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Non-Markovian effect on quantum Otto engine: Role of system-reservoir interaction
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We study a limit cycle of a quantum Otto engine whose every cycle consists of two finite-time quantum
isochoric (heating or cooling) processes and two quantum adiabatic work-extracting processes. Considering a
two-level system as a working substance that weakly interacts with two reservoirs comprising an infinite number
of bosons, we investigate the non-Markovian effect [short-time behavior of the reduced dynamics in the quantum
isochoric processes (QIPs)] on work extraction after infinite repetition of the cycles. We focus on the parameter
region where energy transferred to the reservoir can come back to the system in a short-time regime, which we
call energy backflow to show partial quantum-mechanical reversibility. As a situation completely different from
macroscopic thermodynamics, we find that the interaction energy is finite and negative by evaluating the average
energy change of the reservoir during the QIPs by means of the full-counting statistics, corresponding to the two-
point measurements. This feature leads us to the following findings: (1) The Carnot theorem is consistent with
a definition of work including the interaction energy, although the commonly used definition of work excluding
the interaction leads to a serious conflict with the thermodynamic law, and (2) the energy backflow can increase
the work extraction. Our findings show that we need to pay attention to the interaction energy in designing a
quantum Otto engine operated in a finite time, which requires us to include the non-Markovian effect, even when
the system-reservoir interaction is weak.
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I. INTRODUCTION

The quantum heat engine (QHE) is becoming an important
topic of interest from various perspectives: (i) It is expected
to retrieve and convert wasted heat in quantum devices into
energy for work, which may thereby seed another industrial
revolution; and (ii) it may also offer a deeper understanding
of thermodynamics from a quantum point of view.

The intensive studies stimulated by the first proposal of a
QHE for the maser system [1] are typically classified as (a)
clarifying the thermodynamical laws and processes of a QHE
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by introducing the concept of open quantum dynamics [2–11],
(b) finding efficiency enhancements of heat engines using
quantumness [12–41], and (c) designing a finite-time opera-
tion of the QHE [5,42–54], including theoretical analysis on
concrete experimental situations [55–66] and a report on a
realization with nitrogen vacancy (NV) centers [67].

In extending thermodynamics to the quantum regime, we
face several challenges that have not been quite resolved
in the literature. First, open-system dynamics of a quantum
working substance can be non-Markovian if the time scale
of the working substance is comparable to or much shorter
than that of the heat reservoirs, invalidating the application of
the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) treat-
ment [68,69] commonly used in conventional studies. This is
because the treatment is legitimate only in the long-time limit,
for which the correlation time of the coupling between work-
ing substance and reservoir is infinitesimally short [70–72].
The limitation becomes critical when we design a heat en-
gine with a finite operation time to obtain a finite power;
note that because of the infinite operational time the Carnot
engine with optimal thermal efficiency is practically useless,
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producing null power. Indeed, the non-Markovian effect on
open quantum systems [73–85] as well as on thermodynam-
ics and QHE [86–100] has been intensively studied. One of
the most characteristic features of the non-Markovian effect
reported in the context of open quantum systems is the back-
flow of information [73,74,84], energy [83], and spin [85]
from the environment to the relevant system. The energy
backflow, in particular, is found as a counterintuitive energy
flow from a reservoir to a system which occurs in a very
short time after a factorized initial condition. The backflow
occurs even if the effective temperature of a two-level system
is equal to the reservoir temperature just before their inter-
action, reflecting the energy exchange between them to show
partial reversibility, which we cannot obtain under the GKSL
treatment [83].

Second, the interaction energy between the working sub-
stance of the engine and the heat reservoir, which is ignored in
classical thermodynamics because the dimensions are lower,
plays a significant role in microscopic engines [10,101,102].
Whether the contribution of the interaction Hamiltonian
should be included into that for the working substance or
reservoir remains controversial [103]. Because the interac-
tion dynamically generates quantum correlations between the
working substance and reservoir, we need to consider how
to treat the interaction energy, for instance, as heat or work,
especially when we take into account explicitly the attachment
and detachment of the working substance to and from the
reservoirs.

Third, the Carnot efficiency has been a distant unreachable
limit for heat engines [104]. Whether we can exceed the limit
by extending thermodynamics into the quantum regime has
been a large motivation in the study of QHE. All these issues
demand a substantial updating of thermodynamics.

In this paper, we report our approach in addressing these
aspects with a non-Markovian analysis regarding the finite-
time operation of a quantum Otto engine (QOE), which
comprises a two-level system and two bosonic reservoirs.
We use the time-convolutionless (TCL) non-Markovian mas-
ter equation [71,72,105–111] to compute the dynamics of
the two-level system during quantum isochoric processes
(QIPs) with the work-extracting processes kept quantum
adiabatic.

We notice a crucial role of the system-reservoir interac-
tion in defining work for the non-Markovian QOE even in a
weak-coupling regime. While the energy cost of detaching the
working substance from the reservoirs caused by the interac-
tion is neglected in the conventional definition of work [4–7],
we find that the interaction takes a finite negative value in the
non-Markovian dynamics, which indicates that we need to pay
a cost for detachment against the attractive system-reservoir
interaction. By introducing a definition of work including the
interaction, we show that one cannot extract positive work
from the non-Markovian QOE operated beyond the Carnot
efficiency, although an analysis based on the conventional
definition excluding the interaction leads to a possibility of
the positive work extraction. This indicates that the thermody-
namics law is consistent with the inclusion of the interaction
in the work. We also find that the energy backflow increases
the amount of the extracted work to exhibit a maximum for a
finite contact duration with reservoirs.

FIG. 1. Our protocol of the QOE. First QIP (A+ → B−): The
system with the level difference ωh contacts the reservoir at Th during
t1, exchanging energy. This is achieved by switching γh(t ) to be set
to unity and after time t1 set back to zero, while the difference in
level ω0(t ) = ωh is maintained. First QAP (B+ → C−): We decrease
ω0(t ) quantum adiabatically from ωh to ωc maintaining the popu-
lation of each level to transfer energy from the system to external
working storage, which may be realized by adiabatically expanding
the box containing the two-level system. Second QIP (C+ → D−):
The system with ωc contacts the reservoir at Tc during t2. Second
QAP (D+ → A−): We increase ω0(t ) quantum adiabatically from
ωc back to ωh, which may be realized by compressing the box by
using energy stored in the external working storage. The dots on the
levels in the two-level system schematically represent the ratio of
populations of the upper and lower states.

