PHYSICAL REVIEW RESEARCH 3, 023108 (2021)

Floquet Majorana bound states in voltage-biased planar Josephson junctions

Changnan Peng ®,"? Arbel Haim,"3* Torsten Karzig®,’ Yang Peng,*" and Gil Refael'-?
nstitute for Quantum Information and Matter and Department of Physics, California Institute of Technology,
Pasadena, California 91125, USA

2Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

3Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
4AWS Center for Quantum Computing, Pasadena, California 91125, USA

5Micr0s0ft Quantum, Station Q, University of California, Santa Barbara, California 93106, USA

$Department of Physics and Astronony, California State University, Northridge, California 91330, USA

® (Received 11 January 2021; revised 11 April 2021; accepted 13 April 2021; published 10 May 2021)

We study a planar Josephson junction under an applied DC voltage bias in the presence of an in-plane
magnetic field. Upon tuning the bias voltage across the junction Vj, the two ends of the junction are shown
to simultaneously host both zero and & Majorana modes. These modes can be probed using either a scanning-
tunneling-microscopy measurement or through resonant Andreev tunneling from a lead coupled to the junction.
While these modes are mostly bound to the junction’s ends, they can hybridize with the bulk by absorbing or
emitting photons. We analyze this process both numerically and analytically, demonstrating that it can become
negligible under typical experimental conditions. Transport signatures of the zero and 7 Majorana states are

shown to be robust to moderate disorder.
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I. INTRODUCTION

For some time, the idea of Floquet Majoranas has been an
intriguing concept that has brought together the fields of non-
Abelian anyons, quantum computing, and quantum dynamics.
Floquet Majorana states were first proposed in Ref. [1] and
since have been the focus of much discussion. The most direct
impact that Floquet Majoranas had was conceptual. Being
excitations that are pinned to the quasienergy which is half
the drive frequency, the Floquet Majoranas are the archetype
of the time crystal phenomenon [2-6].

The study of Majoranas in driven systems is also moti-
vated by the need to expand our control tools of quantum
information processing elements. A drive can also enhance
the functionality of standard platforms for non-Abelian ex-
citations. Recently, it was recognized as a way to expand
the effective dimensionality of a Majorana system, allowing
braiding of Majoranas even in a strict one-dimensional (1D)
wire system [7-9]. Also, by using the drive-induced synthetic
dimensions concept [10—12], one can use drives to expand the
number of non-Abelian anyons that can be supported on a
single Majorana wire (see, for instance, Ref. [13]).

How does one best realize Floquet Majorana states experi-
mentally? Reference [14] proposed a realization that is in line
with the original proposal in Ref. [1]. This proposal involves
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the oscillation of the gate voltage applied to the system to
produce the time dependence needed. Other proposals include
driven quantum dots [15] and quantum wires [16-21]. In
this paper we show that Floquet Majoranas can emerge even
in much simpler systems that are currently experimentally
available. Particularly, we analyze a spin-orbit coupled strip,
placed in proximity to a superconductor on each of its sides,
as considered in Refs. [22-32].

As we show below, this system naturally gives rise to two
sets of Majorana end states when a DC bias is maintained
between the two superconductors. Indeed, through the AC
Josephson effect, such a system appears to be driven by the
Josephson frequency 2 = 2eVj/h. We demonstrate the ap-
pearance of Floquet Majoranas using numerical simulations,
as well as analytical arguments. We also explore the robust-
ness of the Floquet Majoranas to disorder.

The rest of this paper is organized as follows. We begin in
Sec. II by describing the system and explain how it can give
rise to a Floquet type of topological superconductivity which
gives rise to zero and mw Majorana states. We then perform
numerical transport simulations in Sec. III, demonstrating
their existence in a way similar to how they should manifest
in experiment. In Sec. IV we analyze the effect of photon-
mediated coupling between Majorana states on opposite sides
of the system. We conclude and discuss future prospects in
Sec. V.

