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Determining urban material activities with a vehicle-based multi-sensor system
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Integration of contextual sensors into vehicle-borne mobile radiation detection systems delivers a rich descrip-
tion of the environment to inform estimates of the complex and variable gamma-ray signals observed in urban
areas. Models based on these data streams could provide realistic inputs to urban radiological search algorithms
and potentially improve the system’s sensitivity to detect illicit radiological and nuclear materials. In this work,
LiDAR and inertial data are combined using simultaneous localization and mapping techniques to create a three-
dimensional (3D) representation of the surrounding scenery. Semantic segmentation of concurrently collected
video imagery enables the division of the 3D model into distinct material categories. The radioactive flux of
surfaces associated with these categories are inferred through maximum likelihood estimation maximization
and the activity of the three most common isotopes (K-40, U-238 series, and Th-232 series) in the respective
materials is predicted. The results, found to be in agreement with ground truth measurements performed at the
facility, suggest that it is possible to quickly infer the composition of naturally occurring materials in structures
that comprise a radiological scene. Such a capability could be used to inform radiological search algorithms and
enable data-driven modeling of radiological search problems, which could facilitate system testing and operator
training activities.
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I. INTRODUCTION

Mobile gamma-ray detection systems are often fielded in
uncontrolled environments such as ports, borders, and ur-
ban areas for homeland security purposes. Understanding
and predicting the measurements that are generated by such
fielded detection systems is nontrivial primarily due to the
unknown and continuously changing distribution of Naturally
Occurring Radioactive Material (NORM) in the vicinity of
the fielded detection systems [1]. This NORM comprises
an irreducible background atop of which “nuisance” radi-
ological sources, such as medical isotopes and sources in
use for industrial purposes, are also present. In addition
to these background contributions to the radiological envi-
ronment, there may be sources present for more nefarious
reasons (i.e., threats), whose detection motivates the fielding
of such gamma-ray detection systems in the first place. The
complexity associated with the background signals motivated
the development of complex algorithms, designed to better
distinguish radiological threats from background [2–6]. This
complexity results in overall probabilities of detecting threat
radiological material that are lower than those predicted by
a simple model that compares the strength of a hypothe-
sized gamma-ray signature to the associated instantaneous
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background [7]. Also, operators of gamma-ray detection
equipment must frequently participate in training activities
to keep abreast as to how these radiologically complex en-
vironments impact the behavior of their systems. Methods
that provide better understanding of instantaneous gamma-
ray backgrounds typically encountered by mobile detection
systems or that can infer radiological activities of materials
as they are encountered are therefore potentially valuable for
multiple purposes. These methods can facilitate the develop-
ment of more capable radiological threat detection algorithms
and enable high-fidelity inference of the radiological compo-
sition of materials within a measured area, thereby enabling
realistic high-fidelity radiological models for the purposes
of system development, testing and evaluation, and operator
training.

The primary sources of naturally occurring radioactivity
are primordial potassium-40, uranium-238, thorium-232, and
the radioactive progeny of the latter two. These are referred
to herein as KUT. KUT is present in nearly all material, in-
cluding the majority of materials used in construction. Typical
KUT concentrations are summarized in [8,9]. In addition to
terrestrial gamma rays originating from the decays of KUT
isotopes, gamma rays from airborne radon-222, cosmic rays,
and skyshine [10] inevitably contribute to the background in
urban environments.

A limited number of earlier studies have tried to establish
a connection between contextual data and radiological back-
grounds. One such study proposed to use a terrain database
to formulate a Maximum-Likelihood Estimation Maximiza-
tion (MLEM) model that predicts radiological background
distributions for an airborne system [11] and another featured
a panoramic image-based neural network to improve detec-
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FIG. 1. The meshed 3D model of the MOUT facility. The blue line represents the trajectory of the truck (center of detector array). Colors
defined by the labels below the image represent the different classification labels resulting from the transfer-learned DeepLabv3+ [18,19]
semantic segmentation process. Pastel versions of these same colors indicate labels used for areas with no mesh coverage.

tion performance [12]. That work was based on a previous
study that linked segmented panoramic images to radiological
measurements [13] and a subsequent effort that expanded
the model to three dimensions by leveraging LiDAR-based
Simultaneous Localization And Mapping (SLAM) [14]. The
current work builds upon these previous studies by leverag-
ing physics-based modeling to better constrain the spectral
characteristics of the KUT emissions from the facility and
provides quantitative error estimates describing the fidelity
of the model. It suggests that a vehicle-borne sensor system
driving at typical speeds for an urban setting can infer the
complete radiological environment, e.g., the emitted spectra
from the constituent structures.

This series of inquiry has leveraged measurements per-
formed by the Radiological Multi-sensor Analysis Platform
(RadMAP) system [15] at a controlled facility that is similar
in scale to an urban environment. RadMAP was developed to
investigate how contextual sensors can enhance and comple-
ment radiological data of mobile systems. The components
of the RadMAP vehicle of importance in this work are: 100
NaI(Tl) detectors in a coded mask array, a NovAtel SPAN-
CPT GPS/INS receiver, two Velodyne HDL-32E LiDAR
units, and two Point Grey Ladybug 3 spherical digital video
cameras. When using the term detector within this publica-
tion, we refer to individual detector modules. When talking
about the full array the expression detector array is used.
Detection systems is used to refer to the full suite of sensors,
i.e., radiological as well as contextual sensors.

The 4 × 4 × 2 in. NaI(Tl) detectors are arranged in a
10 × 10 grid mounted in an upright fashion such that rows
are aligned with the travel direction of the truck. The NaI(Tl)
detectors are read out using photomultiplier tubes affixed to
the port-side 4 × 4 in. faces of each detector. The starboard
side of the detector array is covered at a distance of approx-
imately 40 cm by a 1-in.-thick Pb half-filled coded aperture
array that extends an additional four detector lengths beyond
the detector array in the aft-fore direction (for a total of 18
grid elements) and an additional two detector lengths above
the detector array. This arrangement was an update, as docu-

mented in [15], to the original design described in Ref. [16].
We do not use the coded mask geometry to perform coded
mask imaging in this publication (which has been performed
on other vehicle-based systems [17]), since we are interested
in measuring the radiation from the entire surroundings rather
than localizing point sources. The LiDAR units are installed
on the front, port, and starboard corners of the truck and the
two Ladybug camera units are mounted directly above the Li-
DAR units. In this configuration the camera and LiDAR units
are located approximately 4.5 m in front of and 1 m exterior
to the center of the detector array. The NovAtel GPS/INS unit
is mounted on the fore edge of the roof, centered between
the camera and LiDAR units. As part of the Multiagency Ur-
ban Search Experiment (MUSE) collaboration, RadMAP was
brought to the Military Operations in Urban Terrain (MOUT)
facility at the Fort Indiantown Gap (FtIG) National Guard
training facility in 2016. A model of the facility is shown
in Fig. 1. The concentration of NORM at this site was deter-
mined through a series of over 70 10- to 15-min measurements
with a high-purity germanium detector enclosed in a box with
Pb shielding on five sides to minimize sensitivity to the envi-
ronment except in the direction of surface under investigation.
The per-unit-mass activity ranges derived from measurements
and the subsequent analysis are described in [20] and are listed
in Table I as ground truth. The vehicle-borne data analyzed
herein were collected over 165 s of continuous motion of the
RadMAP system being driven in a single “figure eight” lap of
the facility. The trajectory is shown as the blue line in Fig. 1.
Vehicle speeds ranged from 2–8 m/s, where the vehicle driver
slowed when cornering and accelerated to a nominal 15 mph
when traveling along straight portions of the roadway.

