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Spin-orbital magnetic response of relativistic fermions with band hybridization
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Spins of relativistic fermions are related to their orbital degrees of freedom. In order to quantify the effect
of hybridization between relativistic and nonrelativistic degrees of freedom on spin-orbit coupling, we focus
on the spin-orbital (SO) crossed susceptibility arising from spin-orbit coupling. The SO crossed susceptibility
is defined as the response function of their spin polarization to the “orbital” magnetic field, namely, the effect
of magnetic field on the orbital motion of particles as the vector potential. Once relativistic and nonrelativistic
fermions are hybridized, their SO crossed susceptibility gets modified at the Fermi energy around the band
hybridization point, leading to spin polarization of nonrelativistic fermions as well. These effects are enhanced
under a dynamical magnetic field that violates thermal equilibrium, arising from the interband process permitted
by the band hybridization. Its experimental realization is discussed for Dirac electrons in solids with slight
breaking of crystalline symmetry or doping, and also for quark matter including dilute heavy quarks strongly
hybridized with light quarks, arising in a relativistic heavy-ion collision process.

DOI: 10.1103/PhysRevResearch.3.023098

I. INTRODUCTION

Relativistic fermions arise at various energy scales. While
relativistic dynamics of fermions is generally described by
the Dirac equation, with four-component spinor field [1],
massless relativistic fermions can be described by the Weyl
equation, with two-component spinor field [2]. Originally,
those equations were invented to describe elementary particles
obeying Lorentz symmetry at high energy. Recently, they
are also applied to electrons in some crystalline materials,
classified as Dirac and Weyl semimetals, which are intensely
studied over the past decade [3–9]. In those semimetals, en-
ergy bands of electrons exhibit pointlike crossing structures in
momentum space, called Dirac or Weyl points, around which
the low-energy excitations of electrons can be effectively de-
scribed as massless Dirac or Weyl fermions.

While the characteristics of relativistic fermions them-
selves have been broadly studied, we note here that relativistic
fermions coexist with nonrelativistic fermions in some cases.
It is found in some crystalline materials that Dirac or Weyl
points coexist with other bands irrelevant to those point-node
structures at the same energy [10–16]. Slight breaking of
crystalline symmetries by lattice deformations or disorders
may lead to hybridization between the Dirac or Weyl bands
and the irrelevant bands [17]. For example, the magnetic alloy
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Co3Sn2Se2, which is a sibling of the magnetic Weyl semimetal
Co3Sn2S2, is found to exhibit an anticrossing structure be-
tween the Weyl cones and the band irrelevant to them, due
to the strong band inversion by spin-orbit coupling (SOC) on
Se [18–20]. Interband hybridization can occur in quark matter
as well: light quarks, with flavors u, d, or s, are usually treated
as massless Dirac fermions, in comparison with heavy quarks
(c and sometimes b). If the heavy quarks are dilute enough,
they form bound states with the light quarks at low momentum
due to color exchange, proposed as the QCD Kondo effect
[21–40]. Such a situation is proposed to occur at a short
timescale after a relativistic heavy-ion collision process.

Once nonrelativistic fermions are mixed and hybridized
with relativistic fermions, the relativistic effect, including
SOC, may get modified. In order to quantify the effect of the
hybridization between relativistic and nonrelativistic degrees
of freedom on SOC, we focus on the spin-orbital (SO) crossed
susceptibility, which constitutes a part of the magnetic sus-
ceptibility [41–48]. The SO crossed susceptibility, or the SO
susceptibility in short, is defined as the response function of
spin polarization (spin magnetization) to the orbital magnetic
field, namely, the effect of magnetic field on the orbital motion
of particles via the vector potential. The SO susceptibility
arises from SOC, namely, the correlation of spin and orbital
degrees of freedom, which is the major consequence of the
relativistic effect [49]. In connection with measurable trans-
port properties, the SO susceptibility is related to the spin
Hall conductivity [50,51], which is one of the typical transport
properties arising from SOC [52–54].

In particular, the characteristics of the SO susceptibility
for relativistic (Dirac and Weyl) fermions have been intensely
studied over the past few years, mainly in connection with
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topological insulators and semimetals [41–43,46–48]. Since
the spin of a massless relativistic fermion is locked to its
momentum [55], known as spin-momentum locking, it is
proposed that the SO susceptibility of massless relativis-
tic fermions shows a universal behavior, depending linearly
on the Fermi energy (chemical potential) [42,56]. However,
for multiband systems including nonrelativistic dispersions,
general idea on the SO susceptibility has not been well es-
tablished, despite its rising importance in both solid states
and quark matter. Such a lack of general idea on the SO
susceptibility is in a clear contrast to the situations in the spin-
spin and orbital-orbital susceptibilities, which were generally
formulated and studied for various kinds of materials from the
mid-20th century [57–67].

Based on the above background, here we study the ef-
fect of band hybridization on the SO crossed susceptibility.
First, we derive a formula for the SO susceptibility appli-
cable to general multiband systems. Based on the obtained
formula, we evaluate the effect of hybridization. In order to
evaluate the difference in the SO susceptibility related to the
presence or absence of the hybridization, we use a simple
model composed of massless Dirac fermions obeying spin-
momentum locking and nonrelativistic fermions free from
SOC. We find that, if the magnetic field is suddenly switched
on and violates the thermal equilibrium of the fermions,
which we call the dynamical process, the susceptibility gets
strongly reduced at the Fermi level in the vicinity of the
band hybridization point. Owing to the band hybridization,
the nonrelativistic fermions acquire spin polarization as well,
which also becomes significant in the dynamical process. We
give a qualitative understanding of these modifications of the
susceptibilities using the perturbation theory with a simple
quantum mechanics, which we show in a manner similar to
the well-established Van Vleck paramagnetism, namely, the
interband modification of spin-spin and orbital-orbital suscep-
tibilities assisted by SOC [58].

This article is organized as follows. In Sec. II we derive a
general formula for the SO crossed susceptibility by the linear
response theory using the Matsubara formalism. In Sec. III we
apply the obtained formula to Weyl fermions as a test case,
to see the consistency with the previous literatures [42,56].
Section IV is the main study in this article, where we introduce
a minimal hybrid model with Dirac and nonrelativistic degrees
of freedom, and evaluate the SO crossed susceptibility using
the obtained formula. We discuss how the spin polarization in
each sector, namely, Dirac or nonrelativistic, gets modified by
the hybridization. In Sec. V we give some discussion on pos-
sible experimental methods to capture the obtained behavior
of the susceptibilities, both in solids and quark matter. Finally,
we summarize our analysis in Sec. VI. Detailed definitions of
the susceptibilities and calculation processes are shown in the
Appendixes. Throughout this article, we take the natural unit
with h̄ = 1, and the speed of light c and the charge of particle
−e(<0) are left as constants.

II. GENERAL ANALYSIS

In this section, we derive a general formula for the SO
crossed susceptibility by the linear response theory. We start
with the definition of the SO crossed susceptibility, and evalu-

ate it perturbatively by using the Matsubara Green’s functions.
After rearranging the obtained terms with the momentum-
space (Bloch) eigenstates, the SO susceptibility is expressed
in terms of the geometric quantities related to the band eigen-
states, namely, the Berry connection, the Berry curvature, and
the orbital magnetic moment.

A. Linear response theory

The SO crossed susceptibility is defined as the response
function of spin magnetization Ms to the orbital magnetic
field Bo [42]. We here give a brief discussion how the spin
and orbital degrees of freedom are distinguished, by consid-
ering both electrons in solid states and elementary particles
in high-energy physics, and show the definition of the SO
crossed susceptibility. For detailed discussion about magnetic
susceptibility among the spin and orbital degrees of freedom,
see Appendix A.

The spin magnetization is composed of the spin polariza-
tion of fermions,

Ms = −γ 〈S〉, (1)

where the coeffcient γ = gμB is the gyromagnetic ratio, with
g the g-factor for the fermions and μB the Bohr magneton,
and S is the spin operator of the fermions. (Note that the spin
magnetic moment of a negative-charge particle is antiparallel
to the spin polarization.) The orbital magnetic field Bo is de-
fined with the U(1) vector potential A satisfying Bo = ∇ × A,
which couples to the particles in terms of the covariant deriva-
tive in continuum [2],

∇ �→ ∇ − ieA, (2)

and the Peierls phase on lattice [68],

ti j �→ ti j exp

(
−ie

∫ r j

ri

dr · A
)

, (3)

for the hopping amplitude between lattice sites ri and r j .
We should be careful about the role of Bo. In the context

of relativistic quantum electrodynamics (QED), where the
charged particles with Lorentz symmetry are coupled to the
electromagnetic fields, the effect of magnetic field is fully
described by the vector potential, namely, Bo in our definition.
Bo couples to both the spin and orbital degrees of freedom in
this framework. On the other hand, in the low-energy effective
theory for nonrelativistic fermions, which is derived from
the low-momentum expansion of massive Dirac fermions, Bo

does not fully describe the effect of the magnetic field. The
Zeeman coupling, namely, the direct coupling between the
magnetic field and the spin angular momentum, is given sepa-
rately from Bo coupled as the vector potential. This framework
applies to electrons in solid states, including those with Dirac
or Weyl dispersion at low energy in their momentum-space
band structures. In this framework, the effect of magnetic field
on the magnetization via the Zeeman coupling, which is rather
straightforward and has been well studied in the context of
magnetism, is excluded from our analysis in response to Bo.

