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Coupling a system to a nonthermal environment can profoundly affect the phase diagram of the closed
system, giving rise to a special class of dissipation-induced phase transitions. Such transitions take the system
out of its ground state and stabilize a higher-energy stationary state, rendering it the sole attractor of the
dissipative dynamics. In this paper, we present a unifying methodology, which we use to characterize this
ubiquitous phenomenology and its implications for the open system dynamics. Specifically, we analyze the
closed system’s phase diagram, including symmetry-broken phases, and explore their corresponding excitations’
spectra. Opening the system, the environment can overwhelm the system’s symmetry-breaking tendencies, and
changes its order parameter. As a result, isolated distinct phases of similar order become connected, and new
phase-costability regions appear. Interestingly, the excitations differ in the newly connected regions through
a change in their symplectic norm, which is robust to the introduction of dissipation. As a result, by tuning
the system from one phase to the other across the dissipation-stabilized region, the open system fluctuations
exhibit an exceptional pointlike scenario, where the fluctuations become overdamped, only to reappear with an
opposite sign in the dynamical response function of the system. The overdamped region is also associated with
squeezing of the fluctuations. We demonstrate the pervasive nature of such dissipation-induced phenomena in
two prominent examples, namely, in parametric resonators and in light-matter systems. Our work draws a crucial
distinction between quantum phase transitions and their zero-temperature open system counterparts.
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I. INTRODUCTION

In equilibrium and at zero temperature, we observe so-
called quantum phase transitions (PTs), which are generally
described through changes in the system’s Ginzburg-Landau
(GL) energy functional and its symmetries as a control pa-
rameter is tuned [1], see Fig. 1(a). New minima and maxima
develop in the GL energy functional when the system’s sym-
metries are broken and the ground state of the system changes.
Correspondingly, the PTs manifest as sharp changes in the
system’s observables (order parameters), e.g., a second-order
PT corresponds to an abrupt change in the derivative of the
order parameter (fluctuations). Depending on the specific po-
tential deformation, PTs of different orders occur.

Phase transitions also transpire in out-of-equilibrium sys-
tems, where the interplay between coherent and incoherent
dynamics compete in phase space to give rise to new features
[2]. Specifically, the system’s potential energy is extended
to a phase-space energy functional and environment-induced
dissipation channels act as additional forcing terms, see
Figs. 1(b) and 1(c). As a result, open systems are described
in terms of their steady-states (stable attractors), where the
coherent and incoherent forcing cancel out. Similar to the
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equilibrium case, dissipative PTs correspond to an abrupt
change in order parameters corresponding to the stable at-
tractor bifurcation topology. In this paper, we focus on the
situation where the incoherent dissipative channels over-
whelm a purely coherent symmetry-breaking PT.

The controllability, offered by numerous contemporary ex-
perimental platforms, such as cold atoms [3,4], trapped ions
[5,6], superconducting circuits [7,8], and exciton-polariton
cavities [9,10], placed out-of-equilibrium PTs at the avant-
garde of contemporary research. This has entailed the
development of methods and concepts to characterize out-
of-equilibrium PTs, ranging from mean-field semiclassical
equations of motion (EOM) and their corresponding fluc-
tuations [2], to Keldysh action formalism [11,12] and third
quantization [13,14], alongside with the study of exceptional
points [15,16] and Liouvillian gaps [17,18]. Yet, an overarch-
ing unifying framework remains missing.

In this paper, we introduce a general framework with which
to analyze and understand the ubiquitous characteristics of
dissipation-induced PTs. Specifically, we show how dissipa-
tion lifts the boundaries of equilibrium (closed) PTs and is
able to stabilize states with an energy higher than that of the
ground state of the closed system. We identify telltales in
the closed system’s potential energy and associated fluctua-
tions’ spectrum, where dissipation is prone to induce a PT.
Specifically, this situation arises at regions where the closed
system weakly breaks a symmetry and the dissipation channel
manages to overwhelm the symmetry-breaking PT. The open
system then exhibits an exceptional point scenario where the
fluctuations become squeezed and overdamped. Due to the
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FIG. 1. Zero-temperature phase transitions. (a) The Ginzburg-
Landau energy functional as a function of a coordinate, θ . A
(second-order) Z2 symmetry-breaking phase transitions takes place
as model parameters are varied and the ground state of the system
changes from having an order parameter ϑ0 to two degenerate states
with order parameters ϑ1 and ϑ2. (b) Out-of-equilibrium quantum
phase transition in phase space, which is spanned by the coordinates
θ1,2. Similar to the equilibrium case, phase transitions (bifurcations)
occur when sharp changes occur for the attractors as the model
parameters are varied. Crucial to our work, the bifurcations can occur
due to a change in the potential energy, but also due to increased
dissipative forcing. (c) The system is also characterizable using a
(quasi-)energy functional in phase space (θ1, θ2), where dissipative
force terms are introduced via additional arrows, which can stabilize
high energy states of the closed system.

appearance of the dissipation-stablized phase, regions that
were distinctly isolated in the closed system phase di-
agram become connected. These regions have seemingly
identical steady states but interestingly differ in their dy-
namical responses. We highlight the broad applicability of
dissipation-induced phenomena by studying how they arise
in two prominent out-of-equilibrium systems, namely, the
Kerr parametric oscillator (KPO) and the interpolating Dicke-
Tavis-Cummings model (IDTC).

Our paper is structured as follows: In Sec. II, we provide
a comprehensive overview on the machinery for studying
in- and out-of-equilibrium systems via (a) their mean-field
solution to obtain the system’s fixed points, (ii) analyzing
the fixed-points’ stability through linearization of the equa-
tions of motion near the fixed points, and (iii) Keldysh
action formalism for deriving dynamical response functions.
In Sec. III, we harness the introduced machinery to highlight
key signatures of dissipation-induced PTs, and demonstrate
its ubiquitous phenomenology in two unrelated paradigmatic
examples, namely, the KPO [19–21] and the IDTC model
[22,23]. We conclude and discuss our results in Sec. IV.

II. CHARACTERIZING CLOSED AND OPEN SYSTEMS

Coupling a system to an environment opens it up to dis-
sipation channels and can lead to dissipation-induced PTs,
which is the focus of this paper. In such transitions, the in-
coherent channels can dramatically alter the system’s steady
state, overruling the closed system’s ground-state physics, and

forming new regimes defined by stable attractors of the open
system.

In this section, we provide a step-by-step guide of the
general framework for analyzing dissipation-induced transi-
tions and their properties; for a more detailed overview and
pedagogical approach, we refer the reader to dedicated lit-
erature [1,11,24,25]. At every step, we highlight the relevant
assumptions, and in Sec. II E discuss the range of applicability
of our framework.

In Sec. III, we use this formalism to study the impact
of dissipation in the presence of a Z2 symmetry breaking.
Specifically, we discuss two seemingly unrelated physics
problems, a parametrically driven Kerr resonator and a cou-
pled cavity-atom system. We show that in both cases, the
dissipation can (i) overwhelm the symmetry breaking, thus
(ii) connecting regions in parameter space that are otherwise
disconnected, where (iii) an excited state of the system char-
acterized by a negative mass instability is stabilized.

In Sec. II A, we succinctly review the analysis of ground
and excited states of a closed system, based on Landau-
Ginzburg energy functionals and fluctuation spectra [2]. The
latter is particularly useful to help identify physical states that
can be stabilized by dissipation. In Sec. II B, we similarly
review the analysis of stable and unstable steady states of open
systems in appropriate rotating pictures, using mean-field
quasienergy functionals (i.e., the energy in a rotating phase-
space frame), and dissipative Bogoliubov excitation spectra
[26,27]. The latter results from the linear stability analysis of
steady states. As we shall see in Secs. III A and III B, in con-
comitance with a Z2 symmetry-breaking dissipation-induced
transition, an exceptional pointlike scenario emerges, i.e., the
Bogoliubov spectrum exhibits a pair of complex-conjugated
eigenvalues whose imaginary parts go to zero while the real
parts split [15,28]. Such behavior similarly marks squeezing
in the fluctuations of the system.

Finally, using a Keldysh action approach [11,12], we derive
frequency-resolved observables, such as the spectral function
[A(ω)], see Sec. II D. The response functions present peaks
corresponding to fluctuation resonances of the system. These
resonances correspond to poles that coincide with the dissi-
pative Bogoliubov excitation spectra, described in Sec. II B.
As we show in Secs. III A and III B, a Z2 symmetry-breaking
dissipation-induced transition connects regions in parameter
space, with steady states characterized by the same order pa-
rameter, but with different dynamical responses. This is traced
back to the fact that the states in the disconnected regions of
the closed system correspond to ground or excited states, and
the dissipation smoothly connects between them.

For pedagogical clarity, we use the example of a simple
harmonic oscillator to illustrate our methodology. We refer to
the harmonic oscillator Hamiltonian

H = ω0 â†â = 1

2
(â† â)

(
ω0 0
0 ω0

)(
â
â†

)
− ω0

2
, (1)

where we set h̄ = 1 and ω0 is the characteristic frequency of
the oscillator. The operator â annihilates an excitation in the
oscillator, and we rewrite the Hamiltonian in matrix form for
convenience.
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FIG. 2. Energy quantization in a parabolic potential. (a) A har-
monic potential can also be written as a sum over a particle (blue)
and a hole (red) potentials, cf. Eq. (1), corresponding to the two basis
solutions of the problem. (b) Changing the potential, a Z2 symmetry-
breaking transition can occur, where two minima separated by a
maximum appear, each with their own excitation spectrum.

A. Closed system

We first consider the equilibrium physics of closed sys-
tems, where the Hamiltonian encloses all the information
describing the system. It is commonly difficult to solve
the Hamiltonian exactly, and we present here a mean-field
treatment of the problem and a study of the fluctuations
around it.

