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Heisenberg’s uncertainty principle, which imposes intrinsic restrictions on our ability to predict the outcomes
of incompatible quantum measurements to arbitrary precision, demonstrates one of the key differences between
classical and quantum mechanics. The physical systems considered in the uncertainty principle are static in
nature and described mathematically with a quantum state in a Hilbert space. However, many physical systems
are dynamic in nature and described with the formalism of a quantum channel. In this paper, we show that
the uncertainty principle can be reformulated to include process measurements that are performed on quantum
channels. Since both the preparation of quantum states and the implementation of quantum measurements are
themselves special cases of quantum channels, our formalism encapsulates the uncertainty principle in its utmost
generality. More specifically, we obtain expressions that generalize the Maassen–Uffink uncertainty relation and
the universal uncertainty relations from quantum states to quantum channels.
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I. INTRODUCTION

Counterintuitive as it may seem, the uncertainty principle
has been firmly rooted as a fundamental restriction that lies at
the heart of quantum mechanics [1]. The amount of informa-
tion one can extract from a quantum system at any given time
depends on the extent of the incompatibility of the underlying
measurements involved. In Heisenberg’s uncertainty princi-
ple, this corresponds to the fact that any attempt to measure the
position of a quantum particle with very high precision comes
at the cost of poor precision in the simultaneous measurement
of its momentum. This fundamental distinction from classical
physics has led to enormous research in the area and found a
plethora of applications in quantum key distribution [2] and
the detection of quantum resources [3], such as entanglement
[4–10], Einstein–Podolsky–Rosen steering [11–17], and Bell
nonlocality [18].

The uniqueness and immense potential in quantum uncer-
tainty has caused Heisenberg’s uncertainty principle—which
was mathematically formulated by Kennard [19] (also refer to
Weyl [20])—to go through multiple refinements over the last
century. One such example is the use of Rényi entropies to
formulate uncertainty relations from an information-theoretic
perspective by Maassen and Uffink [21] (based on the Riesz
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theorem [22]):

Hα (M ) + Hβ (N ) � −2 log c(M, N ). (1)

Here, Hα (M ) := 1
1−α

log(
∑

x pα
x ) stands for the Rényi en-

tropy with order α > 0, where p = {px} is the probability
vector corresponding to the outcomes of the measurement
M when performed on a system in a state ρ. The Rényi
parameters α and β are chosen such that 1/α + 1/β = 2.
The constant c(M, N ) stands for the maximal overlap be-
tween the measurements M and N and is independent of the
state ρ.

More recently, the authors of Ref. [23] showed that not
only entropic functions, but any nonnegative Schur-concave
function is a suitable uncertainty quantifier for the proba-
bilities obtained from measurements, giving rise to a class
of infinitely many uncertainty relations, known as universal
uncertainty relations (UURs). It is critical to note that the
classification of UURs with respect to the joint uncertainty
they present is a major focus in the theory of uncertainty
relations. While considering the two probability distributions
p and q obtained by measuring quantum state ρ with respect
to measurements M and N , their joint uncertainty can be based
on direct product [23–25] as well as direct sum [26]

p ⊗ q ≺ b⊗, (2)

p ⊕ q ≺ b⊕. (3)

Here, b⊗ and b⊕ are probability vectors independent of the
initial state ρ, and “≺” stands for majorization (for x =
(xk )k , y = (yk )k ∈ Rd , we have x ≺ y whenever

∑i
k=1 x↓

k �∑i
k=1 y↓

k for all 1 � i � d − 1 and
∑d

k=1 xk = ∑d
k=1 yk , where

the down arrow ↓ means the components of the corresponding
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vector are arranged in nonincreasing order). The approach of
majorization adopted by Refs. [23,25] frees us from particular
measures and captures the essence of uncertainty in quantum
mechanics.

In quantum mechanics, the conventional description of the
uncertainty principle captures the statistical properties of the
system to be studied at a fixed moment, leading to the mathe-
matical representation of uncertainty relations in terms of the
initial state. However, this approach has serious insufficiencies
when it comes to describing many realistic scenarios and
hence has impeded progress in understanding the physical
nature of the quantum world. Let us name a few shortcomings
of this conventional description: First, everything is in motion
in the universe, and the tendency of quantum states is to
evolve. Thus, when formulating a quantitative expression of
the tradeoff between incompatible measurements, we should
not only focus on the static state at a fixed moment, but also
the quantum process it undergoes. Second, the preparation of
the quantum state and the implementation of quantum mea-
surements are all special cases of quantum processes which
occur in a real laboratory. Nature owns more plentiful and
important quantum processes, ranging from the dynamics of
molecules in chemistry [27] to the functions of biochem-
ical systems in biology [28] and non-Markovian quantum
processes in physics [29–31]. Furthermore, even quantum ar-
tificial intelligence such as quantum machine learning [32],
which might contain complex internal structures, is a dy-
namical quantum process, so it is necessary to investigate
the amount of information one can have about quantum pro-
cesses under incompatible process measurements. The case
of the preparation of quantum states has been answered by
Heisenberg’s uncertainty principle, and a large number of
subsequent works has been dedicated to its reformulation and
improvements, but the answer to the general case of quantum
processes is still absent.

In this paper, we extend the uncertainty principle to incor-
porate the case of quantum dynamical processes, generalizing
the notion of quantum uncertainty to a theory of quantum
mechanics modeled solely by quantum processes. We inves-
tigate a Rényi entropic uncertainty relation, generalizing the
celebrated relation in Eq. (1) from quantum states to quantum
processes, and present direct-sum and direct-product UURs
for quantum processes which extend the UURs in Eqs. (2) and
(3) to quantum processes. Examples that support our results
have also been supplied.

II. PRELIMINARIES

In this section, we give a brief discussion of notation,
terminology, and background information on the formulation
of dynamical quantum processes. For a finite dimensional
Hilbert space H , the set of all linear transformation taking
the Hilbert space to itself is denoted by L(H ). An operator
ρ ∈ L(H ) is a density operator, representing a quantum state,
if it is positive semidefinite and has unit trace, i.e., ρ � 0 and
Tr[ρ] = 1. We denote the collection of all density operators
onH as D(H ). A quantum effect Mx on D(H ) is an operator
such that 0 � Mx � 1, where 1 denotes the identity matrix on
D(H ). The probability px of an outcome x as a result of the
effect Mx acting on a density operator ρ is given by Tr[Mx ρ].

A positive-operator-valued measure (POVM) M = {Mx}x is a
set of effects that collectively sum to the identity

∑
x Mx = 1.