With the above notations, the SO crossed susceptibility is
defined as a tensor χ so

i j (i, j = x, y, z) satisfying the relation

Ms
i (q,�) = χ so

i j (q,�)Bo
j (q,�) (4)
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between the spin magnetization Ms defined in Eq. (1) and
the orbital magnetic field Bo, where q and � are the wave
number (momentum) and the frequency (energy) of the ap-
plied magnetic field Bo. As long as the spin polarization is
well defined, χ so

i j is uniquely defined in both the relativistic
and nonrelativistic regimes. Below we derive the response
function to the orbital magnetic field Bo by the perturbative
expansion with respect to the vector potential A, in a way
similar to the perturbative derivation process of the orbital-
orbital susceptibility [62–64].

We start with the translationally invariant system described
by the momentum-space Hamiltonian

H0 =
∑

k

ψ†(k)H (k)ψ (k), (5)

with the fermionic field operator ψ (k) and the kernel matrix
of Hamiltonian H (k) acting on the components of the field
operator. This assumption applies to both continuum with
continuous translational symmetry and crystals with discrete
translational symmetries. By diagonalizing the matrix H (k),
we obtain the energy-momentum dispersion εa(k), corre-
sponding to the band dispersion in crystals, and the eigenstate
|ua(k)〉, which are related by

H (k)|ua(k)〉 = εa(k)|ua(k)〉 (6)

with a the label for the eigenstate.
We are here interested in the expectation value of the spin

polarization 〈S(r, t )〉 under the vector potential A(r, t ). The
local spin operator S(r, t ) is defined with the fermionic field
operators (ψ†, ψ ) as

S(r, t ) = ψ†(r, t )Sψ (r, t ), (7)

where S is the matrix acting on the spin subspace of the
fermionic fields, usually related to the Pauli matrices Si =
σi/2. As the linear response of spin polarization 〈Si=x,y,z〉 to
the vector potential Al=x,y,z, we focus on the response function
�

Si
Al

defined by

〈Si(r, t )〉 =
∫

dr′ dt ′ �
Si
Al

(r − r′, t − t ′)Al (r′, t ′), (8)

or its Fourier transform

〈Si(q,�)〉 = �
Si
Al

(q,�)Al (q,�) (9)

at arbitrary frequency � and momentum q.
In order to evaluate the response function �

Si
Al

(q,�), we
first note that the coupling to the vector potential with an
arbitrary momentum A(q) is given as the perturbation term

δHo(k, k′) = e

2
[v(k) + v(k′)] · A(k − k′), (10)

with the velocity matrix v(k) = ∂H (k)/∂k [see Eq. (A3)].
Based on this coupling, the response of the spin polarization
〈Si〉 is given with the Matsubara formalism at one loop, as
shown in Fig. 1,

〈Si(q, iω̄m)〉 = −eAl (q, iω̄m)

2βV

∑
iωn,k

Tr{SiG(k, iωn)

× [vl (k) + vl (k − q)]

× G(k − q, iωn − iω̄m)}, (11)

FIG. 1. The loop diagram corresponding to the response function
�

Si
Al

given by Eqs. (9) and (11), with the Matsubara formalism. The
solid lines represent the fermion propagators, and the wavy line
corresponds to the external field.

using the unperturbed Green’s function G(iωn, k) = [iωn +
μ − H (k)]−1. Here β = 1/T is the inverse temperature, V
is the volume of the system, μ is the chemical potential
(Fermi energy) of the fermions, and ω̄m and ωn are bosonic
and fermionic Matsubara frequencies, respectively. We do not
consider vertex correction to the velocity vertex, as long as
we omit interaction among fermions or impurity scattering.
By evaluating the Matsubara sum over iωn and performing
the analytical continuation iω̄m → � + i0 (see Appendix B
for detailed derivation process), we obtain

�
Si
Al

(q,�) = − e

V

∑
k

∑
ab

Fab(k, q,�)Mil
ab(k, q). (12)

The factor

Mil
ab(k, q) = 1

2 〈ub(k − q)|Si|ua(k)〉
× 〈ua(k)|vl (k) + vl (k − q)|ub(k − q)〉 (13)

measures the correlation between spin and orbital degrees of
freedom mediated by the single-particle states |ua(k)〉 and
|ub(k − q)〉, and the factor

Fab(k, q,�) = f (εa(k) − μ) − f (εb(k − q) − μ)
εa(k) − εb(k − q) − � − i0

(14)

specifies the spectral weight from the above two states, with
f the Fermi distribution function.

Since the orbital magnetic field Bo and the vector potential
A are related by Bo = ∇ × A, or

Bo
j (q,�) = iε jlhqhAl (q,�) (15)

in momentum space, the susceptibility tensor χ so
i j (q,�) de-

fined by Eq. (4) can be derived from �
Si
Al

(q,�) satisfying
Eq. (9),

χ so
i j (q,�) = i

2
γ ε jlh

∂�
Si
Al

(q,�)

∂qh
. (16)

Owing to the antisymmetrization by ε jlh, χ so
i j (q,�) becomes

gauge independent.

B. Static and dynamical susceptibilities

We are mostly interested in the behavior of χ so
i j (q,�) in the

low-frequency (� → 0) and long-wavelength (q → 0) limits.
There are two ways in taking the low-frequency limit, which
correspond to different physical situations as follows [69–72]:
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Static limit—If one takes � = 0 (or iω̄m = 0) from the
beginning, the response function gives the behavior of the
system in a thermal equilibrium that is reconstructed under
the external field, such as the Landau levels under Bo. This
picture is valid if the system thermalizes to the new equilib-
rium as quickly as the external field is applied, corresponding
to the case τ−1 � �, where τ is the relaxation time that phe-
nomenologically characterizes the timescale of thermalization
process.

Dynamical limit—If one keeps � �= 0 at first step and takes
the limit � → 0 after evaluating q → 0, the response function
gives the response arising from the nonequilibrium modula-
tion of the particle distribution, driven by the introduction of
the external field. This picture is valid if the thermalization
process is slow enough so that the distribution function of par-
ticles cannot follow the applied external field, corresponding
to the case τ−1 � �.

In addition to the above conditions, in order to apply
the low-frequency limit � → 0, the frequency � should be
smaller than the energy scale of band splitting (level re-
pulsion), such as the bandgap. In the presence of interband
hybridization (characterized by the parameter h in Sec. IV), it
leads to level repulsion at the band crossing point, providing
one characteristic energy scale for this condition.

While the static limit is mainly considered for the SO
crossed susceptibility in previous work [41–48], the dy-
namical limit is important as well, since it is related to
experimental measurements with a magnetic field applied in a
short timescale, such as a pulse magnetic field. Especially, in
relativistic heavy-ion collision processes, the magnetic field is
generated soon after the two nuclei collide peripherally, which
is more likely to be described by the dynamical limit. We
therefore consider the SO crossed susceptibilities in both the
static and dynamical limits, which we distinguish by χ

so(sta)
i j

and χ
so(dyn)
i j , and compare them in the following discussions.

A difference between the static and dynamical lim-
its emerges in the limiting behavior of the weight factor
Fab(k, q,�) given in Eq. (14):

Interband effect—If two bands a and b are different
[εa(k) �= εb(k), or a �≡ b for simplicity of notation], both the
static and dynamical limits give the same factor:

Fab(k, q,�)|a �≡b → f (εa(k) − μ) − f (εb(k) − μ)
εa(k) − εb(k)

. (17)

Intraband effect—If a and b correspond to a same band
or degenerate bands [εa(k) = εb(k) or a ≡ b], there arises a
difference between the static and dynamical limits. By taking
� → 0 first, the static limit gives

Fab(k, q,�)|a≡b → f ′(εa(k) − μ), (18)

with f ′(ε) = ∂ f /∂ε, since the numerator and the denominator
in Fab simultaneously approach zero under q → 0. On the
other hand, in the dynamical limit, with q → 0 taken first,
only the numerator approaches zero and this factor vanishes.

The difference in the limiting behavior of the intraband
effect results in the difference in the susceptibility, as we
demonstrate in the following discussions.

C. Identification with geometric quantities

The SO crossed susceptibility obtained by Eq. (16) can be
further evaluated by expanding the energies and the eigen-
functions by q up to its first order. The q-expansion yields
the k-space gradient of the energy ∇kεa(k) = va(k), namely,
the group velocity, and the gradient of the eigenfunction
|∇kua(k)〉. In order to rearrange the obtained terms, it is
instructive to introduce the multiband expressions of the ge-
ometrical quantities characterizing the k-space structure of
the wave functions [73–78]. (Note that these multiband ex-
pressions are introduced to simplify the obtained formulas,
and hence are rigorously different from the precise multiband
definitions introduced in Ref. [77].) The physical meanings of
the geometric quantities are given in terms of the wave-packet
picture [79], where a wave packet localized in real space and
momentum space is constructed as linear combination of the
momentum-space wave functions |ua(k)〉. (For simplicity of
notations, we do not explicitly denote the argument k below.)

