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Thermo-optic phase shifters allow one to dynamically tune and control the operation of integrated-optics
interferometers. They have been demonstrated nowadays in different waveguide platforms, and their reliable
functioning has enabled the realization of reconfigurable circuits of notable complexity. The design approach to
such devices is often based on finite-element numerical simulations, which provide accurate descriptions of the
underlying thermal phenomena, at the price of long computational times. Here, on the contrary, we devise an
analytical model for the heat diffusion in a simplified geometrical configuration. The model describes both static
and dynamic regimes, and can be conveniently applied both to three-dimensional waveguide devices inscribed
by femtosecond laser pulses and to planar lithographic circuits. The accuracy of the predictions of the model is
validated with experimental measurements on Mach-Zehnder interferometers with different geometries, realized

in both kinds of platforms.

DOI: 10.1103/PhysRevResearch.3.023094

I. INTRODUCTION

Dynamically tunable integrated-optics circuits are at the
forefront in the most advanced applications of photonics [1],
which include optical signal routing and processing [2,3],
free-space beam steering and shaping [4-6], e.g., for LIDAR
applications, neuromorphic computing [7,8], and quantum in-
formation experiments [9-13].

Thermo-optic phase shifters are widely adopted to achieve
an active control on integrated-optics interferometers. Such
devices exploit the refractive index variations induced by local
temperature changes, which in turn are typically produced by
resistive heaters deposited on the surface of the chip.

These devices have been demonstrated in multiple plat-
forms, including silica-on-silicon [11,14], silicon nitride
[15,16], silicon-on-insulator [3,17], and femtosecond laser
written circuits [18,19]. Such active components are often
designed on the basis of an empirical approach, or by exploit-
ing numerical finite-element simulations of the heat diffusion
[20,21]. As a matter of fact, analytical models, developed in
conveniently approximated settings, can be beneficial for a
deeper understanding of the involved physical dynamics, and
for laying out simple guidelines for the engineering process.

Analytical models of the heat diffusion have been indeed
reported in a few papers studying thermo-optic phase shifters.
However, to the best of our knowledge, these are limited to
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the analysis of the steady state [22,23] or to giving general
and approximate indications on the dynamic behavior [24].
In addition, these models may not be suitable to describe
femtosecond laser written devices, where crosstalk among
waveguides of the same interferometer can be relevant due
to the large substrate thickness.

In this paper, we delineate an analytical model for the heat
diffusion that works in the geometrical setting of typical opti-
cal chips and is valid in both static and dynamic regimes. This
model can be applied to three-dimensional waveguide devices
inscribed by femtosecond laser pulses and, as well, to planar
circuits fabricated by lithographic technologies. Experimental
measurements, performed on both kinds of platforms, validate
the accuracy of the model predictions.

II. PREMISE

The phase delay accumulated by coherent light, propagat-
ing in an arbitrary segment (possibly curved) of length L of a
single-mode waveguide, is given by

2
¢ = —/n(7)dl, (D
AL

where X is the wavelength and n(7) the effective refractive
index of the optical mode in a specific point of the waveguide.
If temperature variations are not too big, the effective refrac-
tive index can be considered a linear function of the local
temperature,

n(r) = no(F) + nr[T (7) — Tol, @

where n7 is the thermo-optic coefficient. In this paper, we
study essentially the temperature distributions, both in static
and dynamic conditions, and we implicitly assume that the
refractive index, and thus the induced phase shift, follow in-
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FIG. 1. (a) Scheme of the geometry considered in our analytical
model. (b) The method of images allows us to define a symmetrized
system, which yields (in the region 0 < z < h) the same temperature
distribution as the original one. Note that, for convenience of repre-
sentation, in (b) the axes xz are rotated by 90° with respect to (a).

stantaneously and linearly the temperature trend according to
the above equations.

In particular, we refer to the geometry depicted in Fig. 1. A
planar dielectric layer of thickness # is placed in contact with
a thermostat (or heat sink) at a fixed temperature Tp. Above
the dielectric, we consider the presence of air, assumed as an
insulating medium for heat conduction. We neglect convection
and radiative phenomena. The whole structure is infinite and
uniform along the y direction (orthogonal to the picture). A
wirelike heater is placed at the origin of the Cartesian system
and runs parallel to the y axis.

Dealing with interferometric devices, it is useful to con-
sider the difference in the phase acquired by the light
propagating in two different waveguides. To this purpose, we
consider two waveguides contained in the dielectric layer,
which also run parallel to the y axis, and are characterized by
their transversal coordinates (xy, z;) and (x, o) [Fig. 1(a)].
If we consider waveguide segments of length L, exploiting
the previous relations, we can write the relative phase as a
function of the temperature difference between the two points,

2
Ap=¢ — ¢ = TnTL AT, 3)

where AT =T — T, =T(x1,z1) — T(x2, 22). In particular,
in the case of an ideal Mach-Zehnder interferometer (MZI),
if coherent light is injected into one input port, the optical
transmission on the opposite output port is written as

T = sin® (—A¢;L ¢O), 4)

where ¢ is a phase term that is built in the interferometer.

We note that the geometry illustrated in Fig. 1 can conve-
niently model femtosecond laser written circuits: In this case
waveguides are typically inscribed at arbitrary depths in the
bulk of a thick (~1-mm) glass substrate, which may be placed
on a metallic support that works as a heat sink [18,25,26].

In addition, the same geometry can be employed to model
planar lithographic waveguides, if the waveguides consist in
doped regions or high-index insertions within a silica (di-
electric) layer that is grown on top of the silicon substrate
[14,15,27]. The silicon substrate has thermal properties that
are similar to those of metals and can work as the heat sink
[28].

III. STATIC TEMPERATURE DISTRIBUTION

For a general, arbitrary configuration of heat sources, the
heat conduction within a uniform material region is described
by

AT (7, 1)
or

where T (7, t) gives the temperature distribution, ¢(7, t) is the
thermal power generated per unit volume, « is the thermal
conductivity of the material, ¢ is the specific heat capacity,
and p is the density. To simplify the notation, in the following
we will omit to write the dependencies on 7 and ¢. In the static
case, the time derivative in Eq. (5) is zero:

g7, 1) = —kV?T (7, 1)+ cp 5)

qg=—kV°T. (6)

As a first step to develop our analytical model, we consider
a single wirelike heater, infinitely long, immersed in a uniform
medium. This geometry is characterized by cylindrical sym-
metry and all physical quantities only depend on the distance
from the heater. For convenience, we can adopt a cylindri-
cal coordinate system (7, 6, y) coaxial to the wirelike heater,
where all quantities depend only on r.