A superoperator � maps operators of one Hilbert space
to operators of another Hilbert space. Naturally, for Hilbert
spaces HA and HB, �[L(HA)] ⊂ L(HB) or simply � : A →
B, and their collection is denoted by T (A, B) := {� | � : A →
B}. A superoperator � ∈ T (A, B) is said to be a quantum
channel if it is (i) completely positive (CP, i.e., 1R ⊗ � is
positive for all finite dimensional Hilbert space HR), and
(ii) trace preserving (TP, i.e., TrB[�(•)] = TrA[•]). We use
CPTP(A, B) to denote the collection of all CPTP maps from
space L(HA) to space L(HB).

Now let us look at states and measurements from the per-
spective of quantum channels: a quantum state ρ can be seen
as the state-preparation channel �ρ : C → H , and a POVM
M = {Mx}x is equivalent to the measurement channel �M :
H → C. To deal with dynamical quantum processes, i.e.,
CPTP maps, it is convenient to use the Choi–Jamiołkowski
(CJ) isomorphism [33,34]:

Lemma 1 (Choi–Jamiołkowski). For any � ∈ T (A, B),
there is a linear bijection between T (A, B) and L(A ⊗ B) :=
L(HA ⊗HB), which is given by

θ : T (A, B) → L(A ⊗ B),

� 	→ JAB
� , (4)

where JAB
� = 1Ã→A ⊗ 1B(JÃB

� ) = 1Ã→A ⊗ �(φÃA
+ ) with

φÃA
+ := |φÃA

+ 〉〈φÃA
+ | being an unnormalized maximally

entangled state with |φÃA
+ 〉 := ∑dA

i=1 |i〉Ã|i〉A.
Here, the tilde symbol indicates an identical copy of the

system under it, and hence, in what follows, we do not distin-
guish between the space H Ã and HA. Analogous to the role
of density operator of a quantum system, the CJ matrix JAB

�

provides a complete description of the physical process � at
any given time.

The entire study of quantum information theory revolves
around how much information can be efficiently packed,
transferred, and retrieved in a desired fashion by means
of preparation, manipulation, and measurement of quantum
states [35–37]. In the theory of quantum mechanics modeled
solely by quantum channels, this whole picture, therefore,
boils down to the idea of storing and retrieving informa-
tion, not from quantum states, but from quantum channels
themselves. However, just like quantum states, the only way
of accessing information from a quantum channel is by
measuring it. Such a measurement is called process-channel
measurement, introduced in Ref. [38]. Imagine a scenario
with a state-preparation device providing initial state ρRA ∈
L(R ⊗ A) and a POVM M = {Mx}x acting on L(R ⊗ B). For-
mally, the process-channel measurement is defined by the
couple T := (ρRA, M ). To retrieve the information conveyed
by the quantum channel �, a reference system R distributes
to the measuring device directly; meanwhile, the probe sys-
tem A, which is correlated with R, is transformed through �

followed by the measurement M. Here, the classical informa-
tion or measurement outcome x will occur with probability
px = Tr[Mx1

R ⊗ �(ρRA)]. Next, we substitute the equation
ρRA = ϒρ ⊗ 1A(φÃA

+ ), where ϒρ : L(H Ã) → L(HR) is a CP
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linear map [36,37], into the expression for px; we get

px = Tr[Mx1
R ⊗ �(ρRA)]

= Tr{Mx1
R ⊗ �[ϒρ ⊗ 1A(φÃA

+ )]}
= Tr[ϒ∗

ρ ⊗ 1B(Mx )1A ⊗ �(φÃA
+ )]

= Tr
[
ϒ∗

ρ ⊗ 1B(Mx )JAB
�

]
, (5)

where in the third equation, ϒ∗
ρ is the dual map of ϒρ , which is

also a CP linear map, with the property that, for all operators
MA ∈ L(A) := L(HA) and for all MR ∈ L(R) := L(HR), we
have Tr{[ϒρ (MA)]†MR} = Tr[(MA)†ϒ∗

ρ (MR)].
Regarding the above discussions, it is clear that, for each

single channel measurement (ρRA, Mx ), we can define an op-
erator Ex := ϒ∗

ρ ⊗ 1A(Mx ) � 0 satisfying

px = Tr
[
ExJAB

�

]
. (6)

Here, Ex is the so-called process-channel effect of single
channel measurement (ρRA, Mx ), and their collection {Ex}x is
known as process POVM (PPVOM) or tester [38]. More gen-
erally, a PPOVM is a special case of 2 combs [39–41], where
preprocessing and postprocessing are classical-to-quantum
and quantum-to-classical channels, respectively.

III. MAASSEN–UFFINK UNCERTAINTY RELATIONS

Having defined what a measurement of quantum process
is, we now use it to study entropic uncertainty relations. Let
� be a quantum channel from operator space L(A) to L(B).
For simplicity of the exposition, we start with two PPOVMs
and denote them as T1 := (ρRA, M ) and T2 := (σ RA, N ). We
also denote by {px}x and {qy}y the two probability distributions
obtained by measuring � with respect to T1 and T2. In anal-
ogy with Ex and px, let us also define Fy = ϒ∗

σ ⊗ 1A(Ny) � 0
as the process-channel effect of single channel measurement
(σ RA, Ny ), such that qy = Tr(FyJAB

� ). It is straightforward to
check that

∑
x Ex = (ρA)T ⊗ 1B � 1AB and

∑
y Fy = (σ A)T ⊗

1B � 1AB, where T denotes transposition in the corresponding
space, and hence the mathematical structure of PPOVMs do
not obey the completeness relation [38].

Next, we will introduce the overlap for PPOVMs by ex-
tending the sets of process-channel effect {Ex}m

x=1 and {Fy}n
y=1

to {Ẽx}m+1
x=1 and {F̃y}n+1

y=1, respectively. Regarding the subscript,
the extended process-channel effects Ẽx, F̃y are defined as

Ẽx :=
{

Ex 1 � x � m,

1AB−(ρA)T ⊗ 1B x = m + 1,
(7)

and

F̃y :=
{

Fy 1 � y � n,

1AB−(σ A)T ⊗ 1B y = n + 1.
(8)

The quantity cxy(T1,T2) := ‖Ẽ1/2
x F̃ 1/2

y ‖ with 1 � x � m + 1
and 1 � y � n + 1 represents the overlap between process-
channel measurements T1 and T2, analogous to the overlap
between projective measurements [42], extensively inves-
tigated in many quantum information-theory contexts, for
example, Ref. [42]. The maximum overlap between T1 and
T2 then can be defined as c(T1,T2) := maxx,y cxy(T1,T2).

FIG. 1. Schematic illustration of the process positive-operator-
valued measures (PPOVMs): (a) PPOVM T1 and (b) PPOVM T2.

Guided by intuition, c should provide a bound on the min-
imum uncertainty arising from simultaneously measuring �

with T1 and T2, thereby quantifying the inherent incompati-
bility between process-channel measurements. We will return
to the meaning of this later.