1. Mean-field solutions

When studying a system comprised of many degrees of
freedom, e.g., an ensemble of harmonic oscillators, we study
the mean-field (Landau-Ginzburg) energy functional, defined
for âi → αi, where αi is a complex number corresponding
to the semiclassical limit (coherent state) of the operator âi,
and i iterates over all N degrees of freedom of the system.
An inspection of the resulting N-dimensional complex func-
tional provides insightful information on the states of the
system. Specifically, the extremal points of the functional
ᾱ j = (α1, j, α2, j, . . . αN, j ) correspond to the ground state of
the system, as well as to possible excited states. The ground
state is defined as the lowest-energy state, see Fig. 1(a). For
the harmonic oscillator Eq. (1), the Landau-Ginzburg energy
functional is parabolic, H̄ = ω0|α|2, with only one global
minimum at α0 = 0, see Fig. 2(a).

2. Excitation spectrum

Having identified the extrema α̂ j of the Landau-Ginzburg
energy functional, each of these extrema are characterized
by an excitation spectrum defining the fluctuations around
the extremal point. This spectrum is obtained via a substi-
tution âi = αi, j + δâi, j into the original Hamiltonian and by
retaining terms up to second order in the fluctuation operators
δâi, j = âi − αi, j . Then, using a Bogoliubov transformation,
we diagonalize the resulting respective quadratic excitation
Hamiltonians, Ĥexc, see Eq. (2) below. The mean-field so-
lutions are physical only if their associated (Bogoliubov)
excitation energies are real. Diagonalizing the excitation
Hamiltonian, we ensure that the diagonalization procedure
preserves the statistics of the excitations. To this end, the
proper Bogoliubov transformation [24,29,30] for bosonic sys-
tems is found by diagonalizing the dynamical matrix,

D̂exc ≡ Î− · Ĥexc, (2)

where Î− = 1N ⊗ (−1N ) is a diagonal matrix with +1 (−1)
entries on the first (second) N elements with 2N × 2N the
size of Ĥexc. Note that the definition of Î− relies on the op-
erator ordering in the matrix definition of the Hamiltonian
Ĥexc, cf. Eq. (1). Through the Bogoliubov transformation, we
obtain the excitation eigenmodes of the system, characterized
by the eigenvalues and eigenvectors of D̂exc. The 2N exci-
tation frequencies are paired with opposite signs ±ωi ∈ R

(i = 1, . . . , N). In the case of the harmonic oscillator Eq. (1),
the excitation Hamiltonian coincides with the bare Hamilto-
nian. We diagonalize Eq. (1) and find the familiar ladder of
equispaced excited states, where the ground state coincides
with the lowest excitation eigenstate, see Fig. 2(a).

3. Norm inversion in the excitations

The excitations’ eigenvectors further provide us with the
symplectic norm [30]

ds2
v j

≡ v†
j Î−v j, (3)

associated to each excitation eigenfrequency, where v j with
j = 1, . . . , 2N are the eigenvectors of Dexc. The symplectic
norm Eq. (3) determines the nature of the excitations: It can
be either positive (ds2 > 0) or negative (ds2 < 0) and is a
measure of the particle- or holelike nature of the excitation,
respectively [24,26,30]. For instance, the ground state of the
system as well as other local minima of the energy func-
tional are accompanied by particlelike (holelike) eigenmodes
at positive (negative) frequencies, whereas local maxima are
associated with a holelike (particlelike) eigenmode at positive
(negative) frequencies. In Fig. 2(a), we sketch the particle-
(blue) versus holelike (red) ladders for the harmonic oscillator
excitations around the ground state. The distinction between
particle- and holelike modes is crucial and it assists us in
identifying excited states that correspond to maxima in the
mean-field energy functional, which can become a stable
steady state due to a dissipation-induced PT.

As we tune an external parameter, the shape of the mean-
field energy functional can change and develop new features.
For example, a (second-order) spontaneous Z2 symmetry-
breaking PT can occur when the energy landscape moves from
exhibiting a single ground state to two degenerate ground
states separated by a maxima, see Fig. 2(b). In such a scenario,
the symmetry-conserving mean-field solution now becomes
an excited state. As the system traverses the critical point,
the symplectic norm of the excited state changes signs. In the
closed system setting, this state cannot be reached by adiabatic
ground state evolution; we will show later that dissipation can
stabilize such a steady state.

B. Open system

To characterize the physics of open systems, we first find
the so-called steady (or stationary) states, which correspond
to the long-time behavior of the open system. To do so, we
solve Liouville’s master equation [2],

dρ

dt
= L[ρ], (4)

in the long-time limit. Here ρ is the density matrix of the
system and L is the Liouvillian superoperator. We obtain the
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steady states by requiring that the system’s density matrix
does not change in time, i.e., dρ/dt ≡ 0. Note that rotating
steady states, e.g., limit cycles, fulfill a similar condition in
the correct rotating frame.

In this paper, we consider cases with a strong separation of
time scales between system and environment, and assume a
memoryless environment with weak system-environment cou-
pling, such that we can perform the Born-Markov and secular
approximations, thus simplifying Eq. (4) to obtain Lindblad’s
master equation [25,31,32]:

dρ

dt
= − i

h̄
[Ĥsys, ρ] +

∑
α

γαL[L̂α]ρ. (5)

The unitary evolution generated by the system’s Hamiltonian
is described through the commutator, while the dissipative
dynamics with rates γα appear in Lindblad form,

L[L̂α]ρ = 2L̂αρL̂†
α − {L̂†

αL̂α, ρ}, (6)

where the Lindblad dissipator is defined in terms of so-called
Lindblad operators (or quantum jump operators) L̂α that de-
scribe the coupling to the environment. The anticommutator
term corresponds to dissipation, while the so-called recycling
or quantum jump term, 2L̂αρL̂†

α , encodes fluctuations and
ensures the normalization Tr{ρ} ≡ 1 of the system’s density
matrix.

In the context of our pedagogical example Eq. (1) and
throughout this paper, dissipation due to coupling to a zero-
temperature environment takes the Lindblad form

L[â]ρ = κ[2âρâ† − {â†â, ρ}], (7)

where κ � ω0 is the positive dissipation rate describing loss
of excitations. We can pictorially describe the harmonic oscil-
lator evolution under Eq. (5). The eigenstates of the closed
system describe closed circular orbits along equipotential
lines of the Landau-Ginzburg energy functional. We dress
the Landau-Ginzburg energy functional with arrows whose
directions depend on the particular dissipation channel. As
the dissipation Eq. (7) destroys excitations in the system, the
arrows point toward the empty resonator state. In other words,
the dissipation pushes the closed system orbits inward. The
net result is a spiraling evolution toward the center, which is
the sole steady state for the dissipative harmonic oscillator,
see Fig. 3(a).

1. Mean-field steady states

The master equations, Eqs. (4) and (5), evolve the state
of the system. To better characterize its steady state, we use
instead the time evolution of mean-field expectation values in
Schrödinger’s picture,

d〈ô〉
dt

= Tr

{
ô

dρ

dt

}
, (8)

where 〈ô〉 is the expectation value of one of the observable
operators describing the system. Considering different ob-
servables, we obtain a set of coupled first-order differential
equations,

dO
dt

= MO, (9)

FIG. 3. Dissipative harmonic oscillator, cf. Eqs. (1) and (7).
(a), (b) The rotating mean-field energy potential landscape H̄rot (cf.
Sec. II C) for negative and positive detuning 
. The arrows indicate
the resulting Hamiltonian motion. When 
 changes its sign, the peak
in Arot passes 0, H̄rot changes from a valley to a hill, and the rotation
around the origin (center) changes its direction. Adding dissipation
(arrows) leads to a flow toward the empty state at the center.

where O = (〈ô1〉, 〈ô2〉, 〈ô3〉, ...) is the basic set of real oper-
ator expectation values describing our system. Note that for
bosonic coherent states α = 〈â〉 is a complex number and we
split its evolution into its real and imaginary parts in Eq. (9).
Taking the steady state, dO/dt ≡ 0, we solve the resulting
set of algebraic equations with multiple solutions that satisfy
MO = 0. We find the set of steady-state solutions and hence-
forth denote by O j

i the expectation values corresponding to
the jth physical solution of the ith operator. Note that physical
solutions have real observables, i.e., Im{O j

i } = 0, whereas
Eqs. set (9) can yield unphysical (complex) solutions.

2. Stability analysis

Among the physical steady states, some are stable and
some are unstable against linear fluctuations, cf. the above
discussion on excitations in the closed system. Depending
on the initial boundary conditions, the system will eventu-
ally evolve toward one of the former. To find which steady
states are stable or not, we perform a linear expansion of
Eq. (9) around each solution according to ôi = O j

i + δôj
i ,

where δôj
i ≡ ôi − O j

i is a fluctuation operator around O j
i . We

then define the stability matrix M j , whose entries depend on
the jth solution, and which defines the fluctuation dynamics
around this solution through

dδÔ
j

dt
= M jδÔ

j
, (10)

where δÔ
j = (〈δôj

1〉, 〈δôj
2〉, 〈δôj

3〉, . . .) is the set of the fluc-
tuation operators’ expectation values describing our system.
Equation (10) defines a set of coupled linear differential equa-
tions, where the eigenvalues εi of the stability matrix M j

determine the stability of the jth solution. This results from
the fact that the eigenmodes of M j evolve in time according
to eεt . Then, the real part of ε plays the role of a lifetime of the
excitation mode, whereas the imaginary part is its frequency.
In other words, if at least one eigenvalue ε has a positive real
part, the fluctuations diverge and the solution is unstable.
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FIG. 4. Analysis of the damped harmonic oscillator, cf. Eqs. (1) and (7). (a), (b) Real (dashed) and imaginary (solid) parts of the fluctuation
eigenvalues Eqs. (10) (green). The variance of fluctuations Eq. (11) (brown) along the real (dashed) and imaginary (solid) quadratures of the
harmonic oscillator. (a) Keeping the dissipation constant and tuning the oscillator’s eigenfrequency leads to an overdamped regime, when
ω2

0 < κ2/4. Correspondingly, the eigenvalues show a mode softening but no unstable behavior, i.e., the imaginary parts go to zero for ω0 = κ/2,
while the real parts always remain negative but split from the value −κ . The variance associated with the real part is flat along the entire region,
while the imaginary part variance increases but remains finite. (b) Same as (a) for the harmonic underdamped oscillator in the rotating frame. In
the weak dissipation limit, as a function of detuning 
, the imaginary part of the fluctuation eigenvalues inverts at 
 = 0, while the real parts
remain negative and unchanged. The variance remains unchanged, marking the fact that no phase transition is occurring. (c) Underdamped
harmonic oscillator response (spectral function) [cf. Eq. (15)] for positive (light green) and negative (dark green) detunings.