We will describe the mathematical formulation used to
determine NORM activities in constituent scenes in Sec. II.
This formulation entails detailing the angular sensitivity
model of detectors in Sec. II A, the effects of photon scattering
and absorption in air in Sec. II B, and the use of semantic seg-
mentation and SLAM to infer the content of the system’s field
of view at varying times in Sec II C. Additional constraints
leveraging simulated spectra emitted from materials are de-
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TABLE I. The activity attributed to potassium-40 (K), uranium-238 (U), and thorium-232 (T) concentrations in materials and the total
fluxes emitted from labeled surfaces compared to other analyses and measurements.

Class Activities (Bq/kg) Flux (γ /s/cm2)

Ground truth [Min, Max] [20] This work (3D KUT) Ground Video 3D This work

K U T K U T truth [20] [13] full [14] (3D KUT)

Asphalt [83.0, 101.0] [22.0, 25.3] [2.9, 5.0] 92 ± 12 36 ± 2 2 ± 1 0.56 0.48 ± 0.03 0.87 0.71 ± 0.03
Building brown [67.0, 257.0] [6.9, 14.3] [4.9, 12.1] 154 ± 17 22 ± 2 19 ± 1 0.39 0.72 ± 0.02 0.9 0.90 ± 0.05
Building red [98.5, 107.5] [9.9, 10.5] [5.45, 5.95] 207 ± 31 20 ± 4 21 ± 3 0.28 0.83 ± 0.02 0.98 0.98 ± 0.09
Building roof N/A N/A N/A 162 ± 83 11 ± 1 0 ± 1 N/A 0.00 ± 0.21 0.8 0.36 ± 0.10
Building white [71.0, 171.0] [8.1, 12.9] [4.6, 6.1] 28 ± 49 30 ± 7 21 ± 5 0.29 0.71 ± 0.04 0.98 0.91 ± 0.15
Concrete [129.0, 260.0] [14.0, 18.6] [8.9, 11.9] 216 ± 10 27 ± 1 9 ± 1 0.69 0.73 ± 0.03 1.01 0.86 ± 0.03
Forest N/A N/A N/A 19 ± 38 40 ± 5 18 ± 4 N/A 0.64 ± 0.03 1.19 1.01 ± 0.12
Grass [337.0, 513.0] [22.7, 30.9] [30.8, 43.8] 530 ± 25 42 ± 3 54 ± 2 1.67 1.53 ± 0.03 2.6 2.35 ± 0.07
Gravel [114.0, 190.0] [14.8, 23.5] [2.7, 6.3] 274 ± 47 23 ± 5 10 ± 2 0.56 0.73 ± 0.04 1.12 0.88 ± 0.10
Pole N/A N/A N/A 0 ± 191 0 ± 8 0 ± 8 N/A N/A 0.47 0.00 ± 0.31
Sky N/A N/A N/A N/A N/A N/A N/A 0.37 ± 0.02 0.31 0.51 ± 0.02
Vehicle N/A N/A N/A 237 ± 100 40 ± 10 0 ± 1 N/A 0.90 ± 0.10 1.0 0.91 ± 0.19

scribed in Sec. II D, followed by the methods of evaluating the
formulated system response in Sec. II E, before discussing
how uncertainties are estimated in Sec. II F. The results of
this formulation when used to process the measured data are
presented in Sec. III, followed by a discussion of the fidelity
of the model results and implications in Sec. IV before
concluding.

II. METHODOLOGY

We consider the case of a vehicle-borne radiation detection
system operating in an environment such as one typically
observed from an urban or suburban roadway. Such a scene
is typically composed of static components such as ground
cover, vegetation, buildings, and roadway. Furthermore, there
are also moving components such as pedestrian and cars. In
general we cannot assume that the KUT composition of these
different components are uniform and identical across differ-
ent entities, but as a simplification we assume that the exterior

surfaces of those components that are semantically labeled
identically have identical emission spectra. This allows the
overall complexity of the scene to be limited by manifesting
the scenes as a limited number of components, each with a
distinct gamma-ray signature.

To model the gamma-ray transport between the surfaces of
these components and the detectors, the field of view of each
detector is divided into small elements (pixels). Each pixel
(denoted by k) was divided into equally sized bins in azimuth
and elevation. Together, the pixels comprise an image of the
full 4π steradians of solid angle surrounding the detector.
Pixels near the horizon cover more solid angle area than pixels
near the poles, however at a constant elevation all pixels have
the same size. The type of structures covered by each pixel
and the distance to those structures evolves as RadMAP drives
through the facility.

We formulate a model for the average rate of photon-
induced events λγ in each detector d at energy E ′′ and time
t as given by

λγ (d, t, E ′′) =
∑

i,E

αi(E )
∑

E ′,k

Ak (E ′′|E ′, d )Sair(E ′|E , rk (d, t ))
δi,lk (d,t )��k

π
︸ ︷︷ ︸

R3D
i (d, t, E ′′, E )

. (1)

The energy and time dependence of the different terms in
Eq. (1) is assumed to be discrete and thus the various terms
are approximated with tensors, matrices, and vectors. If they
would be continuous the respective sums would need to be
replaced with integrals. The numerical derivation of each of
the terms will be described in the following subsections, their
meaning in the next paragraph.