We here introduce the Berry connection Aab, the orbital
magnetic moment mab, the Berry curvature �ab, and the spin
Berry curvature �

(Si )
ab . Below we give their definitions and

their physical meanings on the basis of the wave-packet pic-
ture. The Berry connection

Aab = i〈ua|∇kub〉, (19)

namely, the matrix element of the position operator r = i∇k , is
related to the shift of the wave-packet center in real space due
to the quantum interference. The orbital magnetic moment is
defined as

mab = ie

2
〈∇kua| × (ε̄ab − H )|∇kub〉, (20)

with ε̄ab = (εa + εb)/2. (The cross product acts on the Carte-
sian components arising from the momentum gradient ∇k =∑

j=x,y,z e j∂k j , where ex,y,z are the unit vectors in the Cartesian
coordinate.) mab is related to the orbital angular momentum
intrinsic to the wave packet, which arises from geometrical
structure of the wave functions. It is in analogy with the “self-
rotation” of a classical rigid body and is distinct from motion
of the wave-packet center [74–76,78]. The Berry curvature

�ab = i〈∇kua| × |∇kub〉 (21)

and the “spin Berry curvature”

�
(Si )
ab = i〈∇kua| × Si|∇kub〉 (22)

roughly correspond to the circulating current and spin current,
respectively, arising from the geometrical structure of the
wave functions. Since all these effects couple to the vector
potential or the orbital magnetic field in real space, these
geometric quantities appear in the response functions to the
orbital magnetic field.

Using the expressions of the geometric quantities intro-
duced above, we can classify the SO crossed susceptibility
into three terms,

χ so
i j = χ

(A)
i j + χ

(m)
i j + χ

(�)
i j , (23)

where the first term picks up the contribution from the Berry
connection, the second term from the orbital magnetic mo-
ment, and the third term from the Berry curvature and the spin
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Berry curvature. (The detailed calculation process is shown in
Appendix B 4.) Here we introduce the shorthand notations for
the spin matrix element S i

ab = 〈ua|Si|ub〉, the Fermi distribu-
tion function fa = f (εa(k) − μ), and the weight factor

Fab =
{

f ′
a (a ≡ b)

fa− fb

εa−εb
(a �≡ b)

(24)

arising from Fab in Eq. (14). With these notations, the Berry
connection term is given as

χ
so(sta:A)
i j = −eγ

V

∑
k

∑
a �≡b

( f ′
a − Fab)Re

[
(va × Aab) jS i

ba

]
,

(25)

χ
so(dyn:A)
i j = −eγ

V

∑
k

∑
a �≡b

(
1

2
f ′
a − Fab

)
Re

[
(va × Aab) jS i

ba

]
,

(26)

and the orbital magnetic moment term as

χ
so(sta:m)
i j = γ

V

∑
k

∑
ab

FabRe
[
m j

abS
i
ba

]
, (27)

χ
so(dyn:m)
i j = γ

V

∑
k

∑
a �≡b

FabRe
[
m j

abS
i
ba

]
, (28)

in the static and dynamical limits, respectively. The Berry
curvature term

χ
so(�)
i j = − eγ

2V

∑
k

[∑
ab

faRe
(
�

j
abS

i
ba

) +
∑

a

fa�
(Si ) j
aa

]
,

(29)

arising from the Berry curvature and the spin Berry curvature,
takes the same form for the static and dynamical limits, since
this term is originally proportional to fa − fb and the intra-
band effect a ≡ b gives no contribution to this term.

The static SO susceptibility, namely, the response of the
spin magnetization to the orbital magnetic field in equilib-
rium, is equivalent to its counterpart in terms of the Onsager’s
reciprocity theorem [80]: the response of the orbital magneti-
zation in equilibrium [78,81–83]

Mo = − ie

2V

∑
a,k

fa〈∇kua| × (εa + H − 2μ)|∇kua〉 (30)

to the spin magnetic field (Zeeman splitting)

δHs = γ

∫
drBs · S (31)

consistently reproduces the static susceptibility obtained
above [see Eq. (A12)]. Since the formula Eq. (30) is valid only
in equilibrium, we cannot rederive the dynamical SO crossed
susceptibility, which is based on the nonequilibrium distribu-
tion disturbed by the magnetic field, from this reciprocity.

The Berry-curvature term, arising from all the occupied
states in the Fermi sea, contributes to the static and dynam-
ical susceptibilities in the same manner. Since it counts up
the entire contribution from the Fermi sea, the susceptibility
depends on the momentum-space cutoff, which corresponds
to the structure of the Brillouin zone in crystals. In order
to extract the universal behavior arising from the relativistic
dispersion and the band hybridization in later sections, we

do not concentrate on the value of χ so
i j itself, but discuss its

dependence on the Fermi level μ throughout this article. We
evaluate its deviation from the value at μ = 0,

�χ so
i j (μ) = χ so

i j (μ) − χ so
i j (μ = 0), (32)

which is the quantity considered in Ref. [42] for Dirac and
Weyl fermions.

III. SINGLE WEYL NODE

Before going on to detailed analysis with interband hy-
bridization effect, let us check how the above formula works
by taking a single Weyl node as a simplest test case, which
is in parallel with the analyses in Refs. [42,56]. We shall see
that, due to spin-momentum locking, the SO crossed response
of Dirac and Weyl fermions is closely related to the chiral
magnetic effect (CME) and the chiral separation effect (CSE),
which are the response phenomena with respect to the orbital
magnetic field, well studied in the context of relativistic field
theory [84–89].

In lattice systems, the Nielsen-Ninomiya theorem [90,91]
requires that Weyl nodes with opposite chiralities should ap-
pear in pairs. We can still rely on the single Weyl-node picture,
as long as we neglect the contribution from k away from
the Weyl points and extract the μ-dependence. This picture
is valid if the Weyl points are well separated in momentum
space. At momenta k away from the Weyl points, the corre-
sponding band energy εa(k) should be located far above or
below the Fermi level μ, so that the region around the Weyl
points will give the dominant contribution to the response
phenomenon. Under such conditions, we can treat the quasi-
particle excitations around each Weyl point separately.

A. SO crossed susceptibility

If we assume spherical symmetry around the Weyl points,
we can use the momentum-space Hamiltonian as a 2 × 2-
matrix,

H (k) = ηvFk · σ, (33)

where the momentum k is defined as the relative momen-
tum from the Weyl point, with the spherical coordinate k =
k(sin θ cos φ, sin θ sin φ, cos θ ). This matrix acts on the spin-
1/2 space with spin-up and down states, where the Pauli
matrix σ corresponds to the spin operator S by S = σ/2.
The chirality (right/left) for each Weyl node is identified
by η = ±, and vF denotes the Fermi velocity around the
Weyl point. This Hamiltonian yields the conventional linear
dispersion, with the positive-energy branch ε(k) = vF|k| and
negative-energy branch ε(k) = −vF|k|, corresponding to the
eigenfunctions

|u+(k)〉 =
(

e−iφ/2 cos θ
2

eiφ/2 sin θ
2

)
, |u−(k)〉 =

(
e−iφ/2 sin θ

2

−eiφ/2 cos θ
2

)
.

(34)

For the chirality η = +, the positive-energy branch corre-
sponds to |u+〉 and the negative-energy branch to |u−〉, and
vice versa for η = −. Taking the eigenstates |u±〉 as the basis,
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the intraband and interband geometrical quantities within the
single Weyl node are given as

A±,± = ±1

2k
cot θeφ, A±,∓ = 1

2k
(±ieθ + eφ ), (35)

m±,± = −ηevF

2k
ek, m±,∓ = 0, (36)

�±,± = ∓1

2k2
ek, �±,∓ = 1

2k2
cot θek, (37)

�
(Si )±,± = 1

4k2

(
ei

k − ei
θ cot θ

)
ek, (38)

with the unit vectors ek = k/|k|, eφ = ez × ek/ sin θ , eθ =
eφ × ek . The matrix elements of the spin operator S = σ/2
read

S±,± = ± 1
2 ek, S∓,± = ∓ 1

2 (ieφ − eθ ). (39)

Using the above geometrical quantities and matrix ele-
ments, the SO crossed susceptibility tensor for a single Weyl
node, at Fermi level μ, can be straightforwardly obtained,

�χ
so(sta)
i j (μ) = eγμ

8π2vF
δi j, (40)

�χ
so(dyn)
i j (μ) = eγμ

24π2vF
δi j, (41)

at zero temperature. The static susceptibility, given by
Eq. (40), correctly reproduces the result in Ref. [42] obtained
by explicitly counting up the contributions from the Lan-
dau levels under the magnetic field. On the other hand, the
magnitude of the dynamical susceptibility given by Eq. (41)
is one third that of the static susceptibility, which has not
been explicitly mentioned in the context of the SO crossed
susceptibility. Such a difference between static and dynamical
limits is also seen in the CME and the CSE, which we shall
discuss in detail below. The μ-dependence in the SO crossed
susceptibility of Weyl fermions implies that, under an orbital
magnetic field Bo, spin polarization of the Weyl fermions can
be induced by varying the chemical potential μ. This electron
spin polarization will exert a spin torque on magnetization if
the system has a ferromagnetic order, which is proposed as the
charge- or voltage-induced torque in the context of magnetic
Weyl semimetals [56].