II. QUANTUM OTTO ENGINE

The QOE cycle consists of two quantum isochoric
processes (QIPs) and two quantum adiabatic processes
(QAPs) [4,6,7]. We describe it by a two-level system com-
prising a “working substance” attached to two reservoirs at
different temperatures. Its total Hamiltonian is given by H =
HS(t ) + HB + HI(t ) with

HS(t ) = ω0(t )

2
σz, HI(t ) =

∑
μ=h,c

γμ(t )Hμ
I , (1)

where we set h̄ = 1 and {μ = h, c} labels the hot and cold
reservoirs. In HS(t ), ω0(t ) denotes the Larmor frequency of
the two-level system, and σz is the z component of the Pauli
matrix. Since QIP is associated with the classical isochoric
process in the sense that the working substance does not
do any work during it, we keep ω0(t ) constant during each
QIP [7]. Instead, we vary ω0(t ) quantum adiabatically in each
QAP, meaning that we change it with the populations of the
upper and the lower levels preserved. In HI(t ), γμ(t ) is a
time-dependent coefficient describing the contact switching
of the μth reservoir. Note that the present argument does
not depend on the details of Hμ

I and HB until we perform
numerical calculations for a specific case below. We drive
the system in the protocol shown in Fig. 1 in analogy to
the classical Otto cycle. In this protocol, we assume that the
total system is prepared in a product state of the two-level
system ρS(0) and the Gibbs state of the reservoir ρ

h/c
B , i.e.,
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ρS(0) ⊗ ρ
h/c
B , before the system-reservoir contact is turned

on, and the quantum correlations between the system and
the reservoir are building up during each QIP through the
interaction. To ensure that the state of the total system reverts
to a product state after each cycle, we introduce the projec-
tion measurement (PM) [86,112,113] after each QIP, severing
quantum correlations, and then use the resulting product state
as the initial condition of the next cycle. We assume that the
reservoirs relax promptly to the Gibbs state after each PM in a
much shorter time than one cycle, which determines the initial
condition of the subsequent QIP. For this paper, we do not
include any feedback based on information obtained from the
measurements.

III. LIMIT CYCLE

We repeat the above cycle, assuming that it converges in
the infinite-time limit, which we find here. Let Pμ

n denote the
probability that the system is in the lower level |0〉 after the
PM but before the nth contact with the μth reservoir. (We start
counting the number of contacts before the attachment to the
hot reservoir.) They satisfy the relations

Pc
n = Ph

n ρh
0,00(t1) + (

1 − Ph
n

)
ρh

1,00(t1),

Ph
n+1 = Pc

n ρc
0,00(t2) + (

1 − Pc
n

)
ρc

1,00(t2),
(2)

where ρμ
m,νν (ti ) (m, ν = 0, 1) denotes the (ν, ν) element of

ρμ
m (ti ) representing the system density operator after contact

for time ti with the μth reservoir under the factorized initial
condition between the system |m〉〈m| and the reservoir. We
assume that the μth reservoir is in the Gibbs state ρ

μ
B with

inverse temperature βμ = 1/Tμ; we set kB = 1 throughout this
paper. In the limit n → ∞, the probabilities converge to

Pμ ≡ lim
n→∞ Pμ

n = pμ

1 − p0
, (3)

with

p0 ≡ [
ρc

0,00(t2) − ρc
1,00(t2)

][
ρh

0,00(t1) − ρh
1,00(t1)

]
, (4)

ph/c ≡ ρ
c/h
0,00(t2/1)ρh/c

1,00(t1/2) + ρ
c/h
1,00(t2/1)ρh/c

1,11(t1/2). (5)

We note that though ρμ
m (ti ) depends on the dynamics during

the QIP, the probabilistic relations [Eq. (2)] are valid whether
the dynamics is Markovian or non-Markovian and are inde-
pendent of a specific form of the interaction Hamiltonian Hμ

I .
Accordingly, the limit given by Eq. (3) is also quite general.
We hereafter analyze the QOE in this limit.

IV. DEFINITIONS OF WORK

In conventional studies of Markovian quantum heat en-
gines in the weak-coupling regime, the widely used definitions
of work and heat are based on the following separation of
the change in the internal energy of the working substance:
〈dU (t )〉 = 〈dW (t )〉 + 〈dQ(t )〉, where the work done by an
external force 〈dW (t )〉 and the heat supplied from an external
reservoir 〈dQ(t )〉 are defined as

〈dW (t )〉 ≡ TrS [ρ(t )dHS(t )], (6)

〈dQ(t )〉 ≡ TrS [dρ(t )HS(t )], (7)

respectively, with TrS denoting the partial-trace operation on
the system [4–7]. The definitions associate work and heat
with the changes in the system Hamiltonian dHS(t ) and in
the state of the system dρ(t ), respectively. Specifically for
the QOE, the system Hamiltonian changes only during QAPs.
Since the first and second QAPs correspond to expansion and
compression processes, respectively, we denote the work done
by the working substance during the first QAP as Wad1 and
the work done by the external force to the working substance
during the second QAP as Wad2. Using these quantities, the
net amount of work extracted from the engine during a single
cycle is defined by

WI ≡ Wad1 − Wad2. (8)

Because the population of the system is constant during each
QAP, the energy changes of the system can be calculated as
the difference between the system energies at the beginning
and the end of each QAP. Thus the work done by the system
during the first QAP is evaluated as

Wad1 = (ωh − ωc)
[
Phρh

0,11(t1) + (1 − Ph)ρh
1,11(t1)

]
, (9)

while the the work done by the external force to the system
during the second QAP is evaluated as

Wad2 = (ωh − ωc)
[
Pcρc

0,11(t2) + (1 − Pc)ρc
1,11(t2)

]
, (10)

where Ph/cρ
h/c
0,11(t1/2) + (1 − Ph/c)ρh/c

1,11(t1/2) is the population
of the excited state after the projection measurement has taken
place at the very end of each of the first and second QIPs. By
using these expressions, we can derive the expression of the
Otto efficiency in the form

ηO = 1 − ωc

ωh
, (11)

relying on neither the Markovian approximation nor a specific
form of system-reservoir interaction HI.