II. THE SYSTEM

‘We consider a Josephson junction, constructed by proximi-
tizing two conventional superconductors to a two-dimensional
electron gas (2DEG) with an in-plane applied magnetic field.
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FIG. 1. (a) Proposed experimental setup. A voltage-biased pla-
nar Josephson junction implemented in a Rashba spin-orbit coupled
2DEG in the presence of an in plane-magnetic field. (b) Low-energy
spectrum of the 2DEG strip in the absence of superconductivity. The
Fermi level (¢ = 0) is marked by a solid black line, and ¢ = /2
is marked by a gray dashed line, where three different scenarios
are considered. A w Majorana state emerges at the junction ends
whenever €2/2 crosses an odd number of bands. The scenarios
(1) Vy =43.75pV, (i) V; = 125uV, and (iii) V; = 237.5uV cor-
respond to Figs. 2(a)-2(f), respectively. The parameters used to
obtain the spectrum are the same as those given in the text, i.e.,
Ey, = 100 ueV, EI = 75 ueV, etc. (see the end of Sec. II), except
that here the chemical potential is shifted to p; = 0 ueV in order to
compensate for the absence of the superconductors.

Importantly, a DC bias voltage Vj is applied across the junc-
tion between the two superconductors. To probe the system
using electric transport, we further consider two normal-metal
leads coupled to the two ends of the junction. The system is
depicted in Fig. 1(a).

The Hamiltonian describing this system in the absence of
the normal-metallic leads is described by

VZ
H(t) = |:— Tl n) +U(x, y) —ia(oydy — Gxay):l T
+ Ez(y)ox + Re[A(y)]ty — Im[A(y)]zy. (1)

This Hamiltonian is written in the basis of the Nambu spinor
Vi) = [Y](r), Y| (). ¥, (). =y ()], where ] (r) creates
an electron 1nside the 2DEG at position r = (x, y) with spin
s. The Pauli matrices {oy .} and {z, .} operate on the spin
and particle-hole degrees of freedom, respectively. Here, m. is
the effective electron mass in the 2DEG; u(y) = uj®(w/2 —
v]) + usc®(ly| — w/2) is the chemical potential, where u;
(usc) is its value in the junction (below the superconduc-
tors), ® is the Heaviside step function, and y = 0 denotes
the middle of the system; U (x, y) is a disorder potential due
to impurities; « is the Rashba spin-orbit coupling coefficient;
and Ez(y) = Eg@(w/Z — |y]) is the Zeeman splitting due to
the in-plane magnetic field present in the junction. Finally, the
induced superconducting potential inside the 2DEG is given
by A(y) = Ag®O(ly| — w/2) exp[i®(y)¢(¢)], where a linearly
time-dependent phase bias ¢(¢) = 2eVjr is generated by the
voltage across the junction.

As a result of the oscillating phase between the supercon-
ductors, the Hamiltonian of Eq. (1) is time periodic, H(t +
T) = H(t), with a period T = 7 /(eVy). We can accordingly
write the Hamiltonian using its Floquet representation,

Lt
Hon = 12 + / dre™" "M (1), )
0

where Q2 = 27 /T = 2¢Vy and m, n € Z. By construction, the
spectrum of HF is periodic under & — & + Q. The Flo-

quet Hamiltonian further obeys a particle-hole symmetry,
tyoy[HFm,n]*ryoy = —HF_m,_n, dictating a symmetry of the
spectrum under ¢ — —e. Together with the periodicity of
the spectrum, one concludes that a single state with either
e = 0ore = Q/2is protected and cannot be removed by any
perturbation respecting these symmetries [1]. Such states are
referred to as zero Majorana and 7 Majorana states, respec-
tively, where zero and 7 correspond to the phase acquired by
these states upon a unitary evolution over a time 7.

To gain some intuition, one can first consider the weak-
pairing limit. In this limit the induced superconducting pairing
inside the junction can be treated as a small perturbation to
the band structure of an isolated semiconducting strip. This
band structure, shown in Fig. 1(b), contains multiple trans-
verse bands which are spin split due to spin-orbit coupling
and magnetic field. As in the stationary case of a topological
superconductor [33-37], one expects zero Majorana states to
emerge when the Fermi level (black solid line), ¢ = 0, crosses
an odd number of bands (namely, an odd number of pairs of
Fermi points). In the case of a driven (Floquet) topological
superconductor, one expects, in addition, 7 Majorana states to
emerge whenever the line ¢ = €2/2 (gray dashed line) crosses
through an odd number of bands. Below, we consider three
different values of Vj corresponding to ¢ = 2/2 crossing ei-
ther one, two, or three bands.