In detail, in the uniform space without heat sources, Eq. (5)
becomes

LT 0T ™
ror  or? ’
and yields the general solution
T(r)=T*+Clan*, (8)

where C, r*, and T* are proper constants; in particular, 7* is
identified as the temperature at the coordinate r*.

If the wirelike heater, placed on the y axis, dissipates stat-
ically a thermal power P per unit length, such thermal power
will also have to flow through each cylindrical surface of unit
length and of arbitrary radius. Choosing a surface with radius
1o, the Fourier’s law for heat conduction is written as

oT C
P=—-—k—| 2tryg = —« (—)27rr0 = 2nxC
or - 1o
A’ 9
__r
T 27k
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Therefore, Eq. (8) becomes finally

T =T — L .
2tk r*

Note that, in the case of a source consisting in a resistive
heater, it is indeed more appropriate to fix as a boundary con-
dition the dissipated power, rather than the heater temperature.
In fact, this is the quantity that is fixed by the Joule’s law, when
a certain voltage or current is imposed in the resistor.

As a second step to develop our model, we introduce the
presence of the glass-air interface, with the wirelike heater
lying exactly on that. We observe that the thermal conduc-
tivity of substrates such as silicon or fused silica (Ag; ~
130 Wm— 'K, Asio, ~ 1 W m 'K is quite larger than
that of air (A, ~ 0.02 W m~! K~!). It can be reasonable to
approximate air as a perfect heat insulator, with respect to the
substrate. Thus, at the substrate-air interface the temperature
gradient VT (which is indicative of the heat flux, because of
the Fourier’s law) can be assumed as parallel to the interface
itself.

Such an interface corresponds geometrically to a symmetry
plane of the cylindrical temperature distribution, along which
the temperature gradient is parallel to the plane itself. There-
fore, the upper half space can be replaced by a perfect heat
insulator without affecting the solution of the equation in the
lower half space. A solution of the kind of Eq. (10) is thus
valid in the lower half space both in the uniform case and in
the presence of the air-glass interface, under the reasonable
approximation that the heat flux across such an interface is
negligible. However, we need to drop a factor of 2 at the
denominator, to take into account the fact that the power P
is dissipated only on the lower semicylinder:

T(r)=T"— 31ni*.

an
TK T

As a third and final step, we add the thermostat. The
presence of the thermostat implies the existence of a plane
horizontal surface, at depth %, having a uniform temperature
To. To retrieve the temperature distribution in this configu-
ration, we employ the so-called method of images. Namely,
we look for an equivalent system, consisting in a uniform
and infinite medium and a distribution of heat sources, which
provides the same conditions at the boundaries of the original
system.

We can consider in particular the configuration shown in
Fig. 1(b), where the original system is symmetrized with
respect to its top surface. Such a configuration consists of a
slab of material with thickness 2/, delimited both from above
and from below by surfaces with fixed temperature 7y, with
one wirelike heat source placed in the middle. Furthermore,
we add an infinite series of sources at coordinates z = 2mh
(with m integer, positive or negative), alternately dissipating
a power —P or +P. For the linearity of the heat equation,
the solution will be written as the sum of the contributions of
these infinite sources.

Because of symmetry constraints, the gradient VT, along
the whole plane z = 0, lies parallel to the plane itself. This
provides the condition of vanishing heat flow across the top
surface of the original system. Again by symmetry considera-
tions, one observes that the series of sources is antisymmetric

(10)

with respect to both planes at z = +h. In other words, for each
positive source placed at a certain distance from a given point
of the plane z = & (or z = —h) there is another negative source
placed at the same distance but in the opposite half space. This
means that the summed contributions of the sources vanish
across these whole planes: The temperature in these planes is
uniform and can be fixed to an arbitrary value Tj.
Writing the solution mathematically, one obtains

P +00
T=T-_— Z (—=1)"1n

m=—0oQ

r(m)

12)

rx

with 7 indicating the distance between the point of interest
at coordinates (x, z) and the mth source:

r = \/x2 + (2mh — 2)2.

By collecting the contributions in couples of one positive and
one negative source, in detail the (m + 1)th with the (—m)th,
and by exploiting the mathematical properties of logarithms,
Eq. (12) can be rewritten as

13)

P I L remth
m=

X2+ [2(m + Dh — z)?
X2 4 Q2mh + z)?

P +o00
=To+5— n;)( 1" In (14)
It is easy to show that such an infinite sum is converging, using
the Leibniz criterion. It is also easy to observe that Eq. (14)
provides T = Ty for every value of x if z = h, because each
term of the series is vanishing.

The phase shift produced in an interferometer composed
by two waveguides, placed at coordinates (x;, z;) and (x2, 22),
is proportional to the temperature difference AT =T, — T,
between those points, as per Eq. (3). From Eq. (14) we see
that AT, and then ¢, is proportional to P. Modeling a realistic
device, where both the waveguides and the heater are taken of
length L, one can consider the full dissipated power on the

thermal phase shifter as P,; = P - L and write
AP = aP. (15)

The proportionality coefficient «, which indicates somehow
the efficiency of the device, is calculated from Eq. (14) to be

Ap  FnrL(T = D)
Py PL

" [xg + @2mh +2)* X3 + [2(m + Dh — z]]z}

X} + 2mh +z0)* 33 + [2(m + Dh — 21
(16)

Approximate expressions for « can be derived in several cases
of significant experimental relevance.

In the case where the thickness of the substrate is much
larger than the distances between the heater and the waveg-
uides, i.e., for 4 > x|, and h > z) », the terms of the sum in
Eq. (16) become negligible already for m > 1, and even in the
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FIG. 2. Experimental measurements of o (crosses) for interfer-
ometers fabricated by femtosecond laser writing, using different
geometrical parameters. For each interferometer z; =z =z and
x; = 0. Theoretical curves (continuous lines) are calculated accord-
ing to Eq. (17). Error bars on the experimental points are smaller or
comparable to the marker size.

