escape
to infinity. We now determine the distribution of escape times

P(τesc < t ) =
∞∑

k=0

P(τ k < t |k)PRT (k), (5)

where P(τ k < t |k) is the conditional probability distribution
to escape after k RTs. Because RTs are independent and iden-
tically distributed, this probability is the kth convolution of the
distribution of times of a single RT f1(t ) with the distribution
of escape times without RT f0(t )

P(τ k < t |k) = f0(t ) ∗ f1(t )∗k, (6)

where f (t )∗k = f (t ) ∗ f (t ) ∗ · · · ∗ f (t ), k times. Thus the
probability density function (pdf) of exit times is given by

f (t ) =
∞∑

k=0

f0(t ) ∗ f1(t )∗k p̃(1 − p̃)k−1. (7)

To compare this formula to the results of our numerical simu-
lations, we approximate the distributions f0 and f1 by

fi(t ) = ci

[
1 + erf

( t − ai

bi

)]
e−λit , for i = 0, 1, (8)

where erf(x) = 2√
π

∫ x
0 e−u2

du is the error function. We fitted
the distributions obtained from the numerical simulations of
trajectories that escaped without doing any RT [ f0 Fig. 2(c),
upper] and after one single RT [ f1 Fig. 2(c), lower] with the
condition that λ1 � λ0. We obtained c0 = 1.09, c1 = 1.63,
λ0 = 0.06, λ1 = 0.13, a0 = −38.28, a1 = −138.64, b0 =
−36.72, b1 = −121.69. We then computed each term of the
sum (7) and we could compare it to the corresponding parts
of the distribution of escape times obtained from stochastic
simulations [Fig. 2(d)].

IV. INTERBURST DURATIONS IN A FIRING EXCITATORY
NEURONAL NETWORK

Burst and interburst are fundamental network events oc-
curring during dominant imbalance dominated by excitatory
neuronal activity. Network burst generation could rely on spe-
cific spiking frequencies in connected neurons [25] despite a
high variability in interspike intervals [26]. Neuronal popula-
tion bursts separated by long interbursts have been modeled
using a two-state synaptic depression [27], or by using the
refractory period induced by afterhyperpolarization (AHP), a
mechanism leading to a long voltage hyperpolarization tran-
sient and generated by various potassium channels [28]. Here
we show that the recurrent escape mechanism described above
can be used as one explanation of the origin of long interburst
intervals without the need of any other mechanism. However,
we note that this mechanism does not have to be exclusive
and that long interburst intervals could also be explained in
some cases by a combination of mechanisms such as the
recurrent escape pattern presented here and AHP. Indeed, we
start from the depression-facilitation short-term synaptic plas-
ticity mean-field model of network neuronal bursting [29–31],
which consists of three equations (9) for the mean voltage h,
the depression y, and the facilitation x. The depression mech-
anism describes the depletion of the vesicular pool necessary
for neurotransmission following successive action potentials,
while the facilitation mechanism corresponds to a transient
increase of the release probability mediated by a local calcium
accumulation at synapses.

τ ḣ = −h + Jxyh+ + √
τσ ω̇,

ẋ = X − x

t f
+ K (1 − x)h+, (9)

ẏ = 1 − y

tr
− Lxyh+,

where h+ = max(h, 0) is a linear threshold function of the
synaptic current that gives the average population firing rate
[29,31,32]. The mean number of connections (synapses) per
neuron is accounted for by the parameter J and the term Jxy
represents the combined effect of the short-term synaptic plas-
ticity (facilitation and depression mechanisms) on the network
activity. The parameters K and L describe how the firing rate
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TABLE I. Model (9) parameters,

Parameters Values

τ Time constant for h 0.05 s [28]
J Synaptic connectivity 4.21 [28]
K Facilitation rate 0.037 Hz [28]
X Facilitation resting value 0.08825 [28]
L Depression rate 0.028 Hz [28]
τr Depression time rate 2.9 s [28]
τ f Facilitation time rate 0.9 s [28]
T Depolarization parameter 0

is transformed into molecular events that are changing the du-
ration (depression) and probability (facilitation) of vesicular
release. The timescales t f and tr define the recovery of an
averaged synapse from the network activity. Finally, ω̇ is an
additive Gaussian noise and σ its intensity; this additive noise
term represents the fluctuations of the mean voltage generated
by the average of independent vesicular release events and/or
closings and openings of voltage gated channels.

