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Superfluid vortices in four spatial dimensions
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Quantum vortices in superfluids have been an important research area for many decades. Naturally, research on
this topic has focused on two-dimensional (2D) and 3D superfluids, in which vortex cores form points and lines,
respectively. Very recently, however, there has been growing interest in the quantum simulation of systems with
four spatial dimensions; this raises the question of how vortices would behave in a higher-dimensional superfluid.
In this paper, we begin to establish the phenomenology of vortices in 4D superfluids under rotation, where the
vortex core can form a plane. In 4D, the most generic type of rotation is a “double rotation” with two angles
(or frequencies). We show, by solving the Gross-Pitaevskii equation, that the simplest case of equal-frequency
double rotation can stabilize a pair of vortex planes intersecting at a point. This opens up a wide number of future
research topics, including into realistic experimental models; unequal-frequency double rotations; the stability
and potential reconnection dynamics of intersecting vortex surfaces; and the possibility of closed vortex surfaces.
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I. INTRODUCTION

Quantum vortices are fundamental topological excitations
of superfluids, which have been widely studied for many
years [1–7]. Unlike a lot of many-body phenomena, vortices
can be understood at the mean-field level through the Gross-
Pitaevskii equation (GPE) [1]. A superfluid vortex consists
of a local density depletion within the “vortex core,” around
which the superfluid circulates. In two-dimensional (2D) and
3D superfluids, this vortex core forms a point and a line,
respectively, as sketched in Fig. 1. Vortices have an associated
energy cost but can be stabilized by rotation of the superfluid
[2,3] or, equivalently, by artificial magnetic fields [8–10].

While research has so far naturally focused on vortices
in 2D and 3D superfluids, there is growing interest in sim-
ulating systems with four spatial dimensions. This is thanks
to experimental and theoretical investigations of 4D physics
in topological pumping [11–13], high-dimensional parameter
spaces [14–17], and electric circuits with high connectivity
[18–22], as well as proposals for engineering 4D systems
using “synthetic dimensions” [23,24]. The latter, in particular,
opens up the prospect of being able to explore higher-
dimensional superfluids with artificial gauge fields. In this
approach, “synthetic dimensions” are built by coupling to-
gether the internal states of cold atoms [25–35], photonic
systems [24,36–42], and other platforms [43–46]. Such de-
grees of freedom are then reinterpreted as lattice coordinates
in a new direction, increasing the effective system dimension-
ality, while providing straightforward ways to realize artificial
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magnetic fields [47] and hence mimic rotation in a higher-
dimensional space.

The potential of synthetic dimensions for reaching 4D with
(for example) ultracold bosonic atoms [23,33] motivates the
question of how superfluid vortices behave in higher dimen-
sions. In this paper, we take an initial step in this direction
by exploring the 4D GPE under rotation, with local atom-
atom interactions. This is chosen as a minimal model, which
naturally extends a standard textbook problem to 4D in or-
der to establish basic aspects of 4D vortex physics. More
realistic models for experiments will depend on the specific
synthetic-dimension implementation chosen and are likely to
include other effects, such as lattices and unusual interactions
with respect to the synthetic dimension, that will further en-
rich the possible vortex states but will go beyond this paper.
We also note that while our main motivation for studying
the 4D GPE is as an initial stepping stone towards possible
synthetic-dimension experiments, this model is also plausible
as a description of low-temperature interacting bosons in a
hypothetical 4D universe (see Appendix A and Refs. [48–50])
and so is of mathematical interest for generalizing classic
results about superfluid vortices to higher dimensions.

To investigate vortices in 4D, we must first appreciate that
rotations (or equally, magnetic fields) in higher dimensions
can have a fundamentally different form; all rotations in two
and three dimensions are so-called “simple rotations,” while
in 4D, generic rotations are “double rotations” [51]. This
difference will be discussed in more detail later but can be
understood in brief by noting that in 2D or 3D every rotation
has a single rotation plane and angle, while in 4D there can be
two independent rotation planes, e.g., the xy and zw planes,
each with their own angle of rotation.

In this paper, we show that equal-frequency double rotation
of a 4D superfluid can stabilize a vortex structure formed
by two vortex planes intersecting at a point, while a simple
rotation stabilizes a single vortex plane, as sketched in Fig. 1.
We obtain our results, firstly by using a phase ansatz to nu-
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FIG. 1. Sketch of minimal vortex structures, stabilized for differ-
ent system dimensionalities (columns) and types of rotation (rows).
Here, “simple” and “double” indicate rotations with one or two
planes of rotation, respectively, as discussed in the text. In 2D and
3D, only simple rotations exist, stabilizing vortex cores as a point and
line, respectively, about which the superfluid rotates (black arrow). In
4D space (shown as 3D cross sections colored according to w value),
both types of rotation exist, leading to a richer vortex phenomenol-
ogy. In 4D, equal-frequency double rotations can lead to a new type
of vortex configuration consisting of two vortex planes intersecting
at a point, while simple rotations stabilize a single vortex plane. In
these sketches, a vortex plane appears either as a line persisting for
all w (lines of varying color) or as a plane for a particular w value
(purple disk), depending on the rotation plane. Note that in the 4D
column we have omitted the arrow indicating superfluid motion.