P +Q2h—z1)

m ~ 1. Hence we

term m = 0 we can approximate
produce a very simple expression,

Qapprox = In R, (17)

where

[2, 2
r X+ 2

R=—=———, (18)
e+ 2

which is the ratio of the distances of the heater from the
second waveguide and from the first waveguide. We may
note that Eq. (17) coincides also with the result of Ref. [18].
In fact, such an approximation is appropriate in the case of
femtosecond laser written waveguides inscribed at a depth of
tens of microns inside a uniform glass substrate of millimetric
thickness.

Figure 2 plots the experimental measurements of «, con-
ducted on MZIs realized by femtosecond laser waveguide
writing, together with the theoretical predictions of Eq. (17).
For each interferometer the waveguide depth is the same
for both branches (z; = z; = z) and the first waveguide lies
precisely below the heater (x; = 0). Different geometrical
parameters are explored for z and x,, with z ranging from
15 to 53 um and three possible values for x, = 50, 254, and
1000 um. Experimental data points are acquired by coupling
coherent light at a 1550 nm wavelength in one input port of
each MZI, and by measuring the optical power simultaneously
at both output ports, using distinct power-meter head sensors.
A MATLAB script controls the power supply driving the re-
sistive microheaters, and records the optical measurements
for each value of the actuation current. The coefficient « is
retrieved by a nonlinear fit, taking into account Eqgs. (4) and
(15). Further experimental details on the device fabrication
and characterization are reported in Appendix A. Theoret-
ical curves are calculated considering ny =7 x 107 K~!
and k = 1.09 Wm~' K~! [19,29]. Very good agreement be-
tween theory and experiment is observed for all devices, thus
showing the potential of this simple model. (A dynamical
characterization will be performed on a subset of these de-
vices, i.e., devices A, B, and C in Table I, and will be discussed
in Secs. IV and V.)

On the other hand, in the case of lithographic devices it is
common to have a very thin dielectric thickness /, a heater
placed just above the first waveguide (x; = 0) and the second
waveguide at a distance x, 3> h. Waveguides are also usually

placed at the same depth z = z; = 7, in the substrate. In this

X+Q(m+1)h—z)
xX3+(Q2mh+z)?

that the temperature of the second waveguide is approximately

equal to 7y and thus AT ~ T;. In this case

case, ~ 1 for all values of m, which implies

19)

2np <X 2 Dk —
o~ Z(_])'MHM‘

~ K 2mh + z

m=0
As a further approximation, which allows a rapid estimation
of the order of magnitude of the « coefficient, one could
even truncate the series at its first term, i.e., m = 0. This is
equivalent to employing Eq. (17) with
2h —z

R= . (20)
Z

Figure 3 summarizes different estimates of the o coeffi-
cient in the case of a MZI fabricated in a SiON platform,
listed as device D in Table I. The experimental value oexp is

TABLE 1. List of the integrated-optics MZIs used to validate experimentally the dynamic model. Relevant geometrical parameters are
listed for each device. In all cases, both waveguides are at the same depth z = z; = z, and the first waveguide is placed exactly below the
heater (x; = 0). Devices A, B, and C are treated in the approximation of thick substrate and R is calculated according to Eq. (18). On the

contrary, for device D the dielectric layer is thin and R follows Eq. (20).

Device h z X2 R Platform

A 1.1 mm 53 um 254 um 4.90 fs laser written
B 1.1 mm 23 um 254 um 11.1 fs laser written
C 1.1 mm 15 um 1000 pm 66.7 fs laser written
D 20 pm 8.8 um 250 um 3.5 Lithographic SiON

023094-4
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FIG. 3. Different estimates of the o coefficient in the case of a
MZI fabricated in a SiON platform (device D in Table I). The black
line marks the value that is experimentally measured; measurement
uncertainty is indicated by the line thickness. Dots represent succes-
sive approximations achieved truncating the series in Eq. (19) at a
different value of m. The blue dashed line indicates the value given
by Eq. (17), which coincides with the truncation at m = 0.

measured with the same procedure used for the femtosecond
laser written MZIs. In this lithographic device, waveguides
are buried at z = 8.8 um below the surface in a silica layer of
thickness 7 = 19.8 um. The silica layer is deposited on top
of a silicon substrate, which can work as a heat sink. The
first waveguide of the interferometer lies exactly below the
heater (x; = 0) while the other one is placed at x, = 250 um.
Assuming as material properties ny = 11 x 107 K~! and
k = 1.4 Wm~' K~! (standard values for pure silica), the esti-
mate of Eq. (19) shows good matching with the experimental
value, when the series is evaluated with a sufficient number of
terms. However, even Eq. (17) catches the order of magnitude
of this coefficient. Thus, it can provide useful indications,
from a circuit design perspective, on how « scales with the
geometrical parameters of the circuit and the thermal proper-
ties of the material.

IV. DYNAMIC RESPONSE: FREQUENCY ANALYSIS

To study analytically the dynamic response, i.e., the re-
sponse of the system for a time-varying g, we can perform a
frequency analysis and take the Fourier transform of Eq. (5):

—« VT + jocpT = §. (21)

We can choose to solve the equation in cylindrical coordi-
nates, assuming conditions of perfect cylindrical symmetry
and a wirelike heat source. In particular, in the transformed
space, we refer to a heater that dissipates an oscillatory power
P = P(w) per unit length, at a given frequency w. The solu-
tion procedure, which is quite lengthy, is reported in Appendix
B and results in the following expression for T (w),

(1:/1—_j wcp r> 22)

where K indicates the modified Bessel function of the second
kind, of order O.

T(w)= P(w)

As we did in the case of the static response, we can adapt
that solution to the case of a semi-infinite medium interfaced
with a perfectly insulating environment. Namely, we multiply
it by a factor of 2, which takes into account the fact that P
is fully dissipated in the lower half space. Then, to obtain the
complete solution for the geometry considered in Fig. 1, we
add up the contributions of an infinite series of sources with
an alternate sign,

P(w)

m 1+ [wcp (m))
— 2( 1)K0<\/§‘/K . (23)

m=

T(w) =

where 7™ is defined as in Eq. (13).
The Bessel function Ky(¢) (where ¢ is a complex number)
yields the following two approximations:

Ko(Z) ~—In¢ for |¢] — O, (24)

-
Ko@)~ JZE_ for |¢] — oo. (25)
2t

Using Eq. (24) it is easy to trace back Eq. (23) to its static
limit Eq. (14) for @ — 0. The other limit, Eq. (25), shows
instead that when w is sufficiently high, the Bessel functions
in Eq. (23) decrease faster than exponentially with |¢|. On the
one hand, this means that 7(w) — 0 for @ — +00. On the
other hand, this also means that for increasing frequencies
only the terms with the lower || become significant. In
particular, for the highest frequencies the m = 0 term (which
corresponds to the lowest ||, ie., r® =r = x2+72)
tends to dominate over the other ones.