Though the above definition of work is a reasonable exten-
sion of the classical first law of thermodynamics to a quantum
one, one might have doubt as to its validity because of a
crucial role of the system-reservoir interaction in quantum
engines [10,101–103]. It has no classical counterpart, be-
cause in classical thermodynamics, the thermodynamic limit
is taken on both the system and the reservoir, and thus the
interaction energy is negligible. In contrast, since the system
remains small in quantum engines, the temporal change in the
interaction energy during QIPs may not be negligible, and it
can require us to pay a certain energy cost for the detachment
of the system from the reservoir at the end of each QIP.

Such an insight leads us to define work by including the
energy cost for detachment against the system-reservoir inter-
action. To this end, we evaluate the expectation values of the
interaction energy at the very end of each QIP, denoting them
Eh

I (t1) and E c
I (t2). If the interaction energy takes a negative

value, we need a certain energy to detach the system against
the attractive interaction, which results in a loss of the net
amount of extracted work. We thus define the work as

WII ≡ WI + Eh
I (t1) + E c

I (t2). (12)

Since the interaction energy is zero at the beginning of each
QIP because of the factorized initial state, we can evalu-
ate Eh/c

I (t1/2) from the energy changes of the system and
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the reservoir during each of the first and second QIPs, that
is, 	Eh/c

S (t1/2) ≡ 〈Hh/c
S (t1/2)〉 − 〈Hh/c

S (0)〉 and 	Eh/c
B (t1/2) ≡

〈Hh/c
B (t1/2)〉 − 〈Hh/c

B (0)〉, by using the energy conservation
relation

Eh/c
I (t1/2) = −	Eh/c

S (t1/2) − 	Eh/c
B (t1/2). (13)

In this expression, we can evaluate the quantities on the
right-hand side as follows: The energy change of the system
during each QIP can be directly evaluated from the difference
of the mean values of the system energy as 	Eh/c

S (t1/2) =
TrS[Hh/c

S (t1/2)ρh/c(t1/2)] − TrS[Hh/c
S (0)ρh/c(0)]; in contrast,

the energy change of the reservoir can be evaluated by us-
ing full-counting statistics based on two successive projective
measurements of the reservoir energy Hh/c

B [114] performed at
the very beginning and very end of each QIP, whose derivation
and expressions are summarized in Appendix D.

V. NUMERICAL EVALUATION

We now examine the validity of the definition of work
given by Eq. (12) by numerically analyzing work extraction
of the engine.

A. Model

As a working system, we suppose that the two-level system
interacts with reservoirs, each of which consists of an infinite
number of bosons described by the Hamiltonian

HB =
∑

μ=h,c

Hμ
B =

∑
μ

∑
k

εk,μb†
k,μ

bk,μ, (14)

where b†
k,μ

and bk,μ denote the creation and annihilation op-
erators of mode k of the μth reservoir, which has energy εk,μ.
Defining the interaction Hamiltonian as

Hμ
I = σx ⊗

∑
k

(gk,μb†
k,μ

+ g∗
k,μbk,μ), (15)

with interaction strength gk,μ between the two-level system
and the bosons of the kth mode of the μth reservoir, we
evaluated the reduced dynamics during the QIPs by adopting
the TCL master equation to describe the non-Markovian dy-
namics of the two-level system in contact with a reservoir.
For the model, the TCL master equation to second order is
exactly solvable when the system-reservoir coupling is de-
scribed by an Ohmic spectral density J (ω) ≡ ∑

k |gk|2δ(ω −
εk ) = λω exp(−ω/), where λ is a coupling constant and 

is a cutoff frequency [83,111]; an explicit expression of the
solution is given in Appendix A.

We note that the Born-Markov approximation is valid if the
autocorrelation function of the bosonic reservoir in the TCL
master equation decays much faster than the relaxation time of
the two-level system through the system-reservoir interaction,
which is achieved by taking the long-time (Markovian) limit
t → ∞ on the TCL master equation, Eq. (A1). This produces
the Markovian master equation, which is exactly solvable with
the solutions given by Eqs. (B1) and (B2). Alternatively, the
correlation time of the bosonic reservoir becomes shorter by
setting simultaneously the coupling constant λ sufficiently
small and the cutoff frequency  large enough, corresponding

to the Markovian approximation. Since we focus on the non-
Markovian effect on the heat engine in this paper, we set 

small to make the non-Markovian effect significant in the fol-
lowing numerical calculations. (See Ref. [83] for details of the
dependence of the energy backflow on the cutoff frequency in
the weak-coupling situation. A similar parameter setting was
used to study a non-Markovianity measure in Ref. [115].)

B. Interaction energy

For the model specified above, we examine the time evo-
lution of the interaction energy during the contact with the
hot reservoir (first QIP) after the QOE reaches the limit cycle,
by using Eq. (13). For this purpose, we evaluate the time
evolution of the energy of the hot reservoir, 	Eh

B(t ), as well
as of the system, 	Eh

S (t ), for 0 � t � t1, keeping the contact
duration with the cold reservoir t2 constant.

To investigate the features of 	Eh
B(t ), let us firstly show

its time differential coefficient, d	Eh
B(t )/dt[≡ θh(t )], which

we call energy flow, whose sign represents the direction of the
net energy transfer between the system and the hot reservoir.
We define the energy flow to be positive, θh(t ) > 0, when
the energy is flowing into the reservoir, and to be negative,
θh(t ) < 0, when the energy is flowing into the system. In
Fig. 2(a), we provide a numerical estimate of θh(t ) in the
short-time duration 0 � t � t1 for the non-Markovian (solid
line) and Markovian (dashed line) cases after the QOE reaches
the limit cycle with the temperatures of the reservoirs set to
Th = 5.0 and Tc = 1.0, the contact duration set to t1 = 5 and
t2 = 60, the coupling strength of system-reservoir interaction
set to λ = 0.01, the cutoff frequency of the spectral density
set to  = 0.4, and the ratio of the Larmor frequencies of the
system set to ωc/ωh = 0.18 for the unit values ωh = 1 with
kB = h̄ = 1. The dashed line in Fig. 2(a) indicates that the
energy always flows from the system into the reservoir in
the Markovian case. In the non-Markovian case, by contrast,
the energy temporarily flows in reverse, which we call the
energy backflow [83].