merically solve an effective 2D radial equation and secondly
by numerically solving the full 4D GPE under rotation. This
generalization of superfluid vortices to higher dimensions
opens up many avenues of future research, such as questions
concerning the unequal-frequency case; reconnections of vor-
tex planes; possible curvature of vortex surfaces; and more
realistic setups capturing experimental details.

II. REVIEW OF VORTICES IN 2D AND 3D SUPERFLUIDS

We begin by reviewing the basic properties of 2D and
3D vortices, in order to lay the groundwork for our dis-
cussion of 4D superfluids. We consider systems of weakly
interacting bosons described by a complex order parameter,
ψ , which obeys the time-independent GPE with no external
potential [1]

− h̄2

2m
∇2ψ + g|ψ |2ψ = μψ, (1)

where m is the particle mass, g is the interaction strength, and
μ is the chemical potential. A hydrodynamic description can
be obtained from this equation by substituting ψ = √

ρeiS ,
where ρ is the superfluid density and S is the phase [1].
The velocity field, v = h̄

m ∇S, is irrotational wherever S is
well behaved. A consequence of this property is that a su-
perfluid supports quantized vortices. This can be seen by
noting that the superfluid circulation around a closed loop C is
quantized as ∮

C
v · dr = h̄

m
[�S]C, (2)

where [�S]C is the phase winding [3]. Since ψ is single
valued, we must have [�S]C = 2πk, where k is the integer
winding number (or vortex charge) [1]. Smoothly deforming

the loop cannot change k as long as vortices are avoided.
This can only be true if v diverges as 1/r as the distance r
from a vortex core goes to zero. Since particles cannot have
infinite velocity, ρ must vanish in this same limit. The region
of density depletion is known as the vortex core; in 2D, this
is localized around a point, and in 3D around a line, as shown
in Fig. 1. More generally, vortices must be localized in two
directions.

As is well known, the density profile around the vortex
core can be calculated directly by applying the GPE to a
homogeneous superfluid with a single vortex [1]. By defining
the uniform background density n, the healing length ξ can be
introduced, which satisfies h̄2/mξ 2 = gn = μ [52] and which
physically is the distance over which ρ typically varies. Here-
after, we rescale r → ξr, and ψ → √

nψ such that Eq. (1)
becomes dimensionless as

− 1
2∇2ψ + |ψ |2ψ = ψ. (3)

A rotationally symmetric vortex state in 2D has the form
ψ = fk (r)eikθ , where (r, θ ) are polar coordinates centered on
the vortex core, fk (r) is real, and k is the winding number.
Substituting this into Eq. (3) gives [1]

−1

2

(
�r − k2

r2

)
fk + f 3

k − fk = 0, (4)

where �r = ∂2/∂r2 + (1/r)∂/∂r. This equation has no
closed-form solution but does admit the asymptotic forms
fk (r) = O(r|k|) as r → 0, and fk (r) = 1 − O(r−2) as r → ∞
[3]. The crossover between these two behaviors occurs at
around the healing length. Note that a straight vortex line in an
otherwise homogeneous and isotropic 3D superfluid has this
same profile, with (r, θ ) defined in the plane perpendicular to
the vortex line [1].

Using this density profile, the energy cost of a vortex rela-
tive to the ground state can be evaluated. For a singly charged
vortex (k = 1) the energy can be written as

E1(R) = μN

(
ξ

R

)2

ln

(
2.07

R

ξ

)
, (5)

where N is the number of bosons and R is the radius of
the superfluid in the plane orthogonal to the vortex core.
Equation (5) is valid in any number of dimensions. Vortices
can be energetically stabilized by rotation (or equivalently,
an artificial magnetic field), whereby Eq. (1) is modified in
3D by adding the term −� · Lψ to the left-hand side, with
L = −ih̄r × ∇ being the angular momentum operator and �

being the frequency vector [1]. This term reduces the energy
of a state containing a vortex aligned with the rotation, making
it more energetically favorable.

III. SIMPLE AND DOUBLE ROTATIONS

Given the intrinsic link between rotation and vortices, we
will now discuss the different types of rotations possible in
4D, as compared with lower dimensions, in preparation for
our discussion of vortices in 4D superfluids below.