To establish our uncertainty relations, we collect the
probabilities px and qy into two probability vectors p :=
p(T1, �) = (p1, . . . , pm) and q := q(T2, �) = (q1, . . . , qn),
respectively (Fig. 1). Having defined what the probability vec-
tors for process-channel measurements are, we now consider
the corresponding uncertainty measure.

In classical information theory, entropy describes the
uncertainty associated with a random variable and hence
becomes a suitable candidate for uncertainty measure [42].
Inspired by Maassen and Uffink [21], we base our first result
on the class of Rényi entropies defined as

Hα (p) := − 1

1 − α
log

(
m∑

x=1

pα
x

)
, (9)

with α > 0 and α �= 1.
As with the primal formulation of Maassen–Uffink un-

certainty relations [21], our first goal is to bound the joint
uncertainty between p and q in terms of Hα (T1) + Hβ (T2).
This will turn out to be different from Ref. [43] by a quantity
which depends only on the process effects Ex and Fy but not
on the process � itself.

Theorem 2. For probability vectors p and q obtained by
measuring � with respect to T1 := (ρRA, M ) and T2 :=
(σ RA, N ), their joint uncertainties in terms of Hα (T1) +
Hβ (T2) is bounded by the maximum overlap c(T1,T2) as

Hα

(
1

dA
p ⊕ dA − 1

dA

)
+ Hβ

(
1

dA
q ⊕ dA − 1

dA

)
� −2 log c(T1,T2), (10)

where α and β satisfy the harmonic condition 1/α + 1/β = 2.
The left-hand side of Eq. (10) relies on the initial state of

the quantum process � and the incompatible process-channel
measurements T1, T2. The right-hand side is an irreducible
bound for its joint uncertainty, which depends only on the
incompatible process-channel measurements T1, T2 and can
be calculated explicitly. With the help of Eq. (10), we can also
derive the Shannon entropic uncertainty relation for quantum
processes by taking limits of α and β to approach 1.

It is interesting to remark that, for a state-preparation
channel �ρ , we have dA = dim C = 1 for any state ρ, and
hence, 1

dA
p ⊕ dA−1

dA
= p, 1

dA
q ⊕ dA−1

dA
= q. Additionally, the

PPOVMs will degenerate into POVMs, and the maximum
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overlap c(T1,T2) reduces to c(M, N ) [44]. This shows why
our Thm. 2 includes the Maassen–Uffink uncertainty relation
as a special case. Moreover, note that the bound described by
Eq. (10) is tight since, for the case with α = ∞ or β = ∞,
−2 log c(T1,T2) is achieved by some quantum process [45].
We sketch the proof of our Thm. 2 in Appendix A.

IV. UURS

We now turn our attention to the UURs for quantum pro-
cesses. Traditionally, entropies like Hα have been employed
to study the uncertainty of probability distribution associ-
ated with measurements. However, in Ref. [23], the authors
showed that the notion of majorization can fully character-
ize the uncertainty related with probability distributions and
therefore capture the “the essence of uncertainty in quan-
tum mechanics.” Another motivation for the considerations
of majorization uncertainty relations is that majorization, as a
preorder, is more informative than the ones based on particular
uncertainty measures, such as Shannon or Rényi entropies.
Here, we will see that the joint distributions p ⊗ q and p ⊕ q
obtained by measuring quantum processes are bounded by
vectors independent of �.

Let us first collect all process effects from T1, T2 together,
and define their collections as

Gz :=
{

Ez 1 �z � m,

Fz−m m + 1 �z � m + n.
(11)

It follows that the general experiments measuring the quantum
process � with T1 and T2 are completely characterized by
the set of process effects G. For a subset Ik ⊂ {1, . . . , m + n}
with cardinality k, we define G(Ik ) := ∑

z∈Ik
Gz. With these

conventions, the second goal of our paper is to bound the joint
uncertainty in the form of p ⊕ q. More precisely,

Theorem 3. For probability vectors p and q obtained by
measuring � with respect to T1 := (ρRA, M ) and T2 :=
(σ RA, N ), their joint uncertainties in terms of p ⊕ q is
bounded by a vector independent of quantum process � of
the form

p ⊕ q ≺ s := (s1, s2 − s1, s3 − s2, . . . , 0), (12)

where each sk is a functional of the conditional min-entropy

sk := max
Ik

2−Hmin (B|A)G(Ik ) , (13)

and the maximization is over all subsets Ik . The conditional
min-entropy for G(Ik ) is defined as

Hmin(B|A)G(Ik ) := − log inf
X A�0

[Tr(X A)|X A ⊗ 1B � G(Ik )].

(14)

Note that the operator G(Ik ) is a process-channel effect,
which is also an unnormalized quantum state. Thus, the con-
ditional min-entropy defined above is not our usually used one
for bipartite states. To find a formula based on the well-known
conditional min-entropy, we can define a bipartite quantum
state as τ (Ik ) = G(Ik )/Tr[G(Ik )] ∈ D(A ⊗ B), which de-
pends on the subset Ik , and call it a process-channel state
corresponding to G(Ik ). Consequently, Hmin(B|A)τAB(Ik ) is the
conditional min-entropy of the bipartite state τAB(Ik ). Now

the quantity sk can be expressed as

sk = max
Ik

2{−Hmin(B|A)τ (Ik )+log Tr[G(Ik )]}. (15)

We remark that the tightness of sk and the rigorous proof of
Thm. 3 are detailed in Appendix B.

Aside from its numerous applications in single-shot quan-
tum information, quantum hypothesis testing, and quantum
resource theories, we show that this entropic quantifier has
operational significance in terms of the tightness of the UURs
for quantum processes with direct-sum form, which might
also have an impact on the development of future technologies
of quantum processes.

Continuing our discussion of UURs for quantum pro-
cesses, we now show that the joint uncertainty based on the
direct product, i.e., p ⊗ q, can also be similarly characterized
as stated in Thm. 4, whose proof is given in Appendix D.