In Fig. 2(b), we show the time evolution of the system
in accordance with the above energy transfer by evaluating
the temporal change of the ratio of populations of the upper
state ρ11 and of the lower state ρ00, ωh[ln(ρ00/ρ11)]−1(≡ Teff ),
which corresponds to the effective temperature of the system.
While the Markovian case (dashed line) shows a monotonic
approach to the population given in the equilibrium with the
hot reservoir of temperature Th = 5.0, we find that for the
non-Markovian case (solid line) the population in the excited
state becomes larger as indicated by the increase in the effec-
tive temperature of the system, corresponding to the energy
backflow.

We next present in Fig. 2(c) how the short-time behaviors
of the energy transfer and the system affect the energy change
of the respective parts of the engine, changing t1 while keep-
ing other parameters the same as above for each case. Let
us first show a crucial role of the interaction energy in the
non-Markovian dynamics in comparison with the Markovian
dynamics: Whereas the energy transfer to the system-reservoir
interaction is constantly zero in the Markovian case (see Eh

I,M
indicated by the green dashed line), it takes a negative finite
value in the non-Markovian case (see Eh

I,NM indicated by the
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FIG. 2. Non-Markovian (NM; solid line) and Markovian (M;
dashed line) dynamics of (a) the energy flow, (b) the effective temper-
ature, and (c) the change in energy of respective parts of the engine
during contact with a hot reservoir; a flow to the reservoir is defined
to be positive. We find that (a) the non-Markovian dynamics shows
the energy backflow from the reservoir and (b) the effective temper-
ature of the system becomes higher than the hot reservoir. In (c),
we show the change in energy, 	E h

S , 	E h
B, and E h

I . We find that E h
I

is finite in the non-Markovian dynamics. The parameter settings are
Th = 5.0, Tc = 1.0, t2 = 60, λ = 0.01,  = 0.4, and ωc/ωh = 0.18
for unit values ωh = 1 with kB = h̄ = 1. If an actual value of the
level splitting of the two-level system in contact with the hotter reser-
voir is h̄ωh = 1 meV, the actual values of the other parameters are
roughly evaluated as follows: λ = 10 meV, h̄ = 0.4 meV, Th ≈ 58
K, Tc ≈ 11.8 K, and h̄ωc = 0.18 meV.

green solid line). This means that in addition to the backflow,
the system also withdraws energy from the system-reservoir
interaction in the non-Markovian case, which causes attractive
interaction between system and reservoir. We thus need to take
into account the interaction energy as a part of work when we
detach the reservoir from the system.

C. Work extraction

The negative value of the interaction in the non-Markovian
dynamics (green solid line in Fig. 2) leads to the consideration
that we need energy to detach the system from the reservoir
against the attractive system-reservoir interaction; thus a part
of applied work is consumed in the detachment, which is ex-
actly the idea of our definition of work formulated by Eq. (12).
In Fig. 3, we show the work extraction with changing t1 and
t2 by numerically evaluating WII. In the numerical calcula-
tions, we chose parameters such that the Otto efficiency ηO

in Eq. (11) exceeds the Carnot efficiency ηC ≡ 1 − Tc/Th, i.e.,
ηO > ηC. We now see that the total amount of work is negative
for the entire region. In contrast, the conventional definition
of work formulated by Eq. (8) provides a serious conflict with

FIG. 3. Extracted work WII, Eq. (12), of the QOE under the
non-Markovian dynamics for contact durations t1 and t2 with the
detachment energy taken into account. The parameter settings are
Th = 5.0, Tc = 1.0, λ = 0.01,  = 0.4, and ωc/ωh = 0.18 for unit
values ωh = 1 with kB = h̄ = 1 (same as in Fig. 2).

the thermodynamic law; WI eventually becomes positive for
the same parameter values with ηO > ηC (see Appendix C for
details). Hence, for the non-Markovian QOE, the thermody-
namic law seems to be consistent with the inclusion of the
interaction energy in the work.

Figure 3 also shows that the extracted work exhibits a
maximum value for a finite set of t1 and t2 in the green
region indicated by the yellow arrow. This is caused by the
energy backflow; as discussed in the previous section, the
energy eventually flows from the reservoir to the system in
the non-Markovian dynamics [the solid line in Fig. 2(a)], and
accordingly, the population of the excited state increases [the
solid line in Fig. 2(b)]. The increase in the population of
the excited state contributes to the increase in Wad1, resulting
in the maximum of the work extraction. The maximum is
another characteristic of the non-Markovian QOE. Indeed, for
the Markovian QOE, the amount of work extraction mono-
tonically decreases with respect to t1 and t2 as shown in Fig. 4
in Appendix B. We confirm the conclusions above for several
other values of ωh and ωc in Appendix E.

VI. CONCLUSIONS AND DISCUSSION

We have examined the role of the system-reservoir inter-
action in the non-Markovian quantum Otto engine. While the
energy cost of detaching the system from the reservoir caused
by the interaction is neglected in the conventional definition of
the extracted work in a quantum heat engine, we find that the
energy of the system-reservoir interaction temporally changes
to be negative during each quantum isochoric process in the
non-Markovian quantum Otto engine. The resulting attractive
system-reservoir interaction requires us to pay a certain ener-
getic cost to detach it at the end of each quantum isochoric
process, thus reducing the net amount of extracted work. By
introducing a new definition of work including the interac-
tion energy, we show that the net amount of extracted work
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FIG. 4. The work extraction from the QOE with isochoric pro-
cesses evaluated under the Born-Markov approximation for the
contact durations t1 and t2 with hotter and colder reservoirs, respec-
tively. We set the parameters to Th = 5.0, λ = 0.01,  = 0.4, and
ωc/ωh = 0.18 under the unit values of ωh = 1 with kB = h̄ = 1, for
which ηO = 0.82 > ηC = 0.8.

remains negative if the parameters are chosen such that the
Otto efficiency ηO exceeds the Carnot efficiency ηC. In con-
trast, we show in Appendix C that the conventional definition
of work excluding the interaction energy eventually becomes
positive for the same parameter values with ηO > ηC. This
indicates that the thermodynamic law seems to be consistent
with the inclusion of the interaction energy in the work in the
non-Markovian quantum Otto engine. We also find that the
work exhibits a maximum for finite t1 and t2 due to the energy
backflow. The latter finding may be useful to design a highly
efficient quantum heat engine possessing a finite power.