The first term, the effective area Ak is effectively a product
of detector efficiency and geometric area. It describes the
probability of energy E ′′ being deposited into each detector
when a photon of energy E ′ is incident upon the truck, and

factors in the effects of scattering and absorption due to the
other materials contained within the truck. The effective area
is calculated for a range of photon energies E ′ and angles of
incidence upon the truck. The latter are referenced through
k indexing a specific pixel covering a fraction of the full 4π

steradian solid angle. The angles that describe a solid angle
element are with respect to the detector’s reference frame and
the term does not depend on time. The second term Sair incor-
porates scattering and absorption in air, linking the energy of
the gamma ray emitted from a surface E to the energy E ′ it
retains after traveling a specific distance through air. The term
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is defined for all possible distances, but it is only evaluated at
distances described by the first geometric component rk . This
function describes the distance from detector d to a surface
element present in the scene, covered by pixel k in that detec-
tor’s field of view at time t . Similarly, the second geometric
term, the function lk , expresses which class label is covered by
solid angle pixel k as seen by detector d at time t . This implies
that detected gamma rays must originate from surfaces visible
from the detector. While this simplification could be lifted by
handling gamma-ray transport through intermediate surfaces
in this publication occluded surfaces are neglected. The factor
of π , included in Eq. (1), originates from Lambert’s cosine
law, which predicts that the surface emission of gamma rays
from a material with uniformly distributed sources follows a
cosine distribution. Integrating this flux over 2π steradians
solid angles leads to αmax(E ) = α(E )/π , expressing the max-
imum flux observed perpendicular to the surface as a function
of the integrated flux, introducing the factor of π . As in [13],
the cosine and r2 dependence of the flux can be absorbed
into the solid angle element ��k . It describes the solid angle
coverage of each pixel, which for an angular bin defined by
the azimuthal angle range φmin to φmax and elevation angle
range θmin to θmax is given by

��k = (φmax − φmin)(sin θmax − sin θmin). (2)

The three-term product in Eq. (1), R3D
i , is referred to as the

system response.

A. Effective area

The effective area has been derived through a series
of Monte Carlo simulations conducted to characterize the
RadMAP NaI(Tl) detectors’ response to gamma radiation
approaching from various directions. The simulations were
performed by modeling the densest materials in the truck
and transporting photons using the GEANT4-based [21] code,
MEGAlib [22]. For each of the 520 different incident direc-
tions (described by elevation and azimuth angles), photons
were emitted in a limited cone directed towards the vehicle.
The cone apex points were located in vacuum, 10 m from
the center of the detector array. The truck was surrounded
by a vacuum and no photon interactions outside the truck
were simulated. Thirteen discrete energies were simulated
(see [15] for more information) and the energy deposited
by the simulation of each gamma particle in each of the
100 detectors was used as input to create a histogram with
128 bins covering the energy range from 0 to 3072 keV.
The histogram was interpolated between simulated energy,
handling the full energy peak, escape peak and the 511 keV
separately from the Compton continuum. The energies were
convolved with an energy dependent Gaussian distribution of
width σ = 0.15 × E ′′[keV]0.77. This only mirrors the average
resolution observed in RadMAP and the energy resolutions
of each individual detector were not handled separately, as
highlighted in Sec. IV. Some of the detectors had an energy
resolution considerably larger than was used for creating the
effective area. Thus, 13 out of 100 detectors were not used
in this analysis. The result, a square matrix, holds elements
for the effective area as a function of the simulated deposited
energy in detectors on one axis and the energy at which
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FIG. 2. The effective area of the NaI(Tl) detector in the bottom-
aft corner of the array. Displayed is the total sensitivity (sum over all
detected energies) for an impending gamma ray of 511 keV.

gamma particles were approaching the truck on the other. The
full 4π field of view of each detector was divided into 600 ×
300 pixels. For each pixel the effective area was reconstructed
through linear interpolation of the respective elements of the
four closest simulated coordinates. The resulting tensor is of
size 600 × 300 × 128 × 128 and has dimensions representing
azimuth, elevation, detected energy, and incoming energy, in
that order. The tensor was calculated separately for each of the
100 detectors. Index k in Eq. (1) refers to the individual pixel
for which the effective area is calculated and the effective area
is a function of deposited energy E ′′ given a certain incoming
energy E ′. Figure 2 shows a result of this simulation cam-
paign, in the form of total effective area for a single detector
and for a gamma ray of E ′ = 511 keV. The zero azimuth is
pointing towards the fore of the truck. The coded mask pattern
is visible in the positive elevation and negative azimuth area
of the figure. It has high effective area where the detector is
not covered by Pb and nearby low effective area where the Pb
mask is present. Negative elevations are towards the bottom of
the truck, where the detector array frame, surrounding Pb, and
the structure of the box truck reduce the effective area relative
to the upper elevations. The positive azimuth region of the
effective area shows some modulation due to the presence of
the photomultiplier tube on the back (port) side of the detector.

B. Scattering/absorption in air

The function Sair (E ′|E , r) was also determined by Monte
Carlo simulations. However, these simulations leveraged
more rudimentary physics and geometry engines than
GEANT4, similar to that in [23]. The goal of these simulations
were to account for the effects of down-scatter as the photons
traversed from the identified surfaces in the surroundings to
the exterior of the RadMAP truck. The highest fidelity sim-
ulations would include specific geometries for each pair of
surface segments and detector array stances and would include
adjacent solid surfaces and the Lambertian angular emission
profile. However, this would be computationally very expen-
sive both in terms of the number of simulations required and
in terms of the resulting size of the Sair tensor, so two sim-
plifications were made: The effect of differing viewing angles
of a series of Lambertian profiles was simplified as a single
isotropic profile, thereby removing an angular dependence;
and the presence of other solid material was ignored, resulting
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in only a volume of air between the emitting surface and
RadMAP. Therefore, the simulations comprised the transport
of gamma rays through a slab of dry air with a square cross
section. The thickness of the slab was varied between 0 and
80 m in 31.25 cm increments and the side length of the slab
was set to be large (600 m) relative to the thickness. Gamma
rays of a fixed energy were emitted from a point source placed
at the center of one face of the slab. The energy of the particles
reaching a square area of side length 0.3 times the thickness
of the slab was histogrammed. The energy binning of the
histogram was the same as that for Ak . The energy at which
gamma rays were emitted was also varied over the same range,
which results in a matrix with 128 × 128 elements, for each
of the 256 distances. The resulting tensor Sair (E ′|E , r) was
normalized such that the probability to detect a 3 MeV gamma
ray, at the emitted energy or lower, after traveling through any
of the simulated distances of air was 1. This normalization
implies that the probability that a gamma ray is absorbed at
3 MeV is negligible, however at lower energies the probably
of absorption is still larger than zero. Thus, the probability to
detect a gamma ray including any down-scattering to lower
energies is larger than predicted by the attenuation coefficient
[24], but the probability of observing a gamma ray, at the
energy it was emitted at, is lower.