In three dimensions or fewer, every rotation is “simple”;
this means that the rotation is specified by a rotation angle
α ∈ (−π, π ] and a plane of rotation which is unique up to
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translation. Under rotation, the points on the plane of rotation
remain on the plane but are displaced through the angle α.
Generalizing to D-dimensional space, simple rotations have
D − 2 eigenvectors with eigenvalue 1, all of which are or-
thogonal to every vector in the rotation plane. For example,
a rotation about the z axis in 3D has the xy plane (defined by
z = 0) as its rotation plane and fixes any point along the z axis.
We may write this as a matrix in the standard basis as⎛

⎜⎝
cos α − sin α 0

sin α cos α 0

0 0 1

⎞
⎟⎠. (6)

We can think of this as a rotation of 2D space (spanned by
x and y) extended into a third (z) direction. Similarly, simple
rotations in 4D can be thought of as rotations of 3D space
extended into a fourth direction. Labeling the fourth axis as w,
our previous example becomes a rotation about the zw plane
(defined by x = y = 0), given in matrix form by

(
R(α) 0

0 I

)
, where R(α) =

(
cos α − sin α

sin α cos α

)
(7)

and I is the 2D identity. Note that there are six Cartesian
coordinate planes in 4D, so the rotation group SO(4) has six
generators, and the representation of these generators (which
physically describe angular momentum) as spatial vectors no
longer works in 4D as it does in 3D. The set of fixed points
of a simple rotation in 4D are a plane, not a line, and this
fixed plane is completely orthogonal to the plane of rotation,
by which we mean that every vector in one plane is orthogonal
to every vector in the other.

In contrast to 2D and 3D, in four dimensions, we can
also have “double rotations,” which generically have only one
fixed point, and two completely orthogonal planes of rotation
each with a corresponding rotation angle [51]. To visualize
this, consider a double rotation in the xy and zw planes repre-
sented by the matrix [53]

(
R(α) 0

0 R(β )

)
, (8)

for angles α, β ∈ (−π, π ]. For those familiar with certain 4D
quantum Hall models, this is analogous to generating a second
Chern number by applying magnetic fields in two completely
orthogonal planes [12,13,23,24,54]. Double rotations are in
fact the generic case of rotations in 4D, as if either α or
β = 0, the rotation reduces to the special case of simple ro-
tation discussed above [51]. From here on we will refer to
the two planes of rotation as planes 1 and 2, respectively, and
focus only on so-called “isoclinic” double rotations for which
α = β.

Before continuing, it is worth noting that isoclinic rota-
tions have an additional symmetry. To see this, we remember
that, as introduced above, generic double rotations have one
fixed point and two planes of rotation, with corresponding
angles α, β ∈ (−π, π ]. Vectors in R4 which do not lie in
these rotation planes are displaced through an angle between
α and β [51]. However, if α = β, then this means that every
vector is displaced by the same angle. As a consequence, for
a given isoclinic rotation there is a continuum of pairs of

completely orthogonal planes that can each be thought of as
the two planes of rotation. In other words, isoclinic rotations
therefore no longer have two unique planes of rotation,
although they still have a single fixed point. However, numer-
ically, we break this degeneracy since the phase winding of
our initial state picks out the xy and zw planes in particular.
We can also anticipate that a more experimental model would
likely break this symmetry too, e.g., through the inclusion
of lattices or through inherent differences between real and
“synthetic” spatial dimensions.

IV. VORTEX PLANES IN 4D

Now that we have discussed some of the geometry of
rotations in 4D, we are ready to study the associated vortex
physics. As above, we consider a superfluid described by the
GPE in the absence of external potentials, but now with atoms
free to move in four spatial dimensions.

The simplest case to consider is that of a 4D superfluid
under a constant simple rotation. As shown in Eq. (7), a
simple rotation can be viewed as a 3D rotation extended
into a fourth dimension, hence stabilizing a vortex plane, as
sketched in Fig. 1. The corresponding order parameter profile
is ψ = fk (r1)eikθ1 , where (r1, θ1) are plane polar coordinates
in the plane of rotation and fk (r) is the solution of Eq. (4). As
this is independent of the other two coordinates, the vortex
core becomes a plane; this is directly analogous to the ex-
tension of a point vortex in 2D into a line in 3D. We have
verified this result numerically, as shown in Appendix B 1.
This can be understood as the natural extension of vortices
into 4D, as the extra dimension plays no role, and the vor-
tex plane is homotopically characterized by a Z topological
winding number, as in 2D and 3D. For a more detailed dis-
cussion of homotopy classification of vortex planes in 4D, see
Appendix C.