The above summarized features are characteristics of the
non-Markovian engine. Indeed, the numerical result presented
in Fig. 2(c) shows that the interaction energy is constantly zero
in the Markovian case; thus the definitions of work given by
Eqs. (8) and (12) coincide in the Markovian engine. In Ap-
pendix B, we summarize the work extraction in the Markovian
engine. Figure 4 in Appendix B shows that the work extrac-
tion from the Markovian engine operated under the condition
ηO > ηC is entirely negative, and the net amount of extracted
work monotonically decreases as the contact durations t1 and
t2 increase.

Regarding the treatment of the interaction energy in defin-
ing work and heat, the controversy has been resolved for
strongly coupled systems [10,101–103]. In this paper, how-
ever, we found that the finite contribution of the interaction
energy under the non-Markovian effect is relevant even for
weak system-reservoir coupling. The finding dictates a recon-
sideration of the foundation of the controversy. In terms of the
work-extracting procedure, several studies [116–122] suggest
that we may need to consider a coupling between the system
and the measurement apparatus. Further work is necessary to
make the present QOE experimentally feasible.

In the model considered in this paper, the time evolutions of
the diagonal and off-diagonal elements of the reduced density
operator for the two-level system are decoupled if the initial
condition is a product state of the two-level system and the

Gibbs state of the reservoir. Since the work extraction pro-
cesses in QAPs represented by Eqs. (9) and (10) depend only
on the diagonal elements, we have not included the time evo-
lutions of the off-diagonal elements. Though the decoupling
holds for a wide range of systems with an arbitrary transver-
sal system-environment interaction, i.e., HSE = MS ⊗ BS with
TrS[σzMS] = 0, the quantum coherence represented by the
off-diagonal elements may contribute to further enhancement
of the work extraction. Study of this issue is left for future
investigations.

Finally, we rely on quantum adiabaticity of the work-
extracting processes in Eqs. (9) and (10), which enables us
to expect the maximum work. However, this assumption also
requires an infinitely long time for the processes. To consider
finite-time operations throughout the Otto engine cycle, coun-
teradiabatic driving [54] and the shortcut to adiabaticity [123]
have been intensively studied to attempt a concrete realization
for experimental studies. Extension of this work to include
nonadiabaticity and the evaluation of the efficiency is needed.
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APPENDIX A: SOLUTION OF THE
TIME-CONVOLUTIONLESS MASTER EQUATION

In this Appendix, we summarize the solution of the time-
convolutionless (TCL) master equation for the spin-boson
model [83,111], which describes the non-Markovian dynam-
ics of the two-level system contacting with the μth reservoir.

In order to achieve the limit cycle given by Eq. (3), we
consider the time evolution of the reduced density matrix
ρμ

m (t ), which is initially prepared in the state |m〉〈m| ⊗ ρ
μ
B ,

where m = 0 or 1, and evolves in contact with the hotter (h) or
colder (c) reservoir. The time evolution of ρμ

m (t ) is described
by the TCL master equation

∂

∂t
ρμ

m (t ) = ξμ(t )ρμ
m (t ), (A1)

where {μ = h, c} and ξμ(t ) is a superoperator called the TCL
generator. Up to the second-order cumulant of the system-
reservoir coupling, it is given by

ξμ(t )ρμ
m (t ) = − i

[
Hμ

S , ρμ
m (t )

]
−

∫ t

0
dτTrμ

[
Hμ

I ,
[
H̆μ

I (−τ ), ρμ
m (t ) ⊗ ρeq

μ

]]
,

(A2)

where Hμ
S ≡ ωμσz/2 is the system Hamiltonian during the

contact with the hotter or colder reservoir, Trμ stands
for a partial trace taken over the μth reservoir, H̆μ

I (t ) ≡
exp [+i(Hμ

S + Hμ
B )t]Hμ

I exp [−i(Hμ
S + Hμ

B )t] is the inter-
action representation of the coupling Hamiltonian, and
ρ

eq
μ ≡ exp(−βμHB)/ Trμ[exp(−βμHB)] is the Gibbs state of

the μth reservoir with inverse temperature βμ ≡ 1/kBTμ.
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Assuming that the system-reservoir coupling is described
by the Ohmic spectral density with an exponential cutoff
J (ω) ≡ ∑

k |gk|2δ(ω − εk ) = λω exp(−ω/), the solution of
the TCL master equation [Eq. (A1)] is given by [83]

ρμ
m (t ) = e

∫ t
0 aμ(τ )dτ

(
ρμ

m (0) −
∫ t

0
dτbμ(τ )e− ∫ τ

0 aμ(s)ds

)
,

(A3)

where aμ(t ) ≡ −2
∫ t

0 Dμ
1 (τ )cos(ωμτ )dτ and bμ(t ) ≡

aμ(t )/2 − ∫ t
0 D2(τ ) sin(ωμτ )dτ . The noise and dissipation

kernels are given by

Dμ
1 (τ ) ≡ 2

∫ ∞

0
dωJ (ω) coth

(
ω

2Tμ

)
cos(ωτ )

= 2λ

(
2 (τ )2 − 1

[1 + (τ )2]2

+2Tμ
2Re

{
ψ ′

[
Tμ(1 + iτ )



]})
, (A4)

where ψ ′(z) is the derivative of the Euler digamma function
ψ (z) ≡ �′(z)/�(z), and

D2(τ ) ≡ 2
∫ ∞

0
dωJ (ω) sin(ωτ ) = 4λ3τ

[1 + (τ )2]2
. (A5)

Because the second term in the last expression in Eq. (A4)
is proportional to Tμ

2, the dissipation kernel Dμ
1 (τ ) may take

a large value when Tμ is large, which eventually violates the
positivity of the dynamical map for the open-system dynamics
even in the weak-coupling regime. In this paper, we have
carefully chosen parameter values to guarantee the positivity
in performing numerical calculations.

APPENDIX B: WORK EXTRACTION IN THE
BORN-MARKOV APPROXIMATION

In this Appendix, we consider the work extraction in the
Born-Markov approximation and show that the quantum Otto
engine (QOE) under the Markovian dynamics cannot exceed
the Carnot efficiency [20,21].