C. Detection field of view

The missing quantities in the system response—the two
functions lk and rk mapping detector, time, and solid angle
element (pixel) to labels and to distances—was derived from
video, LiDAR, and inertial measurement unit (IMU) data col-
lected with RadMAP while driving the “figure eight” along
the main streets of the facility. The corresponding analysis
pipeline is summarized in Fig. 3. Concurrently collected
images from the two Ladybug camera arrays were combined
as described in [13] to produce a single panoramic image. The
portion of those panoramic images that contained RadMAP
were unchanged frame-to-frame and were manually removed.
The images do show slight parallax effects at azimuth angles
0 and 180 deg where images from the port and starboard
cameras are stitched together. An example resulting stitched
panoramic image is shown as the top panel in Fig. 4. A set
of 46 panoramic images were hand-labeled with 11 classes:
asphalt, building roof, building red, building brown, build-
ing white, concrete, forest, grass, gravel, sky, and vehicle. A
semantic image segmentation neural network, DeepLabv3+
[18], was transformed to be sensitive to these 11 labels
through transfer learning. The existing weights, pretrained
on the Cityscapes data set [19], were frozen, except for the
last fully connected layer, where new weights were found by
retraining the network with the hand-labeled images. Some
areas in those images were not covered by any label and were
marked to be ignored during transfer learning. After retrain-
ing, the converted network was used to segment a fraction of
the images recorded during the 165 s period, sampled at 3 Hz.
The same set of images were also analyzed with the unaltered
version of DeepLabv3+ and areas segmented as pole were
added in as such in the transfer learned segmented images.
This increases the number of labels distinguished in this anal-
ysis to 12. The labeling results from the unaltered version
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Google Cartographer
Transfer learned

DeepLabv3+ Image
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(point clouds) and
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FIG. 3. A diagram of the analysis procedure used to find the two
functions rk (d, t ) and lk (d, t ) in Eq. (1). Parallelepipeds represent
methods by which data are generated, round boxes represent inter-
mediate data products, and rectangles represent analysis steps.

of DeepLabv3+ and after application of transfer learning are
shown in the middle and bottom panels of Fig. 4, respectively.

Range data from the LiDAR and acceleration data from
the IMU were used to perform SLAM using the Cartographer
code package [25]. The two LiDAR units were configured to
generate data packets comprising a 360◦ view (or “scans”) at
10 Hz. SLAM algorithms [26,27] operate by matching these
scans to an internal representation based on the data collected
up to this point in time by minimizing a cost function creating
an estimation of the truck’s position and orientation within the
facility at each time step. The localization result is then used to
project the LiDAR measurement coordinates collected at that
location into space to recreate a representation of the facility
in the form of a point cloud. As the name implies SLAM
creates both a trajectory of the truck in the facility and a map
of the facility.

Using the concurrent trajectories and facility map, the re-
sults of the semantic segmentation are assigned to point cloud
constituents. Each pixel in every segmented image, starting
from the location of the truck at the time the image was
recorded, is projected outwards in increments of 0.75 m. If
points from the point cloud are found to be within the wedge
formed by the pixel’s solid angle and the radial segment, those
points are marked with the class label of the pixel and the
search for that pixel is terminated. If the stepping algorithm
reaches 80 m without encountering any points the stepping
is halted and continued with the next pixel in the image.
After processing all the images, the class label that has been
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FIG. 4. Semantic image segmentation: The top panel shows the
stitched panoramic image with the hood of the RadMAP truck fil-
tered out in the black region in the bottom center of the image.
The second panel shows segmentation results with DeepLabv3+
[18] pretrained with the Cityscapes data set [19]. The bottom panel
shows the same image segmented with the network obtained from
applying transfer learning with hand-labeled images of the facility to
the DeepLabv3+ pretrained model.

assigned to a point most often is selected to represent that
point. Any point that ends up without a label is classified with
the label of the nearest point with a valid label.

Next, the resulting point cloud was converted into a tri-
angular mesh. This was done by first estimating the surface
normals for each point based on the location of neighboring
points within a radius of 0.5 m. The sense of each normal
is randomly assigned (inward vs outward) initially. The hid-
den point removal algorithm [28] then updates the senses of
normals to point towards the trajectory for points that are
visible from the truck during its journey through the facility.
The resulting point cloud with oriented normals is converted
into a mesh with the ball pivoting algorithm [29] before being
sparsified through vertex clustering [30]. All of these methods
were based on algorithms implemented in Open3D [30]; the
final mesh is displayed in Fig. 1.

To find the mapping of lk and rk in Eq. (1), the truck’s loca-
tions are sampled at 10 Hz resulting in 1650 locations. From
each of the detector’s positions at these sampled locations
a ray is cast in the direction of every solid angle element’s
(pixel) center. The intersection between the outgoing rays and

the triangular faces of the mesh are calculated with a ray-
triangle intersection algorithm [31]. For each outgoing ray, the
three vertices with the smallest intersection-detector distance
are selected. The corresponding pixel is then marked by the
label of the vertex that is closest to the intersection. In this
process we keep track of the distance between intersection and
detector, not only to create a tensor representing rk , but also
to decide if a given intersection is closer to the detector and
thus must replace the previously assigned label. The resulting
matrices construe a rendered version of the mesh visible from
a detector at a given point in time and the distances to the
visible triangular faces. Some pixels will not have a valid
label assigned at this point, because the field of view of the
LiDAR—used to create the mesh—and the one of detectors
are different. Furthermore, only vertices within 80 m of the
detector are used in this process leaving a unlabeled band near
the horizon. These pixels are labeled by searching for the in-
tersection with a plane that was aligned with the lowest laying
vertices in the mesh. The nearest vertex to the intersection is
used as a substitute for that pixel’s label. The plane colored by
the nearest valid label is shown in Fig. 1 with pastel versions
of the label colors. Any pixel still unlabeled at this point was
considered to be sky at 80 m distance. This process results in
two tensors of dimension 1650 × 300 × 600 for each detector.
The first tensor assigns to each pixel in the detector’s field of
view a label that covers that pixel at time t , thus representing
lk in Eq. (1). The second assign a distance to each pixel as a
function of time, thus representing rk .

D. Spectral constraints on the flux

There are two important restrictions to the flux αi(E )
that were imposed here as well as in [14]: A lower energy
threshold at 216 keV and an energy bin width of 24 keV.
The simulations are unreliable at low energies, where the
detector efficiency drops off sharply to zero and can no longer
be neglected. The energy threshold was introduced to not
be sensitive to that range. The bin width of 24 keV was
chosen to limit the total number of free parameters in the
model, influencing the same choice in the effective area and
air scattering tensor. These two choices restrict αi(E ) to a
vector of size 119, which, multiplied by 12 labels, results in
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FIG. 5. Simulated emission spectra from a 1-cm2 surface area
based on 1 Bq/kg activity for the three radioisotopes considered as
the the main source of environmental backgrounds.
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a set of equations with 1428 free parameters. A solution that
does not restrict this parameter set any further is discussed
in [14].

This paper focuses on a different method that conveys a
more detailed understanding of the radioisotope concentra-
tions of various materials and is based on modeling the energy
dependence of the terrestrial labels with simulated KUT
templates. The emission spectrum radiated from a slab was
calculated using the same simplified Monte Carlo gamma-
ray transport code that was used in Sec. II B. Homogeneous
source distributions of potassium-40, uranium-238 series, and
thorium-232 series gamma-ray energies throughout the slab
were simulated with a density of the slab of 1.52 g/cm3 and
its composition as reported for U.S. average earth in [32].