B. Chiral magnetic/separation effects

The SO crossed susceptibility of Dirac and Weyl fermions
is closely related to the CME, namely, the current response
against an orbital magnetic field [84–89]. For a single Weyl
node with chirality η, the current operator j and the spin
operator S are related as

j = −ηevFψ
†σψ = −2ηevFS. (42)

Therefore, when the spin polarization

〈S〉(sta)
η = − eμ

8π2vF
Bo, 〈S〉(dyn)

η = − eμ

24π2vF
Bo (43)

is induced by the magnetic field Bo, the chirality-dependent
current

〈 j〉(sta)
η = ηe2μ

4π2
Bo, 〈 j〉(dyn)

η = ηe2μ

12π2
Bo (44)

is induced accordingly. For a pair of Weyl nodes, or a single
Dirac node, the net current vanishes once it is summed over
the chirality η = ±. In case the chemical potentials of the two
chiralities μη=± are different, which is characterized by the
chiral chemical potential μ5 = (μ+ − μ−)/2, the net current
does not fully cancel. The current 〈 j〉 = 〈 j〉+ + 〈 j〉− arises in
response to Bo,

〈 j〉(sta) = e2μ5

2π2
Bo, 〈 j〉(dyn) = e2μ5

6π2
Bo, (45)

which is consistent with the static and dynamical CME
obtained by the field-theoretical approach [92,93] and the
semiclassical approach [94–96]. We should be careful that
the CME in equilibrium is unrealistic in lattice systems, once
one takes into account all the occupied states below the
Fermi level, including the states away from the Weyl points
[97–100]. On the other hand, the dynamical CME, which is
explicitly referred to as the gyrotropic magnetic effect (GME)
[96] or the natural optical activity [93] as well, is still present
in crystals, arising from the field-induced modulation of the
density of states at the Fermi surfaces.

In the absence of μ5, the charge current 〈 j〉 vanishes
in total, whereas the chiral current 〈 j5〉 = 〈 j〉+ − 〈 j〉−, cor-
responding to the currents of right-handed and left-handed
fermions flowing in opposite directions, is present. The chiral
current arises in response to the orbital magnetic field Bo,

〈 j5〉(sta) = e2μ

2π2
Bo, 〈 j5〉(dyn) = e2μ

6π2
Bo, (46)

which is known as the chiral separation effect (CSE) in the
context of the relativistic field theory [101,102]. The differ-
ence between the static and dynamical limit is present in
the CSE as well [103]. Note that the chiral current 〈 j5〉 is
proportional to the net spin polarization 〈S〉 = 〈S〉+ + 〈S〉−,

〈 j5〉 =
∑

η

η〈 j〉η =
∑

η

η(−2ηevF)〈S〉η = −2evF〈S〉, (47)

due to spin-momentum locking. While the definition of the SO
susceptibility is valid as long as the particles have spin degrees
of freedom, the CSE is well defined only if the chirality is
defined as a good quantum number, and hence we can regard
the CSE as the typical example of the SO crossed response
arising exclusively for chiral fermions.

IV. BAND HYBRIDIZATION EFFECT

Based on the general formula obtained above, we now
discuss the behavior of the SO crossed susceptibility, in the
hybrid system of Dirac and nonrelativistic fermions. Using a
minimal model Hamiltonian including Dirac and nonrelativis-
tic fermions, we discuss the effect of band hybridization on the
SO susceptibility. We evaluate both the static and dynamical
susceptibilities �χ so(sta/dyn) as functions of the Fermi energy
μ, and discuss how they get modified from those for Dirac and
Weyl fermions mentioned in the previous section. We shall
also separate the induced spin polarization into that from the
Dirac bands and that from the nonrelativistic bands, to see
the hybridization-induced effect in more detail. We mainly
consider their behavior at zero temperature.
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A. Minimal model

Let us take into account a single species of Dirac fermions
and a single species of nonrelativistic fermions, both with
spin 1/2, in three dimensions. Here the field operators consist
of six components in total: the four-component Dirac sector
is labeled by chirality (R/L) and spin (↑ / ↓) in the Weyl
representation,

�Dirac = (ψR↑, ψR↓, ψL↑, ψL↓)T , (48)

while the two-component nonrelativistic (NR) sector is la-
beled by spin (↑ / ↓),

�NR = (ψNR↑, ψNR↓)T . (49)

We define the model Hamiltonian for each sector as

HDirac =
∫

d3r �
†
Dirac(r)(−ivF∇ · α)�Dirac(r), (50)

HNR =
∫

d3r �
†
NR(r)

[−∇2

2m
+ ε0

]
�NR(r). (51)

The α-matrices for the Dirac sector are defined with the Weyl
representation, α = diag(σ,−σ ). Here we assume that the
momentum is locked not to the pseudospin, such as atomic
orbital or sublattice degrees of freedom in crystals, but to the
real spin, so that σ acts on the real spin degrees of freedom
[104]. For simplicity of discussion, we set the Fermi velocity
vF for the Dirac sector isotropic around the Dirac point k = 0,
and we take the free-particle dispersion for the nonrelativistic
sector. m denotes the effective mass at band bottom, and ε0 is
the energy difference (offset) of the band from the Dirac point.

We now take into account hybridization between the Dirac
and nonrelativistic bands, and consider its effect on the SO
crossed susceptibility. The hybridization arises if there is
a slight violation of crystalline symmetries that protect the
Dirac-node structure, or an interaction between the Dirac and
nonrelativistic sectors. Whereas its detailed structure depends
on the microscopic properties, namely, the crystal structure,
angular momenta of the constituent atomic orbitals, etc., our
main interest is rather conceptual, to see the behavior of
the SO crossed susceptibility in the vicinity of the band hy-
bridization point. We therefore set up a simple structure of
hybridization, which satisfies spherical symmetry, conserves
spin, and acts on the right-handed and left-handed compo-
nents with the same weights. The hybridization term is then
parametrized by a single real value h, with

Hhyb = h
∫

d3r
∑

s=↑,↓
(ψ†

R,sψNR,s + ψ
†
L,sψNR,s + H.c.). (52)

With this hybridization term, the total Hamiltonian H =
HDirac + HNR + Hhyb can be written as a 6 × 6-matrix in
momentum-space representation as follows:

H =
∑

k

�†(k)H (k)�(k), (53)

H (k) =
⎛
⎝vFk · σ 0 h

0 −vFk · σ h
h h k2

2m + ε0

⎞
⎠, (54)

with the field operator

� = (ψR↑, ψR↓, ψL↑, ψL↓, ψNR↑, ψNR↓)T . (55)

FIG. 2. Band structure of the minimal hybridized model defined
by Eqs. (53) and (54), for the energy offset (a) ε0 > 0 and (b) ε0 < 0.
The parameters are taken as m = 3|ε0| and h = 0.2|ε0|. The dashed
lines show the bands without the hybridization h. ε1 and ε2 in (a) are
the energies of the band crossing points in the absence of hybridiza-
tion, which we shall use in later calculations.

Since this model Hamiltonian keeps the right-handed and
left-handed components in the Dirac sector equivalent, it
yields three bands, each of which is twofold degenerate and
spherically symmetric around k = 0. Here we note that H (k)
commutes with the operator ek · σ, corresponding to the he-
licity of a particle. Therefore, H (k) can be separated into
two helicity subspaces characterized by the eigenvalue η = ±,
with the 3 × 3-matrix

Hη(k) =
⎛
⎝ηvFk 0 h

0 −ηvFk h
h h k2

2m + ε0

⎞
⎠ (56)

for each subspace. The typical band structure based on this
Hamiltonian is shown by Fig. 2. In the present model, the
quadratic dispersion from the nonrelativistic sector coexists
with the linear dispersion from the Dirac sector. Therefore,
if the energy offset ε0 is positive, as shown in Fig. 2(a), the
nonrelativistic band intersects the particle (electron) branch
of the Dirac band twice, whose energy levels are labeled
as ε1 and ε2 in the following discussions. At these points,
the bands develop anticrossing with the amplitude h. If ε0

is negative, as shown in Fig. 2(b), the nonrelativistic band
intersects the antiparticle (hole) and particle branches of the
Dirac band once for each, yielding a gap at the crossing point
with the antiparticle branch. In the present calculation, we take
ε0 positive, and investigate the behavior of the SO crossed
susceptibility mainly around the hybridization points ε1,2.

Our model defined here is composed of minimal number of
degrees of freedom, in order to extract the common feature in
the SO susceptibility caused solely by the presence or absence
of the band hybridization. While realistic systems including
relativistic fermions generally have richer internal degrees of
freedom, such as orbital and sublattice degrees of freedom
for electrons in solid states and color and flavor degrees of
freedom for quarks in high-energy physics, dependence on
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FIG. 3. Behavior of the SO crossed susceptibility �χ so(μ), as
functions of the Fermi energy μ. The solid and dashed lines are the
static and dynamical susceptibility, respectively, with the hybridiza-
tion parameter h varied as shown in the inset table. The vertical
dashed lines (ε1,2) correspond to the band hybridization points,
which are identical to those shown in Fig. 2(a). The parameters are
taken as ε0 > 0 and m = 3ε0.

such detailed internal structures for each system is beyond our
interest in this article.

B. Static and dynamical suceptibilities

With the model Hamiltonian defined in the previous
subsection, we now evaluate the SO crossed susceptibility
�χ so(μ) in both static and dynamical limits. We first con-
sider the response of the net spin polarization, by taking the
spin operator S as a matrix diag(σ, σ, σ )/2 acting on the 6-
component field operator � in Eq. (55). Here we fix the band
parameters ε0 > 0 and m = 3ε0, and vary the band hybridiza-
tion parameter h and the Fermi energy μ to capture typical
structures in �χ so(μ), arising from the band hybridization.
We evaluate the formula obtained in Sec. II C numerically,
based on the band eigenstates of the model Hamiltonian. The
quantities with energy dimensions are rescaled by ε0 in the
present calculations. Since the system is assumed to satisfy
spherical symmetry, the susceptibility tensor possesses only
the diagonal part �χ so

i j (μ) = �χ so(μ)δi j , which we shall
evaluate in the following discussion.