Theorem 4. For probability vectors p and q obtained by
measuring � with respect to T1 := (ρRA, M ) and T2 :=
(σ RA, N ), their joint uncertainties in terms of p ⊗ q is there-
fore bounded by a vector independent of quantum process �

of the form

p ⊗ q ≺ t := (t1, t2 − t1, t3 − t2, . . . , 0), (16)

with tk is defined by (sk+1/2)2 constructed in Thm. 3.
We finish by remarking that the class of Schur-concave

functions can preserve the preorder induced by majorization;
that is, for a Schur-concave function 
 : Rd → R and x,
y ∈ Rd , 
(x) � 
(y) whenever x ≺ y. As a result, the UURs
for quantum processes in terms of p ⊕ q ≺ s and p ⊗ q ≺ t
generate an infinite family of uncertainty relations of the
forms 
(p ⊕ q) � 
(s) and 
(p ⊗ q) � 
(t) with each 
.
Taking 
 as Shannon entropy H, Eqs. (12) and (16) will lead
to the Shannon entropic uncertainty relations for quantum
processes H(T1) + H(T2) � H(s) and H(T1) + H(T2) � H(t)
with H(T1) := H(p) and H(T2) := H(q). However, the result
presented in Thm. 2 is not covered by UURs, since in Eq. (10),
the uncertainty associated with p and q is quantified by differ-
ent uncertainty measures.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have addressed the question of whether
quantum mechanics will obstruct us from predicting the
outcomes of incompatible process-channel measurements
to arbitrary precision. We studied uncertainty relations in
three distinct forms: Maassen–Uffink form; direct-sum form;
and direct-product form, which reduces to the well-known
Maassen–Uffink entropic uncertainty relations [21] and UURs
[23,25,26] as our special cases by choosing the process � to
be a state-preparation channel �ρ , i.e., � = �ρ .

Following Deutsch’s observation [42], to express the
uncertainty principle for quantum processes � : A → B quan-
titatively, we are seeking an inequality with the form
U(T1,T2, �) � B(T1,T2), where the quantity on the left-
hand side represents the joint probability distribution in-
duced by measuring quantum process � with PPOVMs
T1 and T1 in the form of U, with the optimal bound
B(T1,T2) := min�∈CPTP(A,B)U(T1,T2, �). If we denote the
set of all state-preparation channels as � ⊂ CPTP(A, B), the
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celebrated Heisenberg’s uncertainty principle, with the form
U(T1,T2, �ρ ) � min�∈�U(T1,T2, �), becomes a special
case of our generalized uncertainty principle.

Our first main result shows that the potential knowledge
one can have about any quantum process from a pair of
process-channel measurements T1 and T2, quantified by the
Rényi entropies with harmonic condition, is restricted by their
inherent incompatibility in terms of c(T1,T2).

Secondly, we derived the UURs for quantum processes,
i.e., Eqs. (12) and (16), which are the generalizations of
the previous ones for quantum states and are explicitly
computable. A natural question is whether the process-
independent bounds s and t are optimal. For the sum of each
k distinct elements in p ⊕ q, their upper-bound sk is tight,
which means sk is achieved by performing T1 and T2 to some
quantum processes. However, the vector s consisting of sk is
not optimal. In Appendix C, we show that the optimal bound
for p ⊕ q exists and is given by the vector F (s), where F
stands for the flatness process [46]. On the other hand, even
though the existence of the optimal bound r for p ⊗ q is guar-
anteed by the completeness of majorization lattice [47–50],
so far we do not have any effective method for calculating
it in general. Although the bound t introduced in Eq. (16)
is weaker than r, it is easy to evaluate. Like the method for
the direct sum, the flatness process F can further improve the
bound of the direct product to p ⊗ q ≺ r ≺ F (t) ≺ t. As a
byproduct of UURs for quantum processes, we show that the
optimal bound for the direct-sum form is specified completely
by the conditional min-entropy, which connects UURs with
single-shot information theory.

Finally, we address a number of interesting directions of
future investigations, which have a close connection to the
framework explored here, in Appendix E, and leave a conjec-
ture on the Shannon entropic uncertainty relation for quantum
processes in Appendix F.
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APPENDIX A: PROOF OF THEOREM 2

In this section, we turn our attention to the Maassen–
Uffink-form uncertainty relations for quantum processes. We

will first briefly review the historical developments of the
Maassen–Uffink uncertainty relation before formulating our
generalized uncertainty principle in terms of Rényi entropies.

Deutsch introduced the uncertainty principle in terms of
Shannon entropy for any two nondegenerate observables [42].
The improved bound on Deutsch uncertainty relation was
conjectured by Kraus [51] and was proved by Maassen and
Uffink [21]. The uncertainty measure adopted by Maassen
and Uffink is Rényi entropy, an improvement over Shannon
entropic uncertainty relations. The original result of Ref. [42]
is only valid for pure states with Von Neumann measurements,
and their proof relies on the Riesz theorem [22]. It is thus nat-
ural to ask whether the Maassen–Uffink uncertainty relation
also holds for mixed states with POVMs, which was answered
by Rastegin [44].

Lemma 5 (Rastegin). For probability vectors p and q ob-
tained by measuring quantum state ρ with respect to POVMs
M and N , their joint uncertainties in terms of Hα (M ) + Hβ (N )
is therefore bounded by the maximum overlap c(M, N, ρ) of
the form

Hα (M ) + Hβ (N ) � −2 log c(M, N, ρ), (A1)

where α and β satisfy the harmonic condition 1/α + 1/β = 2.
Here, the quantity c(M, N, ρ) is defined by

c(M, N, ρ) := max
ρ=∑

k uk |uk〉〈uk |
max

x,y

Tr(M†
x Ny|uk〉〈uk|)∥∥M1/2

x |uk〉
∥∥ · ∥∥N1/2

y |uk〉
∥∥ .

(A2)

The method of proof employed Naimark’s dilation the-
orem [52] and the Riesz theorem as expected. By using
the properties of operator norm, that is ‖ • ‖ := max{‖ •
u‖ | ‖u‖ = 1}, lemma 5 leads to the following entropic un-
certainty relations with a state-independent bound c(M, N ) :=
maxx,y ‖M1/2

x N1/2
y ‖:

Corollary 6 (Rastegin). For probability vectors p and q
obtained by measuring quantum state ρ with respect to
POVMs M and N , their joint uncertainties in terms of
Hα (M ) + Hβ (N ) are therefore bounded by the maximum
overlap c(M, N ) of the form

Hα (M ) + Hβ (N ) � −2 log c(M, N ), (A3)

where α and β satisfy the harmonic condition 1/α + 1/β = 2.
There are two ways of proving the Maassen–Uffink uncer-

tainty relation for quantum processes. The first one is to apply
Naimark’s dilation theorem to the CJ matrix JAB

� with respect
to the process �, followed by the Riesz theorem. Another way
is to use corollary 6 directly, which has been adopted here.

For probability distribution p specified by the process-
channel measurement T1, the probability associated with
measurement outcome x, as shown in Eq. (6) of our main text,
is px = Tr(ExJAB

� ), and hence

px

dA
= Tr

(
Ex ρAB

�

)
, (A4)

with ρAB
� := JAB

� /dA being a bipartite quantum state in D(A ⊗
B), since ρAB

� � 0 (due to the CP of �) and Tr(ρAB
� ) = 1 (due

to the TP of �). Therefore, the probability distribution 1
dA

p ⊕
dA−1

dA
can be seen as derived by performing POVM {Ẽx}m+1

x=1 to
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the state ρAB
� . Consider also the probability distribution 1

dA
q ⊕

dA−1
dA

obtained by implementing POVM {F̃y}n+1
y=1 to ρAB

� ; then
corollary 6 immediately implies that

Hα (Ẽ ) + Hβ (F̃ ) � −2 log c(T1,T2), (A5)

with 1/α + 1/β = 2. Written in full, that is

Hα

(
1

dA
p ⊕ dA − 1

dA

)
+ Hβ

(
1

dA
q ⊕ dA − 1

dA

)
� −2 log c(T1,T2), (A6)

as required.