We note that the simulated thicknesses of materials was 2 m,
which is essentially infinite and is likely a good approximation
for soil (grass) and the roadway materials, but most likely
is not accurate for structures of limited thickness such as
buildings and vehicle. The spectra emitted from a 1 cm2 area
of surface predicted by this model is shown in Fig. 5 for each
KUT component. Consequently, αi(E ) in Eq. (1) can now
be expressed with only three unknown parameters per label,
the activities of the KUT components, respectively. This ap-
proach is not valid for the sky component, as it has important
contribution that do not originate from KUT [10]. Instead all
119 energy bins of the sky component’s spectral distribution
were only constrained to be positive. Hence, Eq. (1) can be
expressed as

λγ (d, t, E ′′) =
∑

(i,m)∈I
αim

∑

E

[Sm(E )δm∈KUT + δm=E ]R3D
i (d, t, E ′′, E )

︸ ︷︷ ︸
R̂3D

im (d, t, E ′′)

. (3)

The index m refers to KUT components and the 119 energy
bins E considered in this analysis simultaneously. The sum
running both over m and i can be restricted to the set of
parameters defined as

I = {(i, m) : i �= sky, m ∈ {K,U, T } or
(4)

i = sky, m ∈ {E1, . . . , EN }}.

This set includes only 155 elements; three that reference KUT
in each of the 11 terrestrial labels and 119 that describe the
sky spectrum. Sm(E ) is the simulated spectral shape emitted
from soil by KUT as introduced earlier in this section. To-
gether with the sum over all emitted energies E , it can be
absorbed into the definition of the system response, forming
R̂3D

im (d, t, E ′′).
The simulation was set up to have an arbitrary 1 Bq/kg

of radioactivity so that αim reflects directly the activity of a
given isotope in a material and is no longer its surface flux.
However, the resulting emission spectra from a surface can be
normalized to unity so that it expresses the gamma-ray flux
in photons/s cm−2. This conversion was used in Table I to
convert activity to flux, before adding the KUT components
together. Sky was assumed to be at the maximum distance
of 80 m from any detector all the time and the respective
amplitude represent the gamma flux per unit surface at that
distance. With these restrictions in place, we are left with
solving the system of equations defined in Eq. (3).

E. Maximum-likelihood estimation maximization

Given a set of detected gamma rays characterized by the
detector module dn in which they were detected, the time of
detection tn and the detected energy E ′′

n , MLEM can be used to
predict αim. We focus on a method that minimizes the negative
Poisson log-likelihood because the observation in detectors

are discrete events:

α
j+1
im = α

j
im∑

d,E ′′
∫ T

0 R̂3D
im (d, t, E ′′)dt

×
N∑
n

R̂3D
im (dn, tn, E ′′

n )∑
(ĩ,m̃)∈I α

j
ĩm̃

R̂3D
ĩm̃

(dn, tn, E ′′
n )

. (5)

The above equation does not require any time binning and
is often referred to as list-mode MLEM in literature [33].
In this publication, R̂3D

im at (dn, tn, E ′′
n ) stands for selecting

the respective element from the multidimensional tensor.
This simplification was considered sufficient for this analy-
sis, however, in a more advanced investigation this could be
substituted with an interpolation between nearby elements.

R3D
im was evaluated for every one of the 2 million events

observed during the 165 s measurement duration. Simultane-
ously, the denominator in the first fractions, often referred to
as the sensitivity, was precalculated, as it does not change
during the update procedure. We used equal amplitude as
an initial guess and processed the update rule for 100 000
iterations, using CuPy [34] to run the algorithm on the GPU
for faster execution. It was observed that a large number of
iterations is necessary to have convergence of the result.

F. Uncertainty estimation

Neither negative activities in a material nor negative values
in the sky spectrum are physical. This non-negativity con-
straint is automatically satisfied by the MLEM approach that
we chose in Eq. (5). But as discussed in Sec. III, some of
the values in the solution are zero or very small. Thus, our
solution will not be distributed according to Gaussian statis-
tics and the Fisher information and the Cramér-Rao bound
are unreliable as an uncertainty estimate. An alternative ap-
proach to understand the spread of such an experiment, and
thus estimate uncertainties, is Monte Carlo simulations. The
simulation was conducted by replacing αim in Eq. (1) with
the solution found through MLEM and calculating λγ (t, E ′′).
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Running these simulations for histogram mode is simpler than
for list-mode MLEM because it is possible to Poisson sample
the average gamma-ray rate expressed in Eq. (1) directly,
without the need to also sample the temporal distribution, as
would be necessary to resample the list-mode model. Unfor-
tunately, the full expression of the system response for all
87 detectors used in this analysis (≈1 GB/detector) will not
fit into the random-access memory (RAM) available on the
computer system we used. Also the computations would be
much more demanding than in the list-mode case. Thus we
simplified the linear system by accumulating all counts from
a 0.1 s interval into a single detector placed in the center of
the array. The effective areas of the individual detectors were
summed to reflect the effective area of the entire detector ar-
ray. The simplified histogram version of the MLEM algorithm
thus can be formulated as

α
j+1
im = α

j
im∑

t,E ′′ R̂3D
im (t, E ′′)

∑

t,E ′′

n(t, E ′′)R̂3D
im (t, E ′′)∑

(ĩ,m̃)∈I α
j
ĩm̃

R̂3D
ĩm̃

(t, E ′′)
, (6)

where n(t, E ′′) is a two-dimensional histogram of the mea-
sured events with time and energy on the respective axes.

These two approximations additionally reduce the number
of iterations required for the MLEM algorithm to converge
and make it possible to run MLEM sufficiently fast for use in
a Monte Carlo approach. The average rate of the optimized
histogram solution was Poisson sampled and the respec-
tive amplitudes for every sample of photon-induced events
solved with histogram MLEM. We simulated 5000 realiza-
tions each with 3000 MLEM iterations. The uncertainties
used throughout this publication were approximated with the
sample variance of the simulated distributions. Furthermore,
the sample covariance was used to calculate the correlation
matrix, discussed in the next section.