As introduced before, for the operation of practical devices
it is significant to consider the temperature difference between
two points AT () = T (w) — T5(w). We can also define a
frequency-dependent efficiency, i.e., a frequency-dependent o
coefficient,

P) X P
2n7 m[ (1 +J [ocp (m)>
= —1
2§ erfo(

1+ -
e

\V/xi2 + (2mh — z12)?* and, in particular, ri(’); =

(m) __
where ra, =

ry 2 are the distances of the two waveguides from the heater.
Considerations regarding the limits given by Eqgs. (24) and
(25) can be applied also to the expression of &(w). In par-
ticular, if r; < r, we can observe that r; = rfo) is the lowest
among all coefficients r(m) Application of the limit given
by Eq. (25) implies that an interferometric device based on
a thermo-optic phase shifter responds as a low-pass system,
whose behavior at high frequencies is ultimately determined
by the distance between the heater and the first waveguide.
Again in analogy with the static case, we can derive sim-
plified expressions of &(w), which are noteworthy in practical
occurrences. To this purpose, it is useful to get further insight
into Eq. (26). The infinite sum in the latter equation is com-
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FIG. 4. (a) plots the modulus of the frequency response fz, as a
function of w/<, for different values of R. For each value of R, a
vertical line (colored as the correspondent response curve) marks the
frequency wg, defined as in Eq. (31), which delimits the bandwidth
with good approximation. (b) shows the same functions of (a), nor-
malized to their limit value at low frequencies (which is 1/ In R); the
bandwidth reduction for increasing R is made more evident.

posed of terms of the kind

o) 14+ o 14+j |o

In detail,
2y <X w
~ _ T _1\yn £
o) =5 m=§7w( D" fe (g ) 28)

with the parameters Q" and R™ defined as
Q(m) — i(r(m))—Z _ L 1
cp ! cp x% + 2mh — )%’
n" |8+ Qmh — )
i x4+ 2mh —21)*

R™ = (29)

The modulus of fR, for different values of R and as a
function of the normalized frequency w/<2, is plotted in Fig. 4.
We observe that this function presents three different regions:

a first flat region for low frequencies, a further flat region (with
vanishing modulus) for high frequencies, and an intermediate
region with | fz| monotonically decreasing with w, in between
the two. The first flat region, where the modulus is maximum,
corresponds to the region where the limit given by Eq. (24) is
valid for both Kj functions, giving

ﬁg(g) — InR, (30)

We could say that this region is delimited by the condition that
the arguments of the Bessel functions are both smaller than 1.
Specifically, if R > 1, this occurs for R,/Z < 1,

Q
w < = = wg. (€2))
Figure 4 shows that wg can be indeed a good approximation
for the bandwidth. The high-frequency region, conversely,
corresponds to the other limit given by Eq. (25).

In the case of a very thick substrate (2 >> x;, and 7 >
21,2), which is relevant for femtosecond laser written devices,
one observes that R ~ 1 for m # 0 and thus the functions
frew for m # 0 have a negligible modulus. It is then licit to
approximate the sum in Eq. (26) to its zeroth term,

- 2]’17‘ ~ (@
Gappron (@) = 22 fo( ) (32)
where

Q=—, R=2 33)

cpry r

Note that R here has the same definition as in static prob-
lem, Eq. (18). Using the latter definitions for €2 and R the
plots in Fig. 4 describe @,pprox (@) apart from a proportionality
constant. The operation bandwidth of the thermo-optic phase
shifter may be identified with the width of the first flat region
of fg, i.e., the frequency wp defined above. In this case, in

particular, one reads
2
K r K
1
22 3 (34
cpryry cprs

wp =

which depends only on the distance r, of the farther waveg-
uide from the heater. On the other hand, the distance r; of the
first waveguide, which in turn governs the behavior at very
high frequencies, is here of negligible influence.

Figures 5(a), 5(c) and 5(e) report the experimentally mea-
sured frequency response |&(w)| for three MZIs fabricated by
femtosecond laser writing in a thick glass substrate. Geomet-
rical details of the devices are given in Table I. To perform
the measurements, small sinusoidal modulations at different
frequencies, provided by an electronic function generator,
were superimposed to a base current level dissipated on the
heater, so that the interferometer phase is modulated around
¢o = m /2. The modulation amplitude of the optical signal
at the output of the device was recorded as a function of
the frequency, using an IR-sensitive photodiode connected to
a digital oscilloscope. In this small-signal regime, such an
optical-modulation amplitude can be considered proportional
to the phase modulation and thus proportional to &(w). Further
information on the experimental characterization procedure is
provided in Appendix A.
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FIG. 5. (a), (¢), (e), (g) Small-signal frequency response of the MZIs listed in Table I. Black crosses indicate experimental measurements;
the red lines represent the frequency responses calculated according to the approximate eXpression ctupprox (@), as in Eq. (32). In the case of
device D, the response calculated using the more accurate formula given in Eq. (36) is also shown in green. All curves and experimental data are
normalized to the static limit. Error bars on the experimental points are smaller or comparable to the marker size. (b), (d), (f), (h) Small-signal
step response of the MZIs listed in Table 1. The black lines are experimentally acquired oscilloscope tracks; the red lines represent the step
response calculated according to the approximate expression Eq. (43). In the case of device D, the response calculated on the basis of the
antitransform of Eq. (36) is also shown as the green curve. All step responses, both experimental and theoretical ones, are normalized to their
asymptotic value.
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As shown in the figures, the experimental frequency re-
sponses yield good overlap with the curves calculated with
the approximate expression Eq. (32), where 2 and R are
given by (33). In particular, to calculate the theoretical curves,
the following values of the parameters were employed: x =
1.0OWm™'K™!, ¢ =768 JkgT! K™, and p = 2380 kgm >
[29].