3. Variance

In similitude to equilibrium statistical physics, PTs in
open systems can be classified through discontinuities in
the properties of the order parameters and their fluctuations
[1]. Specifically, first-order PTs manifest in a discontinuous
change in the mean-field order parameters, second-order PTs
show a discontinuity in the fluctuations of the system, whereas
third-order PTs exhibit a discontinuity in the variance of
the fluctuations. In the following sections, we show that the
dissipation-induced PT connects between two steady states,
which were disconnected in the closed system limit, but are
characterized by the same mean-field order parameter. Mov-
ing between the two newly connected states, a discontinuity in
the system’s dynamical behavior appears but no discontinuity
manifests—neither at the level of fluctuations nor for the
variance of the fluctuations.

To show this, in the following, we calculate the covariance
of the fluctuations using Eq. (8) for the time evolution of the
expectation of correlation operators:

K̂i j = δôiδô j . (11)

Taking the lowest-order (mean-field) results for the covariance
operators yields systems of coupled equations analogous to
Eq. (9), which we solve for the steady-state.

C. Static observables of the harmonic oscillator

We are now ready to apply our aforementioned machinery
onto the dissipative harmonic oscillator introduced in Eqs. (1)
and (7). We will explore both the overdamped (ω2

0 < κ2

4 ) and

underdamped (ω2
0 > κ2

4 ) regimes, as they allow us to intro-
duce key signatures that will be useful for our discussion in
Secs. III A and III B.

1. Overdamped oscillator

In the overdamped limit, dissipation can overwhelm the
Hamiltonian potential of the system. Note that this limit in-
volves a system-environment coupling that goes beyond the
Lindblad limit discussed above [33,34]. Nevertheless, a sim-

ilar mean-field, stability, and variance analysis as in Eqs. (9)
and (10) holds here, see Appendix A. There is a single steady-
state to the system, namely, an inert oscillator. In Fig. 4(a),
we show the fluctuation eigenvalues and variance obtained on
top of the empty state. We observe that at a certain point, the
eigenvalues show an abrupt change (akin to an exceptional
point [28]) in their derivative with respect to the control pa-
rameter (here the mode’s eigenfrequency). Specifically, the
imaginary parts become degenerate, while the real parts split
in a region in parameter space. This marks the fact that
the fluctuations become overdamped and do not exhibit an
oscillating behavior. Instead, two characteristic decay times
appear [dashed lines in Fig. 4(a)] and lead to squeezing of the
fluctuations. Note that the sudden change in the fluctuations
eigenvalues does not result in a discontinuous variance, ruling
out the presence of a third-order PT.

2. Underdamped resonator

In open systems, we often deal with the presence of an
external drive. As the system is expected to lock to the drive
frequency in the long-time limit, a useful method to treat
external drives is to move to a rotating frame with respect
to the drive. If the oscillator is driven at a frequency ωdrive,
with the unitary transformation T = e−iωdriveta†a we move to a
rotating frame at frequency ωdrive, yielding the rotating frame
Hamiltonian Hrot = −
a†a with detuning 
 = ωdrive − ω0.
The sign of the detuning determines whether the drive stiffens
or softens the harmonic potential and, additionally, whether
the mean-field energy potential landscape, H̄rot = −
|α|2,
is a paraboliod with a minimum or a maximum around the
phase-space origin, for negative or positive 
, respectively
[see Figs. 3(a) and 3(b)]. Depending on the detuning, the
empty cavity state appears in the rotating frame, either as
the ground state (negative detuning) or as an effective excited
state (positive detuning). Additionally, the change in curva-
ture of H̄rot as a function of the detuning manifests as the
transformation of particle- to holelike excitations and vice
versa through a change in the sign of the symplectic norm
Eq. (3). The switch in the norm corresponds to clockwise
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(counterclockwise) rotations of the state of the system relative
to the rotating reference frame (clock), see Fig. 3.

The effect of dissipation remains unchanged in the rotating
frame picture and decreases the amplitude of oscillations,
namely, it always creates a dragging force toward the center.
The joint effect of coherent and incoherent forces leads to
a spiraling evolution of the state of the system toward the
minimum (maximum) of the potential in the case of negative
(positive) detuning, see Fig. 3. The quasienergy potential in-
version also manifests in the open system fluctuation spectrum
in the form of a degeneracy point, where a pair of complex
conjugated fluctuation eigenvalues, εi, acquires a zero imag-
inary part while the real parts remain negative. The latter
condition implies that the system’s steady state remains stable
at 
 = 0 despite the fact that the effective confining Hamil-
tonian potential vanishes. At the same time, the variance as a
function of detuning 
 remains unchanged, marking the fact
that the degeneracy point at 
 = 0 does not imply a PT, see
Fig. 4(b) and Eqs. (C6)–(C8) in Appendix C with G = U = 0.

D. Dynamical observables

In the closed system, the sign of the fluctuations’ symplec-
tic norm Eq. (3) helps us to distinguish between the ground
state (positive norm) and an unstable excited state (negative
norm) even if the two states are characterized by the same
mean-field observable expectation values. In the open system
scenario, we do not have the notion of a symplectic norm. We
resort instead to study dynamical observables of the system to
fully understand the nature of a steady state.

To study dynamical observables, we use a Keldysh action
formulation, which for a bosonic theory takes the form [11,12]

S =
∫ ∞

−∞
dt (a∗

c a∗
q )

(
0 [GA]−1

[GR]−1 DK

)(
ac

aq

)
, (12)

where the fields ac, aq are the standard classical and quantum
bosonic fields acting on the Keldysh contour. This termi-
nology signals that the former combination of fields can
acquire a (classical) field expectation value, while the latter
one cannot. The details of the derivation can be found in
Ref. [12]. The strength of this formalism lies in its matrix
structure, where the action Eq. (12) is directly connected
to the Green’s functions of the system, GR(t, t ′) = −iθ (t −
t ′)〈[a(t ), a†(t ′)]〉, GA = [GR]†, DK , which are the retarded and
advanced Green’s functions, as well as the Keldysh compo-
nent, respectively. It is useful to move to Fourier space and
obtain a frequency-dependent action,

S =
∫

ω

(a∗
c a∗

q )

(
0 [GA]−1(ω)

[GR]−1(ω) DK (ω)

)(
ac

aq

)
, (13)

where
∫
ω

= ∫
dω
2π

.
Taking, for example, the harmonic oscillator Eq. (1), we

can write the action Eq. (13) as

S =
∫

t
(a∗

c a∗
q )

(
0 ω − ω0 − iκ

ω − ω0 + iκ 2iκ

)(
ac

aq

)
, (14)

where we assumed a Lindlad dissipator in the form of Eq. (7).
We identify the inverse Green’s functions and the Keldysh

component with

[GR]−1(ω) = [GA]−1∗
(ω) = ω − ω0 + iκ,

DK (ω) = 2iκ.

Inverting the matrix action Eq. (12), we obtain direct access
to the frequency-resolved Green’s functions of the system; for
the harmonic oscillator Eq. (1)

GR(ω) = GA(ω)∗ = 1

ω − ω0 + iκ
,

GK (ω) = −GR(ω)DK (ω)GA(ω) = − 2iκ

(ω − ω0)2 + κ2
.

Using these Green’s functions, we can calculate frequency-
dependent observable quantities (dynamical order parame-
ters), such as the response and correlations of our system.
Here, we provide a short list of those correlations that are
most-commonly probed:

(1) The spectral function (density) (A).
In linear response theory, the spectral function describes

the excitation that the system undergoes when adding a single
particle with frequency ω to it. It is defined as

A(ω) = i[GR(ω) − GA(ω)] = −2Im{GR(ω)}, (15)

where the retarded Green’s function, GR(ω), describes the
linear response of a system to a weak external perturbation.
For bosonic systems, A(ω) fulfills the sum rule:∫

ω

A(ω) = 〈[a, a†]〉 = 1.

(2) The power spectrum (C).
The power spectrum describes the occupation of the in-

dividual quantum excitation modes of the system. It is
defined as the Fourier transform of the correlation function
〈{a(t ), a†(0)}〉, yielding

C(ω) = iGK (ω), (16)

where GK (t, t ′) = −i〈{a(t ), a†(t ′)}〉. Considering the steady-
state solution, and taking the equal-time limit, we can find the
mode occupation via

〈a†a〉 = 1

2

(
i
∫

ω

GK (ω) − 1

)
. (17)

(3) The fluorescence spectrum (S).
The autocorrelation of the systems’ excitations describes

the probability of measuring an excitation of frequency ω

leaving the system, dubbed fluorescence spectrum. It is de-
fined as

S (ω) = 〈a†(ω)a(ω)〉 = i

2
[GK (ω) − GR(ω) + GA(ω)]. (18)

Each one of these functions presents peaks of different
heights at the resonance frequencies of the system under
study. In the simple case of the dissipative harmonic oscillator,
we find that the spectral function exhibits the familiar line
shape peaked at the resonance frequency of the oscillator:

A(ω) = 2κ

(ω − ω0)2 + κ2
.
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Interestingly, the mode occupation C(ω) in this system coin-
cides with the spectral function as can be seen by comparing
A(ω) and GK (ω). This will not be the case in more compli-
cated systems.

To conclude this section, we consider again the harmonic
oscillator in a rotating frame due to the presence of an external
drive. The response of the oscillator can be found in the
same fashion as before with the only difference that now the
resonance frequency is the detuning from the drive:

Arot(ω) = 2κ

(ω + 
)2 + κ2
.

This implies that the oscillator response is peaked at posi-
tive frequencies for negative 
 and at negative frequencies
for positive 
, as shown in Fig. 4(c). In this example, the
empty (α = 0) steady state has a different dynamical behavior
depending on the sign of 
, where the two different regions
are separated at 
 = 0. Two key elements emerge from this
simple discussion. First, the steady-state of the system does
not change, i.e., it is always the empty state with no excitations
in the system. Second, as we tune the external parameter

, the dynamical response response shifts from positive to
negative frequencies.