Throughout this work, we take the system parameters to be
Ag = 500 ueV, Eqo = mear®/2 = 100 eV, Ly = h/(meat) =
100nm, py = 37.5 ueV, psc = lmeV, E? = 75ueV, w =
292 nm, and ws = 292nm. This set of parameters corre-
sponds to me = 3.47 x 10732 kg = 0.038m? and o = 3.04 x
10*m/s.

III. NUMERICAL ANALYSIS

To simulate the system numerically, we truncate the Flo-
quet indices m, n € [—Ng, Ng] in Eq. (2). For a large enough
cutoff N this is justified by the frequency-space localization
of the Floquet eigenstates, which is induced by the term
n€28,,,. We further discretize the Hamiltonian #},, spatially
by constructing an appropriate tight-binding Hamiltonian on a
rectangular lattice. In the present work we keep seven Floquet
bands (Ng = 3) and take the lattice constants to be a, = 40 nm
and a, = 73 nm.

To probe the presence of Majorana modes we consider the
case where two normal-metallic leads are connected to the two
ends of the junction, as depicted in Fig. 1(a). In this setup, the
presence of zero and w Majorana states at the junction ends
will induce resonant Andreev reflection of an electron arriving
from one of the normal-metal leads with energy zero and eVj,
respectively. Experimentally, this should be observed in the
DC differential conductance, o (V) = dIpc/dV, where Ipc is
the DC component of the current in the normal-metal lead and
V is its voltage with respect to ground.

To obtain this quantity numerically, we calculate the
scattering matrix of the discretized truncated Floquet Hamil-
tonian, with the reflection and transmission blocks having the
form

ee ch ee eh
o rim;jn rim;jn P tim;jn tim;jn 3
Vim;jn = rhe hh s im;jn — t.he ' l‘-hh ) ( )

im;jn rim;jn
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FIG. 2. Conductance as a function of the lead’s voltage V and the junction’s length L,, in units of 2¢?/h. The voltage across the junction
is taken to be (a) and (b) V; = 43.75uV, (c) and (d) V; = 1251V, and (e) and (f) V; = 237.5uV. These three values correspond to the three

dashed gray lines in Fig. 1(b), marked (i), (ii), and (iii), respectively.
For example, rihrfl; n = ril}e(s + m, ¢ + n2) is the amplitude
for an electron in mode (i, m) to be reflected as a hole in
mode (j, n), where m, n label the Floquet sectors and i, j each
label the spin and transverse modes in the lead. The scattering
matrix is calculated using the recursive Green’s function tech-
nique [38] (see Refs. [29,39] for details of implementation).

The DC differential conductance can then be extracted
from the scattering matrix using the Landauer-Biittiker for-
malism, generalized for a periodically driven superconducting
system,

e? >
o) = SN lsev.ev + o)

ij n=—00

+ [efF(eV, eV + nQ)* + 2|rf(eV. eV + )]
“4)

Terms involving ¢ and " describe processes where a sin-
gle electron is emitted, therefore contributing a unit quantum
conductance, while the Andreev reflection term " describes
a process where two electrons are emitted from the lead and
therefore contribute two units of quantum conductance [40].
Unlike the case of a stationary system, however, each of these
processes can now occur through an absorption or emission of
n photons [41-43].

In Fig. 2, we present results for o(V) = dIpc/dV as a
function of the junction’s length L, [see Fig. 1(a)] and the
voltage in the lead V for a clean system. Figures 2(a), 2(c), and
2(e) focus on voltages near V = 0, while Figs. 2(b), 2(d), and
2(f) focus on voltages near V = Vj. For a long enough system,
the emergence of zero and/or m Majorana states can be seen
as arobust resonance at V = 0 and/or V = Vj, respectively.