The Born-Markov approximation is accomplished by tak-
ing the long-time (Markovian) limit t → ∞ on the TCL
generator [Eq. (A2)], whose solution is given by Ref. [83]:

ρ
μ
m,00(t ) = 1 + n(ωμ)

1 + 2n(ωμ)
+

[
ρ

μ
m,00(0) − 1 + n(ωμ)

1 + 2n(ωμ)

]
exp {−2πJ (ωμ)[1 + 2n(ωμ)]t}, (B1)

ρ
μ
m,11(t ) = 1 − ρ

μ
m,00(t ), (B2)

with n(ωμ) = [exp(ωμ/Tμ) − 1]−1. By definition, the (0,0) components of the initial states are given by ρ
μ
1,00(0) = 0 and

ρ
μ
0,00(0) = 1. We thereby analyze a condition of positive work extraction in the QOE under the Markovian dynamics. By using

Eqs. (5) and (6), the condition

〈W 〉 = 〈W1〉 − 〈W2〉 > 0 (B3)

is followed by

(ωh − ωc)
{[

Phρh
0,11(t1) + (1 − Ph )ρh

0,11(t1)
] − [

Pcρc
0,11(t2) + (1 − Pc)ρc

0,11(t2)
]}

> 0. (B4)

Since ωh > ωc by definition, we have[
Phρh

0,11(t1) + (1 − Ph )ρh
0,11(t1)

] − [
Pcρc

0,11(t2) + (1 − Pc)ρc
0,11(t2)

]
> 0. (B5)

Inserting the solutions given by Eqs. (B1) and (B2) into the left-hand side of Eq. (B5), we have(
1 + n(ωh)

1 + 2n(ωh)
− 1 + n(ωc)

1 + 2n(ωc)

)
(1 − e−2πJ (ωh )[1+2n(ωh )]t1 )(1 − e−2πJ (ωc )[1+2n(ωc )]t2 ) > 0. (B6)

Because the second and third factors on the left-hand side are
always positive, we obtain

1 + n(ωh)

1 + 2n(ωh)
>

1 + n(ωc)

1 + 2n(ωc)
, (B7)

which is transformed into

n(ωh) > n(ωc). (B8)

Since n(ωμ) = [exp(ωμ/Tμ) − 1]−1, we thus show the equiv-
alence of the condition of positive work extraction given by
Eq. (B3) with

ωc

ωh
>

Tc

Th
, (B9)

and hence

ηO < ηC. (B10)

In short, the Markovian QOE cannot exceed the Carnot ef-
ficiency while maintaining positive work extraction. We can
understand the relation (B10) as follows. It might appear that
we could make ηO = 1 − ωc/ωh arbitrarily high by adjusting
the frequencies ωh and ωc accordingly. For a very large value
of ωh, however, the effective temperature (4) would become
higher than Th during the isentropic compression, and hence
the system would not be able to receive heat from the hotter
reservoir. Similarly, for a very small value of ωc, the system
would not be able to dispose heat to the colder reservoir. In
either case, the engine would not function properly, and we
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YUJI SHIRAI et al. PHYSICAL REVIEW RESEARCH 3, 023078 (2021)

FIG. 5. Work extracted WI of the QOE under the non-Markovian
dynamics for contact durations t1 and t2 evaluated by using the first
definition of work [Eq. (8)]. For settings corresponding to ηO > ηC,
we find a regime t1 � 5 where 〈W 〉 is positive. The parameter settings
are Th = 5.0, Tc = 1.0, λ = 0.01,  = 0.4, and ωc/ωh = 0.18 for
unit values ωh = 1 with kB = h̄ = 1 (same as in Fig. 2).

would not harvest a positive work value, which is exemplified
in Fig. 4.

APPENDIX C: WORK EXTRACTION WITH THE
DEFINITION GIVEN BY EQ. (8)

In this Appendix, we examine work extraction evaluated
with the definition given by Eq. (8), excluding the system-
reservoir interaction. In Fig. 5, we present numerical estimates
of the extracted work with respect to contact durations t1
and t2. We find that the work WI becomes positive in the
region t1 � 5, under conditions ηO > ηC, which apparently
contradicts the Carnot theorem.

The positiveness of the extracted work WI for short t1 can
be understood from temporal changes in the energy flow be-
tween the system and the hot reservoir represented by Fig. 2(a)
as well as in the effective temperature of the system during the
first QIP represented by Fig. 2(b). In the non-Markovian case,
by contrast, the energy temporarily flows in reverse, which
we call the energy backflow. Accordingly, the population in
the excited state becomes larger as indicated by the increase
in the effective temperature of the system shown in Fig. 2(b),
which contributes to an increase in the extracted work WI. In
addition to the backflow, the system also withdraws energy
from the system-reservoir interaction in the non-Markovian
case, which is indicated by the negative value of the energy
change of the interaction presented in Fig. 2(c) (the green solid
line). It may also contribute to a further increase in the work
extraction.

APPENDIX D: ENERGY CHANGE OF THE HOTTER
RESERVOIR AND THE TWO-LEVEL SYSTEM

In this Appendix we formulate the energy change of the
hotter reservoir and the two-level system during the first quan-
tum isochoric process (first QIP).

Let us first formulate the energy change of the reservoir
in terms of the full-counting statistics (FCS) based on the
two-point projective measurement. This is accomplished by
successive projective measurements of the reservoir Hamilto-
nian Hh

B. The measurement scheme is as follows: first at t = 0,
we perform a measurement of the Hh

B to obtain an outcome
Eh

B,0. During 0 � t � t1, the system undergoes a unitary time
evolution brought about by interaction between the system
and the reservoir. At t = t1, we perform another measurement
of Hh

B to obtain another outcome Eh
B,t1

. The net energy change
of the reservoir during the time interval t1 is therefore given
by 	Eh

B = Eh
B,t1

− Eh
B,0. The cumulants of 	Eh

B are provided
by its cumulant generating function

S(χ, t ) ≡ ln
∫ ∞

−∞
Pt

(
	Eh

B

)
eiχ	Eh

B d	Eh
B, (D1)

where Pt (	Eh
B) is the probability distribution function of 	Eh

B
and χ is the counting field associated with Hh

B. Hence the ex-
pectation value of the energy change during the time interval
t1 may be expressed by the first derivative of the cumulant
generating function,