E. Limitations and applicability

The framework we outlined in this section involved certain
assumptions, namely, (i) we treat bosonic systems or systems
that are mappable to bosonic ones, e.g., via the Holstein-
Primakoff transformation [35], (ii) we employ a mean-field
(saddle-node) treatment of the order the parameter of the
system on top of which quadratic fluctuations appear, and (iii)
we truncate strong correlation between the system and envi-
ronment (Lindblad approximation), where the environment is
taken to be at zero temperature. Concerning (i), our analysis
can be readily extended to fermionic or mixed systems, where
the particles’ commutation relations will impact the specific
form of the derived expressions. The assumption (ii) is well
justified whenever the system is well within a phase. Expand-
ing beyond mean-field such that higher-order correlations are
taken into account can play a crucial role whenever the sys-
tem is close to criticality. Recently, several approaches have
been developed to study higher-order correlations, includ-
ing dynamical mean-field theory, diagrammatic expansions,
functional renormalization group, exact diagonalization, and
numerical or density matrix renormalization group analysis
[36–44]. The approach presented in this work can be in prin-
ciple extended to include higher order fluctuations. Going
beyond (iii) can lead to interesting strongly-correlated states
between system and environment, e.g., the Kondo effect [45].
Systematic diagrammatic expansion of the system environ-
ment coupling is challenging and depends crucially on the
environment memory, size, and coherence, see e.g., Ref. [32]
and discussion therein. We limit ourselves here to the simplest
(and ubiquitous to light-matter systems) case to highlight the
profound impact that even such a simple environment has on
out-of-equilibrium PTs.

III. DISSIPATION-INDUCED PHASE TRANSITIONS

Following the pedagogical introduction, we are at a van-
tage point to better define dissipation-induced PTs. Generally,
this includes any scenario where incoherent terms overwhelm
coherent Hamiltonian terms and lead to a change in the
steady-state topology in phase space, i.e., to bifurcations.
Specifically, we now focus on the case where the Hamiltonian
prompts a spontaneous Z2 or U (1) symmetry breaking [cf.
Figs. 1 and 2]. Dissipation can overwhelm the expected sym-
metry breaking and stabilize non-symmetry-broken states. A
transition into this region manifests in the form of an ex-
ceptional pointlike scenario for the excitation spectrum and
squeezing of the variance, as discussed in Fig. 4(a). More
importantly, the dissipation-stabilized region bridges between
two disconnected parts of the closed system phase diagram.
As one traverses these regions, imaginary parts of some modes
in the fluctuation spectrum invert, as discussed in Figs. 4(a)
and 4(b). Correspondingly, the dynamical response functions
display inversions in some of their peaks. In the following,
we discuss two seemingly unrelated paradigmatic driven-
dissipative systems that exhibit such phenomenology. Thus,
we highlight the ubiquitous nature and characteristics of such
transitions.

A. Parametric Kerr oscillator

The first exemplary system we consider is the Kerr os-
cillator driven by a parametric (two-photon) pump, while
subject to single-photon dissipation [21,46–51]. As a function
of the two-photon drive, this KPO exhibits a continuous, Z2

time-translation symmetry-breaking transition from an empty
cavity state, dubbed normal phase (NP), to a state with fi-
nite photon number, dubbed parametric phase state (PPS)
[52]. The symmetry-broken PPSs appear in pairs of coherent
states with equal amplitude but π -shifted phase [53]. At low
photon numbers, their superpositions form Schrödinger cat
states of opposite parities [20,54,55]. Possible applications of
such phase states include annealing-based optimization algo-
rithms in classical and quantum KPO networks [56–58], as
well as universal quantum computation [53,59]. Furthermore,
the competition between single- and two-photon drives leads
to PTs that can be used for sensing [21,60–62]. At weak
two-photon drives, the dissipation stabilizes the KPO, while
squeezing its fluctuations, with various applications in sens-
ing [63–65]. We now turn to review how the single-photon
dissipation changes the phase diagram of the KPO according
to the dissipation-induced phenomenology described above,
cf. Ref. [66].

1. Closed system

We first consider the (closed system, nondissipative)
KPOs, with Hamiltonian

HK = ωca†a + U

2
a†a†a a + HG, (19)

where a annihilates a bosonic particle on the oscillator and U
is the Kerr nonlinearity amplitude. A parametric two-photon
coherent pump of strength G and frequency ωG is described
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FIG. 5. Closed Kerr parametric oscillator [cf. Eq. (21)]. (a) Phase
diagram: The system displays a Z2 symmetry; three distinct re-
gions are indicated by their respective mean-field energy potential
landscape [cf. Eq. (22)], as a function of the real and imaginary
parts of the cavity field, αRe and αIm, respectively. Phase transitions
occur between a normal phase (white) and a symmetry broken phase
(blue). The light-blue region indicates the parameter regime, where
the normal phase is a physically allowed excited state of the system
and the PPSs represent the ground state. (b) The order parameter,
|α|2, as a function of the detuning 
/U . (c) The excitation spectrum,
ω, on top of the NP (green) and PPS (blue), as a function of the
detuning 
/U along the orange-dashed cut line in (a). Real (solid)
and imaginary (dashed) values with dark (light) hues encoding the
particle (hole) excitations, i.e., ds2 > 0 [ds2 < 0]. At the boundary
between the white and blue regions in (a), i.e., at 
c1, |α|2 acquires a
finite value in (b), signaling the onset of the Z2 symmetry breaking
transition. Correspondingly, excitations on top of the NP, ±ωNP

K [cf.
Eqs. (25)], in (c) become fully imaginary at 
c1 (dashed gray lines).
The transition to the coexistence region at 
 > 
c2 is once more
associated with real excitations on top of the NP. The NP excitations
exhibit a norm swap from 
 < 
c1 to 
 > 
c2 [cf. Eq. (26)].

by the Hamiltonian

HG = G

2
e−iωGt a†a† + G∗

2
eiωGt a a. (20)

We use the unitary transformation T = e−ia†aωGt/2 to move
to a rotating frame with respect to half the parametric drive
frequency. Neglecting fast oscillating terms, we obtain the
time-independent KPO Hamiltonian in the rotating wave ap-
proximation

H̃K = −
a†a + U

2
a†a†a a + G

2
a†a† + G∗

2
a a, (21)

where 
 = ωG/2 − ωc is the half-pump cavity detuning. In
the following, we will focus on positive U , but similar physics
is obtained for negative U , using the transformation 
 → −


and G → −G.
The time-translation symmetry of the Hamiltonian in the

nonrotating frame maps to a Z2 symmetry in the rotating
frame (associated with a → −a) [67]. The symmetry is spon-
taneously broken as we tune either the pump strength G or the
detuning 
. In Fig. 5(a), we draw the corresponding mean-
field rotating energy potential landscape,

H̄K = −

(
α2

Re + α2
Im

) + U

2

(
α2

Re + α2
Im

)2

+ GRe
(
α2

Re − α2
Im

) + 2GImαReαIm, (22)

obtained by substituting the mean-field ansatz a = αRe + iαIm

into Eq. (21). The ground state is obtained by minimizing
the Hamiltonian Eq. (21) and calculating the order parameter
|α|2, see Appendix B for details. Considering the mean-field
energy potential landscape, the phase diagram comprises three
qualitatively distinct regions in parameter space with I, a
paraboloid potential, where the Z2-symmetry is preserved
and the NP is the ground state; II, a double-well potential
separated by a saddle, where the Z2 symmetry will be spon-
taneously broken and either of the PPSs, which are phase
shifted by π , becomes the ground state; and III, a double-well
potential separated by a potential hill (maximum), where the
PPSs are still the ground states of the system. Crucially, in III
the NP is a physically excited state of the system, while in
II the NP is unphysical, i.e., its fluctuation spectrum presents
complex frequencies, cf. Sec. II A. In Fig. 5(b), we plot the
order parameter |α|2 and show that it acquires a finite value
within regions II and III, corresponding to the so-called para-
metric instability [19].

To corroborate this statement, we follow the procedure
outlined in Sec. II A and find the excitation spectrum asso-
ciated with the Hamiltonian Eq. (21). Here, we present the
excitations on top of the NP, while the PPS case is detailed
in Appendix B. The dynamical matrix associated with the NP
reads [cf. Eq. (2)]

HNP
K = 1

2
(a† a)

(−
 G
G∗ −


)(
a
a†

)
+ 


2
, (23)

DNP
K = 1

2

(−
 G
−G∗ 


)
. (24)

In the NP, the cavity is empty and therefore there is no con-
tribution from the Kerr nonlinearity. The eigenvalues of the
dynamical matrix describing the excitations are

ωNP
K = ±1

2

√

2 − |G|2. (25)

In Fig. 5(c), we plot the excitation spectra on top of the NP
and PPS, see also Appendix B for additional details. The NP
spectrum becomes fully imaginary along the dashed line cut
in Fig. 5(a) when entering region II (at 
c1), and at the same
time the PPS spectrum becomes real, signaling the onset of
the PT. Increasing the detuning further, a transition to region
III occurs (at 
c2), and the NP excitation spectrum becomes
real once more. This occurs in concomitance with a change in
the sign of the symplectic norm of the excitations,

ds2
K = |G|2(

ωNP
K + 


)2 − 1, (26)

cf. Eq. (3) and see Appendix B for the derivation of Eq. (26). A
positive symplectic norm is a signature of particle-dominated
fluctuations, whereas a negative one corresponds to hole-
like fluctuations. We therefore observe a swap in the norm
of the two NP excitations between regions I and III of
the phase diagram, i.e., the white and light-blue regions in
Fig. 5(a). The two NPs are dynamically different, reflecting
that in region III the NP is an excited state of the system. We
dub it an excited normal phase (e-NP). As we show later, in the
presence of dissipation, the e-NP becomes a stable steady state
of the system. We here note that excitations on top of the PPS

023100-8



DISTINCTIVE CLASS OF DISSIPATION-INDUCED … PHYSICAL REVIEW RESEARCH 3, 023100 (2021)

FIG. 6. Open Kerr parametric oscillator [cf. Eq. (27)]. (a) Mean-field steady-state cavity occupation along the orange cut line in (c), solid
(dashed) lines indicate (un)stable solutions. Above 
c3, the cavity transitions from the normal phase to a high-amplitude solution. For 
 > 
c4,
a new unstable high-amplitude solution appears and the normal phase becomes stable once more. (b) Real (dashed) and imaginary parts (solid)
of the fluctuations (Liouvillian) eigenvalues for the NP (green) and high-amplitude PPS solutions (red, blue). (c) Steady-state phase diagram
for κ/U = 0.4. The normal phase is now the only stable steady state in regions II’ and III’. Additionally, the light-blue region is now a region
of costable solutions. (d) Eigenvalues behavior and (e) variance for the real (solid) and imaginary (dashed) quadrature of the cavity, on top
of the normal phase and along the brown cut line in (c). The fluctuations exhibit a discontinuous exceptional pointlike scenario, where they
become overdamped in region II’. The variance does not show any divergent feature in concomitance with the discontinuous fluctuations.

retain their respective norms throughout the entire parameter
space, i.e., the positive frequency has a positive norm, whereas
the negative one has a negative norm.