We first compare the static susceptibility �χ so(sta) and the
dynamical susceptibility �χ so(dyn) under the band hybridiza-
tion, with those estimated with the Dirac fermions without
hybridization, which we call the “pure Dirac” case [Eqs. (40)
and (41)]. The results are shown in Fig. 3 as functions of μ.
In the vicinity of the band hybridization points ε1,2, both the
static susceptibility �χ so(sta) and the dynamical susceptibility
�χ so(dyn) deviate from those in the pure Dirac case. They
asymptotically reach the pure Dirac behavior at the energies
away from ε1,2, since the hybridization effect on the band
eigenstates is significant only around these points.

For the static susceptibility �χ so(eq)(μ), we find three non-
analytic cusps for each value of h. These cusps correspond to
the band edges, namely, the minima and maxima of the bands

under the hybridization. The origin of such a nonanalytic
behavior can be traced back to the density of states, which
becomes nonanalytic at each band edge. We can see that it
comes from the intraband part of the magnetic-moment con-
tribution χ

so(sta:m)
i j given by Eq. (27), since it is accompanied

with the factor f ′(εa) that gives the density of states at zero-
temperature limit. Nonanalyticity in the static susceptibility
is also found for massive Dirac fermions [42], arising at the
edges of the mass gap, which can also be attributed to the
above mechanism.

In contrast, the dynamical susceptibility �χ so(dyn)(μ) is
obtained as a smooth function in μ, since it does not con-
tain the intraband Fermi-surface contribution. Although it still
contains the Fermi-surface effect f ′(εa) in χ

so(dyn:A)
i j , the ve-

locity va in the same term reaches zero at the band edge,
canceling nonanalyticity from the density of states.

Aside from the nonanalyticity, we should note that the
dynamical susceptibility �χ so(dyn)(μ) shows a relatively large
deviation from the pure Dirac case around the hybridization
points ε1,2. In particular, around ε2, the static susceptibility
appears almost insensitive to the hybridization effect, whereas
the dynamical susceptibility gets suppressed by the hybridiza-
tion. This is because the dynamical susceptibility is dominated
by the interband processes: the contribution from the inter-
band processes, accompanied with the weight factor Fab =
[ f (εa − μ) − f (εb − μ)]/(εa − εb), becomes significant at k
around the hybridization point, as the two bands εa and εb get
close to one another. As a result, the dynamical SO crossed
susceptibility acquires a large modification from the band
hybridization, in comparison with the static susceptibility.

C. Response of Dirac and nonrelativistic sectors

In order to understand the hybridization-induced modi-
fication in χ so(μ) in more detail, we separate it into the
contributions from the Dirac and nonrelativistic sectors. The
spin magnetization for the Dirac sector Ms

Dirac and that for the
nonrelativistic sector Ms

NR can be evaluated separately, with
the spin operators

SDirac = 1

2

⎛
⎝σ 0 0

0 σ 0
0 0 0

⎞
⎠, SNR = 1

2

⎛
⎝0 0 0

0 0 0
0 0 σ

⎞
⎠. (57)

As the response functions of these sector-resolved spin mag-
netizations to the orbital magnetic field Bo, we define the
SO crossed susceptibilities for the Dirac and nonrelativistic
sectors,

Ms
Dirac,i = −γ 〈SDirac,i〉 ≡ χ so

Dirac,i jB
o
j , (58)

Ms
NR,i = −γ 〈SNR,i〉 ≡ χ so

NR,i jB
o
j , (59)

which are obtained by using SDirac and SNR instead of S in
the formulas shown in Sec. II C.

Based on the above definition, the sector-resolved suscep-
tibilities as functions of the Fermi energy μ are obtained as
shown in Fig. 4, (a) in the static limit and (b) in the dynamical
limit. We here emphasize that χ so

NR becomes nonzero around
the hybridization points ε1,2 both in the static and dynamical
limits, among which the effect in the dynamical limit appears
rather significant. This indicates that the nonrelativistic sector

023098-8



SPIN-ORBITAL MAGNETIC RESPONSE … PHYSICAL REVIEW RESEARCH 3, 023098 (2021)

FIG. 4. The SO crossed susceptibilities separated into the Dirac
sector χ so

Dirac and the nonrelativistic (NR) sector χ so
NR, and their sum

(Total, χ so). Panel (a) shows the static susceptibilities, while panel
(b) shows the dynamical susceptibilities. Both results are obtained
with the offset of the NR band ε0 > 0, the effective mass for the NR
band m = 3ε0, and the hybridization parameter h = 0.2ε0.

shows a finite spin polarization in response to the orbital
magnetic field, even though the nonrelativistic fermions are
originally not subject to SOC.

Let us here give a qualitative discussion about the mecha-
nism how the dynamical susceptibility is strongly influenced
by the band hybridization, by using a perturbation theory with
a simple quantum mechanics. What we need to evaluate is
the spin magnetic moment of the hybridized states around
the hybridization points. Since the orbital magnetic moment
maa(k) of a massless Dirac (or Weyl) fermion is parallel to
its spin magnetic moment μaa(k) = −γSaa(k), as seen from
Eqs. (36) and (39), here we substitute the orbital magnetic
field with an effective spin magnetic field acting selectively
on the Dirac sector, coupled to the spins as δHeff = γ Bs

Dirac ·
SDirac. Note that this substitution of effective field is valid in
describing only the direction of the induced spin polarization,
not its magnitude including parameter dependences. We then
take into account the hybridization between the Dirac and
nonrelativistic sectors, and consider the response of spin mag-
netic moments to this effective magnetic field. For the sake of
clarity, we take the direction of Bs

Dirac as z-axis, which yields
δHeff = γ Bs

DiracSz
Dirac, and focus on the magnetic moments in

this direction, as we are here interested in the responses in
spatially isotropic systems.

At the momentum kc where the Dirac and nonrelativistic
bands cross each other, two states |uDirac(kc)〉 and |uNR(kc)〉
get hybridized. The hybridized states are given as linear com-
binations of the two states,

|u±〉 = 1√
2

[|uDirac〉 ± |uNR〉], (60)

where the eigenenergies ε± satisfy ε+ − ε− = 2h. If the hy-
bridization does not mix spins, as we have assumed in the
present model, |uDirac〉 and |uNR〉 participating to the hy-
bridization have the same spin polarizations. If the Fermi
level μ lies between ε+ and ε−, only the occupied state |u−〉
contributes to the spin polarization. Therefore, we see here
how the spin magnetic moment of the state |u−〉 gets perturbed
by the effective magnetic field Bs

Dirac.
When the effective magnetic field Bs

Dirac is applied, the state
|u−〉 is perturbed by δHeff ,

|δu−〉 = |u+〉〈u+|δHeff |u−〉
ε− − ε+

= −γ Bs
Dirac

2h
|u+〉〈u+|Sz

Dirac|u−〉,
(61)

at first order in Bs
Dirac. By this perturbation, the spin magnetic

moments of |u−〉 projected onto the Dirac and nonrelativis-
tic sectors, which we denote as μ� = −γ 〈u−|S�|u−〉 (� =
Dirac, NR), get modified as

δμz
� = −γ δ〈u−|Sz

�|u−〉 = −2γ Re〈δu−|Sz
�|u−〉

= γ 2Bs
Dirac

h
Re

[〈u+|Sz
�|u−〉〈u−|Sz

Dirac|u+〉]. (62)

For the Dirac sector, the modification

δμz
Dirac = γ 2Bs

Dirac

h

∣∣〈u+|Sz
Dirac|u−〉∣∣2

(63)

is parallel to Bs
Dirac, from which we can qualitatively under-

stand the enhancement of the SO response in the Dirac sector.
We note that this mechanism is similar to the Van Vleck
paramagnetism, where the paramagnetic susceptibility is en-
hanced by the interband effect that is allowed by SOC [58].
On the other hand, for δμz

NR, the matrix elements in Eq. (62)
become

〈u+|Sz
NR|u−〉 = − 1

2 〈uNR|Sz
NR|uNR〉, (64)

〈u−|Sz
Dirac|u+〉 = 1

2 〈uDirac|Sz
Dirac|uDirac〉, (65)

which yields

δμz
NR = −γ 2Bs

Dirac

4h
〈uNR|Sz

NR|uNR〉〈uDirac|Sz
Dirac|uDirac〉. (66)

Since we have assumed that |uDirac〉 and |uNR〉 have the same
spin direction, 〈uDirac|Sz

Dirac|uDirac〉 and 〈uNR|Si
NR|uNR〉 have

the same signs, which is the case with the present model
Hamiltonian in Eq. (54). Therefore, the product of the two
matrix elements in Eq. (62) becomes negative, yielding δμz

NR
antiparallel to Bs

Dirac. This discussion provides qualitative in-
terpretation about the negative SO response induced in the
nonrelativistic sector seen in Fig. 4(b), which is due to the
structure of the hybridized states.
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Our calculation results of the SO crossed susceptibility us-
ing the minimal model in Eqs. (53) and (54) are well described
by the above discussion with a simple quantum mechanics.
This discussion is valid no matter what kind of internal de-
grees of freedom is present, such as orbital, sublattice, flavor,
or color. Therefore, we can understand that the modifications
in the SO susceptibilities found in our calculation are not
the artifact from the minimal model employed here. It is the
common feature available in any relativistic fermion systems
hybridized with nonrelativistic fermion degrees of freedom, as
long as the hybridization mixes two states with the same spin
direction.