In contrast, we expect that double rotation, being an in-
trinsically 4D (or higher) phenomenon, will lead to more
interesting vortex configurations. To address this problem, we
look for the ground states of the 4D GPE in a doubly rotating
frame

[
− h̄2

2m
∇2 + g|ψ |2 − �1L1 − �2L2

]
ψ = μψ, (9)

where � j and Lj are the rotation frequency and angular
momentum operator in plane j. In Cartesian coordinates
(x, y, z,w), L1 = −ih̄(x∂y − y∂x ), and L2 = −ih̄(z∂w − w∂z ).
For simplicity we will adopt double polar coordinates
(r1, θ1, r2, θ2), defined by

(x, y, z,w) = (r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2),

such that Lj = −ih̄∂θ j . The simple rotation case discussed
before corresponds to �2 = 0, where the vortex core spans
plane 2. In this paper we focus on equal-frequency doubly
rotating superfluids; that is, � ≡ �1 = �2.

The fact that L1 and L2 generate a double rotation means
that they commute. We may look for a solution which is a
simultaneous eigenstate of both angular momentum operators;
therefore we propose an ansatz for the ground state under

023105-3



BEN MCCANNA AND HANNAH M. PRICE PHYSICAL REVIEW RESEARCH 3, 023105 (2021)

rotation of the form

ψ (r) = f (r1, r2)eik1θ1+ik2θ2 , (10)

where f (r1, r2) is real and the k j are integer phase winding
numbers in each rotation plane. This phase profile corresponds
to the superfluid circulating in both planes simultaneously,
about both vortex cores. We have suppressed the dependence
of f on each k j for brevity, and in all numerical results both
winding numbers are 1. This state exhibits a phase singularity
when either r j = 0, so we require f (0, r2) = f (r1, 0) = 0
from the same reasoning as in 2D and 3D. In other words,
this describes a pair of completely orthogonal vortex planes
that intersect at a single point as illustrated in Fig. 1 and that
are characterized by Z × Z topological winding numbers (see
Appendix C). Intersection of two planes at a point is only
possible in 4D or higher and, in fact, is the generic case in
4D. This is in contrast with 3D, where the intersection of lines
is a special case, and so vortex lines intersect and reconnect at
specific times [55–58].

To examine our ansatz, we now proceed to numerically
solve for the density profile, under this phase constraint. Sub-
stituting the ansatz [Eq. (10)] into the GPE [Eq. (1)] in 4D,
and dedimensionalizing in the same way as in the 2D case, we
obtain the following equation for f (r1, r2):

−1

2

(
�r1 − k2

1

r2
1

+ �r2 − k2
2

r2
2

)
f + f 3 − f = 0, (11)

where �r j = ∂2/∂r2
j + (1/r j )∂/∂r j . Since each vortex pro-

duces only a local density depletion, we expect that
f (r1, r2) ∼ fk2 (r2) as r1 → ∞ and equally for (1 ↔ 2),
where fk (r) is the point vortex solution of Eq. (4). Note that
this limiting “boundary condition” can be satisfied by a sepa-
rable product ansatz, fk1 (r1) fk2 (r2), of 2D density profiles in
each plane. However, this form fails to solve the full equation
due to the nonlinear f 3 term. This product form therefore
gives a natural approximation to compare with, and we expect
it to fail significantly only in the vicinity of the origin, where
both fk j (r j ) differ appreciably from unity.

To verify this, and find the full density profile, we have
solved Eq. (11) by imaginary time evolution within a dis-
cretized grid in (r1, r2) space with hard-wall boundary
conditions at a radius R = 100ξ in each plane (r j = R) and
at the origin in each plane (r j = 0). The latter condition is
required due to the centrifugal term diverging at the vortex
cores; consequently, the precise location of the vortex cores
was an assumption in these calculations. We used a forward
Euler time discretization and second-order finite differences
in space. We chose a large value of R compared with ξ so
that we could examine the vortex cores within a homogeneous
region. (Future studies could include the effect of additional
trapping potentials, such as harmonic traps along some or all
directions.) We were able to achieve a resolution of 0.05ξ ,
and the calculations were converged until the relative change
in chemical potential and particle number over one time step
converged below 10−14.

The results for k1 = k2 = 1 are shown in Fig. 2(a), where
we observe the expected local density depletion around the
vortex cores when either r1 = 0 or r2 = 0. We also com-
pare our numerical solution with the product approximation,

FIG. 2. (a) Numerical solution of Eq. (11) for f (r1, r2), with
k1 = k2 = 1, showing the density profile for an intersecting pair of
vortex planes in 4D, as a function of the two polar radii. (b) The
ratio of the solution in (a) to the product approximation f1(r1) f1(r2),
where f j (r j ) is the well-known 2D vortex profile governed by
Eq. (4). This shows that the product approximation works well away
from the intersection as expected but fails in a small region around
r1 = r2 = 0. Numerical parameters and details are given in the main
text.

f1(r1) f2(r2), in Fig. 2(b); we observe that the product approxi-
mation is very accurate except within a distance of roughly �ξ

from the intersection point, as expected. Immediately around
the intersection, the product approximation fails, overestimat-
ing the density by a factor of about 4/3.