Another case of interest, which has been already consid-
ered in Sec. IIT and is relevant for lithographic waveguide
devices, is the case of a substrate that is much thinner than
the interwaveguide distance, with the heater positioned just
above the first waveguide (in detail, x; =0, z; = z, = z, and
t K x3). As for the static case, also here we neglect the con-
tribution of 75(w), which means

ZnT Z( l)mK()(l:/i__J wep (m))

m=—0oQ

2n m 1+ wcp
= Z( 1) Ko( ﬁ’ 2P jom h—zl>
m=—0oQ

(35)

In order to perform further approximations, it may be use-
ful to rewrite the sum in (35) collecting the (m +~1 )th and the
(—m)th terms together, thus involving again the fr functions,

2nr 14+ j [wcp (m)>
a(w )—— D" [ ( —r
e[ 5

1+ [ocp (m+l)>]
_ Ko(
f

Zl’lT
Z<—“ Feo (g ) (36)
provided that the proper parameters are defined:
QM — i(ri*m))i2 = i(2mh +2)72,
cp cp
i _ T 20m 4 D= oD
ST 2mh4z

We note that, since in any case z < h, the parameter R/
is significantly different from 1 only for the lowest val-
ues of m and is strictly decreasing with m. Reminding that
sup{|fren|} = InR'™, it is reasonable to produce a rough
estimation of &(w) by truncating the series in Eq. (36) just
to the m = 0 term. Namely, also in the case of a thin substrate
we can employ the approximate expression for &approx given
by Eq. (32), provided that we define

2h —z

Q=Q%=—, R=R"= . (¥

cpz?
in analogy with the parameter R employed for the static case
and defined by Eq. (20).

Figure 5(g) reports the experimentally measured frequency
response for one MZI realized in a SiON platform, which is
device D in Table I. Measurements were performed with the
same method used for the femtosecond laser written devices.
In this case, the theoretical curve calculated according to

Eq. (36) explains with remarkable accuracy the experimental
data. The approximated model of Eq. (32), here employed
with the parameters €2 and R given by (38), is less accu-
rate. However, it still follows the experimental points with
a relative error better than 22%. The latter appears to be a
surprisingly good figure, looking at the extreme simplicity
and degree of approximation of our model. Here, to calcu-
late the theoretical curves, employed parameters were k =
14Wm 'K, ¢=772T kg7 ' K™, and p = 2200 kg m~3
(standard values for pure silica).

V. DYNAMIC RESPONSE: STEP RESPONSE

After analyzing the frequency response we can pass to
the time domain, studying the evolution of the phase delay
A¢(t) under the action of a time-varying thermal power P,(t)
dissipated on the wirelike heater. Given the relation Ag(w) =
P,y(w) - @(w), valid in the Fourier space, the function A¢(t) is
calculated by means of the convolution,

Ag(t) = Pis(t) * a(t), (39)

where «(¢) the Fourier antitransform of &(w):

+00 ejwt
a(t) :/ a(w)—dw. 40)
oo 2
In particular, the response to a power step Pi(t) = PoH(t)
[where H(t) is the Heaviside function] is calculated as

t

Ad(t) = Po[H(t) * a(t)] = PO/ a(t)dt

—00
t +00

=P0/ d'L'/
—00 —00

We will devote a specific analysis to the case in which the
frequency response is described by &approx (@), as given by
Eq. (32). Indeed, we have discussed in Sec. IV how this sim-
plified model can be very accurate in the case of femtosecond
laser written devices and how it can describe with reasonable
approximation also thermo-optic phase shifters fabricated by
lithographic techniques. In that case, by defining the adimen-
sional step response,

t-Q +00
FR(t~Q):/ dr/

LRt - Q). (43)

(41)

(42)
one gets

2P01’l
Aqbapprox )=

Figure 6(a) shows that, for increasing R and having fixed
2, the adimensional step response increases its asymptotic
value. The latter actually coincides with the amplitude of the
static response fR(O) = In R. The different curves, however,
are practically overlapped in the first instants. We can interpret
such a behavior in the light of the analysis performed on the
frequency response: The early part of the step response is
mainly determined by the high-frequency region of f;g(%),
which indeed has negligible dependence on R. On the other
hand, the late part of the step response is strongly influenced
by the low-frequency components, which are enhanced by
increasing R.
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FIG. 6. (a) Step response of the temperature difference between
two points, plotted in normalized coordinates for different values of
R, as derived from the simplified analytical model. (b) Step responses
as in (a), normalized to 1.

If we normalize the step response to the asymptotic value,
as in Fig. 6(b), we see that the higher is R, the longer is the
time required to reach any given fraction of such asymptotic
value. In fact, we may associate to wg a correspondent time
constant:

RZ
p = 1 / wp = Q .
A numerical evaluation shows that Fz(f - 2) reachesint = 13
about 90%-95% of its asymptotic value, with small variations
depending on R.

In the case of the thick substrate, where R = r,/r, the time

constant reads

(44)

cpr3
B=——""
K

(45)

which depends only on r, and the characteristics of the ma-
terial. Note that, while r, may be seen as mainly responsible
for a sort of settling time, namely of the late part of the step
response, the distance r; of the first waveguide affects directly
the timescale of the graphs in Fig. 6, because of the defini-
tion of 2. In particular, decreasing r; while leaving unvaried
R = rp/r| causes a quadratic enhancement of the rapidity of
the response.

Figures 5(b), 5(d), 5(f), and 5(h) plot the experimental step
response for the devices listed in Table I, whose frequency

response was already discussed in Sec. I'V. The step response
was measured with the same experimental apparatus used
for the frequency-response characterization. Here, the micro-
heater is driven with a square wave (having a period of several
seconds) instead of a sinusoid. As for the frequency analysis,
measurements were carried out in a small-signal regime, i.e.,
in a condition in which the measured variation of the optical
signal at the output can be considered proportional to A¢(t).

The red curves are theoretical predictions calculated using
Eq. (43). Consistently with the observations made about the
frequency response, the predictions of our simplest model
overlap very well the experimental data for devices A, B, and
C, i.e., the ones fabricated in a thick substrate by femtosec-
ond laser waveguide writing. Such a model still captures the
timescale of the response of the SiON device (device D), even
if it is not accurate in predicting its details. However, a more
refined calculation of A¢(¢), performed using Eq. (41) with
a(w) given by Eq. (36), looks to be in excellent agreement
with the observed response (green curve).