III. RESULTS

Moving on to the results of this approach. The results
are presented in Table I and Fig. 6 by juxtaposing the activ-
ity ascribed to different NORM constituents with the range
of activities obtained through ground truth measurements
conducted in [20]. The range of measurements from that pub-
lication is expressed by the extrema in Table I and represented
as error bars in Fig. 6. Activities of the materials classified as
light and dark tan concrete masonry units, and white and gray
concrete masonry units in [20] were averaged to form label
building brown and building white, respectively. The fluxes in
Table I that were taken from other publications were adjusted
to reflect only gamma rays emitted between 216 and 3072
keV. Furthermore, the flux in [13] was divided by a factor
of 2 missing in that publication. The sky fluxes describe the
emission off a surface at 80 m distance from the detector.
Therefore, there is considerable attenuation included in the
sky results presented in the two last columns of Table I. The
results from [13] did not consider any attenuation. Most of
our activities, represented as black dots in Fig. 6, are within
a factor of 2 of the ground truth average value, marked with
a central gray bar in Fig. 6. Only building red and building
white have absolute deviations up to a factor of 5. Thus,
indeed some meaningful information about the radioisotope
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MLEM (listed in Table I) are represented with black dots. The
gray error bars indicate the range of measured values of the same
material class but different locations and the central gray bar marks
the location of the average.

concentration of materials in the facility was extracted with
only 165 s of data. The ground truth error bars in Fig. 6
cover the full range of measured values of the same material
class but different locations observed in [20] and are quoted
in Table I by the minimum and maximum observed value.
Figure 7 studies the sigma level separating our result from the
closest value reported in [20]. About 1/3 of all activities are
within the range covered by the ground truth measurements
or within one sigma of an extremum and only three activities
are beyond 5σ . The thorium and uranium predictions are in
bigger conflict than the potassium activities. Their activity is
in general about 10 times lower and both are spectrally more
difficult to resolve, having more Compton continuum and only
the 2614 keV line as a clear separating feature. However,
it is not entirely clear why the two uranium activities for
asphalt and concrete are discrepant, but possible reasons will
be highlighted throughout the following discussion. A first
possible explanation could be that large scale structures, such
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FIG. 8. Count rate as a function of time: The black line describes
the count rate observed in the detector array, the red line the rate
predicted by the list-mode MLEM result. The remaining colored
lines describe what fraction of the total rate is attributed to each
material label at a given time. The figure is in analogous to the
results shown in [14], but are reconstructed here through adding the
contributions associated with each of the three radioisotopes.

as grass and asphalt/concrete, might not be uniform across
the entire facility. The measurements in [20] were conducted
mostly along the street segment running through the center of
the facility and the left loop of the “figure eight” displayed in
Fig. 1. Our data set averages the activities observed in materi-
als in the entire facility, including regions with little coverage
in the ground truth data set. The observation that our averages
are not in agreement with their ranges could be related to their
measurement not capturing the variability of a given material
class completed. It is interesting to note that the simplified
histogram-based analysis does not show these discrepancies
and it merely could be that the sample variance, based on that
result, might underestimate the uncertainties of the list-mode
approach for these activities. Figure 8 shows the fraction of
the total count rate measured across the detector array that was
attributed to each label, and helps to expand our understanding
of why some labels are in better agreement with ground truth
measurements than others. The labels that continuously make
up a substantial fraction of the total count rate, i.e., asphalt,
concrete, grass, and gravel, are better when comparing ac-
tivities and thus are well placed inside the range of values
observed in [20]. The building labels, particular building red
and building white, are only visible from the truck for a limited
amount of time and therefore fail to substantially contribute to
the total count rate, which results in less agreement with the
ground truth measurement range. Building roof, vehicle, and
pole, are most likely also not very well confined, but there
is no ground truth measurement available to compare these
labels to. It should be noted that overall, the results presented
in Fig. 8 are close to the full spectral analysis performed
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FIG. 9. The top panel shows the emission spectra for the sky
component as a black histogram with gray error bars. It is based on
sky being a surface at 80 m distance from the detector. The bottom
panel shows the detected spectra, i.e., the spectrum shown in the
upper panel folded with the system response, as a black histogram.
Also shown are results from [10] for skyshine, cosmics, and the sum
of both with different types of gray lines.

in our previous analysis [14]. Particularly, the reduction in
free parameters by almost an order of magnitude seems to
only have a marginal effect on the agreement between the fit,
represented by the red line, and the total gross counts, shown
in black. One important difference of the solution presented
in Fig. 8 to the analysis in [14] is that our sky allotment is
larger. This difference is reflected in Table I, which compares
the total flux per label to the earlier analyses of [13,14] and
the measurements from [20]. The higher apportionment to
sky results in a smaller quota to other labels, moving the
respective fluxes closer to the ground truth value than was
observed in [14]. We note that the result still overestimates the
ground truth result and that the camera-only result, which was
corrected from the results in [13] by removing an erroneous
factor of 2, still is in better agreement with the ground truth
numbers. The analysis performed in [13] ignored scattering
and attenuation in air. Including air attenuation here and the
analysis from [14] forces the predicted fluxes to be larger
in magnitude. This suggest that the better agreement of [13]
could be accidental. All three studies are likely affected by the
same systematic uncertainties. One likely source of systematic
errors is the simulations of the effective area, discussed in
Sec. II A and used for all analyses alike. These simulations
might underestimate some of the housing of the truck or
neglect some of the structures present in the trucks interior
and thus result in a overestimation of the fluxes. The pa-
rameters associated with activity incident from sky are shown
in the top panel of Fig. 9 in black in the form of an energy
spectrum with 24 keV wide bins. The respective distribu-
tion falls off quickly with energy, with the most significant
contribution being below 600 keV. The only bins with large
amplitudes above 600 keV are found on both sides of the 1460
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and 2615 keV transitions. The energy resolution used in the
MLEM model may not sufficiently describe the measurement
resulting in nonphysical features in the only unconstrained
portion of the reconstructed parameter space that is able to
accommodate the difference. The absence of other large con-
tributions implies that three KUT emission components and
the formulation of the response matrix otherwise adequately
captures the spectral features observed in the detectors. The
detected sky component, corresponding to the emitted compo-
nent folded with the system response, is shown in the bottom
panel of Fig. 9. Its energy spectrum follows closely, both in
shape and amplitude, measurements conducted in [10] for
a skyshine with cosmics component. All data in the second
panel of Fig. 9 were normalized by volume to represent the
spectrum observed in a 4 × 4 × 2 in. detector. All spectra
were transformed to have 24 keV wide bins. The bin widths
used in [10] were not stated, but were inferred to be 6 and
4 keV for “skyshine + cosmics” and “cosmics”, respectively,
resulting in self-consistent spectral scaling for those spectra.
Our sky component seems to underpredict the 1.8 MeV region,
where strong uranium/radon lines are present. This indicates
that we might attribute some of radon and terrestrial back
scattering erroneously to other labels, particularly asphalt and
concrete, which could be another possible explanation for the
unexplained excess of uranium in these two labels. Beyond
this region, only the two peak regions pointed out earlier differ
considerably between the two measurements. It is noteworthy
that neither the cosmics nor the skyshine component described
in [10] by themselves are a good fit for the measured spectral
distribution. This is in agreement with the expected emission
of areas classified as sky being partially cosmics and par-
tially terrestrial components scattered in the air back towards
the ground. This implies that our sky component realistically
models the emission expected from a surface element cover-
ing the sky.