Just as in the 2D case we can use our calculation of the
density profile to find the energy of this vortex configuration
relative to the state with no vortices. Defining independent
radii Rj in each plane, such that r j � Rj , we find numerically
(see Appendix B 4) that the energy is approximately given as

Ek1,k2 (R1, R2) = Ek1 (R1) + Ek2 (R2), (12)

where Ek (R) is the single-vortex energy given in Eq. (5).
This can be understood from the superfluid kinetic energy∫

ρv2d4r, which is the main contribution to the energy of
a vortex. The velocity field is given by v = v1 + v2, where
v j = k j

r j
θ̂ j is the velocity induced by vortex j. As v j lies in

plane j, we see that v1 · v2 = 0 and so the hydrodynamic
vortex-vortex interaction term,

∫
ρv1 · v2d4r, vanishes. The

total kinetic energy integral therefore splits into a sum of the
individual kinetic energies. Note that this argument relies on
the assumptions that the two vortex cores have no curvature
and are completely orthogonal to each other.

In order to confirm the existence and stability of the in-
tersecting vortex plane state, we have performed imaginary
time evolution with the 4D GPE under both simple and double
rotation [Eq. (9)] directly on a 4D Cartesian grid within a 4D
ball of radius R = 8.25ξ with a hard-wall boundary. A hyper-
sphere rather than a hypercube was chosen as the majority of
the 4D volume of a hypercube is taken up by regions “in the
corners,” that is, outside of the hypersphere that just fits inside.
This allowed us to relax our above constraint on the phase
profile, at the cost of smaller numerical system sizes. Again,
we used the forward Euler method for time discretization
and second-order finite differences in space. We were able to
obtain resolutions of up to 0.2ξ , and by repeating simulations
at different resolutions, we checked that our main conclu-
sions were qualitatively insensitive to the coarse graining of
the numerics. At the system sizes and resolutions we have
been able to reach, the homogeneous region extends over a
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FIG. 3. Numerical results from imaginary time evolution of the
doubly rotating 4D GPE in a ball geometry of radius ∼8ξ , given an
initial state with phase profile θ1 + θ2 and additional noise. (a) The
phase of the final state at each point within the 4D ball vs the sum
of the two polar angles, showing perfect agreement with the phase
profile of our ansatz [Eq. (10)]. The density (b) and phase (c) profiles
of the final state for the 2D slice in which y = w = 0; these are
consistent with our ansatz, as well as the density profile shown in
Fig. 2. We can interpret this final state as containing two vortex
planes, one at x = y = 0 and one at z = w = 0. Further 2D cuts of
this state are given in Appendix B 2.

few healing lengths. The calculations were converged to an
accuracy threshold of 10−12. A benefit of performing calcu-
lations with all four coordinates is that we were able to test
our ansatz by allowing the phase to evolve and by removing
the boundary condition at r j = 0 mentioned previously. More
precisely, we used an initial state with homogeneous density
away from the edge of the ball and a phase profile given by
arctan2(y, x) + arctan2(w, z) for the doubly rotating case and
arctan2(y, x) for the singly rotating case. We tested the ro-
bustness of our results to noise (up to 20% of the background
value) added to the real and imaginary parts of the initial ψ .
Note that we measure the applied frequency in units of the
critical frequency of a single vortex in a homogeneous 2D disk
of the same radius as our 4D ball; this is given (in our units)
by [59]

�2D
crit = μ ln(2.07R/ξ )

(
R

ξ

)2

. (13)

For the results shown in Fig. 3 both the frequencies of rotation
used were roughly 2.5�2D

crit. Further work could investigate the
effect of double rotation with unequal frequencies.

For a suitable range of frequencies � we find good agree-
ment between the stationary state obtained from the full 4D
numerics and our ansatz for two intersecting vortex planes, as
shown in Fig. 3. Figure 3(a) shows that the phase profile of the
state after relaxation perfectly agrees with that of the ansatz.
Figures 3(b) and 3(c) show the density and phase profiles,
respectively, for the 2D cut in which y = w = 0. As can be
seen the density drops to zero along the lines x = 0 and z = 0,
corresponding to the intersections of each vortex core with the

plane of the cut, as expected. Further two-dimensional cuts of
this state are given in Appendix B 2.

In this paper, we have shown that the simple rotation
of an idealized 4D superfluid can stabilize a vortex plane,
while equal-frequency double rotations can lead to two vortex
planes intersecting at a point which do not interact hydrody-
namically. This significantly extends the phenomenology of
superfluid vortices, demonstrating that new effects can emerge
in higher spatial dimensions even within mean-field theory.