2. Open system

Following the methodology introduced in Sec. II B, we
now study the impact of dissipation on the KPO Eq. (21). We
introduce single-photon losses in the form of the same Lind-
blad dissipator as in Eq. (7) and study the master equation:

dρ

dt
= − i

h̄
[HK, ρ] + L[a]ρ. (27)

We proceed and perform a mean-field approximation and
characterize the steady state of the system via the expectation
value of the operator â, i.e., via α = 〈a〉. The equation of
motion describing the evolution of α is given by

dα

dt
= i(
α − Uα∗α α − Gα∗) − κα. (28)

We look for the steady state dα/dt = 0, and find the solutions
for the order parameter α, see Appendix C for the analytic
expressions of the solutions. In Fig. 6(a), we plot the order
parameter behavior as a function of detuning 
 along the
orange cut in Fig. 6(c). From negative to positive detuning, we
start from a parameter regime where only one stable solution
is possible, i.e., the trivial NP. We then enter regions where up
to five solutions for the steady-state mean-field equations are
possible. Due to the Z2 symmetry of the problem, the nonzero
amplitude solutions have pairwise the same amplitude, but
are π -shifted in phase. We therefore focus only on three
representative solutions.

As before, we perform a stability analysis against linear
fluctuations and study the eigenvalues of the possible solu-
tions, cf. Sec. II B and Appendix C. As mentioned at the end of
Sec. II B, a solution is unstable if at least one of the fluctuation
eigenvalues has a positive real part. In Fig. 6(b), we plot the
fluctuation eigenvalues associated with the various physically
relevant steady-states. We observe exceptional pointlike sce-

narios both for the NPs and PPSs. The NP becomes unstable
at 
c3 where a pitchfork bifurcation takes place and stable
PPSs appear, denoted PPSst. Increasing the detuning further,
we reach the point 
c4 where the low-population solution be-
comes stable again (e-NP) alongside additional high-density
unstable solutions that appear, denoted PPSun. The former
high-density solutions stay stable, and we have a region of
costability between the e-NP and the PPSst.

We extend our study to the whole parameter space and
draw the open steady-state phase diagram in Fig. 6(c). Similar
to the closed system case, the phase diagram comprises three
different regions: (I) the white region presents only the NP
as a stable steady state, (II) the blue region only the PPSst,
and, finally, (III) the light-blue one is a region of costability
between the e-NP and the PPSst. At the same time, the open
system phase diagram is strikingly different with respect to
the closed system one. Specifically, dissipation overwhelms
the PPS tendency of the system, and shifts regions II and III
upward toward stronger drives G, see Fig. 5(a). In turn, new
regions appear: In II’, the NP is stabilized despite the fact
that it does not correspond to a physical state of the closed
system and, in III’, the NP remains the sole stable solution
while being an excited state of the system. The appearance of
region II’ is what we dub a dissipation-induced PT, which in
turn directly connects two distinct phases (regions I and III)
in the closed system. As we shall see in the following, as the
dissipation stabilizes the e-NP in a region of the parameter
space where it is an excited state of the closed system, it is a
dynamically different NP with respect to the NP at negative
detuning.

We conclude this subsection by showing that the NP →
e-NP transition, involving exceptional pointlike discontinu-
ities in the fluctuation spectrum, is not a third-order PT.
Specifically, we show that the variance of the fluctuations
[cf. Eq. (11)] are differentiable. Without loss of general-
ity, we consider the brown cut in Fig. 6(c), and study the
fluctuation variance over the NPs. The results are shown in
Figs. 6(d)–6(e). We identify the transition region, 
c5 < 
 <
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c6, as a region of overdamped excitations [cf. Sec. II C and
Fig. 4(a)], where the real parts of the eigenvalues, Re(ε),
split but remain negative and the variances remain finite while
changing continuously. The variance is continuous despite
the discontinuity in the eigenvalues due to a compensation
coming from their associated eigenvectors, see Appendix C
for details. Note that there is a crucial difference between the
overdamped oscillator in Fig. 4(a) and the KPO in Fig. 6. In
the former case, the overdamped region appears as a conse-
quence of strong dissipation, whereas in the latter it appears
due to the interplay between a weak dissipation channel
[Eq. (7)] and the effect of the parametric drive [Eq. (21)], lead-
ing to a locking of the motion to the drive, which manifests as
overdamped fluctuations.

3. Keldysh KPO

We now employ the formalism introduced in Sec. II D
and show that the two NPs, that are now connected via the
dissipation-stabilized region II’, are dynamically different. We
first write the Keldysh action Eq. (12) for the KPO,

S =
∫

dt[a∗
c i∂t aq + a∗

qi∂t ac + 
a∗
c aq + 
a∗

qac

− U

2
(|ac|2 + |aq|2)(a∗

c aq + a∗
qac)

− Ga∗
c a∗

q − G∗acaq

− iκ (a∗
c aq − aca∗

q − 2a∗
qaq)], (29)

where we did not resort to the matrix notation due to the
presence of the quartic interaction term. As is customary in
the Keldysh path integral formulation [11,12], we perform
a saddle-point approximation minimizing the action with re-
spect to the quantum field:

δS

δa∗
q

= i∂t ac + 
ac − U

2
(a∗

c aq + a∗
qac)aq

− U

2
(|ac|2 + |aq|2)ac − Ga∗

c + iκ (ac + aq). (30)

We then set ac(t ) = √
2α, aq = 0, and solve for the steady

state, i.e., ∂t ac = 0. We note here that such a solution is the
same on the two branches of the Keldysh contour and coin-
cides with the mean-field solution of Eq. (28) for the cavity
field.

We now study the fluctuations on top of the mean-field
solution and address the spectral properties of our system. We
do so by expanding around the mean-field solutions

ac,q = α + δac,q, (31)

where α is either one of the NPs or PPSs and δacq are the
fluctuation fields. We insert Eq. (31) into the action Eq. (29)
and retain up to second order in the fluctuation fields to obtain
the fluctuation action

Sfluc =
∫

ω

1

2
(φ†

c φ†
q )

(
0 [GA]−1

[GR]−1 DK

)(
φc

φq

)
, (32)

where we introduced the spinor notation φcl,q =
(δacl,q, δa∗

cl,q )T and defined the inverse Green’s functions
and Keldysh component as

[GR]−1(ω)

=
(

ω + 
 − 2U |α|2 + iκ −Uαα − G
−Uα∗α∗ − G∗ −ω + 
 − 2U |α|2 − iκ

)
,

(33)

DK (ω) =2iκI2×2, (34)

with I2×2 the identity matrix of dimension 2. We now study
the spectral properties of the NPs and of the PPSs.

4. Normal phase

In the NPs, we have a zero mean-field solution, α = 0. We
invert Eq. (32) with Eqs. (33) and (34) to obtain the Green’s
functions

GR
K(ω) = GA

K
†
(ω) = 1

(ω + iκ )2 − 
2 + |G|2
(

ω − 
 + iκ −G
−G∗ −ω − 
 − iκ

)
,

GK
K(ω) = 2iκ

((ω + iκ )2 − 
2 + |G|2)((ω − iκ )2 − 
2 + |G|2)

(
(ω − 
)2 + |G|2 + κ2 2G(
 − iκ )

−2G∗(
 − iκ ) (ω + 
)2 + |G|2 + κ2

)
. (35)

We consider two distinct points in the parameter space, 
1,
and 
2 [cf. Fig. 6(c)], where the NPs are stable steady states.
The former lies in the region of negative detuning, where the
NP coincides with the ground state of the closed system. The
second one instead is in the positive detuning region, where
dissipation stabilizes the NP resulting in the e-NP.

We calculate the spectral function Eq. (15), the power
spectrum Eq. (16), and the fluorescence spectrum Eq. (18).
We find that the first two observables present a peak inver-
sion between the two different regions in the parameter space
whereas the last is perfectly symmetric, see Fig. 7(a). The
peak swap between the two region bears important physical

significance and underlines the fundamental dynamical dif-
ference between the NP and the e-NP. It is reminiscent of the
particle-hole inversion in the excitation spectrum of the NP
already highlighted in the closed system. More specifically,
it also marks the change in oscillation chirality relative to
the reference frame [cf. Fig. 3] by the fact that a negative
peak appears at positive response frequency in the spectral
function, A(ω) [30]. Ultimately, dissipation stabilizes the NP
in region II′, where it is not a physical solution of the closed
system and therefore does not exhibit proper excitations, as
the excitations are overdamped. In region III′, an otherwise-
inaccessible excited state is reachable by adiabatic ground
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FIG. 7. Dynamical responses of the KPO [cf. Eqs. (35)]. Top:
The spectral function, A(ω). Middle: The power spectrum, C(ω).
Bottom: The fluorescence spectrum, S(ω). (a) The responses on top
of the NPs, at point 
1, 
2 in Fig. 6(c). (b) The responses on top
of the PPSs at points 
2, 
3 in Fig. 6(c). The spectral response and
power spectrum of the NPs feature a mode inversion when going
from the NP to the e-NP, 
1 → 
2. This is a signature of the
dynamically different nature of the two normal phases in the different
regions of parameter space. On the contrary, for the PPSs, no quali-
tative change in the spectra is observed—neither when crossing from
negative to positive detuning nor when considering the costability
region.

state evolution from negative to positive detuning. At the same
time, the system response retains features of an excited state,
signaled by the holelike nature of the dynamical fluctuations
(peak inversion).