We note that our study has focused on the rise transients.
Fall transients, in response to P(t) = Py[l — H(¢)] should
indeed follow the same dynamics, due to the linearity of heat
equation. In our experimental measurements we have always
measured both rise and fall transients in response to a square-
wave signal (even if the fall transients are not shown in this
work) and we never noticed significant differences between
the two.

Differences in the rise and fall transients, which have
been reported in several works on thermo-optic phase shifters
[30,31], should be attributed to the presence of nonlinearities
in the heat equation (e.g., because of the occurrence of heat
irradiation), to insufficient accuracy in setting the operation
point of the interferometers, or to other nonidealities that have
not been taken into account in our thermal model.

VI. OPTICAL RESPONSE OF A MACH-ZEHNDER SWITCH

Thermal phase shifters may be employed as the dynam-
ical element of integrated optical switches based on MZlIs.
Namely, the thermo-optic device acts on the optical phase
between the two branches of the interferometer, to switch
the normalized transmission on either output from O to 1 (or
viceversa), with the optical response following Eq. (4) in the
case of a perfectly balanced device.

It is worth analyzing briefly the dynamics of the large-
signal optical response that originates from the thermal
dynamics studied in the previous sections. In particular, we
shall consider a further ideal situation in which ¢y = 0, and
a step of thermal power is applied to the heater in order to
produce optimum contrast, i.e.,

Ap(t) > for t — +oo. (46)

The optical response of the MZI, given by Eq. (4), acts as
a nonlinear transformation on the step responses studied in
the previous section. Interestingly, in the condition given by
Eq. (46) the nonlinearity may have the effect to delay the very
first instants of the response, and to compress the late part of
it. As a consequence, the effective optical settling time may
be shorter than the thermal one, as seen in Fig. 7.
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FIG. 7. Experimental response of two different MZIs: device C
in (a) and device D in (b). The continuous lines are experimentally
acquired oscilloscope tracks. In particular, the red continuous line is
the small-signal response (measured around ¢y = 7 /2) normalized
to 1, which is proportional, with good approximation, to the phase
variation A¢(z). The blue continuous line describes the large-signal
optical response of the devices, normalized to 1, measured by reach-
ing experimentally the condition given by Eq. (46). The dashed lines
are best fits of the two curves with exponential functions. Note that
the timescale of the two panels is very different, with device D
showing a response that is hundreds of times faster than device C.

We note that, in several works in the literature [17,32], the
response of thermo-optic devices has been analyzed in terms
of exponential time constants. However, as understood from
our model and confirmed by the experimental data, these de-
vices are far from being described by a single-pole dynamics,
featuring a simple and classical exponential response of the
kind F; (t) = 1 — exp(—t/7).

Deviations from the exponential curve can be diverse. For
instance, in the case of a femtosecond laser written device
realized in a thick substrate, with a large distance between the
two waveguides, the settlement time of A¢@(¢) may be mostly
determined by the need for the heat wave to reach the second
waveguide. After a relatively steep rise in the first instants [see
the red curve in Fig. 7(a)], the response curve slows down,
yielding a poor adaptation to a curve of the kind F;. On the
other hand, the optical response, which is a nonlinear function
of A¢(t), may yield a better similarity with an exponential
best fit [see the blue curve in Fig. 7(a)].

Somehow different observations can be made regarding
the response of the lithographic SiON device (device D in
Table I). As discussed previously, in this device the dynamic

response is mainly determined by the heat diffusion time in
the region around the heater, while the farther waveguide has
a negligible influence. This produces a fast rise and quick
settlement of A¢(z) to its asymptotic value, following a curve
that in this case may overall resemble an exponential [see the
red curve in Fig. 7(b)].

However, in such a short timescale [Fig. 7(b)] it becomes
noticeable that the first derivative of A¢(¢) in t = 0 is zero,
which is indeed a nonexponential feature. In fact, a (short)
time is needed also for the heat to diffuse across the few
microns which separate the heater from the first waveguide.
This feature is actually present also in the response of device
C, but it may be less apparent in the long timescale of the
response of that device.

We further note that, in the case of device D, the non-
linear transformation of Eq. (4) results in a worse fitting of
the exponential curve in the case of the large-signal optical
response (blue curve in Fig. 7), with respect to the case of the
small-signal one.

VII. DISCUSSION AND CONCLUSIONS

We have developed an analytical model to predict the re-
sponse of thermo-optic phase shifters realized in integrated
optics, both in the static and dynamic regimes. Experimental
validation of the developed theory is performed by measuring
the optical response of MZIs, fabricated by femtosecond laser
waveguide writing in glass, or by lithographic techniques in a
SiON platform.

The main results of such model are summarized in Table II.
Notably, we have worked out simple formulas that allow an
approximate description of the dynamic response in relevant
geometrical limits. In particular, we have shown that two
parameters €2 and R, defined on the thermal properties of the
material and on geometrical features of the interferometer,
are mostly determining the dynamic behavior. Therefore, the
evaluation of these sole two figures permits us to predict in
a simple and synthetic way how the device response changes
along with the design variables.

Differently from an approach based on finite-element sim-
ulations, our analytical approach indeed enables the quick
evaluation and comparison of many different configurations,
with minimal computational effort. In addition, it allows us to
point out and study with ease the peculiar features of the opti-
cal response, which are sometimes neglected in the literature,
such as the nonexponential characteristics of the transients.

We note that our model explains well the experimental
data even in the presence of rough approximations, such as
considering the heater as infinitely long and wirelike, whereas
in actual devices this may be of non-negligible lateral size. In
fact, a large heater may be seen as the composition of many
juxtaposed wires, which sum up their effects. From simple
geometrical considerations it is easy to see that, on the one
hand, the distance between these many wires and the farther
waveguide does not change significantly. On the other hand,
the closer waveguide sees an averaged effect of the many
wires where, however, the closest ones play a major role. This
may provide a justification for substituting them with a single
one, placed in the closest position to the first waveguide. A
deeper discussion on these aspects is reported in Appendix C.
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TABLE II. Summary of the results of the analytical model.

Formula Relevant parameters

Static regime Temperature distribution T=T)+ %

Approximate efficiency approx

Dynamic regime Temperature distribution

=2 1nR
Ak

T(w) =By (—1y"Ko(SL /22 rm)

m r(m+l)
m*—oc( 1) In r(m) = X2 + (zmh - Z)Z

R = % (thick)

R= 2= (thin)

M = /32 4+ (2mh — z)?