It is important to note that we have studied an idealized
model, which allows us to explore vortex physics in 4D with-
out experimental details that depend on how the synthetic
dimension is implemented [25–32,35]. The main differences
between our work and possible experiments are, firstly, that
the majority of practical implementations would lead to (tight
binding) lattice models, whereas we have considered four con-
tinuous dimensions as a theoretical first step. Adding a lattice
should introduce rich additional effects particularly when the
lattice spacing is comparable to or greater than other length
scales. However, when this spacing is very small, it should
be possible to approximate a lattice model with a contin-
uum model in the mean-field regime as we have considered
here. Furthermore, synthetic-dimension schemes can include
unusual effects, which are very dependent on the specific
experimental implementation. In terms of the tight-binding
description previously mentioned, these complications can in-
clude position-dependent hopping strengths, limited numbers
of sites, and long-range interactions [25–31,35]. For the sake
of generality as well as simplicity we have therefore chosen an
idealized model, which can then be adapted in different ways
for promising experimental scenarios in further work. We also
note that Eq. (1) has SO(4) (4D rotational) symmetry, which
would be broken in any experiment due to inequivalence of the
synthetic and real spatial dimensions. Numerically, we break
this symmetry with the phase ansatz, which was assumed in
the radial case and imposed on the initial state in the Cartesian
case. However, we do still assume an SO(2) symmetry in
each of the xy and zw planes to obtain the effectively 2D
radial equation [Eq. (11)] and simplify the corresponding
numerics. In the Cartesian case, we also chose a boundary
condition (a hard wall at some radius from the origin) that
preserved these in-plane symmetries. In synthetic-dimension
experiments, on the other hand, the most common boundary
condition is an open boundary condition which is independent
of the other dimensions [25–32,35]. Hence a more experimen-
tally relevant geometry would involve one or more dimensions
which have their own independent hard-wall boundary con-
ditions, for example, a “spherinder” boundary specified by
{r ∈ R4|x2 + y2 + z2 = R2} ∪ {r ∈ R4|w = ±L} for some R
and L. Investigating the effect of breaking one or both of these
in-plane rotational symmetries geometrically is an interesting
and natural next step for future work.

As well as a first step towards understanding future ex-
perimental models, this work also opens up many interesting
theoretical research directions. Natural next steps include the
study of 4D superfluids doubly rotating at unequal frequen-
cies and 4D generalizations of previously studied questions
from 2D and 3D [2,3]. Firstly, closed vortex surfaces in 4D
would naturally generalize the vortex loops that arise in 3D
[1], but with potentially an even richer classification when
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nonorientability and surfaces of higher genus are included
[60]. Secondly, vortex lines in 3D are known to dynamically
reconnect upon intersection [55–58], whereas here we have
shown that completely orthogonal intersecting vortex planes
in 4D form a stationary state stabilized by rotation. It is an
open question whether vortex planes reconnect if they are not
completely orthogonal, and this question could have relevance
to the general case of unequal-frequency double rotation. For
example, intuitively, we would expect that an adiabatic change
from �2 = �1 to �2 > �1 would cause the vortex in plane 2
(inducing rotation in plane 1) to tilt towards plane 1 to benefit
from the now larger rotational energy discount in plane 2. Fi-
nally, in the longer term this work opens up questions related
to the inclusion of strong interactions and the 4D fractional
quantum Hall effect, as well as the study of models with more
interesting order parameter spaces [61,62], potentially hosting
non-Abelian vortices.
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APPENDIX A: THE 4D GPE FOR AN IDEALIZED 4D
BOSONIC GAS

The 4D GPE is a natural and mathematically simple gen-
eralization of the 3D GPE, allowing for easy comparison to
superfluid vortex physics in lower dimensions. In this section,
we also point out that the 4D GPE can be motivated as the
proper description of interacting bosons in a hypothetical 4D
universe and so is an interesting theoretical model in its own
right. As is well known, the use of the GPE to describe a
system of interacting bosons relies on taking the Hartree-
Fock approximation and replacing the interaction potential by
a contact (Dirac delta) potential. The latter trick is in turn
justified by looking at the low-energy limit of the solutions
for two-particle scattering. In this limit, the solutions are
spherically symmetric (s wave) and correspond to solutions
for a contact interaction with the same scattering length as the
original potential. While this argument is usually applied only
in three dimensions and below, it has also been generalized to
arbitrary dimensions [48–50], showing that the dimensionality
only affects the contact interaction strength and the form of the
short-range singularities that must be removed from the scat-
tering equation. The interaction strength can be considered
arbitrary due to scale invariance of the GPE in the absence
of an external potential, and the singularities have no effect
on the GPE. Hence it can be concluded that the GPE should
be a valid mean-field description of interacting bosons at low
energy in 4D.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

1. Simple rotations

As described in Sec. III, we expect that a simple rotation
should be able to stabilize a single vortex plane, extending the

concept of 2D point vortices and 3D line vortices straightfor-
wardly to four-dimensional systems. Assuming the rotation is
in plane 1 (as defined in Sec. II), this would correspond to a
condensate wave function of the form

ψ = f (r1, r2)eik1θ1 , (B1)

with f (0, r2) = 0, and such that this wave function approxi-
mately takes the form ψ ∝ (x + iy) near the vortex core.