The activities and sky spectrum of the simplified histogram
based approach does not substantially differ from the list-
mode results presented here. The differences is covered by
the uncertainties estimated through simulations. However, the
total allotment to sky is about 50% larger for the histogram-
based result, placing the activities mostly below the list-mode
values. A possible explanation for this observation is that the
detectors in the top rows of the detector array are particularly
sensitive to the sky component, and some of that sensitivity
is lost when consolidating the detectors to a single module.
The similarity between the two analyses legitimizes using the
uncertainties obtained from Monte Carlo simulations for the
list-mode result as well, but as expressed earlier might not be
an equally accurate substitute for all activities.

Now we turn our attention to the Monte Carlo results
themselves. There was no systematic bias found between the
mean of the sample distributions and the sampled parameters.
It is important to note that, as expected, the distributions for
values close to zero were not distributed symmetrically around
the mean and the sample variance overestimates the lower
bound and underestimates the upper bound of these variables.
In particular, the sky component has many elements with
zero being included within the bounds of the uncertainties.
The correlation matrix, displayed in Fig. 10, is obtained by
normalizing the covariance matrix across the diagonal. The

information about the absolute uncertainty is thus lost. While
the correlation matrix reveals a lot of interesting relationships,
those based on elements with large uncertainties might not
be always especially meaningful. The correlation matrix in
Fig. 10 represents strongly anticorrelated variables with blue
and strongly correlated variables with red, while uncorrelated
variables are marked white. The intralabel KUT relations are
represented as a 3 × 3 block diagonal matrix in the upper left
quadrant. They have large off-diagonal intralabel anticorrela-
tions, indicating that the total flux is better constrained than
the individual allocations to isotopes. The strongest intralabel
anticorrelations are present between potassium and uranium,
and between uranium and thorium. These patterns suggest that
the 5σ deviations observed in some labels for uranium indeed
might be caused by intralabel confusions of isotopes. No
intralabel anticorrelations are apparent for the labels building
roof and pole, which in general are poorly constrained because
of little coverage by the detector array.

Next, advancing to the off-diagonal matrix elements in
the upper left quadrant of the correlation matrix, where the
label based block matrix diagonal elements describe interlabel
correlations between identical isotopes. The most noticeable
features are found in labels that are geometrically linked to
each other. Both asphalt and concrete are part of the streets;
one of the building brown labeled buildings is located at
the edge of the facility near forest; the building red labeled
buildings are positioned towards the center of the facility near
large patches of grass. These pairs of labels are encountered
with a similar coverage of the detectors field of view but
rarely observed simultaneously, explaining the interlabel cor-
relations between identical isotopes. Contrastingly, the KUT
components in gravel are anticorrelated with building white,
two labels encountered in close proximity at the same time.
Concrete is found around building brown and building red,
thus also observed simultaneously and the KUT components
anticorrelate between labels as well. Last but not least, grass
and forest simultaneously fill an important fraction of the
field of view near the horizon for most of the measurements
duration and thus are strongly anticorrelated. Figure 8 can be
inspected to better gauge which labels appear concurrently
and which do not.

The most distinct feature visible in the off-diagonal quad-
rants of the correlation matrix are centered around the two
gamma-ray transitions at 1460 and 2615 keV. Particularly,
the potassium activity of asphalt and concrete correlate with
the sky spectrum, while the uranium activity anticorrela-
tions around these transitions. The anticorrelation pattern of
uranium-238 with the sky component might be related to a
radon-222 trace in the sky spectrum. Radon-222 is part of
the uranium-238 decay chain and there might be a balance
between what fraction of the observed events is assigned to
terrestrial NORM and sky-borne radon. By attributing more
uranium to the two street labels and reducing the amount of
radon in sky, the model furthermore compensates for the total
flux being constrained by reducing thorium and potassium.

The inverse correlation patterns are observed for buildings.
If the truck passes a building the presence of the building
covers up a considerable amount of the sky. Thus, again we
see the opposite behavior of labels seen at different times than
those seen together. Noteworthy is that there is little correla-

023070-10



DETERMINING URBAN MATERIAL ACTIVITIES WITH A … PHYSICAL REVIEW RESEARCH 3, 023070 (2021)

a
sp

h
a
lt

K
a
sp

h
a
lt

U
a
sp

h
a
lt

T
b
ld

g
.
b
ro

w
n

K
b
ld

g
.
b
ro

w
n

U
b
ld

g
.
b
ro

w
n

T
b
ld

g
.
re

d
K

b
ld

g
.
re

d
U

b
ld

g
.
re

d
T

b
ld

g
.
ro

o
f
K

b
ld

g
.
ro

o
f
U

b
ld

g
.
ro

o
f
T

b
ld

g
.
w

h
it
e

K
b
ld

g
.
w

h
it
e

U
b
ld

g
.
w

h
it
e

T
co

n
cr

et
e

K
co

n
cr

et
e

U
co

n
cr

et
e

T
fo

re
st

K
fo

re
st

U
fo

re
st

T
g
ra

ss
K

g
ra

ss
U

g
ra

ss
T

g
ra

ve
l
K

g
ra

ve
l
U

g
ra

ve
l
T

p
o
le

K
p
o
le

U
p
o
le

T
ve

h
ic

le
K

ve
h
ic

le
U

ve
h
ic

le
T

3
0
0
.0

5
4
0
.0

7
8
0
.0

1
0
2
0
.0

1
2
6
0
.0

1
5
0
0
.0

1
7
4
0
.0

1
9
8
0
.0

2
2
2
0
.0

2
4
6
0
.0

2
7
0
0
.0

2
9
4
0
.0

asphalt K
asphalt U
asphalt T

bldg. brown K
bldg. brown U
bldg. brown T

bldg. red K
bldg. red U
bldg. red T

bldg. roof K
bldg. roof U
bldg. roof T

bldg. white K
bldg. white U
bldg. white T

concrete K
concrete U
concrete T

forest K
forest U
forest T
grass K
grass U
grass T

gravel K
gravel U
gravel T

pole K
pole U
pole T

vehicle K
vehicle U
vehicle T

300.0

540.0

780.0

1020.0

1260.0

1500.0

1740.0

1980.0

2220.0

2460.0

2700.0

2940.0

sk
y

[k
eV

]

sky [keV]

FIG. 10. The correlation matrix of the KUT activities for each material label and sky component. The color scale goes from
blue, highlighting strongly anticorrelated components (−1), to white, indicating no correlations at all, to red, marking strong positive
correlations (1).

tion between forest/grass and sky, which are seen during most
of the measurement.

The most prominent features in the bottom right quadrant
are strong anticorrelation features close to the diagonal and
some far off-diagonal correlations around 1.8 MeV. The for-
mer are found near lines in the KUT spectra, and probably
related to the energy resolution of the detector not accurately
being modeled by the effective area. As mentioned earlier, the
uncertainties in the sky component are large and these patterns
near the diagonal probably not especially meaningful. The
latter is most likely due to an interplay between a radon-222

component and terrestrial uranium-238. In the spectrum of
both of these isotopes strong lines are present around 1.8 MeV,
arising from the progeny bismuth-214.