APPENDIX B: PROOF OF THEOREM 3

Our goal in this section is to prove Eq. (12) of our main
text. Let us first consider the following question: for any
semidefinite positive operator W ∈ L(A ⊗ B), what is the
maximal value of Tr(W JAB

� ) for all quantum processes? We
are interested in

max Tr
(
W JAB

�

)
,

s.t. TrBJAB
� = 1A,

JAB
� � 0. (B1)

which is semidefinite programming (SDP). The Lagrangian
associated to the primal SDP in (B1) is given by

L = Tr
(
W JAB

�

) + TrA
[
X

(
1A − TrBJAB

�

)] + Tr
(
Y JAB

�

)
= Tr(X ) + Tr

[(
W + Y − X ⊗ 1A

)
JAB
�

]
, (B2)

where we have introduced dual variables, i.e., Lagrange mul-
tipliers X , a Hermitian operator acting on Hilbert space HA,
and Y , a semidefinite positive operator acting on Hilbert space
HA ⊗HB, to ensure that the Lagrangian L is always greater
than the objective function whenever the primal constraints
are satisfied. Therefore, in this case, the dual SDP is obtained
by minimizing over all dual variables:

min Tr(X ),

s.t. X ⊗ 1B �W,
(B3)

Here, the strong duality holds since the primal SDP is fi-
nite and strictly feasible, which guarantees that the optimal
value of dual coincides with the optimal value of the primal
problem. The optimal value is related with the conditional
min-entropy mentioned in our main text. We now move to the
definition of conditional min-entropy [53], which is the main
object of study in this section.

Definition 7 (Min-entropy). Let ρ ∈ D(A ⊗ B) be a bipar-
tite quantum operator. The min-entropy of A conditioned on B
is defined by

Hmin(A|B)ρ := − inf
σ

Dmax(ρ‖1A ⊗ σ ), (B4)

where the infimum ranges over all semidefinite positive oper-
ator σ ∈ L(B), with

Dmax(τ‖η) := inf{λ ∈ R|2λη � τ }. (B5)

Now it is clear from the context that the optimal value of
Eq. (B3) = 2−Hmin (B|A)W , which is equivalent to say that, for

any quantum process � : A → B, we have

max
�

Tr
[
W JAB

�

] = 2−Hmin(B|A)W . (B6)

We now move on to discuss the sum of the first k largest
components of p ⊕ q, i.e.,

max
|R|+|S|=k

max
�

(∑
x∈R

px +
∑
y∈S

qy

)

= max
Ik

max
�

Tr

[(∑
z∈Ik

Gz

)
JAB
�

]

= max
Ik

max
�

Tr
[
G(Ik )JAB

�

]
= max

Ik

2−Hmin (B|A)G(Ik )

= sk . (B7)

with R ⊂ {1, . . . , n}, S ⊂ {1, . . . , m}, and | • | stands for the
cardinality of set •. Here, to arrive at the third line, we
used the result shown in Eq. (B6), and the last line fol-
lows from the definition of sk . Noticing now that, when
the first k largest components of p ⊕ q are upper-bounded
by the quantity sk , the vector p ⊕ q is thus majorized by
(s1, s2 − s1, s3 − s2, . . . , 0). We finally remark that, for the
sum of the first k largest components, sk is tight for all k,
since there always exists a quantum process, which might not
be unique, such that max|R|+|S|=k (

∑
x∈R px + ∑

y∈S qy) = sk .
Even though each sk is tight, their collection s is not always
guaranteed to be optimal. The optimal bound for p ⊕ q will be
given in the next section by considering the lattice structure of
majorization.

APPENDIX C: MAJORIZATION LATTICE

In this section, we turn our attention to the concept of
lattice and employ the majorization lattice to study the optimal
bounds of UURs for quantum processes. For simplicity, all
vectors considered in this section belong to the set Rd . Let us
start with the definition of Lattice, which is

Definition 8 (Lattice). A quadruple (S,�,∧,∨) is called a
lattice if � is a partial order on the set S such that, for all p,
q ∈ S, there exists a unique greatest lower bound (GLB) p ∧ q
and a unique least upper bound (LUB) p ∨ q satisfying

x � p, x � q ⇒ x � p ∧ q,

p � y, q � y ⇒ p ∨ q � y. (C1)

for each x, y ∈ S.
A special class of lattices are those which have GLB and

LUB for all their subsets, namely complete lattice:
Definition 9 (Complete Lattice). A lattice (S,�,∧,∨) is

called complete if, for any nonempty subset R ⊂ S, it has
a LUB, denoted by ∨R and a GLB, denoted by ∧R. More
precisely, if x, y ∈ S such that x � R � y, i.e., x � p � y for
all p ∈ R, we thus have x � ∧R and ∨R � y.

Before interpreting the majorization lattice, let us first in-
troduce some notations that will be used frequently in this

023077-6



UNCERTAINTY PRINCIPLE OF QUANTUM PROCESSES PHYSICAL REVIEW RESEARCH 3, 023077 (2021)

section:

Rd
+ := {x ∈ Rd‖xk � 0,∀1 � k � d},

R
d, ↓
+ := {x ∈ Rd

+‖xk � xk+1,∀1 � k � d − 1},

Pd
n :=

{
x ∈ Rd

+‖
∑

k

xk = n

}
,

Pd, ↓
n := Pd

n ∩ R
d, ↓
+ . (C2)

With these notations, we now introduce the relation between
lattice and majorization, which was established by the notion
of weak majorization in Bapat’s work [47].

Definition 10 (Weak Majorization). For x = (xk )k , y =
(yk )k ∈ Rd , we say that x is weakly majorized by y, denoted
by x ≺w y if

∑i
k=1 x↓

k �
∑i

k=1 y↓
k for all 1 � i � d .

Due to the importance of the majorization lattice, we will
review historical developments of this topic briefly. Some
useful results will also be given in this section. During Ba-
pat’s investigations of the singular values of complex square
matrices [47], the completeness of weak majorization on R

d, ↓
+

was obtained as a byproduct.
Lemma 11 (Bapat). Let S ⊂ Rd

+ be a nonempty set; then
there exists a unique GLB, denoted by ∧S, under weak ma-
jorization “≺w”.