We have verified this minimal vortex structure numeri-
cally by performing imaginary time evolution on the full 4D
GPE under simple rotation in the plane orthogonal to the
expected vortex core [i.e., Eq. (9) with �1 �= 0,�2 = 0] . The
corresponding density and phase profiles for the numerical
stationary state are shown for selected 2D cuts in Fig. 4. Here,
the initial state was chosen as detailed in Sec. II, and the
rotation frequency was chosen as 2�2D

crit. These numerical cal-
culations were performed within a discretized 4D hypersphere
of radius 8.25ξ and with resolution 0.5ξ .

As can be seen in Fig. 4, the observed density and phase
profiles are in good agreement with the single vortex plane
[Eq. (B1)]. In particular, the density is depleted for the plane
defined by z = 0 and w = 0, as is expected for a single vortex
plane that approximately takes the form ψ ∝ (x + iy) near
the vortex core. Depending on the 2D cut, this vortex plane
appears either as a point [see Figs. 4(e) and 4(g)], as a line [see
Figs. 4(a) and 4(c)], or as a plane (not shown). Furthermore,
around the vortex plane, the superfluid rotates, as can be seen
from the winding of the phase in Figs. 4(f) and 4(h) and from
the phase jumps in Figs. 4(b) and 4(d).

2. Double rotations

As we have shown, the double rotation of a 4D superfluid
can stabilize a new type of vortex configuration consisting of
two vortex planes intersecting at a point. In Fig. 5, we plot
the density and phase profiles for additional 2D cuts of the
numerical stationary state presented in Fig. 3. As can be seen,
these profiles have a much richer structure as compared with
the case of a single vortex plane shown in Fig. 4, as the phase
winds simultaneously around both vortex cores with two in-
dependent winding numbers. This is also in contrast to 3D
systems where two vortex lines may intersect and reconnect
over time, but a pair of intersecting vortices is not stabilized
by rotation as a stationary state of the system.

3. Cuts of the radial profile

As discussed in Sec. III and shown in Fig. 2(b), we have
numerically verified for the solution of the radial equation
[Eq. (11)] that far from the intersection point of the vortex
planes the corresponding density profile is well approximated
by a product state of the 2D vortex profiles. To visualize this
in an alternative way, we have plotted in Fig. 6(a) cuts of
Fig. 2(a) for specific values of r2 and then rescaled these by
f1(r2) in Fig. 6(b). As shown the rescaled curves approach
f1(r1) for large values of r2, verifying the approximation as
expected.
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FIG. 4. Density [(a), (c), (e), and (g)], and phase [(b), (d), (f), and (h)] profiles for 2D cuts of the numerical stationary state under simple
rotation. These cuts are given by (a) and (b) x = y and z = w, (c) and (d) x = y and z = −w, (e) and (f) x = z and y = w, and (g) and (h)
x = z and y = −w. Numerical calculations were performed for a superfluid confined within a discretized 4D hypersphere of radius 8.25ξ and
resolution 0.5ξ ; this discretization is reflected in the pixelation, particularly at the boundaries of the plots. The observed density and phase
profiles are in good agreement with a single vortex plane [Eq. (B1)].

4. Energy calculation for two intersecting vortex planes
in a 4D superfluid

Here, we numerically verify Eq. (12), which predicts that
the energy cost of two intersecting and completely orthogonal
vortex planes in a 4D superfluid can be decomposed as a sum
of the individual kinetic energies associated with each vortex
plane in isolation.

Firstly, we used the numerical solution of the 4D radial
density profile presented in Fig. 2 to calculate the energy of

the intersecting vortex planes as a function of system size
in each plane. We then produced a fit of this energy to the
functional form of Eq. (12), with the coefficient of Rj/ξ inside
the logarithm as the fitting parameter. From this we obtained
2.06, which is very close to the known coefficient of 2.07 (in
our units) within the logarithmic form of the vortex energy in
2D and 3D [59]. This shows that the energy of our numerical
solution for the radial equation is consistent with being a sum
of two individual vortex energies.