5. Parametric phase state

The PPSs are characterized by a finite cavity field α, see
Appendix C. We invert Eqs. (33) and (34) once more with
the new mean field and obtain the Green’s functions for the
PPSs. As for the NPs, we consider two points in the parameter
space, 
2, and 
3 in Fig. 6(c). The point 
3 lies in region II,
where only the PPSst are stable steady states, whereas 
2 is
positioned in the coexistence region III. In Fig. 7(b), we plot
the dynamical response functions on top of the PPSst at 
2,
and 
3. There are no qualitative changes in the spectra as op-
posed to the NPs, which undergo a peak swap between the two
regions in parameter space. This agrees with the discussion
above on the differences that the closed system experiences
between the NP and e-NP, whereas the PPSs do not present a
particle-hole fluctuation inversion.

B. Interpolating Dicke-Tavis-Cummings

In the previous section, we studied the KPO as a ubiquitous
model describing a broad class of systems, where one directly

drives a bosonic resonator (be it vibrational, electric, photonic,
or composed of more complex particles) with a two-particle
drive. In this section, we consider instead a many-body light-
matter system, where PTs appear due to the coupling between
the matter degrees of freedom and a bosonic resonator cavity
[23,68–76]. We specifically study a ubiquitous model de-
scribing light-matter systems, the IDTC model [22,30,77,78],
which is a generalized version of the Dicke [68,79,80] and the
Tavis-Cummings [81] models. The model system comprises
of a single-mode bosonic cavity (light) coupled to the x and
y components of N spinlike (two levels) degrees of freedom
(matter). As a function of the coupling between the cavity
and the spins, the IDTC model features transitions between an
empty cavity state, the NP, to a highly occupied cavity state,
dubbed superradiant phase (SP) [82,83].

In similitude to the KPO above, dissipation stabilizes and
extends the NP into a new parameter regime, dubbed e-NP
[23,30]. This dissipation-induced PT also allows for regions
of coexistence between the e-NP and SP [23,84]. The analogy
between the KPO and IDTC is even more explicit when con-
sidering the fluctuation spectrum, which shows a soft-mode
invertion along the low-density dissipation-facilitated NP →
e-NP transition. We highlight here these distinctive features of
the dissipative IDTC and draw the universal parallels between
this many-body light-matter system and the KPO while em-
ploying the methodology introduced in the previous sections.

1. Closed system

We start our discussion with the closed system IDTC
Hamiltonian [22,23,30,85]

HI = h̄ωca†a + h̄ωzSz

+ 2h̄λx√
N

Sx(a + a†) + 2h̄λy√
N

iSy(a − a†), (36)

where a is the bosonic annihilation operator of the cavity field,
and ωc is the cavity’s resonance frequency. The ensemble
of N two-level system is described in terms of collective
spin operators Sx,y,z = ∑N

i=1 σ {i}
x,y,z, with Pauli matrices σ

{i}
j

describing theith two-level system. Due to the tunable cou-
pling between the spins and the cavity, this model interpolates
between the Tavis-Cummings (λx = λy) [81] and Dicke (λx =
λy) [68,79,80] models.

The IDTC Hamiltonian Eq. (36) has a Z2 × Z2 symmetry
corresponding to four different superradiant states with finite
spin magnetization either along the x or y directions. Fur-
thermore, tuning the couplings to be equal, λx = λy, boosts
the symmetry to become U (1). In either case, increasing
the coupling above a critical coupling λc = √

ωcωz/2 leads
to spontaneous breaking of the symmetries, into a SP with
finite in-plane magnetization [83,86]. This is shown in the
phase diagram in Fig. 8(a). The mean-field energy potential
landscape lies over the phase space of the resonator and the
Bloch sphere of the collective spin. Focusing on the south
pole of the Bloch sphere, where the NP lies, it suffices to draw
the impact of the spins on the mean-field energy functional
of the resonator, see Fig. 8(a). The phase diagram comprises
of three qualitatively distinct regions in parameter space: I, a
paraboloid potential, where the Z2 × Z2/U (1) symmetry is
preserved and the NP is the ground state; II, a double-well
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FIG. 8. Closed interpolating Dicke-Tavis-Cummings model [cf.
Eq. (36)]. (a) Phase diagram: Similar to the KPO (cf. Fig. 5), the
system has Z2 symmetries and is characterized by three different
regions; with ωc = ωz and schematic illustration of the mean-field
energy potential as a function of the real and imaginary parts of
the cavity field, αRe and αIm, respectively. Quantum phase transi-
tions occur between a normal phase (white) and a symmetry broken
phase (blue). Analogous to the KPO, the light-blue region indicates
a parameter regime where the normal phase is an excited state of
the system and the SPs represent the ground state. (b) The order
parameter, |α|2, and (c) the excitation spectrum, ω, on top of the
NP (SPs), as a function of the coupling along the orange-dashed
cut line in (a). In (c), real (solid) and imaginary (dashed) parts on
top of the NP (green) and SPs green (blue), dark (light) hues encode
the particle (hole) excitations, i.e., ds2 > 0 [ds2 < 0]. The excitation
behavior is analogous to the KPO. At the boundary, λc, between the
white and blue region in (a), |α|2 acquires a finite value in (b). Con-
comitantly, the eigenfrequencies on top of the NP ωNP

I [cf. Eqs. (39)]
in (c) become fully imaginary (dashed gray lines), thus signaling
the onset of the symmetry-breaking transition. When λ > λc1 the
eigenvalues return to be real-valued, marking the transition to the
coexisting region. Mirroring the KPO, the NP excitations exhibit a
norm swap from λ < λc to λ > λc1.

potential separated by a saddle, where the Z2 × Z2 symmetry
is spontaneously broken either along x or y directions and
either of the positive or negative magnetization states becomes
the ground state; and III, a double-well potential separated by
a potential hill (maximum), where the SPs are still the ground
states of the system. Crucially, as in the KPO, in III, the NP
is a physical excited state of the system, while in II, the NP is
unphysical (imaginary excitation frequencies).

Following the procedure outlined in Sec. II A, we find
the ground state, order parameters α, X,Y , and spectrum of
excitations of the IDTC model, Eq. (36). In the top panel
of Fig. 8(b), we plot the order parameters |α|2 and show
that it acquires a finite value within regions II and III, cor-
responding to the superradiant PTs; this parallels the NP →
PPS of the KPO, cf. Fig. 5. To show the existence of the
e-NP phase and draw a comparison with the KPO studied
above, see Sec. III A 1, we consider the IDTC’s normal phase
and analyze its excitation spectrum. Details regarding the SP
can be found in Ref. [30]. The NP fluctuation Hamiltonian and
associated dynamical matrix for the IDTC model are

HNP
I =

⎛
⎜⎝

ωc λx + λy 0 λx − λy

λx + λy ωz λx − λy 0
0 λx − λy ωc λx + λy

λx − λy 0 λx + λy ωz

⎞
⎟⎠, (37)

DNP
I =

⎛
⎜⎝

ωc λx + λy 0 λx − λy

λx + λy ωz λx − λy 0
0 −λx + λy −ωc −λx − λy

−λx + λy 0 −λx − λy −ωz

⎞
⎟⎠,

(38)

therefore, we find the closed system eigenvalues [30], cf.
Sec. II A,(

ωNP
I

)2

= 1
2

(
4
(
λ2

x + λ2
y

) + ω2
c + ω2

z

±
√

16
(
λ2

x−λ2
y

)2+8
(
λ2

x + λ2
y

)
(ωc + ωz )2 + (

ω2
c − ω2

z

)2)
.

(39)

Unlike the KPO, the IDTC exhibits two excitation eigen-
modes. We focus on the soft-mode [with the negative sign in
Eq. (39), plotted in Fig. 8(c)] since it exhibits an interesting
behavior. In close analogy with the KPO, the NP soft-mode
excitation eigenfrequencies become imaginary upon crossing
of the superradiant boundary, λc. They, then, become real
again when crossing to the light-blue region III at λc2. As
discussed in Ref. [30], the transition from region I to III occurs
alongside with a norm flip [cf. Eq. (3)] in the soft excitation
eigenmode. This flip signals a particle-hole inversion in the
excitation spectrum describing the system, marking the e-NP
as an excited state of the system. As in the KPO, this feature
survives the introduction of dissipation and, in the next sec-
tion, we show that the e-NP becomes a dissipation-stabilized
steady state. The SP excitation spectrum does not show any
norm sign changes [30].

2. Open system

In a previous work [23], we analyzed the impact of adding
single-photon losses to the Hamiltonian (36), cf. Eq. (7). The
dissipator drastically changes the phase diagram. We here
reiterate, mirroring Sec. II B, the main steps that led to the
modified phase diagram to stress the close similarities be-
tween the KPO and the IDTC.