= K =R 1
&Ww)wmwv3 @=or R=wo (N
Approximate response 2h—z
—Ko( ‘“R %)] Q= cpKzZ R = (thin)

The analytical model presented here cannot replace finite-
element simulations that take into account the precise
geometrical and material features of the specific devices. This
is especially true in cases of complex three-dimensional and
microstructured devices [33,34]. However, we believe that this
work provides useful insights in the physical operation of
integrated thermo-optic devices, which can guide engineers
in the design process. We further envisage that an analytical
approach analogous to the one adopted here could be devel-
oped, in future work, to describe crosstalk dynamics in large
optical meshes. Such a toolbox of approximated formulas that
describe the thermal dynamics could be beneficial for a quick
benchmark of complex circuit designs, before embarking in a
time-consuming numerical optimization process.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Fabrication of femtosecond laser written circuits

Femtosecond laser micromachined devices are fabricated
in a commercial aluminoborosilicate glass substrate (Corning
EAGLE XG) by means of a two-step process. First, the opti-
cal circuit is inscribed in the substrate via femtosecond laser
waveguide writing; then, the microheaters and electrodes are
deposited and patterned on the substrate surface by maskless
photolithographic lift-off.

In detail, waveguides are written using a Yb:KYW
cavity-dumped femtosecond laser producing 300 fs pulses at
1030 nm wavelength and 1 MHz repetition rate. Pulses with
580 nJ energy are focused in the substrate by a 20x water
immersion objective [numerical aperture (NA)=0.5], while
the substrate is translated at the constant speed of 20 mm s~}
with respect to the laser focus.

The resulting waveguides allow for a single-mode oper-
ation at 1550 nm wavelength. Different MZIs are realized,
composed of two balanced directional couplers and 3-mm-
long straight waveguide segments in the central parts. Such
devices are inscribed at depths ranging between 15 and 53 um
below the substrate surface, and the central waveguide seg-
ments are distanced 50, 254, or 1000 um from each other.
In the balanced directional couplers, waveguides are brought
as close as 7 um for an interaction length of 1 mm, to allow
evanescent-field coupling. Curved waveguide sections follow
circular arcs with a 45-mm curvature radius.

In order to fabricate the metallic heaters, a 1.5-pum-thick
layer of photoresist (Microchemicals AZ 5214E) is deposited
on the substrate as a sacrificial layer, using a Karl Siiss RC8
spin coater. The photoresist is then exposed to UV light
with a Heidelberg MLA100 maskless aligner, which allows
for imprinting custom layouts on the surface of our sample
without the need for a physical mask. After development of
the photoresist the pattern is defined, and a 300-nm-thick
chromium layer is deposited on the substrate surface using an
e-beam evaporator (Evatec BAK 640). Finally, the photoresist
is stripped with acetone and the desired metal pattern remains
on the surface. Chromium was chosen because of its high ther-
mal stability. Resistors are fabricated with a width of 15 um
and a length of 3 mm, resulting in a resistance of about 1 k2
(resistivity of chromium is 124.5 nQ2 m).

The terminal electrodes of the resistors are fabricated sim-
ilarly, but evaporating copper instead of chromium, as it has a
lower resistivity (17.2 n2m) and it is compatible with wire
bonding. In order to minimize the series resistance intro-
duced by these electrodes, they are fabricated with a width
of 100 um and thickness of 1.5 um. For this second step
of lithography a thicker 4.5-um layer of photoresist (Micro-
chemicals AZ ECI 3027) is used.

After completing the two lift-off steps the devices are ther-
mally annealed in vacuum at 420 °C for 60 min in the Evatec
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BAK 640 chamber. Annealing is required as it increases the
breakdown power of the microheaters and significantly im-
proves their stability in time.

2. Characterization of the device responses

Experimental characterization of the thermally actuated
MZIs, fabricated in both platforms, is performed using coher-
ent light at 1550 nm wavelength from a laser diode (Thorlabs
L1550P5DFB), which is coupled into one input of the device
by means of a single-mode fiber.

In detail, a Thorlabs SMF-28-J9 fiber is used to couple
femtosecond laser written waveguides. In the case of the SION
device, in order to guarantee minimal losses, the SMF-28-J9
fiber is spliced to a Nufern UHNA4.

To characterize the static device response, a Keithley
2231A dc power supply is used to drive the resistive mi-
croheater, while output light from both ports of the MZI is
collected with a 0.55-NA aspheric lens (Thorlabs C230TMD-
C). The two optical signals are simultaneously monitored by
two power meters (Ophir Nova II, equipped with PD300-IR
photodiode heads). The electrical power supply and the op-
tical power meters are computer controlled, and a MATLAB
script manages the automated acquisition of the optical mea-
surements for different values of the actuation current.

For the dynamic characterization (frequency response and
step response) the driving current for the microheater is
provided by a function generator (Tektronix AFG3011C), ca-
pable of supplying both sinusoidal and square-wave signals.
In addition, a single output port of the MZI is monitored, using
an IR photodiode (Thorlabs PDA20CS2). Waveforms of the
input voltage and output optical signal are recorded with a
digital oscilloscope (Tektronix DPO2024B).

APPENDIX B: SOLUTION OF THE DYNAMIC
DIFFERENTIAL EQUATION

We consider a system with perfect cylindrical symmetry
and we take the usual cylindrical coordinates system (r, 6, y),
so that necessarily 7 = T (). In addition, if the heat source is
wirelike and located in r = 0, outside of this point § = 0. The
heat equation Eq. (21) becomes homogeneous,

1 .
1 8%T 1137 .
— 4+ ——— —T=0, B2
328r2+32r8r (B2)
where we have collected all constants as
1 K (B3)
B2 jwcp’

With the change of variables s = Br we can further rewrite
Eq. (B2) as

32T+13T F_o B4)
s> s Os e

This is actually a modified Bessel equation of the form

0°T 10T -
SZW Szga — (S2 + Olz)T =0, (BS)

with @ = 0. Such an equation yields the general solution
T = Ci Ip(s) + C2 Ko (s). (B6)

where C; and C, are proper constants to match the boundary
conditions, and Iy and K, are the modified Bessel functions
of the first and second kind, respectively. Passing back to the
coordinate r, we have

14 1+
T:CIIO( jzj /wTCpr>+C2K0< :/r_zj /wTCpr). (B7)