The top, middle, and bottom panels correspond to three
different values of the voltage Vj across the junction. These
three values of V; are shown in Fig. 1(b) as gray dashed
lines labeled (i), (ii), and (iii). They are chosen such that
e = Q/2 = eVj crosses either a single band [Figs. 2(a) and
2(b)], two bands [Fig. 2(c) and 2(d)], or three bands [Fig. 2(e)
and 2(f)]. As expected, # Majorana modes emerge when the
number of bands crossed by ¢ = /2 is odd. In all these
cases the chemical potential u is kept constant with the Fermi
level (¢ = 0) crossing a single band, as shown in Fig. 1(b).
Signatures of zero Majorana states can accordingly be seen in
all the left panels of Fig. 2.

In the stationary case of a topological superconductor,
under some general conditions the conductance resonance is
quantized to o (0) = 262 /h at zero temperature [44-47]. More
specifically, if the system is gapped and long enough, the
transmission matrix vanishes, and the reflection matrix can be
shown to have a single perfectly-Andreev-reflecting channel
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FIG. 3. Conductance as a function of the lead’s voltage V and
the junction’s length L., in units of 2¢*/h. System parameters are
the same as in Figs. 2(a) and 2(b), except the coupling to the lead is
reduced, enabling us to view the splitting of the Majorana resonance.
The splitting does not decrease to zero with increasing L, and is most
likely a result of photon-mediated coupling between Majorana states
on opposite ends of the junction (see Sec. IV).

in the topological phase [48]. If, in addition, the lead is weakly
coupled to the system (or if the lead has a single channel), the
rest of the channels do not contribute, yielding o (0) = 2¢?/h.

In contrast, for a periodically driven topological supercon-
ductor the resonances at V = 0 and V = Vj are generally not
quantized, even in the limit of a weakly coupled lead and a
gapped infinite system. Instead, quantization is obtained only
when summing over the differential conductance at certain
discrete energies [43,49]. In the presence of a zero Majo-
rana bound state one has ), o (2meV;) = 2¢?/h, while in the
presence of a w Majorana bound state one has ), o[(2m +
DeVy] = 2¢*/h.

The resonances seen in Figs. 2(a)-2(c) and 2(e) exhibit a
peak value only slightly less than 2¢?/h. This can suggest that
conductances at V = 2meV; and V = (2m + 1)eV; with m #
0 are relatively suppressed. This is reasonable considering that
electrons arriving at these energies require the absorption or
emission of several photons in order be in resonance with the
Majorana states. For |Ajnq| < |€2|, which is the case consid-
ered here, such processes would be suppressed. In the case
of Fig. 2(f), on the other hand, the conductance resonance
exhibits a peak value slightly above 2¢?/h. This is a result
of the coupling to the lead being comparable with the induced
gap, allowing for higher-energy states to contribute to conduc-
tance. Indeed, the induced gap around V; shown in Fig. 2(f) is
smaller than the gaps seen in the spectra of Figs. 2(a)-2(e).

To examine the Majorana-induced resonance with better
resolution, we consider the conductance for the case shown
in Fig. 2(a), but with a weaker coupling between the system
and the normal-metal leads. This weaker coupling causes the
width of the resonance to decrease, allowing for a closer
examination of the splitting of the Majorana modes. The result
is shown in Fig. 3. One can now clearly observe the splitting
of the resonance away from V = 0. As the junction’s length
L, is increased, the resonance energy initially oscillates with a
decreasing amplitude; however, beyond about L, ~ 10 pum the
splitting approaches a constant value. This behavior is quite
different from that of a static topological superconductor,

(a) 1 ] 771 = 0peV
0.8 1 771 =0.9peV
— 1 77 =21peV
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FIG. 4. Conductance as a function of the lead’s voltage V for a
fixed junction’s length, L, = 16um, and different values of disorder
strength represented by inverse mean-free time. System parameters
are the same as in Figs. 2(a) and 2(b). In (a) we focus on voltages
around V =0, and in (b) we focus on voltages around V =1V},
corresponding to zero and 7 Majorana states, respectively.

where the asymptotic splitting of the Majorana modes is expo-
nentially decaying. The behavior observed here is most likely
due to photon-induced coupling between the Majorana states
at the two ends of the junction. In this process, a photon can
excite a quasiparticle into a conducting mode of the system,
allowing for cross talk between the Majorana end states. In
Sec. IV we analyze this splitting and show that it becomes
small whenever |kg&| >> 1 or when [2] > ||, where kg is the
Fermi momentum and & is the Majorana localization length in
the static case.