〈
	Hh

B(t1)
〉 = −∂S(χ, t1)

∂ (iχ )

∣∣∣∣
χ=0

. (D2)

The FCS provides a systematic method of evaluating the
cumulant generating function [114]. Let us formally rewrite
it as

S(χ, t ) = ln TrS
[
ρh

χ (t )
]
, (D3)

with

ρh
χ (t ) ≡ Trh[Uχ/2(t, 0)W (0)U †

χ/2(t, 0)], (D4)

where Uχ/2(t, 0) ≡ ei(χ/2)Hh
BU (t, 0)e−i(χ/2)Hh

B , U (t, 0) is the
time evolution operator for the total system, and W (0) is
the density matrix for the total system at t = 0. Assuming a
factorized initial condition, the time evolution of the operator
ρ (χ )(t ) is described by the equation

d

dt
ρh

χ (t ) = ξ h
χ (t )ρh

χ (t ), (D5)

which is the TCL-type quantum master equation modified to
include the counting field [111,124]. Up to the second-order
cumulant of the system-reservoir coupling, the TCL generator
is given by

ξ h
χ (t )ρh

χ (t ) = −i
[
Hh

S, ρ
h
χ (t )

] −
∫ t

0
dτTrh

[
Hh

I ,
[
H̆h

I (−τ ), ρh
χ (t ) ⊗ ρ

eq
h

]
χ

]
χ
, (D6)

where [X,Y ]χ ≡ X (χ )Y − Y X (−χ ) with X (χ ) ≡ eiχHh
B/2Xe−iχHh

B/2. We note that the familiar master equation describing the time
evolution of the usual density operator is recovered by taking χ = 0 in Eq. (D5). In terms of the TCL master equation formalism,
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FIG. 6. Dependence of the work extraction on ωh and ωc evaluated under non-Markovian dynamics for the contact durations t1 and t2 with
hotter and colder reservoirs, respectively. We set the parameters to Th = 5.0, λ = 0.01, and  = 0.4 under the unit values of kB = h̄ = 1.

the mean dissipated heat is expressed by [111]

〈
	Hh

B(t1)
〉 = −

∫ t1

0
dtTrS

[
∂ξ h

χ (t )

∂ (iχ )

∣∣∣∣
η=0

ρh(t )

]
. (D7)

By applying the expression in Eq. (D7) to the spin-boson model, we obtain the expression of the energy change of the hotter
reservoir during the first QIP,

〈
	Hh

B(t1)
〉 = ωhPh

[
ρh

0,00(t1) − 1
] + ωh(1 − Ph )ρh

1,00(t1) − 1 +
∫ t1

0
dτ

{
Ph

[[
2ρh

0,00(τ ) − 1
]
Dh

1(τ ) sin(ωhτ ) + D2(τ ) cos(ωhτ )
]

+(1 − Ph )
[[

2ρh
1,00(τ ) − 1

]
Dh

1(τ ) sin(ωhτ ) + D2(τ ) cos(ωhτ )
]}

. (D8)

We next formulate the energy change of the two-level system. Because the energy level of the two-level system is unchanged
during the QIP, the net energy change of the system is simply evaluated as〈

	Hh
S(t1)

〉 = ωh
[
ρh

11(t1) − ρh
11(0)

] = ωhPhρh
0,11(t1) + ωh(1 − Ph )

[
ρh

1,11(t1) − 1
]
. (D9)

Using these expressions with unity of the total population Tr ρ0(1)(t ) = ρ0(1),00(t ) + ρ0(1),11(t ) = 1, we find the change in the
interaction energy as

〈
	Hh

I (t1)
〉 =

∫ t1

0
dτ

{
Ph

[[
2ρh

0,00(τ ) − 1
]
Dh

1(τ ) sin(ωhτ ) + D2(τ ) cos(ωhτ )
]

+ (1 − Ph )
[[

2ρh
1,00(τ ) − 1

]
Dh

1(τ ) sin(ωhτ ) + D2(τ ) cos(ωhτ )
]}

. (D10)
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FIG. 7. Dependence of the work extraction on ωh and ωc evaluated under non-Markovian dynamics for the contact duration t1 and t2 with
the detachment energy counted in. We set the parameters to Th = 5.0, λ = 0.01, and  = 0.4 under the unit values of kB = h̄ = 1.

APPENDIX E: DEPENDENCE OF WORK EXTRACTION
ON ωh AND ωc

In this Appendix, we summarize the dependence of the
work extraction on several ωh and ωc. In Fig. 6, we provide
work extractions evaluated by means of Eqs. (3) and (4) in
the main text under the non-Markovian dynamics for several
combinations of ωh and ωc. In the figure, the three panels
on the diagonal from upper left to lower right [(ωh, ωc) =
(0.9, 0.18), (1.0, 0.2), (1.25, 0.25)] are evaluated under the
condition ηO = ηC = 0.8. The three panels above the diag-
onal line [(ωh, ωc) = (0.9, 0.2), (0.9, 0.25), (1.0, 0.25)] cor-
respond to ηO < ηC, and the other three panels [(ωh, ωc) =
(1.0, 0.18), (1.25, 0.18), (1.25, 0.2)] correspond to ηO > ηC.
The figure shows that under the condition ηO � ηC, we can ex-
tract positive work from the QOE for a wide range of contact
durations (t1, t2). For ηO � ηC, in contrast, the work extraction
is negative for the majority of (t1, t2), but we can still extract
positive work if the contact duration with the hotter bath, t1, is
sufficiently short. In Fig. 7, we also provide work extractions
for several combinations of ωh and ωc with the detachment

energy counted in as a part of work. In this figure, we find that
the work extraction is always negative for any combinations of
(ωh, ωc). This means that the efficiency of the quantum Otto
engine cannot exceed the Carnot efficiency if we include the
detachment energy as a part of work.

APPENDIX F: REMARKS ON THE CASE OF LARGE
CUTOFF FREQUENCY �

Since we realize the existence of misunderstanding that
the TCL master equation would converge to the Markovian
master equation in the limit of infinite cutoff frequency , we
here make a remark on a logarithmic divergence for large .
We demonstrate for our model the existence of the logarithmic
divergence theoretically and numerically.