V. IMPLICATION ON EXPERIMENTS

Finally, we give some discussions about the implications
of our findings on experiments. In order to realize our idea
in experimental measurements, we first need to note the hi-
erarchy of energy (time) scales, among the relaxation rate
(inverse relaxation time) τ−1, the hybridization energy h, and
the frequency of the external magnetic field �. As mentioned
in Sec. II B, the static limit is valid for � < τ−1 < h, and
the dynamical limit applies to the case τ−1 < � < h. For
example, the transport calculations in graphene with charged
impurities give the relaxation time around τ ∼ 1 ps, cor-
responding to the frequency τ−1 ∼ 1 THz and the energy
4 meV [105]. This can be regarded as the typical scale of
relaxation for Dirac electrons at low carrier density, with
the Fermi velocity comparable to that of graphene (vF = 3 ×
106 m/s). With this relaxation timescale, transition between
the static and dynamical behaviors in the susceptibility can be
achieved by varying the frequency of the external magnetic
field around the terahertz regime. The hybridization energy
h should be larger than τ−1, so that the spectral broadening
by the imaginary part of the fermion self energy may not
obscure the band splitting of h arising from the hybridization
effect.

A. Solid states

For electrons in solid states, the response to a magnetic
field measured in experiments contains both the response to
the orbital magnetic field discussed throughout this article
and the response to the spin magnetic field via the Zeeman
effect. In order to extract the orbital effect, one may excite
the orbital degrees of freedom selectively by a circularly po-
larized light, and observe the magnetic circular dichroism,
namely, the difference in the light absorption depending on
the polarization of the light [106]. Another way to iden-
tify the orbital effect is to subtract the spin effect from the
full response to the magnetic field. In order to extract the
spin effect, one may rely on the exchange coupling between
the spins of localized electrons in magnetic elements and
the spins of itinerant electrons, which takes the same form
with the Zeeman coupling. By introducing magnetic dopants
in bulk sample, or the magnetic proximity effect in thin-
film geometry attached with a magnetic material, we can
mimic the spin magnetic field for the itinerant electrons, from
which we may extract the response to the spin magnetic
field.

Aside from the total spin polarization, we are also inter-
ested in the spin polarization separated into the Dirac and
nonrelativistic sectors, as discussed in Sec. IV C. In order to
distinguish the spin polarization by the sectors, the nuclear
magnetic resonance (NMR) spectroscopy will be helpful in
some materials [107]. We may rely on the Knight shift in
the NMR spectrum, which arises from the hyperfine coupling
bewteen the electron spin and the nuclear magnetic moment
[108]. The Knight shift provides information about the elec-
tron spin polarization belonging to each constituent element
in the compound. Therefore, if the Dirac and nonrelativistic
bands in the material come from different elements, such
as in a Dirac semimetal with impurity dopants, the Knight
shift may provide information about the sector-resolved spin
polarization mentioned in our discussion.

B. Quark matter

Our discussion can also be applied to quark matter. In
particular, we may consider mixture of heavy quarks, corre-
sponding to the flavor c and sometimes b, and light quarks
u, d , and s. Light quarks, having Dirac masses relatively
smaller than heavy quarks, can be treated as Dirac fermions,
while heavy quarks behave as nonrelativistic fermions at
low momentum. Throughout a relativistic heavy-ion collision
process, the generated quark matter will be subject to a mag-
netic field, if the collision of two heavy nuclei is noncentral
[88,109–112]. In a manner similar to the CME and the CSE
proposed in quark matter, this magnetic field will give rise to
the spin polarization of both the light and heavy quarks. Since
light quarks are described as relativistic Dirac fermions, the
magnetic field couples to them only via the vector potential.
While heavy quarks behave as nonrelativistic fermions, the
Zeeman effect on them is almost negligible due to their large
Dirac masses. Therefore, the effect of the magnetic field on
the spin polarization of quarks can be dominantly described
by the SO crossed susceptibility χ so.

Hybridization of light and heavy quarks is possible, if
heavy quarks are dilute enough in comparison with light
quarks. Heavy quarks form bound states with light quarks by
the strong interaction, which is proposed as the QCD Kondo
effect [21–40]. Under such a hybridization, our analysis on the
SO susceptibility implies that heavy quarks, corresponding to
the nonrelativistic sector in our analysis, develop spin polar-
ization in response to a magnetic field, although the Zeeman
coupling for heavy quarks is weak. While the spin polar-
ization of heavy quarks cannot be measured directly, it may
be captured as spin polarization of heavy hadrons including
heavy quarks (c or b) after hadronization, where the quarks
are cooled down and confined in hadrons. In the hadronization
process, spin polarization of heavy quark can be transferred to
spin polarization of a �c or �b baryon. Therefore, measure-
ment of the spin polarization of the �c or �b baryon is one of
the promising ways to observe the hybridization induced by
the QCD Kondo effect which is not experimentally verified
so far. In order to understand such an effect in quark matter
precisely, one needs to determine the microscopic structure of
interaction and parameters specific to the system, which is left
for further analysis [113].
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VI. CONCLUSION

In the present article, we have focused on the SO crossed
susceptibility, namely, the response function of the spin mag-
netization Ms composed of the spin polarization of fermions,
to the orbital magnetic field Bo described by the U(1) vec-
tor potential. The SO crossed susceptibility quantifies the
relativistic effect acting on fermions, since it arises as a con-
sequence of SOC, which is the relativistic effect. The idea of
SO susceptibility is applicable to any kind of fermion system,
not limited to solid states but also to quark matter.

One of the main issues discussed in this work is the
comparison of the SO crossed susceptibilities in two limits,
namely, the static and dynamical limits. While the behavior
of the SO crossed susceptibility in the static limit, induced by
a slowly introduced magnetic field keeping the equilibrium,
is broadly discussed in the context of topological materials,
its dynamical-limit behavior, under an abruptly introduced
magnetic field that drives the distribution out of equilibrium,
is discussed systematically for the first time.

As a result of our analysis, we have found that the dif-
ference between the static and dynamical SO susceptibilities
becomes significant in the presence of band hybridization. We
have seen this tendency by using the hybridized model of
Dirac fermions obeying spin-momentum locking and nonrel-
ativistic fermions free from SOC. In the dynamical limit, the
SO susceptibility gets strongly modified by the hybridization,
and the spins of the nonrelativistic fermions also respond to
the orbital magnetic field, even though they are not originally
subject to SOC. These modification effects can be understood
as the outcome of interband perturbation effect allowed by the
band hybridization, which is in a mechanism similar to the
Van Vleck paramagnetism.

The framework of our discussion applies at various en-
ergy scales, such as electrons in solids and quark matter
after heavy-ion collision in accelerators. In the present arti-
cle, we have taken a simple model with minimal number of
degrees of freedom, with which we are successful in extract-
ing a common feature in the SO susceptibility triggered by
the hybridization of relativistic and nonrelativistic degrees of
freedom. Of course, in realistic systems, there may be more
diverse internal degrees of freedom, depending on the atomic
orbitals and crystalline symmetries for electrons in solid states
and color and flavor degrees of freedom for quarks in high-
energy physics. Detailed treatment of the crossed response
phenomena, based on the microscopic model for each setup,
will be left for future analysis.
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APPENDIX A: ORBITAL AND SPIN MAGNETIZATIONS

In this part of the Appendix, we review how a magnetic
field couples to the orbital and spin degrees of freedom, and
distinguish the SO crossed susceptibility from the other types
of magnetic susceptibilities.

For relativistic fermions under Lorentz symmetry, their
coupling to a magnetic field B is given in terms of covari-
ant derivative, with the vector potential A(r) corresponding
to the magnetic field B = ∇ × A. On the other hand, for
nonrelativistic fermions, such as electrons trapped in crystals
(including electrons in topological semimetals with the Dirac-
or Weyl-type dispersion at low energy), their coupling to a
magnetic field is classified into (a) the orbital effect and (b)
the spin effect, which can be derived by downfolding the
relativistic theory to the nonrelativistic limit.

(a) The orbital effect is given in terms of covariant deriva-
tive, which is similar to the gauge coupling in the relativistic
theory. If the dynamics of fermions is described by the contin-
uum Hamiltonian

H0 =
∫

dr ψ†(r)H (p)ψ (r), (A1)

where ψ (r) is the (multicomponent) field operator of the
fermions and H (p) is defined by substituting the momen-
tum operator p = −i∇ to the momentum-space Hamiltonian
H (k), the vector potential shifts the Hamiltonian as

H =
∫

dr ψ†(r)H[p − eA(r)]ψ (r), (A2)

with −e the electric charge of the fermion. Therefore, the
perturbation by the magnetic field is extracted as

δHo = − e

2

∫
dr ψ†(r){v(p), A(r)}ψ (r), (A3)

with the velocity operator v(p) = ∂H (p)/∂ p.
(b) The spin effect is the so-called Zeeman splitting,

namely, the coupling between the spin angular momentum
and the magnetic field. If the spin density operator of the
fermions is given as S = ψ†Sψ , with S the matrix acting on
the components of the field operator, the spin effect of the
magnetic field is given in terms of the Zeeman term,

δHs = γ

∫
dr B · S = γ

∫
dr ψ†(B · S )ψ. (A4)

Here γ = gμB is the parameter called gyromagnetic ratio,
with μB the Bohr magneton and g is the g-factor for the
fermions. Note that g may depend on internal degrees of
freedom, such as the species of fermions, the atomic orbitals
that the electrons in the crystal belong to, etc., whereas we
here neglect such detailed structures.