We end the section on numerical results by demonstrating
the robustness of the signatures observed above to weak dis-
order. We focus on the system parameters used in Figs. 2(a)
and 2(b) and simulate random short-correlated disorder,
U@r)U (') = 8(r —r')/(met). Here, t is the disorder-induced
mean-free time in the case of an unproximitized 2DEG and
in the absence of a magnetic field. In Fig. 4, we present
results for the conductance as a function of the lead’s volt-
age for different values of 7. Each data point is a result of
averaging over 50 disorder realizations. Figures 4(a) and 4(b)
focus on voltages near V = 0 and V =V}, corresponding to
zero and w Majorana states, respectively. In both cases the
Majorana-induced (nearly quantized) peak remains intact for
a finite range of disorder strengths, beyond which the peak
value begins to decrease until disappearing completely.

Notice the critical value of the disorder corresponds to
=1, which is of the order of the induced gap in the system,
as observed in Figs. 2(a) and 2(b), resembling the behavior
of the static topological superconductor in the presence of
disorder [50-57]. The difference between static and driven
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topological phases is that the driven system in the present case
is, strictly speaking, not gapped (see discussions in Sec. IV).
The photon-mediated splitting of the Majorana bound states is
suppressed by momentum mismatch, rather than by a gap. In
the presence of disorder, however, this momentum mismatch
is mediated by impurity scattering. As a result of these pro-
cesses, whereby single electrons traverse the system (in the
x direction), the two Majorana bound states at each end can
interact and gap away from zero energy.

IV. PHOTON-INDUCED COUPLING
OF THE MAJORANA MODES

We saw above that while the signatures of the Majorana
states are robust, there is a small splitting of the Majorana
resonance that does not decay with increasing the system size,
as apparent in Fig. 3. Such a splitting does not exist in a
static topological superconductor and is a consequence of the
periodic drive induced by the voltage bias across the junction.

To analyze this effect we consider a simplified version of
the system. We treat the region inside the junction as a 1D
semiconductor weakly coupled to the superconductors [see
Fig. 1(a)]. For adequate values of the chemical potential and
magnetic field, this system is known to be described by a spin-
less p-wave superconductor [34]. Since in our case a voltage
bias is applied between the superconductors, the Hamiltonian
for the system reads

Hy(t) = Zékckck (1 +e M) Arcle! +Hel, (5)

where Q = 2¢V) as before, & is the dispersion of the low-
est electronic band, and A, = —A_; is the effective p-wave
pairing potential. For concreteness, we take A(k) = A’k and
& = k?>/2m — i for some effective values of the electron
mass m, the chemical potential i, and the coefficient A’.
We emphasize, however, that in the weak-pairing limit, the
physics is determined by Ay and &; near the Fermi momentum
kr, defined by &, = 0. We assume this limit below.

In the absence of the time-dependent term, the Hamiltonian
of Eq. (5) has a gap at the Fermi level (¢ = 0). The periodic-
time-dependent term, however, enables a process in which,
by absorbing a photon, a quasiparticle can be excited into a
conducting mode. Focusing on the zero Majorana, we retain
only the n = 0 Floquet sector and Floquet bands which can
be reached by absorbing at most a single photon to leading
order in | A(kp)|/€2. The resulting Hamiltonian can be written
in first-quantization form as

1 + 1
H, = (&t + Akt) +

— )‘Z /
(é:k - Q)TZ +A k)\xfxa
(6)
where A, , . are Pauli matrices operating on the space of states
having {0, 1} photons. The first term above corresponds to the
zero-photon sector and describes a static spinless p-wave su-
perconductor. The second term corresponds to the one-photon
sector and describes a gapless 1D channel. Finally, the third
term couples the two sectors and describes electron pairing
mediated by an absorption or emission of a photon. We note
that a similarly structured Hamiltonian can be obtained for

describing the m Majorana by focusing on quasienergies near
e = Q/2instead of ¢ = 0.