We note that IO(% 22 r) diverges as r goes to infinite,

'
while KO(% %pr) tends to O in the same limit. Within a
uniform and infinite medium, we are not putting any boundary
at r — +4o00. Therefore, the only function of the two that may
retain some physical meaning is Ky, and we can write the
solution of the heat equation Eq. (B7) as

1+ wcp)

(B8)

—r
V2 K
where Tj is an arbitrary complex multiplicative constant.
In order to find the value of 7}, we consider a cylindrical
heat source of external radius ry that dissipates a certain power
P(t) per unit length through its external surface. The thermal
flux across an elementary surface dS (oriented orthogonally
to the vector ii,) is given by the Fourier law,

T:R&(

—k VT - ii,dS = dP. (B9)

By integrating over a cylindrical surface with radius ry and
unit height, and by taking the Fourier transform, this gives

aT
or

= — P . (B10)
2w rok

r=rop

Practically, by fixing the dissipated power through this
cylindrical surface with radius ry we are fixing the derivative
of T with respect to r at r = ry. The derivative of Eq. (B8) is

oT

7 14+ a)c,oK 14+ [wcp
— =-Ty—,/ — —.—T1]).
or 0 V2 K J2 K

By equating Eqgs. (B10) and (B11), the latter evaluated in » =
1o, We obtain

7 P V2 1
0_27'[}"()1+j‘/(1)C,0KK1(% ﬁﬂro).

(B11)

(B12)

K

If we consider a source such as the wirelike heater, which is
infinitely thin, we can take ro — 0. In such a limit, K;(z) ~ %,

thus 7, simply becomes

Ty = (B13)

P
2mic’
and we finally obtain Eq. (22).

APPENDIX C: ROLE OF LARGER HEATERS

Our analytical model considers a heater with vanishing
transverse dimension, i.e., a wirelike element. Experimentally,
this is not always an obvious assumption, because resistors,
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which are patterned on thin metallic films covering the sub-
strate, may extend laterally for several microns. In principle,
our model could be expanded to the case of a non-wire-like
heater by considering the latter as composed of infinitely
many wires (of infinitesimal width), whose contributions are
properly integrated.

The wirelike heaters, ideally composing the real one
of width w, are placed at coordinates (x,y) = (£,0) with
—w/2 < & < w/2. Each of these wires alone is of width d&
and dissipates a power per unit length dP = %d & (where P,
is the power dissipated on the whole heater per unit length).
Each wire then determines a contribution to the temperature
distribution written adapting Eq. (23),

. Po(w)dE X
d@(m:% > =nr

m=—0oQ
.
><K0< jij /?rém)) (C1)

" = (x — )2+ Qmh — 2)*. (C2)

We note that we limit ourselves to discuss here the dynamic
case, because the static condition coincides with its limit at
w — 0 [possibly up to an additive constant Ty, for that regards
the static distribution 7 (x, z)].

The contributions dT;(w) are finally integrated over the
width w to produce the resulting temperature distribution. The
formula for determining &(w) can be adapted accordingly and
results in the average of the different &g (w) coefficients, cal-
culated considering the individual wires. Namely, one reads

where

1 w/2
a(w) = —/ ag(w)d§, (C3)
W J_w/2
with
Gelw) = ZnT Z( 1)m|: (1\—/|-_J wcp (m)>
1 .
(Gl e

In the latter equation, rém) and ré’;” take the same definition as
in Eq. (C2), adapted for (x, z) = (x1.2, 21.2).

It is worth discussing how relevant is this refinement of
the theoretical model, when it comes to practical purposes.
Already looking at Eq. (C2), it is clear that the relative contri-
bution of £ rapidly becomes negligible with increasing m, and
may be fundamentally irrelevant even for m = 0, if x or z are
sufficiently large. In fact, Ref. [19] studied the influence of the
heater width in the static regime, under the approximation of
a very thick substrate, finding that an increasing width causes
only a modest decrease in the amplitude of the « coefficient,
unless unreasonably large values for w are considered.

As anotable example, here we report in Fig. 8 the modulus
of the frequency response |&@(w)|, calculated for a device with
the same geometrical and material parameters of device D
in Table I, but assuming different widths w of the heater. In
particular, the black line is calculated using Eq. (23) (wirelike

heater, w — 0), while the other curves are calculated using
Eq. (C3) and different values for w. One observes that in-
creasing the heater width to several tens of microns, i.e., to
a size that becomes comparable to or larger than the relevant
dimensions of the device such as xj », A, z, causes an overall
decrease of |&@(w)|, with further attenuation of the highest
frequency. Namely, a very large heater makes the device less
efficient and slower.

However, one should consider that the actual device, which
was used in our experiments, featured a heater with w =
9 um, corresponding to the red dashed curves in the fig-
ure. Even though w is not of negligible size, compared to
z = 8.8 um or h = 20 pm, the correspondent normalized fre-
quency response in Fig. 8(b) is hardly discernible from the one
calculated adopting the wirelike assumption. The amplitude
of the response in static conditions [which can be evaluated
from Fig. 8(a)] is about 96% of the amplitude in the case of a
wirelike heater.

l —Wire-like
0 w=9 pm >
g ................................
. w = 30 pm
e
[
= 0.5
3
is3
102 103

0
102 103 104 10° 106

(b) w (rad/s)

FIG. 8. Modulus of the frequency response, calculated for MZIs
with the geometrical parameters of device D in Table I, and
analogous material properties. The black line corresponds to the
assumption of a wirelike heater [response calculated using Eq. (23)].
The other lines correspond to different heater widths w, as indicated
in the labels in (a) [Eq. (C3) was employed here]. In (a) the modulus
of all responses is normalized to the static limit of the wirelike case,
to facilitate a comparison of the amplitudes. In (b) each response is
normalized to its own static limit.
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In conclusion, one could observe, first, that too large
heaters are typically not desirable, because they slow down
the response of thermo-optic MZIs and they reduce their
efficiency. Indeed, in real devices the heater width is kept
limited, compatibly with constraints on fabrication tolerances
and on the maximum thermal power that can be dissipated on

the unit area. In any case, the good agreement of the model
predictions with the experimental data (shown in the main
text), together with the considerations reported here, suggest
that the assumption of a wirelike heater does not constitute a
limitation of our analytical model in many cases of practical
interest.
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