IV. DISCUSSION

We have shown that realistic NORM activities present in a
urban area can be measured in very brief measurements, here
with less than 3 min of continuous motion of a mobile system.
Thus, realistic models of urban environments can be built
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from contextual data that captures the radiological complexity
and variability of materials in proximity to the mobile system.

The construction of the segmented model (simultaneous
localization and mapping runs in real time, semantic segmen-
tation took ≈2 s per image, and meshing requires about 6 h
on a Intel Core i7-5930K CPU), the computation of the sys-
tem response (≈5 h/detector on a Intel Core i7-5930K CPU)
and finding the maximum likelihood estimation maximization
solution (≈1.5 h/100 000 iteration on a GeForce GTX 1080
Ti GPU) was performed offline. The analysis in its current
form does not translate easily into a real-time framework for
long extensive search missions. However, it could be used
offline together with large data sets to populate a database of
structures that is used for urban radiological searches. Novel
real-time algorithms could leverage this information to infer
radiological backgrounds based on Eq. (1) when passing by a
known structure or a structure that resembles a member of
the database. With advances in machine learning and with
more powerful computing resources such an analysis could
potentially be performed in real time by inferring a current
background prediction from a model based on data collected
in the recent past. A real-time implementation of the presented
algorithm would leverage a localized approach and not be
based on the creation of a full scene. As such, local meshing
based on single scans from LiDARs has been shown to be
possible in real time [35]. Furthermore, computing the system
response on the GPU instead of the CPU could lead to a con-
siderable speed-up and allow for close to real-time realization
of the full analysis.

Although this method was sufficient to approximate the
radioactive composition of materials present in the scene, it
also highlights areas with room for improvement. First, the
model that was used to conduct the effective area simulations
simplifies aspects of the truck and is partially based on as-
sumptions. For example, altering the thickness of the metal
sheet used as floor will increase or reduce the detector arrays
sensitivity to labels typically encountered at low elevation
such as asphalt and concrete and thus change the partition
of the total count rate to labels. Unfortunately, the truck is
no longer available to cross-check the simulation result with
actual source measurements, but when applying the method to
different mobile system it is crucial to properly understand the
effective area used in the calculations. Second, the effective
area also assumed that the energy resolution is uniform across
the different detectors, but in reality there are considerable
deviations. The energy resolution of each detector could be
characterized and modeled independently. Third, a more com-
plex scattering and attenuation model, properly taking into
account the detector to surface orientations, could increase
the accuracy of the method. To understand some of the sys-
tematic errors arising from scattering in air we investigated
the effect of using a point source with a Lambert’s cosine
emission profile in place of the isotropic emission used to
calculate the air scattering and absorption tensor in Sec. II B.
The differences were found to be within the uncertainties,
except for potassium in asphalt and uranium in building roof,
where the Lambert’s cosine emission analysis is lower by 20%
and 40%, respectively. Fourth, we limited our sensitivity to
objects in direct line of sight from the detectors. However, at
1 MeV about 20% of all gamma rays will penetrate through a
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FIG. 11. Comparing the simulated emission spectra from [20]
(gray filled histogram) to the distributions predicted in this work
(black histogram).

concrete wall of 10 cm thickness. It would be more accurate
to also include the effects of obstructed structures by properly
accounting for attenuation. This will be particularly important
when operating in a more realistic urban scene with vegetation
obstructing structures. Fifth, we assumed identical emission
spectra for all structures in the scene modeled with a slab of
2 m thick soil. Figure 11 compares the spectral distribution
emitted from a given surface predicted by our calculation and
those used in [20]. Whereas most spectra agree quite well,
some difference is apparent at the highest energies for gravel
and the simulated building spectra disagree in both magnitude
and in shape. The summed flux for the building is overesti-
mated by roughly a factor of 3 and our simulation predicts a
smaller peak-to-Compton ratio. When using the ground truth
activities listed in Table I to scale the simulated emission
spectra for KUT, the summed flux in the “3D KUT” portion
of Table I remains overestimated by a factor of ≈1.5. For
buildings (walls), instead of using a infinite thick slab [20],
used a brick wall with air and a flooring of soil and asphalt
behind to approximate the flux from the surface. This demon-
strates that the prediction obtained with the presented method
could be improved by using individually tailored simulations
for the different labels. Lastly, this study was solely based on
radioactive events measured with the NaI(Tl) array. However,
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RadMAP also features 14 mechanically cooled high purity
germanium detectors. Albeit, the number or recorded events is
much lower, the improved resolution of these detectors would
enable a better separation of the thorium and uranium series
spectra and thus might have the potential to more confidently
reconstruct the activity of these two components.

Some aspects of the observed result, in particular the in-
consistency of our result with average values measured in
[20], suggest that there might be some natural limit to the
applicability of such an approach. The large spread in activi-
ties measured in [20] suggest that even within homogeneous
structures, such as those present in this urban mock facility,
the isotopic compositions in materials could be quite variable.
While it still should be possible to predict average activities,
even for materials with large dispersion in activity, these pre-
dictions could be of little use for modeling the backgrounds in
the detectors that arise as a result of NORM activities.

V. CONCLUSION

A gamma-ray transport and sensing model of real-world
measurements has been created by combining the contextual
data collected during the measurement and processed via
computer-vision techniques with Monte Carlo-based physics
simulations of the detectors and radiation transport processes.
This model mimics the physical world sufficiently well to
enable approximate predictions of the activities of natu-
rally occurring radioactive materials (NORM) present in the
scene by performing MLEM on the gamma-ray data mea-
sured in the detector array during a 165-s-long vehicle-borne
measurement. This agreement between model and reality

demonstrates substantial understanding of the radiological
environment that has previously only been achieved through
labor-intensive ground truth measurement campaigns, which
are only practicable in controlled environments. The focus
was placed on obtaining the potassium-40, uranium-238, and
thorium-232 content within various classes of materials. How-
ever, this procedure can also be applied in reverse to predict
detector count rates, based on known NORM in the vicinity of
a mobile system. This is demonstrated best through Fig. 8 that
shows how the total gamma-ray count rate was apportioned
to the different classes, deduced through semantic image seg-
mentation. Obviously if an estimate of the activities is known,
Eq. (1) can be evaluated and the count rate in the detectors
approximated by tallying the gamma-ray emission from the
various classes. Such a prediction could be used in algorithms,
for example as a Bayesian prior, to improve the sensitivity of
the system to detecting and separating “nuisance” radiological
sources, such as medical isotopes and sources in use for indus-
trial purposes from illicit radiological and nuclear materials.
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