We start from the master equation,

dρ

dt
= − i

h̄
[HI, ρ] + L[a]ρ, (40)

where L[a]ρ. We define the mean-field order parameters ac-
cording to 〈a〉 = √

Nα, 〈Si〉 = Ni with i = X,Y, Z , and study
the associated equations of motion [cf. Eq.(9)]:

dα

dt
= −iω0α − i

2λx√
N

X − 2λy√
N

Y − κα,

dX

dt
= −ωzY − i

2λy√
N

(α∗ − α)Z,

dY

dt
= ωzX − 2λx√

N
(α∗ + α)Z,

dZ

dt
= 2λx√

N
(α∗ + α)Y + i

2λy√
N

(α∗ − α)X. (41)

It is possible to find an analytical expression for the steady-
state solutions [23], and in Fig. 9(a) we plot the resulting
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FIG. 9. Open IDTC model [cf. Eq. (40)]. (a) Mean-field steady-state cavity occupation along the orange cut line in (c), solid (dashed)
lines indicate (un)stable solutions. Above λc2 the cavity transitions from the empty normal phase to a high-density (superradiant) solution. For
λ > λc3, a new unstable high-density solution appears and the normal phase becomes stable again. (b) Real (dashed) and imaginary parts (solid)
of the fluctuations (Liouvillian) eigenvalues for the NP (green) and SP solutions (red, blue). (c) Steady-state phase diagram of the dissipative
model [Eq. (40)] for κ/ωc = 0.1. The normal phase is now the only stable steady state in the dissipation-induced regions II’ and III’, where
the NP is not the ground state of the closed system [cf. Fig. 8]. Additionally, the light-blue region III becomes a region of costable solutions.
Adapted from Ref. [23]. (d) Fluctuation spectrum and (e) variance for the real (solid) and imaginary (dashed) quadrature of the cavity on top
of the NPs, along the brown cut line in (c). The variance does not show any divergent feature in concomitance with the appearance of the
exceptional point region.

stationary order parameter behavior along the orange cut in
Fig. 9(c). As for the open KPO [cf. Fig. 6], initially only the
trivial NP solution is a stable steady state. Then, in regions II
and III, up to four additional nontrivial superradiant solutions
are allowed. Given the Z2 symmetries of the problem, the
nonzero solutions appear pairwise opposite of each other in
phase space. We study the stability of the solutions against
linear fluctuations [cf. Eq.(10)] and identify the stable and
unstable solutions. In Fig. 9(b), we plot the eigenvalues as-
sociated with the possible steady states. The NP becomes
unstable at λc3, where the superradiant transition takes place.
Increasing the coupling further, the costability region III ap-
pears, where the low-population solution (e-NP) becomes
stable again at λc4, and an unstable SP appears, SPun. Stable
(unstable) solutions are highlighted as solid (dashed) lines in
Fig. 9(a).

The open steady-state phase diagram is plotted in Fig. 9(c).
Mapping one-to-one to the KPO, the open IDTC phase di-
agram includes the variety of regions, I, II, III, II′, and III′.
Specifically, due to dissipation, the superradiant regions in
Fig. 9(c) are now separated by a NP sliver (II’) that connects
two regions (I and III’), where the NPs are the only stable
steady state. Stressing the KPO ↔ IDTC analogy further,
dissipation stabilizes the NP in region III’ of the parameter
space, where it is an excited state of the closed system, this
justifies the name e-NP [30].

In Figs. 9(d) and 9(e), we study the eigenvalues and
variance of the IDTC NPs along a cut line that does not
encompass the symmetry broken phase, brown cut in Fig. 9(c),
cf. Figs. 6(d) and 6(e). The fluctuations’ eigenvalues in region
II’ show the same overdamped behavior as the KPO (cf.
Sec. II C, Fig 6) with the imaginary parts coalescing to zero,
and the real parts splitting but remaining negative. This is
accompanied by a finite variance squeezing along the tran-

sition between the NP and the e-NP. Here, too, the exception
pointlike discontinuity in the fluctuations’ spectrum does not
lead to sharp transitions in the variance. In conclusion, the
open IDTC model exemplifies another (many-body) family
of systems, where dissipative effects are enhanced by the
interactions among the components of the system, leading
to dissipation-induced PTs (region II’) and the plethora of
associated corollary signatures. In the following, we turn to
highlight that similar dynamical signatures appear in this
model as well.

3. Keldysh IDTC

We conclude our treatment of the IDTC model using the
formalism introduced in Sec. II D to show that the two NPs are
dynamically different. To find a path integral representation
for the Hamiltonian Eq. (36), we bosonize the spin around
the noninteracting ground state. The ground state is character-
ized by the magnetization Sz = −N/2. The bosonized spin is
obtained using the Holstein-Primakoff transformation, S+ =
b†(

√
N − b†b) and Sz = −N

2 + b†b, where b, b† are bosonic
operators. The resulting Keldysh action [cf. Eq. (13)] for the
thus-transformed IDTC model is

S = 1

2

∫
ω

�†(ω)

(
0

[
GA

4×4

]−1

[
GR

4×4

]−1
DK

4×4
−1

)
�(ω), (42)

where we introduced the eight-component cavity-spin
Nambu spinor, � = [�c(ω),�q(ω)], defined as the con-
catenated classical and quantum four-spinors: �i(ω) =
(ai(ω), a∗

i (−ω), bi(ω), b∗
i (−ω))T with i = c, q, respectively.

For the explicit form of the Green’s functions, GR
4×4, GA

4×4 and
the Keldysh self-energy, DK

4×4, in Nambu space, see Ref. [30].
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Varying the action Eq. (42) with respect to the quantum components of the fields and substituting ac(t ) = √
2α, bc(t ) =√

2β, aq = 0, bq = 0, we obtain the coupled equations

∂S

∂a∗
q

= (−ω0 + iκ )α (43)

−2
√

1 − |β|2(λxβRe + iλyβIm ) = 0,

∂S

∂b∗
q

= −ωzβ − 2iβReβIm
λxαRe − iλyαIm√

1 − |β|2 + 2

(
λxαReβ

2
Im + iλyαImβ2

Re − λxαRe − iλy
)

√
1 − |β|2 = 0, (44)

where α, β ∈ C. We can split them into their real and imaginary parts and recast them in terms of the mean-field order parameters
α, X,Y, Z using the inverse Holstein-Primakoff transformation. This procedure yields the mean-field Eqs. (41).

We turn now to study the fluctuations on top of the mean-field solutions and address the spectral properties of the open IDTC.
The different stationary phases of the IDTC can be described by the field a (b) given by the mean-field solutions α (β), and a
fluctuating term, i.e., a → α + δa (b → β + δb) [cf. similar treatment of the KPO in Eqs. (31) and (32)]. The resulting IDTC
quadratic fluctuation action is

Sfluc = 1

2

∫
ω

δ�†(ω)

(
0

[
GA

4×4

]−1

[
GR

4×4

]−1
DK

4×4

)
δ�(ω), (45)

with the Green’s functions

[
GR

4×4

]−1 =

⎛
⎜⎜⎜⎜⎝

ω − ω0 + iκ 0 −λ̄∗
1 −λ̄2

0 −ω − ω0 − iκ −λ̄∗
2 −λ̄1

−λ̄1 −λ̄2 ω − ωz − δω̄1 −δω̄∗
2

−λ̄∗
2 −λ̄∗

1 −δω̄2 −ω − ωz − δω̄∗
1

⎞
⎟⎟⎟⎟⎠ (46)

and the Keldysh self-energy

DK
4×4 = 2idiag(κ, κ, 0, 0). (47)

The definition of the coefficients δω̄1, δω̄2, λ̄1, λ̄2 can be found in Ref. [30].
To obtain the photon-only action, we integrate out the Holstein-Primakoff fluctuation field δb and obtain a Keldysh functional

integral only over the photon fields. The resulting photon-only action reads

Sphoton[δa∗, δa] =
∫

ω

A†
4(ω)

(
0

[
GA,p

2×2

]−1
(ω)[

GR,p
2×2

]−1
(ω) DK,p

2×2(ω)

)
A4(ω), (48)

where A4(ω) = (δac(ω), δa∗
c (−ω), δaq(ω), δa∗

q(−ω))T is the photon four-vector that collects the classical and quantum field
components. The inverse retarded Green’s function of the photon is

[
GR

2×2

]−1 =
(

ω − ω0 + iκ + �R
1 (ω) �R

2 (ω)[
�R

2 (−ω)
]∗ −ω − ω0 − iκ + [

�R
1 (−ω)

]∗

)
, (49)

while the Keldysh component of the photon action is

DK,p
2×2 = 2iκI2×2. (50)

We now study the spectral properties of the NPs and of the SP.

4. Normal phase

In the NPs, we have as stationary mean-field solution, α = 0, X = Y = 0, Z = −1/2. Inverting Eq. (48) and using Eqs. (49)
and (50), we obtain the photon Green’s functions. The analytical expressions are quite lengthy and we report here only the
retarded Green’s function:

GR
I (ω) = 2ωz

(
λ2

x + λ2
y

) − 4λxλyω + (
ω2 − ω2

z

)
(iκ + ω + ω0)

16λ2
xλ

2
y − 8λxλyω(ω + iκ ) − 4ω0ωz

(
λ2

x + λ2
y

) + (
ω2 − ω2

z

)(
(ω + iκ )2 − ω2

0

) . (51)

We focus on the points λ1 and λ2 marked in Fig. 9(c), both of which are in the parameter space where the NPs are a stable
steady state. The point λ1 lies in region I below criticality, where the NP coincides with the ground state of the closed system.
The point λ2 lies instead in the critical region III′, where the e-NP is stabilized by dissipation.
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FIG. 10. Dynamical responses of the IDTC [cf. Eq. (51)]. Top:
The spectral response, A(ω). Middle: The power spectrum, C(ω).
Bottom: The fluorescence spectrum, S(ω), in (a) on top of the NPs,
at points λ1, λ2, and in (b) on top of the SPs, at points λ2, λ3, see
Fig. 9(c). The spectral response and power spectrum of the NPs
feature a soft-mode peak inversion when going from the NP to
the e-NP, λ1 → λ2. This is a signature of the dynamically different
nature of the two normal phases in the different regions of parameter
space. In comparison, the SPs show no qualitative change in the
spectra, neither upon crossing the superradiant threshold nor when
considering the costability region.

In Fig. 10(a), we plot the spectral function Eq. (15),
the power spectrum Eq. (16), and the fluorescence spec-
trum Eq. (18). Similar to the KPO case [cf. Fig. 7], we
find a soft-mode peak inversion between the two different
NP regions. The soft-mode peak swap marks the fact that
the e-NP is an excited state of the closed system, which is
dynamically distinct from the NP [30]. This is a final dynam-
ical feature that highlights the universal phenomenology of
dissipation-induced PTs and connects between the KPO and
IDTC models. In both systems, coherent interactions facilitate
that a weak dissipation channel stabilizes an excited state of
the closed system and signatures of the dissipation-induced
stabilization manifest in the dynamical response of the
system.