To make analytic progress, we first treat the zero-photon
sector by solving for the Majorana end states, y. and yg,
that emerge in the presence of open-boundary conditions and
projecting out the rest of the spectrum. We then integrate out
the one-photon modes to obtain a self-energy term describing
a coupling between the two Majorana end states, in addition to
the exponentially small finite-size coupling. The result for the
2 x 2 Green’s function of the ground-state manifold, written
in the Nambu basis (yL, yr), is given by

GR(®) = [w — emTy — Z(0)] 7, 7

where ¥(w) is the self-energy due to photon-mediated pairing
and ey x exp(—L/&) is the exponentially decaying energy
splitting between the Majorana states in the static case, with
the decay length given by & = 1/(m|A’|). We note that in the
weak-pairing limit one has kg€ > 1.

In the limit of L > &, one can neglect €y,. The shift and
broadening of the Majorana resonance can then be obtained
from the zero-frequency self-energy, which to leading order
in 1/(kg€) reads

NI , Q
0= (sz)2<sz> [kps (” )’“’8\/”/1}'

®)
The first term in Eq. (8) gives the energy splitting of the
Majorana modes, while the second term gives its broadening
and represents the hybridization of the Majorana state with
the continuum of extended modes in the wire. Considering the
self-energy for finite values of w results in corrections to the
splitting and the broadening; however, we have verified that
these involve a higher order of 1/(kg&).

From Eq. (8) it is evident that, unlike in the static case,
the splitting between the Majorana states does not decay with
the length of the system. Nevertheless, in the limit of either
kr& > 1 or Q > [i, this splitting can be much smaller than
the induced superconducting gap in the system A’kg. Such
a situation is, indeed, observed in the numerical simulations
of Sec. III, which is apparent from Fig. 3. For short enough
system lengths, €y dominates over X(0) in Eq. (7), and the
splitting of the Majorana modes follows oscillations with
exponentially decaying amplitude. For a longer system size,
2(0) dominates over €y, and the splitting between the Majo-
rana modes follows a constant value.

We can compare the results with the numerical simulations
of Sec. III. We can extract from the numerical simulations that
Ajpg = A'kp = 8 eV, kg& ~ 20, and Q/f =~ 0.5. Inserting
these values into Eq. (8), we obtain the splitting and the
width of the resonance, X(0) ~ 0.387, — 0.78i(ueV). This
splitting is consistent with the one observed in Fig. 3. The
width obtained in Eq. (8) should be understood as an average
over the finite-size oscillation observed in Fig. 3.

Note that while the broadening in Eq. (8) is parametrically
larger in 1/kp& than the splitting, for our parameters the larger
numerical prefactor of the splitting is sufficient to lead to sim-
ilar values for splitting and broadening. In general, there will
be other contributions to the self-energy, £(0) — 2(0) + %,
that go beyond the continuum modes, and the splitting is just
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observable for sufficiently small £. One example, mentioned
above, is the broadening by the coupling to the transport
leads. Also, interactions and phonon-induced relaxation will
contribute to 3. We note that when a decay rate y is included
in the Green’s function in Eq. (7), this contribution is ¥ =
2iy (A'kp)? /2, which can be neglected relative to the broad-
ening of Eq. (8) for y « A'kp/T+ Q/i = Aina/1+ /0.
Typical phonon relaxation times correspond to y < 1 ueV
and can therefore be neglected.

V. DISCUSSION

We have investigated a voltage-biased Josephson junction
implemented in a two-dimensional electron gas in the pres-
ence of an in-plane magnetic field. We have shown that this
system supports a pair of weakly coupled zero Majorana end
states together with a pair of weakly coupled m Majorana
states. The weak coupling between Majorana end states on
opposite sides of the junction is induced by photon absorption
or emission, which causes the Majorana modes to hybridize
with the highly excited conducting modes. As we show, this
coupling can, nevertheless, become exceedingly small for rea-
sonable system parameters.

For a phase-biased Josephson junction of the type we study
here, it was previously shown that the system supports zero-
energy Majorana bound states at each end of the junction
[23,24]. Such a system was subsequently studied by several
experimental groups who observed signatures of topological
superconductivity [26-28]. Our results suggest that a slight
modification of the same experimental setup can realize a
Floquet topological superconductor. The presence of zero
Majorana and w Majorana states in such a system can be
directly probed by measuring DC differential conductance
from a metallic lead coupled to one of the junction’s ends as a
function of its voltage V, as depicted in Fig. 1(a). This should
produce simultaneous nearly quantized resonances at V = 0
and V = Vj, respectively, with the latter being the voltage bias
across the junction (see Fig. 2).