Lemma 12 (Bapat). Let S ⊂ Rd
+ be a bounded set, i.e.,

x ≺w S ≺w y for some x and y ∈ Rd
+; then there exists a

unique LUB, denoted by ∨S, under weak majorization “≺w”.
Then it can be shown that, for the set Pd, ↓

n , the quadruple
(Pd,↓

n ,≺w,∧,∨) is bounded since

(n/d, . . . , n/d ) ≺w Pd,↓
n ≺w (n, 0, . . . , 0), (C3)

which immediately implies that, for any nonempty subset S ⊂
Pd, ↓

n ⊂ Rd
+, it is bounded and has unique GLB ∧S and LUB

∨S. Thus, Pd, ↓
n is complete under “≺w”.

Corollary 13. The quadruple (Pd,↓
n ,≺w,∧,∨) forms a

complete lattice.
Here, we would like to note that, for the set Pd

n , weak
majorization “≺w” is only a preorder, i.e., a binary relation
that is both reflexive and transitive. However, “≺w” is not
antisymmetric; that is, we cannot obtain x = y when x ≺w y
and y ≺w x hold. For example, by taking x = (1, 0) and y =
(0, 1) ∈ Pd

1 , we have (1, 0) ≺w (0, 1) and (0, 1) ≺w (1, 0),
but (1, 0) �= (0, 1). Accordingly, (Pd

n ,≺w,∧,∨) is not even
a lattice. Weak majorization “≺w” becomes a partial order
when all the probability distribution vectors are arranged in
nonincreasing order, i.e., embedded into Pd,↓

n .
We now demonstrate that not only (Pd,↓

n ,≺w,∧,∨), but
also (Pd, ↓

n ,≺,∧,∨) with majorization “≺” forms a complete
lattice. According to corollary 13, there exist the GLB ∧S and
LUB ∨S for any nonempty subset S of Pd,↓

n , such that

∧S ≺w S ≺w ∨S. (C4)

By considering the trivial bounds of subset S ⊂ Pd,↓
n ,

i.e., (n/d, . . . , n/d ), (n, 0, . . . , 0) ∈ Pd,↓
n , which satisfies

(n/d, . . . , n/d ) ≺w S ≺w (n, 0, . . . , 0), we know that

(n/d, . . . , n/d ) ≺w ∧ S ≺w (n, 0, . . . , 0),

(n/d, . . . , n/d ) ≺w ∨ S ≺w (n, 0, . . . , 0),
(C5)

which implies ‖ ∧ S‖1 = ‖ ∨ S‖1 = n, and hence, ∧S ≺ S ≺
∨S holds for majorization “≺”. Until now, we have shown
that ∧S and ∨S are lower bound and upper bound for S, re-
spectively. Now it is time to prove that they are optimal under
majorization. For any vector x ≺ S, it is also a lower bound for
weak majorization, i.e., x ≺w S, and hence, x ≺w ∧S. Due to
the fact that x ∈ Pd, ↓

n , we have ‖x‖1 = ‖ ∧ S‖1 = n, and thus,
x ≺ ∧S. Therefore, ∧S is the GLB for S under majorization.
Similarly, we have that ∨S is the LUB for S under majoriza-
tion, which leads to the following statement:

Corollary 14. The quadruple (Pd,↓
n ,≺,∧,∨) forms a

complete lattice.
A special class of corollary 14 is that (Pd, ↓

1 ,≺,∧,∨)
forms a complete lattice, i.e., the probability simplex in finite
dimensional space with nonincreasing order forms a complete
lattice [46]. Moreover, this result has been used to derive
the optimal common resource in majorization-based resource
theories [49] and optimal direct-sum UURs for quantum states
[24,50] recently.

Now it is clear from the context that the optimal bound
for p ⊗ q exists. Define the set Spre

⊗ := {p ⊗ q}, where p and
q are obtained by performing process-channel measurements
T1 and T2 to a quantum process, respectively. Then the set
S⊗ := Spre

⊗ ∩ P
d,↓
1 ⊂ P

d, ↓
1 , and our corollary 14 immediately

implies the existence of ∧S⊗ and ∨S⊗ under majorization:

∧S⊗ ≺ p ⊗ q ≺ ∨S⊗, (C6)

Even though corollary 14 ensures the existence of both the
upper and lower bounds of p ⊗ q, it does not teach us how
to find them effectively. Note also that the completeness of
(Pd, ↓

1 ,≺,∧,∨) cannot be applied to the direct-sum form
straightway since p ⊕ q /∈ P

d, ↓
1 . In this case, we can define

the set Spre
⊕ := {p ⊕ q}, and S⊕ := Spre

⊕ ∩ P
d, ↓
2 ⊂ P

d,↓
2 . The

existence of the GLB ∧S⊕ and LUB ∨S⊕ is guaranteed by
corollary 14, which satisfies

∧S⊕ ≺ p ⊕ q ≺ ∨S⊕, (C7)

with p and q obtained by performing process-channel mea-
surements T1 and T2 to a quantum process, respectively.

To find the optimal bounds for S⊕, an additional pro-
cess, namely flatness process, is needed. The lattice structure
of majorization was revisited by Cicalese and Vaccaro in
the study of its supermodularity and subadditivity prop-
erties [46], and the well-known flatness process F was
introduced.

Definition 15 (Flatness Process). Let x ∈ Rd
+ be a vector

and j be the smallest integer in {2, . . . , d} such that x j > x j−1

and i be the greatest integer in {1, . . . , j − 1} such that xi−1 �
(
∑ j

k=i xk )/( j − i + 1) := a. Define

T (x) := (x′
1, . . . , x′

n)withx′
k =

{
a for k = i, . . . , j
xk otherwise.

(C8)

and F (x) := T d−1(x) = T [T d−2(x)], i.e., applying T on the
vector x successively d − 1 times. Here, we call F the flatness
process of vector x, which satisfies the following lemma:

Lemma 16 (Cicalese-Vaccaro). For any x ∈ Pd
n , we have

F (x) ∈ Pd,↓
n , and

∑k
i=1 xi �

∑k
i=1 x′

i for all 1 � k � d .
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Moreover, for all y ∈ Pd,↓
n , we have

k∑
i=1

xi �
k∑

i=1

yi, ∀1 � k � d ⇒ F (x) ≺ y. (C9)

We stress here that the original statement of flatness pro-
cess F , including its definition and lemma 16, introduced
in Ref. [46] is only designed for the set Pd

1 , i.e., probability
simplex. However, its generalization for vectors in Pd

n , i.e.,
lemma 16, is also valid. The corresponding proof was given
in our recent paper [24].