FIG. 5. Additional density [(a), (c), (e), and (g)], and phase [(b), (d), (f), and (h)] profiles along 2D cuts of the numerical stationary state
studied in Fig. 3. These cuts are given by (a) and (b) x = y and z = w, (c) and (d) x = y and z = −w, (e) and (f) x = z and y = w, and (g) and
(h) x = z and y = −w. The parameters and discretization are detailed in Sec. III. This discretization is reflected in the pixelation, particularly
at the boundaries of the plots. The observed density and phase profiles are in good agreement with our numerical ansatz [Eq. (10)], which
approximately takes the form ψ ∝ (x + iy)(z + iw) near the vortex cores.
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FIG. 6. (a) Cuts of Fig. 2(a), given by fixed values of r2. (b) As in (a), but rescaled by the 2D vortex density profile f1(r2); note the
convergence to f1(r1) for large values of r2, showing that the order parameter can be well approximated as a product of 2D vortex profiles
away from the intersection point. Close to the intersection point, this approximation breaks down, as can be seen from the deviation between
these rescaled cuts in this region.

Secondly, we performed further simulations on a Cartesian
4D grid, with the same parameters as Fig. 3, except for the
convergence accuracy, which was chosen to be 10−10 to speed
up calculations. We repeated these calculations for different
values of � ≡ �1 = �2, ranging between two and three times
�2D

crit, in order to numerically verify the expected dependence
of the energy on the rotation frequency. Here, we used three
different initial states: one with no phase winding, one with
“simple” winding in one plane, and one with “double” wind-
ing in two planes. The resulting values for E and μ as a
function of � are shown in Fig. 7, given in units of μ0 (the
chemical potential of a homogeneous state with no vortices
or hard walls but the same number of particles). We obtain
straight lines for each of these data series, showing that each
state has well-defined angular momentum.

For the case with no phase winding, we find that E/μ0N =
0.931 and μ/μ0 = 1.622 are constants which do not depend
on frequency, as expected; this data series is therefore plotted
with a straight line joining the dots as a guide to the eye.
For the double winding case, we have performed a linear
fit, obtaining E/μ0N = 1.119 − 0.083�/�2D

crit and μ/μ0 =
1.822 − 0.083�/�2D

crit. The gradient, −0.083, is equal to
−2�2D

crit/μ0, meaning that this is the expected gradient of −2
corresponding to particles having one unit of angular momen-
tum in each plane of rotation. For the simple winding case,
we fix the gradient to be half that of the double winding
line, since this state has angular momentum in only one of
the two planes, and perform a linear fit with only the y in-

tercept as a free parameter. We then obtain E/μ0N = 1.023
and μ/μ0 = 1.722 when � = 0. This gives an energy cost
of 0.188 = 1.119−0.931 for the intersecting vortex planes
and 0.092 = 1.023−0.931 for the single plane, as compared
with the state with no vortices. We expect from Eq. (12)
that these energy costs should be related by a simple factor
of 2 for this geometry, and indeed we find numerically that
0.188 − 2 × 0.092 
 0.

APPENDIX C: HOMOTOPY THEORY FOR 4D
VORTEX PLANES

Topological excitations, such as vortices, are characterized
by topological invariants through homotopy theory. In this
approach, the set of allowed topological charges for a given
topological defect is given by the set of homotopy classes of
maps from a region enclosing the defect to the order parameter
manifold. Furthermore, the associated group structure of this
set determines the rules for combining two such defects into
one.

In 4D, a plane is enclosed by a circle, just like a line in 3D,
or a point in 2D, such that the corresponding homotopy group
(for a complex order parameter) is π1(S1) = Z. This group is
the same as for vortices in lower dimensions and tells us that
each vortex has an integer winding number and that when two
vortices combine, their winding numbers combine additively.
For the case of two intersecting vortex planes the enclosing
region is a 2D torus, such as the product of a circle in the xy

FIG. 7. (a) Energy and (b) chemical potential of numerical steady states of the 4D doubly rotating GPE [Eq. (9)] with different initial phase
profiles. The lines correspond to fits and guides to the eye, respectively, as detailed in the text. The gradient and intercept of these lines give
the angular momentum and energy at zero frequency, respectively, of each state, which agree with expected behavior.
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plane and another circle in the zw plane. The corresponding
homotopy group is therefore given by the set of homotopy
classes of maps from S1 × S1 to S1, which is isomorphic to
Z × Z [63]. This simply means that each vortex plane has
its own winding number, and the two are independent, as
expected for two vortices.

Note that this topological classification is the same as
for a pair of linked vortex lines in 3D, which can also be
enclosed by a torus. The configuration of 4D intersecting

planes therefore offers a simple way to realize the homotopy
classification of linked vortex lines within the ground state
of a simple 4D GPE model. In the future, it would be in-
teresting to generalize this model to more complicated order
parameters, such as those realized in the various phases of
spinor Bose-Einstein condensates (BECs) [61], as then the
homotopy group would gain a richer structure, as has been
studied in the context of linked line defects in liquid crystals
[62].
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