Further insight into the origin of these resonances can be
gained by considering a situation where the system is physi-
cally split into two parts at the middle of the junction (y = 0).
Each subsystem then consists of a superconductor in prox-
imity to a 1D semiconductor and can therefore be tuned into
a (static) topological superconducting phase [58,59], giving
rise to a Majorana bound state at each of its ends. Since the
Fermi energies of the two subsystems differ by V;, one pair of
Majorana bound states resides at energy ¢ = 0, while the other
resides at ¢ = Vj. These two pairs of Majorana bound states
result in conductance peaks at V = 0 and V}, respectively.
Interestingly, these features survive even when the two sub-
systems are brought together, as shown in this work. Indeed,
the voltage-biased Josephson junction allows electrons (and
holes) to gain energy through multiple Andreev reflections
and escape the gap to a conducting channel, possibly hybridiz-
ing Majorana states at opposite ends. As shown in Secs. III
and IV, however, in practice this hybridization is rather weak.

Applying a voltage bias to the junction in search of a Flo-
quet topological superconductor has the added advantage of
introducing a tuning parameter into the system, V7, in addition
to the junction chemical potential i (controlled by a gate) and

the in-plane magnetic field. In the weak-pairing limit, zero
() Majorana modes should appear whenever u (V) crosses
through an odd number of Zeeman-split bands [see Fig. 1(b)].
This was demonstrated numerically (see Fig. 2), together with
the robustness of the Majorana modes to disorder (see Fig. 4).

An exciting prospect of Floquet topological superconduc-
tors is the ability to implement braiding of Majorana modes in
a strictly 1D system [7-9]. In this scenario one takes advan-
tage of the fact that the zero and w Majoranas can be thought
of as residing in separate channels. Such a process can, in
principle, be implemented in the system considered here by
adding local gates to control the position of the Majorana
modes, together with an additional AC potential to couple
the zero and w Majorana modes in restricted regions. The
photon-mediated coupling between opposite Majorana end
states discussed above will, in principle, cause the braiding
operation to be unprotected, as it can induce a nonuniversal
dynamical phase. Nevertheless, one might be able to avoid
this by performing the braiding on a timescale shorter than
the inverse energy splitting of the Majoranas.
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APPENDIX A: NUMERICAL RESULTS
FOR A NARROW JUNCTION

Decreasing the width of the junction w is expected to
increase the induced superconducting gap in the junction.
Decreasing w also causes higher transverse modes to get
pushed to high energies. In this case, the relevant scenario
for observing simultaneous zero and 7 Majorana modes is
when the lines ¢ = 0 and ¢ = /2 = eV both cross a single
pair of Fermi points [see scenario (i) in Fig. 1(b)]. The larger
splitting between transverse modes allows one to increase
the Zeeman field and €2, thereby suppressing photon-induced
coupling of the Majorana modes to the bulk conducting mode.
In Fig. 5 we present numerical results for the differential con-
ductance as a function of voltage and system length for w =
73nm, py = 287.5 ueV, usc = 1.125meV, E = 250 peV,
and V; = 125uV, keeping the rest of the system parameters
unchanged. The conductance spectrum exhibits simultaneous
resonances at V = 0 and V = Vj, each separated by a sizable
gap of about 40 ueV.

APPENDIX B: LINECUTS OF CONDUCTANCE SPECTRA

To facilitate easier comparison of the results presented in
Fig. 2 we append here linecuts showing the conductance as

023108-6
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FIG. 5. Conductance as a function of the lead’s voltage V and
the junction’s length L., in units of 2¢?/h. The voltage across the
junction is taken to be V; = 125 V.
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FIG. 6. Linecuts from Fig. 2, showing conductance versus volt-
age for a fixed system length of L, = 16 um. Left: Zero Majorana.
Right: 7 Majorana.

a function of voltage for a fixed system length. They are
presented in Fig. 6.
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