All these properties mentioned above lead to a standard
approach in finding the optimal bounds for a subset S of Pd,↓

n .
Formally, let us consider S ⊂ Pd, ↓

n , and then there are two
steps in constructing its GLB ∧S and LUB ∨S. The first step
is to find the quantities ak and bk , which are defined as

ak :=
(

min
x∈S

k∑
i=1

xi

)
−

k−1∑
i=1

ai,

bk :=
(

max
x∈S

k∑
i=1

xi

)
−

k−1∑
i=1

bi,

(C10)

for 1 � k � d . It is immediate to observe that the vector aS :=
(ak )k ∈ Pd,↓

n . On the other hand, the vector bS := (bk )k might
not always belong to the set Pd, ↓

n . To give our reader some
intuition, we recall the example constructed in Ref. [46].

Example 17. Take S = {x, y} with

x = (0.6, 0.15, 0.15, 0.1),

y = (0.5, 0.25, 0.2, 0.05). (C11)

Then in this case, bS = (0.6, 0.15, 0.2, 0.05), which does not
belong to the set P

d, ↓
1 since b2 = 0.15 < b3 = 0.2. Even

though we rearrange the vector bS into nonincreasing or-
der b↓

S = (0.6, 0.2, 0.15, 0.05), b↓
S is not the optimal upper

bound, i.e., b↓
S �= ∨S (see Fig. 2), since in this case,

∨S = x ∨ y = F (bS ) = (0.6, 0.175, 0.175, 0.05). (C12)

In general, the second step in constructing the optimal
bounds for S with majorization is to keep aS fixed and apply
the flatness process F to bS . Formally, our corollary 14 and
lemma 16 imply the optimality of aS and F (bS ):

Corollary 18. For any nonempty subset S ⊂ Pd,↓
n , its GLB

∧S and LUB ∨S under majorization are given by

∧S = aS, ∨S = F (bS ), (C13)

where F stands for the flatness process defined in definition
15, and aS , bS are defined in Eq. (C10).

Proof. Here, the existence of ∧S and ∨S for S are guaran-
teed by corollary 14. We first prove ∧S = aS . By hypothesis,
for any vector c ∈ Pd, ↓

n such that

c ≺ S, (C14)

we have

k∑
i=1

ci �
k∑

i=1

ai, (C15)

FIG. 2. Schematic illustration of the lattice structure exhibited in
example 17 excluding the GLB. Each point stands for an element,
and the red line represents the binary relation “≺” between elements.
In this plot, a lower point is majorized by the higher point whenever
they are connected with a red line. Obviously, here, b↓

S ≺ bS and
bS ≺ b↓

S , but bS �= b↓
S .

for all 1 � k � d , and thus,

c ≺ aS. (C16)

By choosing c as ∧S, we obtain ∧S ≺ aS . By the definition
of aS , we have aS ≺ S, and hence, aS ≺ ∧S. Thus, ∧S = aS .
The equation holds since majorization has the property of
antisymmetricity on Pd, ↓

n , with both aS and ∧S belonging to
the set Pd, ↓

n .
Next, we move on to show ∨S = F (bS ). By hypothesis,

for any vector d ∈ Pd, ↓
n such that

S ≺ d, (C17)

we have
k∑

i=1

bi �
k∑

i=1

di, (C18)

for all 1 � k � d . Now by using lemma 16 directly, we get

F (bS ) ≺ d, (C19)

as expected. Note that F (bS ) ≺ bS since
∑k

i=1 bi �
∑k

i=1 bi.
By choosing d as ∨S, we obtain F (bS ) ≺ ∨S. By using
the fact that

∑k
i=1 xi �

∑k
i=1 x′

i for all 1 � k � d , and x ∈ S,
we have S ≺ F (bS ), and hence, ∨S ≺ F (bS ). Thus, ∨S =
F (bS ). The equation holds since majorization has the prop-
erty of antisymmetricity on Pd, ↓

n , with both F (bS ) and ∨S
belonging to the set Pd, ↓

n .
As an application of our corollary 18, take S as S↓

⊕ ⊂ P
d, ↓
2 ,

which immediately yields bS↓
⊕

= s defined in Eq. (12) from

our main text. Therefore, F (s) = F (bS↓
⊕

) = ∨S↓
⊕ is the opti-

mal upper bound for UURs for all quantum processes in the
form of direct sum. Formally,

Corollary 19. For probability vectors p and q obtained
by measuring � with respect to T1 := (ρRA, M ) and T2 :=
(σ RA, N ), their joint uncertainties in terms of p ⊕ q is there-
fore bounded by a vector independent of quantum process �

of the form

p ⊕ q ≺ F (s) = F (s1, s2 − s1, s3 − s2, . . . , 0). (C20)
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Here, F is the flatness process defined in definition 15, F (s)
is the optimal bound for p ⊕ q, and each sk is a functional of
the conditional min-entropy

sk := max
Ik

2−Hmin (B|A)G(Ik ) , (C21)

where the maximum is over all subset Ik , and the conditional
min-entropy for G(Ik ) is defined as

Hmin(B|A)G(Ik ) := − log inf
X A�0

{Tr(X A)|X A ⊗ 1B � G(Ik )}.
(C22)

It turns out that not only the optimal upper bound F (bS↓
⊕

)

of S↓
⊕ ⊂ P

d,↓
2 , i.e., direct-sum UURs for quantum processes,

can be evaluated explicitly by the means of SDP and flatness
process, but also the optimal lower bound aS↓

⊕
of the reverse

direct-sum UURs for quantum processes.

APPENDIX D: PROOF OF THEOREM 4

In this section, we turn our attention back to the UURs
for quantum processes in the form of direct product. We first
consider the sum of the first k largest components of p ⊗ q,
i.e.,

max
Tk

max
�

( ∑
(x,y)∈Tk

pxqy

)

� max
|R|+|S|=k+1

max
�

(∑
x∈R px + ∑

y∈S qy

2

)2

= max
Ik+1

max
�

(
Tr

[
G(Ik+1)JAB

�

]
2

)2

=
( sk+1

2

)2
= tk, (D1)

where the outer maximum is over all subsets Tk ⊂ [m] ×
[n] such that |Tk| = k, with [m] := {1, . . . , m} and [n] :=
{1, . . . , n}. Therefore, t provides an upper bound of UURs
for quantum processes, which completes the proof of our
theorem 4.

Moreover, by definition of S↓
⊗ ⊂ P

d, ↓
1 , and the iterated

application of corollary 18, we have that

aS↓
⊗

≺ p ⊗ q ≺ F (
bS↓

⊗

) = ∨S↓
⊗. (D2)

It holds also that

F
(
bS↓

⊗

) ≺ bS↓
⊗
. (D3)

Hence, the bounds for p ⊗ q can be ordered as

aS↓
⊗

≺ p ⊗ q ≺ F (
bS↓

⊗

) ≺ bS↓
⊗
. (D4)

From Eq. (D1), it turns out that the bound bS↓
⊗

is majorized by
the one constructed in our main text, that is, bS↓

⊗
≺ t. Note that

the quantity maxTk max� (
∑

(x,y)∈Tk
pxqy) is exactly the sum of

the first k largest components of bS↓
⊗

, and usually,

bS↓
⊗

�= b↓
S↓

⊗
, (D5)

i.e., bS↓
⊗

/∈ P
d, ↓
1 . Similarly, we have t �= t↓ in general, and

hence, t /∈ P
d, ↓
1 does not hold in general.