In the limit  → ∞, we find the first term of the noise
kernel, D1(τ ), in (A4) to

lim
→∞

2 (τ )2 − 1

[1 + (τ )2]2
= 1

τ 2
, (F1)
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while the second term reduces to

2T 2
μ lim

→∞
ψ ′

[
Tμ(1 + iτ )



]
= 2T 2

μ ψ ′[iTμτ ]. (F2)

Expanding further the digamma function in the second term
as

ψ ′(z) = 1

z2
+ π2

6
+ zψ (2)(1) + π4z2

30
+ O(z3),

we find that the second term gives

2T 2
μ ψ ′(iTμτ ) = − 2

τ 2
+ · · · .

After the summation of the two terms, the leading term of
D1(τ ) is proportional to 1/τ 2.

This behavior of the function D1(τ ) affects the TCL master
equation in the following way. The double integral in the ana-
lytic solution of the TCL equation, namely, Eq. (A3), contains
the functions

aμ(τ ) ≡ −2
∫ τ

0
dsD1(s) cos(ωμs) (F3)

in its exponent. Therefore the term of order 1/τ 2 in D1(τ )
results in a logarithmic divergence of the solution in the limit
 → ∞.

This logarithmic divergence in the infinite- limit is not
surprising at all when we remember the original discus-
sion that introduced the cutoff frequency in the context of
a quantum damped oscillator (see, e.g., Ref. [125]), that is,
a quantum oscillator interacting with its environment that
consists of an infinite number of oscillators. In the quantum
damped oscillator, the strict Ohmic damping, corresponding
to the memoryless reservoir (i.e., the Markovian assumption),
is described in terms of the spectral density J (ω) = ηω with
a coefficient constant η {see Eq. (3.38) in Ref. [125]}. Under
this assumption, the second moments of the momentum and
the position of the damped oscillator show a logarithmic ul-
traviolet divergence. The cutoff frequency was introduced to
avoid the divergence in the form of an inertia effect (i.e., a
non-Markovian effect).

Another discussion common to the present issue is found
in Ref. [126] for the spin-boson system. The authors paid
special attention to finding an exponential decay of the expec-
tation value of the population difference of a two-state system,
〈σz(t )〉. They pointed out that it was the long-time limit in the
unit of the cutoff frequency that gave the exponential decay,
not the limit of the large cutoff frequency.

This point is common to our discussion of the Born-
Markov approximation in this paper. While some might
expect that the dynamics of the two-level system under the
TCL master equation uniformly converges to the dynamics
under the Born-Markov equation by making the cutoff fre-
quency  larger and larger, the convergence is smooth only
in the time scale much longer than the decay time τB of the
autocorrelation function of the reservoir. When we make 

larger, τB becomes shorter, and hence the dynamics under
the TCL equation for a fixed long-time scale more rapidly
converges to the dynamics under the Born-Markov equation.

In a short-time scale, on the other hand, the TCL dynamics
has a significant deviation from the Born-Markov dynamics

FIG. 8. Non-Markovian (NM; solid line) and Markovian (M;
dashed line) dynamics of (a) the energy flow, (b) the effective temper-
ature, and (c) the change in energy of respective parts of the engine
during contact with a hot reservoir for a large value of the cutoff fre-
quency  = 3.0. The other parameters are set to Th = 5.0, Tc = 1.0,
t2 = 60, λ = 0.01, and ωc/ωh = 0.18 for unit values ωh = 1 with
kB = h̄ = 1.

because the finiteness of the upper limit of the integration in
the TCL equation, (A1) with (A2), significantly affects the
dynamics in the time scale t � τB. We confirm the behavior
numerically below. This is consistent with the standard under-
standing of the Born-Markov approximation in the literature
{see, e.g., Eq. (3.118) in Ref. [72]}, where the Born-Markov
master equation is obtained by taking the long-time limit

FIG. 9. Work extracted WI of the QOE under the non-Markovian
dynamics for contact durations t1 and t2 evaluated by using the
conventional definition of work given by Eq. (8) for a large cut-
off frequency  = 3.0. The other parameters are set to Th = 5.0,
Tc = 1.0, λ = 0.01, and ωc/ωh = 0.18 for unit values ωh = 1 with
kB = h̄ = 1.
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t → ∞ on the upper limit of the integration as

d

dt
ρ(t ) = − i

h̄

[
Hh

S, ρ(t )
]

− 1

h̄2

∫ ∞

0
dτTrB

[
Hh

I ,
[
H̆h

I (−τ ), ρ(t ) ⊗ ρ
eq
h

]]
,

(F4)

but not the limit  → ∞, and such an approximation is justi-
fied in a time scale much longer than τB.

Let us finally demonstrate dynamics and work extraction
numerically for a large but finite value of . In Fig. 8, we
provide non-Markovian and Markovian dynamics of several
quantities during the contact with hot reservoir, corresponding
to Fig. 2, for  = 3. By looking at the time dependence of
the effective temperature in Fig. 8(b), we find that the non-
Markovian dynamics (the solid line) rapidly converges with
the Markovian dynamics (the dashed line) compared with
the case of  = 0.4 in Fig. 2. The rapid convergence of the
non-Markovian dynamics with the Markovian dynamics is

also observed in the dynamics of the change in the system
energy 	Eh

S indicated by the red line in Fig. 8(c).
However, we also find a significant deviation of the non-

Markovian dynamics from the Markovian dynamics in the
short-time region t � 10 of the energy flow in Fig. 8(c);
the deviation is much larger than the case of  = 0.4. The
behavior is reasonable because setting the cutoff frequency
larger corresponds to strengthening the interaction between
the two-level system and higher-energy modes of the reser-
voir, which increases energy transfer between the system and
the reservoir.

Needless to say, the strengthening of the interaction in-
creases the energy flow in the shorter-time region as in
Fig. 8(a), which increases the absolute value of the mean of
the interaction energy itself, Eh

I,NM, as indicated by the green
solid line in Fig. 8(c), compared with Fig. 2. As a conse-
quence, the non-Markovian dynamics rapidly converges to the
Markovian dynamics for large , and the significant increases
in the energy transfer in the initial short-time region and the
interaction energy together with the conventional definition of
work given by Eq. (8) lead to a positive work extraction as
indicated by Fig. 9. In the regions that satisfy ηO > ηC, we
find a regime t1 � 5 where 〈W 〉 is positive.
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