This system has three critical points: one attractor and
two saddles. Interestingly, near the attractor A = (0, X, 1), the
dynamic is anisotropic (|λ1| = 12.6 	 |λ2| = 1.11 	 |λ3| =
0.34, with the parameters from Table I) and thus we project
the system on the two-dimensional plan y = Cte

ẏ = 0 = 1 − y

τr
− Lxyh+ = 0 ⇐⇒ y = 1

1 + τrLxh+ (10)

leading to the simplified system

ḣ = h(Jx − 1 − τrLxh+)

τ (1 + τrLxh+)
+ √

τσ ω̇,

ẋ = X − x

τ f
+ K (1 − x)h+. (11)

The deterministic component of this system has three critical
points: two attractors and one saddle point.

A. Attractor A0

A first equilibrium point is given by h = 0 and x = X . The
Jacobian at this point is

JA =
( −1+JX

τ
0

K (1 − X ) − 1
τ f

)
. (12)

With our parameters (Table I) the eigenvalues λ1 = JX−1
τ

≈
−12.6 and λ2 = − 1

τ f
≈ −1.11 are both negative, confirming

A is an attractor.

B. Saddle point S

The second critical point is S1(h1 ≈ 8.07; x1 ≈ 0.28). Its
eigenvalues are λ1 ≈ −5.73 and λ2 ≈ 1.43. It is a saddle
point.

C. Attractor A2

The third critical point is A2(h2 ≈ 28.8; x2 ≈ 0.53). Its
eigenvalues are λ1 ≈ −11.9 and λ2 ≈ −1.33. It is another
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FIG. 3. Application to the dynamical system (11). (a) Two-
dimensional phase space restricted to {x � 0.5 and h � 30}. The
basin of attraction of A0 (red star) is delimited by the stable manifold
of S (solid black curve �) with an exiting trajectory doing one RT
(orange) around the separatrix before escape.(b) Distribution of exit
times with the contribution of the trajectories per RT number before
escape with the analytical fit [Eqs. (7), (13), and (14)]. (c) Distri-
bution of the RT number for σ ∈ [4, 7] and mean RT number with
respect to noise (inset). (d) Values of 〈τext〉 (red) and 〈τint〉 (black)
with respect to the RT number.

attractor. The two attractors are separated by the one-
dimensional stable manifold of the saddle point S1 [Fig. 3(a),
solid black curve].

The phase space of system (11), restricted to the region
{x � 0.5 and h � 30} has the same topological properties as
system (1): one attractor and one saddle point; the separatrix
delimiting the basin of attraction is the stable manifold of
S1 [Fig. 3(a)]. The escaping trajectory exits and reenters the
basin of attraction several times before eventually escaping
[Fig. 3(a), orange].

Thus, we can now understand that the interburst intervals
correspond to the exit times of trajectories from the basin
of attraction. Using formula (7) to fit the distribution of exit
times, we obtain that p̃ ≈ 0.13 [Fig. 3(b)] and

f0(t ) = 0.23 exp(−0.25t )

[
1 + erf

(
t − 2.45

0.43

)]
(13)

and

f1(t ) = 0.19 exp(−0.25t )

[
1 + erf

(
t + 15.97

0.58

)]
. (14)

Finally, similar to the generic system (1), the RT number be-
fore escape does not depend on the noise intensity [Fig. 3(c)].
Trajectories are making on average eight RTs before escape
(inset). To determine the mean escape time, we use for-
mula (4) and obtain 〈τesc〉 ≈ 〈τ0〉 + 7.7(〈τext〉 + 〈τint〉) where
〈τ0〉 ≈ 4.35s and 〈τext〉 + 〈τint〉 ≈ 0.7s [Fig. 3(d)] thus leading
to a factor 2.2 in the escape time. At this stage we conclude
that long interburst durations, generated by excitatory neu-
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ronal networks [33], can be explained by the recurrent escape
mechanism introduced here.

V. CONCLUDING REMARKS

We presented an escape mechanism for which reaching the
boundary of the deterministic basin of attraction induced by
noise is not sufficient to escape. After crossing the separatrix,
the noise tends to bring trajectories back inside the basin of
attraction until they reach a region (escape conelike domain
C∞), narrow near S and that widens with the distance. The size
of the characteristic distance from S (boundary layer) after
which trajectories escape is

√
λ+
σ

[34]. We derived formulas
for the mean escape time and the distribution of escape times
taking into account the excursions inside and outside of the
basin of attraction before the final escape.

VI. NUMERICAL METHODS

All simulations were run in Matlab using the Runge-Kutta
4 scheme with a time step δt = 0.01s (we also tried δt =
0.001s and obtained the same results thus ensuring stability).
The same results were also obtained using the Euler method.
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