Although the origins of the above two effects are the same
magnetic field B, one may formally distinguish them by using
different labels for the magnetic field, Bo and Bs. Under the or-
bital and spin magnetic fields, the partition function Z[Bo, Bs]
is given from the perturbed Hamiltonian H0 + δHo[Bo] +
δHs[Bs] by tracing out the fermionic degrees of freedom
(ψ†, ψ ). From this partition function, the magnetization can
also be defined separately for the orbital and spin sectors, as

023098-11



ARAKI, SUENAGA, SUZUKI, AND YASUI PHYSICAL REVIEW RESEARCH 3, 023098 (2021)

thermodynamic variables conjugate to Bo and Bs:

Mo = −δ ln Z

δBo

∣∣∣∣
Bo=Bs=0

, Ms = −δ ln Z

δBs

∣∣∣∣
Bo=Bs=0

.

The spin magnetization Ms is composed of the spins of the
fermions, related to the expectation value of spin polarization
〈S〉 as

Ms = −γ 〈S〉 = −γ 〈ψ†Sψ〉. (A5)

On the other hand, the orbital magnetization Mo comes from
the orbital angular momenta of the fermions, corresponding
to the circulating electric current carried by the fermions.
Since the position operator r is ill-defined in unbounded
systems, the momentum-space formalism of orbital magneti-
zation Mo cannot be given so simply as the spin magnetization
Ms [see Eq. (30)].

The magnetic susceptibility χi j is defined as the tensor
characterizing the response of magnetization δMi to the mag-
netic field Bj . As the magnetic field and the magnetization
are separated into the orbital and spin parts defined above, the
magnetic susceptibility can be separated into the four parts:

[Spin-spin] δMs
i = χ ss

i j Bs
j, (A6)

[Spin-orbital] δMs
i = χ so

i j Bo
j , (A7)

[Orbital-spin] δMo
i = χos

i j Bs
j, (A8)

[Orbital-orbital] δMo
i = χoo

i j Bo
j . (A9)

The spin-spin response is known as the Pauli paramagnetism,
namely, the spin polarization induced by the Zeeman splitting,
and the orbital-orbital part often gives rise to the Landau
diamagnetism, due to the orbital magnetic moment of the
quantum Hall states under the Landau quantization. The spin-
orbital crossed parts χ so and χos are not classified with either
of them, which require the correlation between the spin and
orbital degrees of freedom.

The above four susceptibilities are given in terms of the
partition function Z[Bo, Bs],

χ ss
i j = − δ2 ln Z

δBs
i δBs

j

, χ so
i j = − δ2 ln Z

δBs
i δBo

j

, (A10)

χos
i j = − δ2 ln Z

δBo
i δBs

j

, χoo
i j = − δ2 ln Z

δBo
i δBo

j

. (A11)

The spin-orbital crossed parts χ so and χos satisfy the relation

χ so
i j = χos

ji , (A12)

which is the outcome of the Onsager’s reciprocity theorem
[80].

Although magnetic field and magnetization in the relativis-
tic regime cannot be separated into the orbital and spin parts,
the idea of the SO crossed susceptibility χ so still applies. The
spin magnetization can be defined from the spin polarization,
Ms = −γ 〈S〉, and the magnetic field B couples to the particles
only via the vector potential. Therefore, in the relativistic
regime, the response of the spin magnetization to the magnetic
field is described in terms of χ so defined above.

APPENDIX B: DETAILED DERIVATION PROCESS
OF THE SO SUSCEPTIBILITY TENSOR

In this Appendix, we show details of the derivation process
toward the formula for χ so, whose final form is given in
Sec. II C.

1. Perturbation by vector potential

The starting point is the perturbation by the coupling to
the vector potential A. With the perturbation Hamiltonian
δHo given by Eq. (10), the linear perturbation of the Green’s
function becomes

δG(k, iωn; k′, iω′
n)

= G(k, iωn)δHo(k, iωn; k′, iω′
n)G(k′, iω′

n), (B1)

which is nondiagonal in momentum and Matsubara frequency.
Using this perturbation of Green’s function, the expectation
value of the spin polarization 〈S(q, iω̄m)〉 induced by the vec-
tor potential A(q, iω̄m) reads

〈Si(q, iω̄m)〉
=

∫
dr dτ eiq·r+iω̄mτ 〈Si(r, τ )〉 (B2)

=
∫

dr dτ eiq·r+iω̄mτ 〈ψ†(r, τ )Siψ (r, τ )〉 (B3)

=
∫

drdτ

(βV )2

∑
iωn,iω′

n

∑
k,k′

ei(q+k′−k)·r+i(ω̄m+ω′
n−ωn )τ

×〈ψ†(k′, iω′
n)Siψ (k, iωn)〉 (B4)

= 1

βV

∑
iωn,k

〈ψ†(k − q, iωn − iω̄m)Siψ (k, iωn)〉 (B5)

= −1

βV

∑
iωn,k

Tr[SiδG(k, iωn; k − q, iωn − iω̄m)] (B6)

= −1

βV

∑
iωn,k

Tr[SiG(k, iωn)δH (k, k − q) (B7)

×G(k − q, iωn − iω̄m)]

= −eAl (q, iω̄m)

2βV

∑
iωn,k

Tr{SiG(k, iωn) (B8)

×[vl (k) + vl (k − q)]G(k − q, iωn − iω̄m)}
≡ �

Si
Al

(q, iω̄m)Al (q, iω̄m), (B9)

where iω̄m = i 2π
β

m is the bosonic Matsubara frequency cor-
responding to the frequency of the vector potential. This form
corresponds to Eq. (11). By the analytical continuation iω̄m →
� + i0, we obtain the linear response to the vector potential,

〈Si(q,�)〉 = �
Si
Al

(q,�)Al (q,�), (B10)

for finite momentum q and frequency �.

2. Description with band eigenstates

We need to evaluate the response tensor �
Si
Al

(q,�) up to
O(q), to apply Eq. (16). By decomposing the Green’s function
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as

G(k, iωn) = −
∑

a

|ua(k)〉〈ua(k)|
iω+

n − εa(k)
, (B11)

where a denotes the band index satisfying

H (k)|ua(k)〉 = εa(k)|ua(k)〉 (B12)

and iω+
n = iωn + μ, the response tensor, is given in terms of

matrix elements as
�

Si
Al

(q, iω̄m)

= −e

2βV

∑
iωn,k

Tr{SiG(k, iωn)

×[vl (k) + vl (k − q)]G(k − q, iωn − iω̄m)} (B13)

= −e

2βV

∑
iωn,k

∑
ab

〈ub(k − q)|Si|ua(k)〉
[iω+

n − εa(k)][iω+
n − iω̄m − εb(k − q)]

×〈ua(k)|vl (k) + vl (k − q)|ub(k − q)〉 (B14)

≡ −e

βV

∑
iωn,k

∑
ab

Mil
ab(k, q)

[iω+
n − εa(k)][iω+

n − iω̄m − εb(k − q)]
.

(B15)

Here Mil
ab(k, q) defined in the last line corresponds to

Eq. (13).
The Matsubara summation is evaluated as

1

β

∑
iωn

1

[iω+
n − εa(k)][iω+

n − iω̄m − εb(k − q)]

= f (εa(k) − μ) − f (εb(k − q) − μ + iω̄m)
−iω̄m + εa(k) − εb(k − q)

(B16)

= f (εa(k) − μ) − f (εb(k − q) − μ)
−iω̄m + εa(k) − εb(k − q)

iω̄m→�+i0−→ f (εa(k) − μ) − f (εb(k − q) − μ)
εa(k) − εb(k − q) − � − i0

≡ Fab(k, q,�), (B17)

which corresponds to Eq. (14). We thus obtain Eq. (12),

�
Si
Al

(q,�) = − e

V

∑
k

∑
ab

Fab(k, q,�)Mil
ab(k, q). (B18)

3. Expansion by q

We need to expand �O
Aj

(q,�) up to O(q) to derive the
response to the magnetic field. By expanding Fab(k, q,�) and
Mil

ab(k, q) as

Fab(k, q,�) = F (0)
ab (k,�) − qhF (1)h

ab (k,�) + O(q2),
(B19)

Mil
ab(k, q) = M(0)il

ab (k) − qhM(1)ilh
ab (k) + O(q2), (B20)

χ so
i j (q = 0,�) can be obtained from Eq. (16) as

χ so
i j (q = 0,�) = i

2
γ ε jlh

∂�
Si
Al

(q,�)

∂qh

∣∣∣∣
q=0

= − ie

2V
ε jlh

∑
k

∑
ab

[
F (1)h

ab M(0)il
ab

+ F (0)
ab M

(1)ilh
ab

]
. (B21)

The expansion of the matrix elements Mil
ab(k, k − q) is

given by

M(0)il
ab = 〈ua|vl |ub〉〈ub|Si|ua〉, (B22)

M(1)ilh
ab = 1

2 〈ua|∂khvl |ub〉〈ub|Si|ua〉
+ 〈ua|vl

∣∣∂kh ub
〉〈ub|Si|ua〉

+ 〈ua|vl |ub〉
〈
∂kh ub

∣∣Si|ua〉, (B23)

where the dependence on k is not explicitly written for sim-
plicity. vh

a is the group velocity, defined by vh
a = ∂khεa. Since

the first term in M(1)ilh
ab contains ∂khvl = ∂kh∂kl H (k), which is

symmetric in h ↔ l , it does not contribute to χ so
i j (q,�) after

the antisymmetrization by ε jlh.
On evaluating the weight factor Fab(k, q,�), we should be

careful about the difference between the static and dynamical
limits, which comes from the absence or presence of the
frequency � in the denominator.