5. Superradiant phase

In Fig. 10(b), we plot the dynamical responses on top of
the superradiant solutions for points λ2, and λ3 in parameter
space, see Fig. 9(c). The former lies in the coexistence region,
whereas the latter lies in the region where only the SPst is the
stable steady state. The SP, as the PPS in the KPO, does not
present qualitative changes in the spectra, marking once more
the close analogy between the two a priori distinct physical
systems.

IV. DISCUSSION AND OUTLOOK

At equilibrium, different phases and transitions between
them are well understood using statistical physics arguments
based on equilibrium distribution functions. Thus, a coupling
to a thermal bath affects the distribution function, and at
T = 0 (quantum) PTs occur only between ground states of the
system. Moving to an out-of-equilibrium setting, the presence
of drives and excitations leaking out into the environment
requires us to break away from the framework of equilibrium
distribution functions. Crucially, in such open systems, as we
also highlight in this paper, a T = 0 environment does not
imply a quantum PT in the resulting phase diagram of the
system, i.e., the ground state does not necessarily correspond
to the new stationary state of the system coupled to the envi-
ronment.

Over the years, a plethora of methods have been applied
to analyze out-of-equilibrium PTs, including diagonalization
of Liouvillians [17] or non-Hermitian Hamiltonians (cf. third
quantizations [13]), Keldysh action approach [11,12], and
equations of motion [2] to name a few. Various observables
were devised to characterize scenarios appearing in the out-
of-equilibrium, e.g., exceptional points marking stabilized
regions due to gain and loss [15,28] and negative peaks in
response functions as signatures of stabilized excited states
[30,87]. In this paper, we collected such observations under
a unifying framework and related them to simple underlying
physical implications, using a mean-field analysis on top of
which dynamical fluctuation and responses were explored.

We thus showed how dissipation can profoundly change
the closed system physics by lifting the boundaries of
the closed system phases. We, specifically, highlighted two
scenarios that arise when dissipation overwhelms a symmetry-
breaking term in the system: both cases involved the
stabilization of a phase with higher energy than that of the
ground state of the system, either corresponding to an excited
physical state or to an unphysical state of the closed system.
The latter exhibited an exceptional pointlike behavior, where
the system is locked to the environment and its fluctuations
become overdamped. On the other hand, when dissipation
stabilizes a maxima of the closed system Ginzburg-Landau
potential (i.e., an excited state), we observed an inversion in
the dynamical response function, in accord with the inverted
curvature of the potential. Crucially, the appearance of both
types of scenarios is correlated to one another, where the over-
damped region bridges between areas in phase space where
the same state can be a ground or excited state.

We demonstrated the general phenomenology through two
prominent example of open systems, namely, the KPO and
the IDTC model. These models mark a wide family of
experimental out-of-equilibrium domains, where nonlinear-
ities, dissipation, and time-dependent drives interplay with
one another [17,20,88,89]. Examples thereof range from
nonlinear mechanical, electric, and photonic resonators, to
driven light-matter systems in a similarly broad range of
frequencies, including collective PTs in cold-atom experi-
ments [90–93] and light-induced modifications of material
properties [94,95]. As such, we believe that our work paves
the way for a systematic study of dissipative stabilization of
high-energy states, where key future directions can involve
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beyond mean-field analysis of the steady state and the intro-
duction of more complex dissipation channels with their own
symmetry-breaking tendencies, e.g., cat-state stabilization via
two-photon losses and superradiant suppression via spin de-
phasing [20,96].
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APPENDIX A: OVERDAMPED HARMONIC OSCILLATOR

In this Appendix, we provide additional details on the
analysis of the overdamped harmonic oscillator [cf. Sec. II C],
including its fluctuation eigenvalues and variance under noise.
Note that the treatment here relies on a stochastic classical
approach, which is complementary to that employed for weak
dissipation in Sec. II.

The overdamped harmonic oscillator can be studied start-
ing from the classical Newton’s equation of motion,

ẍ(t ) + ω2
0x(t ) + κ ẋ(t ) = ξ (t ), (A1)

where ξ (t ) is a white noise process with 〈ξ (t )ξ (t ′)〉 =
σ 2δ(t − t ′). Moving to two coupled first-order differential
equations, the system is described by(

ẋ
ṗ

)
=

(
0 1

−ω2
0 −κ

)(
x
p

)
+

(
0
ξ

)
. (A2)

Hence, the fluctuation eigenvalues are obtained by diagonal-
izing the above matrix,

ε± = 1

2

(−κ ±
√

κ2 − 4ω2
0

)
, (A3)

where the oscillator is overdamped for κ2 > 4ω2
0. Solving the

Fokker-Planck equation corresponding to Eq. (A2) yields the

steady state probability distribution ρ(x, p) = κω0
πσ 2 e− κ (p2+ω2

0x2 )

σ2 .
From this, we derive the variance of x and p

Var(x) =
∫

dxd p x2ρ(x, p) = σ 2

2κω2
0

, (A4)

Var(p) =
∫

dxd p p2ρ(x, p) = σ 2

2κ
. (A5)

APPENDIX B: CLOSED KPO, GROUND STATE
AND DIAGONALIZATION

In this Appendix, we provide additional details on the anal-
ysis of the closed KPO [cf. Eq. (21)], including the mean-field
analysis for obtaining the ground state and the diagonalization
of the excitations Hamiltonian on top of the ground state.

We find the ground state of the closed KPO by minimiz-
ing the mean-field energy [cf. Eq. (22)] with respect to α∗.
We obtain region I with the NP (with α = 0) as the ground

state, if sign(U )
 < −|G|, and otherwise the PPS exhibiting
a coherent state with α = ±|α|eiθ where

|α|2 = 
 + sign(U )
√

|G|2
U

, (B1)

tan(θ ) = −GRe − sign(U )
√

|G|2
GIm

. (B2)

We now provide the details on the diagonalization procedure
applied to the excitations’ Hamiltonian Eq. (21). We start
by expanding around the mean-field ground state of interest,
i.e., a = α + c, where c is now a bosonic operator describing
excitations. We can therefore write the KPO Hamiltonian up
to second order in the excitations as

HK = 1

2
(c† c)

(−
 + 2U |α|2 G + Uα2

G∗ + Uα∗2 −
 + 2U |α|2
)(

c
c†

)

+ 
 − 2U |α|2
2

. (B3)

The corresponding dynamical matrix is

DK = 1

2

(−
 + 2U |α|2 G + Uα2

−G∗ − Uα∗2 
 − 2U |α|2
)

. (B4)

We solve the eigenvalue problem DKv = ωv and obtain the
eigenfrequencies

ω±
K = ± 1

2 [
2 − |G|2 − 4U
|α|2 − 4αReαImGImU

− 2
(
α2

Re − α2
Im

)
GReU + 3|α|4U 2]1/2, (B5)

the corresponding eigenvectors

v± =
( G+Uα2

ω±
K+
−2U |α|2

1

)
, (B6)

and their associated symplectic norms [cf. Eq. (3)]:

ds2
± =

∣∣∣∣ G + Uα2

ω±
K + 
 − 2U |α|2

∣∣∣∣
2

− 1. (B7)

The Bogoliubov transformation matrix, V , has the eigen-
vectors as columns, ordered placing first all the positive
symplectic norm eigenvectors followed by the respective neg-
ative symplectic norm ones [29,30]. In the KPO case, we have
V = [v+ v−] if ds2

+ > 0 and ds2
− < 0. If instead ds2

+ < 0 and
ds2

− > 0, then V = [v− v+]. Applying the analysis presented
here for the NP, with α = 0, we obtain Eqs. (23), (25), and
(26) in the main text.

APPENDIX C: OPEN KPO, STEADY-STATE
AND STABILITY

In this Appendix, we present the analytic mean-field
steady-state solution for the open KPO [cf. Eq. (27)] and we
study the stability of the solutions to fluctuations. We first
solve Eq. (28) obtaining up to five solutions, including the NP
with α0 = 0, and the PPSs with αi = |αi|eiθi , where

|α1|2 = 
 −
√

|G|2 − κ2

U
, (C1)

|α3|2 = 
 +
√

|G|2 − κ2

U
, (C2)
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tan(θ1) = −GRe +
√

|G|2 − κ2

GIm + κ
, (C3)

tan(θ3) = −GRe −
√

|G|2 − κ2

GIm + κ
, (C4)

as well as α2 = −α1 and α4 = −α3. Requiring that |αi|2 � 0
defines the phase boundaries for the existence of the PPS, see
Fig. 6(c).

To study the stability of the various solutions, we split
Eq. (27) into its real and imaginary parts and expand around
the steady-state solutions as outlined in Sec. II B. Here we

generally write α = αi for the solutions with i = 0, 1, 2, 3, 4. We obtain

d

dt

(
αRe

αIm

)
=

(
2UαReαIm + GIm − κ −
 + U

( − α2
Re + α2

Im

) − GRe


 − U
(
α2

Re − α2
Im

) − GRe −2UαReαIm − GIm − κ

)(
αRe

αIm

)
, (C5)

to then find the steady-state fluctuation eigenvalues:

ε±
K = −κ ±

√
−[
2 − |G|2 − 4U
|α|2 − 4αReαImGImU − 2

(
α2

Re − α2
Im

)
GReU + 3|α|4U 2]. (C6)

Studying the real parts of ε±
KPO for the different αi and assuming U > 0, we identify the α3,4 pair as the stable PPSs, and the α1,2

one as the unstable PPSs, dubbed PPSst and PPSun in the main text, respectively. Note that for U < 0, the α3,4 pair is unstable
and the α1,2 one is stable.

The variance of fluctuations is calculated from the correlation functions [cf. Eq. (11)] as outlined in Sec. II B. We solve the
resulting coupled equations for the NP solution in the linear regime (U ≈ 0) and obtain

Var(αRe) = (
2 + κ (GIm + κ ) + 
GRe)(

2 − G2

Im − G2
Re + κ2

) , (C7)

Var(αIm ) = (
2 + κ (κ − GIm ) − 
GRe)(

2 − G2

Im − G2
Re + κ2

) . (C8)

Crucially, the result discontinuous only at the phase boundary 
 = ±
√

G2
Re + G2

Im − κ2. Thus, the abrupt splitting in the
fluctuation eigenvalues (exceptional pointlike scenario) does not lead to any abrupt changes in the variance.
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