It is interesting to identify the sum of the first k largest
components of F (t). Let us denote the ith element of F (t) as

[F (t)]i. Then we have

max
Tk

max
�

( ∑
(x,y)∈Tk

pxqy

)
� tk �

k∑
i=1

[F (t)]i, (D6)

and hence, from lemma 16, we arrive at the following
expression:

aS↓
⊗

≺ p ⊗ q ≺ F (
bS↓

⊗

) ≺ F (t) ≺ t. (D7)

If the quantum processes considered here are state-preparation
channel, then this chain of bounds makes an improvement
over previous results of UURs introduced in Ref. [23] since
F (t) ≺ t. As a byproduct, the optimal bound aS↓

⊗
of the

reverse direct-product UURs for quantum processes is also
given.

APPENDIX E: FOLLOW-UP RESEARCH DIRECTIONS

There are plenty of important directions of investigations
which we leave for future work. First of all, we did not explore
here the extension of our results to the cases with bipar-
tite quantum channels [54,55], where the measured quantum
channel is prepared entangled with another channel, a dy-
namic quantum memory that might be possible to predict
the outcomes for both process-channel measurements T1, T2

simultaneously, which is the generalized uncertainty principle
in the presence of dynamic quantum memory [2]. It would
also be interesting to study how the use of dynamic quan-
tum memory can further strengthen the power of quantum
cryptography.

Another important direction of investigation is the noise
and disturbance tradeoff in process-channel measurements
[56]. To capture the idea of “how accurate” a process-channel
measurement T1 is, we should consider its measuring appa-
ratus T , and the corresponding error E (T1,T ), or noise,
which is quantifies through operational measurement statis-
tics. When the measured channel is subjected to the apparatus
T , another process-channel measurement T2 will be dis-
turbed and lead to the disturbance D (T2,T ). The aim of
this direction of investigation is to introduce the operational
definitions for E and D such that E (T1,T ) + D (T2,T ) �
−2 log c(T1,T2).

Finally, when considering the process-channel measure-
ments with possibilities of small errors, we should employ
smooth entropies to obtain meaningful results. Therefore, it
would be important to generalize our entropic uncertainty
relation for quantum processes to the one expressed in terms
of smooth entropies [57]. Nevertheless, these generalizations
are nontrivial and are left for future work.

APPENDIX F: CONJECTURE

In this section, we give a conjecture on the Shannon
entropic uncertainty relation for quantum processes. Given
two process-channel measurements T1 and T2, their over-
laps are defined by cxy(T1,T2) := ‖Ẽ1/2

x F̃ 1/2
y ‖ with 1 �

x � m + 1 and 1 � y � n + 1, and the entropic uncer-
tainty relations in the form of Hα (T1) + Hβ (T2), with
1/α + 1/β = 2, is lower-bounded by −2 log c(T1,T2) =
−2 log maxx,y c(T1,T2), which is shown in our main text.
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This bound is tight for the case with 1/α + 1/β = 2. How-
ever, we do not know whether this is also tight for the case
with α = β = 1.

As a matter of convenience, let us rearrange the overlaps
between T1 and T2 in nonincreasing order and denote the
k largest overlap as ck (T1,T2); then c(T1,T2) = c1(T1,T2).
Now we have a chain of overlaps

c1(T1,T2) � c2(T1,T2) � · · · � c(m+1)(n+1)(T1,T2), (F1)

and we would like to know whether the Shannon entropic
uncertainty relation can be further improved to

H(T1) + H(T2) � −2 log c1(T1,T2)

+
∑

k

(2 − s2k ) log
ck (T1,T2)

ck+1(T1,T2)
, (F2)

with sk as defined in Eq. (13) of our main text. In fact, when
the object of our study is state-preparation channel, then the
validity of above entropic uncertainty relation is proved by
replacing ck (T1,T2) with ck (M, N ) in Ref. [58].

We will finish by expounding the motivations of this con-
jecture. Firstly, the process-independent bound depends only
on the process-channel measurements T1 and T2 and hence
quantify the intrinsic incompatibility between them. However,
in the context of incompatibility, the process-independent
bound is by no means only dependent on the largest overlap
between T1 and T2, but not all overlaps. The incompatibility
between them should be completely characterized by the set
of all overlaps. Secondly, it is worth noting that the bound of
entropic uncertainty relation could be directly used to prove
cryptography security [59].
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Stobińska, Quantum Steering Inequality with Tolerance for
Measurement-Setting Errors: Experimentally Feasible Signa-
ture of Unbounded Violation, Phys. Rev. Lett. 118, 020402
(2017).

[14] A. Riccardi, C. Macchiavello, and L. Maccone, Multipartite
steering inequalities based on entropic uncertainty relations,
Phys. Rev. A 97, 052307 (2018).

[15] Y. Xiao, Y. Xiang, Q. He, and B. C. Sanders, Quasi-fine-grained
uncertainty relations, New J. Phys. 22, 073063 (2020).

[16] A. C. S. Costa, R. Uola, and O. Gühne, Steering criteria
from general entropic uncertainty relations, Phys. Rev. A 98,
050104(R) (2018).

[17] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. Gühne, Quantum
steering, Rev. Mod. Phys. 92, 015001 (2020).

[18] J. Oppenheim and S. Wehner, The uncertainty principle de-
termines the nonlocality of quantum mechanics, Science 330,
1072 (2010).

[19] E. H. Kennard, Zur quantenmechanik einfacher bewe-
gungstypen, Z. Phys. 44, 326 (1927).

[20] H. Weyl, Gruppentheorie und Quantenmechanik. (Hirzel,
Leipzig, 1928), VIII, 288 S.

[21] H. Maassen and J. B. M. Uffink, Generalized Entropic Uncer-
tainty Relations, Phys. Rev. Lett. 60, 1103 (1988).

[22] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities (Cam-
bridge University Press, Cambridge, 1952).

[23] S. Friedland, V. Gheorghiu, and G. Gour, Universal Uncertainty
Relations, Phys. Rev. Lett. 111, 230401 (2013).

[24] Y. Yuan, Y. Xiao, Z. Hou, S.-M. Fei, G. Gour, G.-Y. Xiang, C.-F.
Li, and G.-C. Guo, Strong majorization uncertainty relations:
theory and experiment (2019), arXiv:1912.13383 [quant-ph].

[25] Ł. Rudnicki, Z. Puchała, and K. Życzkowski, Majorization en-
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