For the interband process εa �= εb, the numerator and the
denominator remain finite in the limit q → 0 and � → 0 irre-
spective of the order of taking these two limits, and hence the
q-expansion of Fab(k, q,� → 0) is straightforwardly given
as

F (0)
ab = fa − fb

εa − εb
,

F (1)h
ab = vh

a

[
fa − fb

(εa − εb)2
− f ′

a

εa − εb

]
, (B24)

in both the static and dynamical limits.
For the intraband process εa = εb, the denominator ap-

proaches zero in the limit q → 0 and � → 0, and hence we
need to care about the order of taking these two limits. In
the static limit, where the limit � = 0 is taken first, both the
numerator and the denominator approach zero in the limit
q → 0, yielding

Fab(k, q,� = 0)|εa=εb

= f (εa(k)) − f (εa(k − q))
εa(k) − εa(k − q)

q→0−→ f ′(εa(k)) = f ′
a, (B25)

which is of O(q0). In the dynamical limit, where � is kept
finite first, the denominator remains finite in the limit q → 0.
Therefore, the q-expansion becomes

Fab(k, q,�)|εa=εb

= f (εa(k)) − f (εa(k − q))
εa(k) − εa(k − q) − �

= −qhv
h
a f ′

a

�
+ O(q2),

(B26)

which is of O(q1). Although it appears to diverge in the limit
� → 0, it does not contribute to χ so(dyn) after the antisym-
metrization, as we shall see below.

4. Rearrangement with geometric quantities

From the q-expansion given by Eq. (B21), we are now
ready to rearrange the obtained terms into the geometric quan-
tities,

Aab = i〈ua|∇kub〉, (B27)
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mab = ie

2
〈∇kua| × (ε̄ab − H )|∇kub〉, (B28)

�ab = i〈∇kua| × |∇kub〉, (B29)

�
(Si )
ab = i〈∇kua| × Si|∇kub〉, (B30)

whose physical meanings are briefly explained in Sec. II C.
We also use the shorthand notations

ε̄ab = 1
2 (εa + εb), (B31)

S i
ba = 〈ub|Si|ua〉. (B32)

The matrix element of the velocity operator can be trans-
formed as

〈ua|v|ub〉 = 〈ua|∇kH |ub〉
= ∇k〈ua|H |ub〉 − 〈∇kua|H |ub〉 − 〈ua|H |∇kub〉
= ∇kεaδab − εb〈∇kua|ub〉 − εa〈ua|∇kub〉
= vaδab + (εb − εa)〈ua|∇kub〉. (B33)

Therefore, we obtain the relation

v|ua〉 = va|ub〉 + (εa − H )|∇kua〉. (B34)

a. Intraband contribution

The intraband contribution differs in the static and dynam-
ical limits. In the static limit, the weight factor is

F (0)
ab |εa=εb = f ′

a, (B35)

and hence the intraband contribution to the susceptibility be-
comes

χ
so(sta:intra)
i j = − ie

2V
ε jlh

∑
k

∑
a≡b

f ′
aM

(1)ilh
ab . (B36)

Here M(1)ilh
ab for εa = εb reads (by omitting the term symmet-

ric in l ↔ h)

〈ua|vl

∣∣∂kh ub
〉〈ub|Si|ua〉 + 〈ua|vl |ub〉

〈
∂kh ub

∣∣Si|ua〉 (B37)

= [
vl

a

〈
ua

∣∣∂kh ub
〉 + 〈

∂kl ua

∣∣εa − H
∣∣∂kh ub

〉]
S i

ba

+vl
aδab

∑
b′

〈
∂kh ua

∣∣ub′
〉〈ub′ |Si|ua〉. (B38)

Therefore, we obtain

χ
so(sta:intra)
i j = − 1

V

∑
k

∑
a≡b

f ′
a

[
e

2
(va × Aab) j + m j

ab

]
S i

ba

+ e

2V

∑
k

∑
ab′

f ′
a(va × Aab′ ) jS i

b′a (B39)

= e

2V

∑
k

∑
a �≡b

f ′
a(va × Aab) jS i

ba

− 1

V

∑
k

∑
a≡b

f ′
am j

abS
i
ba. (B40)

In the dynamical limit, the weight factor starts from O(q1),

F (1)h
ab

∣∣
εa=εb

= vh
a f ′

a

�
, (B41)

and hence the intraband contribution to the susceptibility be-
comes

χ
so(dyn:intra)
i j = − ie

2V
ε jlh

∑
k

∑
a≡b

vh
a f ′

a

�
M(0)il

ab . (B42)

Here M(0)il
ab for εa = εb reads

〈ua|vl |ub〉〈ub|Si|ua〉 = vl
aδabS i

aa. (B43)

Using this form, the right-hand side of Eq. (B42) contains the
factor vh

av
l
a, which is symmetric in l ↔ h and vanishes under

the antisymmetrization. Therefore, the intraband part for the
dynamical susceptibility vanishes,

χ
so(dyn:intra)
i j = 0. (B44)

b. Interband contribution

The difference in the static and dynamical limits does not
appear in the interband contribution. The expansion of M
reads

M(0)il
ab = 〈ua|vl |ub〉〈ub|Si|ua〉 (B45)

= −(εa − εb)
〈
ua

∣∣∂kl ub
〉
S i

ba, (B46)

M(1)ilh
ab = 1

2 〈ua|∂khvl |ub〉〈ub|Si|ua〉
+〈ua|vl

∣∣∂kh ub
〉〈ub|Si|ua〉

+〈ua|vl |ub〉
〈
∂kh ub

∣∣Si|ua〉 (B47)

= 1
2 〈ua|∂kl ∂kh H |ub〉S i

ba

+vl
a

〈
ua

∣∣∂kh ub
〉
S i

ba

+〈
∂kl ua

∣∣εa − H
∣∣∂kh ub

〉
S i

ba

+〈
∂kl ua

∣∣εa − εb|ub〉
∑

c

〈
∂kh ub

∣∣uc
〉
S i

ca. (B48)

By multiplying the weight factor, we are left with

F (1)h
ab M(0)il

ab = vh
b

[
f ′
b − fa − fb

εa − εb

]
〈ua|∂kl ub〉S i

ba, (B49)

F (0)
ab M

(1)ilh
ab ≈ fa − fb

εa − εb
S i

ba

× [
vl

a

〈
ua

∣∣∂kh ub
〉 + 〈

∂kl ua

∣∣εa − H
∣∣∂kh ub

〉]
+ ( fa − fb)

〈
∂kl ua

∣∣ub
〉∑

c

〈
∂kh ub

∣∣uc
〉
S i

ca.

(B50)

Since the first term in Eq. (B48) is symmetric in l ↔ h and
does not contribute to the susceptibility, we have omitted its
contribution to the right-hand side of Eq. (B50). By identi-
fying them with the geometric quantities term by term, the
interband contribution to the susceptibility reads

χ
so(inter)
i j

= − ie

2V
ε jlh

∑
k

∑
a �≡b

(
F (1)h

ab M(0)il
ab + F (0)

ab M
(1)ilh
ab

)
(B51)

= − e

2V
ε jlh

∑
k

∑
a �≡b

(
f ′
b − fa − fb

εa − εb

)
vh

bAl
abS i

ba
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− e

2V
ε jlh

∑
k

∑
a �≡b

fa − fb

εa − εb
vl

aAh
abS i

ba

− 1

V

∑
k

∑
a �≡b

fa − fb

εa − εb

[
m j

ab + e

4
(εa − εb)� j

ab

]
S i

ba

− ie

2V
ε jlh

∑
k

∑
abc

( fa− fb)
〈
∂kl ua

∣∣ub
〉〈
∂kh ub

∣∣uc
〉
S i

ca,

(B52)

where the condition a �≡ b in the last line is omitted due to
the factor ( fa − fb), which vanishes for a ≡ b. By further
processing these terms, we obtain

χ
so(inter)
i j

= e

2V

∑
k

∑
a �≡b

f ′
a(va × Aba) jS i

ab

− e

2V

∑
k

∑
a �≡b

fa− fb

εa−εb

[
(va×Aba) jS i

ab+(va × Aab) jS i
ba

]

− 1

V

∑
k

∑
a �≡b

fa − fb

εa − εb

[
m j

ab + e

4
(εa − εb)� j

ab

]
S i

ba

+ ie

2V
ε jlh

∑
k

∑
abc

fa
〈
∂kl ua

∣∣ub
〉〈

ub

∣∣∂kh uc
〉
S i

ca

− ie

2V
ε jlh

∑
k

∑
abc

fb
〈
∂kh ub

∣∣uc
〉〈uc|Si|ua〉

〈
ua

∣∣∂kl ub
〉

(B53)

= e

2V

∑
k

∑
a �≡b

f ′
a(va × Aba) jS i

ab

− e

V

∑
k

∑
a �≡b

fa − fb

εa − εb
Re

[
(va × Aab) jS i

ba

]

− 1

V

∑
k

∑
a �≡b

fa − fb

εa − εb
m j

abS
i
ba

+ e

2V

∑
k

∑
ab

fa + fb

2
�

j
abS

i
ba + e

2V

∑
b

fb�
(S i ) j
bb .

(B54)

By adding the intraband contribution obtained in Eq. (B40)
or (B44), we obtain the full susceptibility classified by the
geometric quantities, as given in the main text.
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