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Many-body collisional dynamics of impurities injected into a double-well
trapped Bose-Einstein condensate
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We unravel the many-body dynamics of a harmonically trapped impurity colliding with a bosonic medium
confined in a double well upon quenching the initially displaced harmonic trap to the center of the double well.
We reveal that the emerging correlation dynamics crucially depends on the impurity-medium interaction strength
allowing for a classification into different dynamical response regimes. For strong attractive impurity-medium
couplings the impurity is bound to the bosonic bath, while for intermediate attractions it undergoes an effective
tunneling. In the case of weak attractive or repulsive couplings the impurity penetrates the bosonic bath and
performs a dissipative oscillatory motion. Further increasing the impurity-bath repulsion results in the pinning
of the impurity between the density peaks of the bosonic medium, a phenomenon that is associated with a strong
impurity-medium entanglement. For strong repulsions, the impurity is totally reflected by the bosonic medium.
To unravel the underlying microscopic excitation processes accompanying the dynamics, we employ an effective
potential picture. We extend our results to the case of two bosonic impurities and demonstrate the existence of a

qualitatively similar impurity dynamics.
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I. INTRODUCTION

Due to their extraordinary controllability, ultracold atoms
have been used to study various properties of many-body
quantum systems. Indeed, they can be confined in arbitrary
trapping geometries and dimensions [1-4], the underlying
interatomic interactions are tunable via Feshbach resonances
[5-9] while mixtures of quantum gases, namely, Bose-Bose
[10,11], Bose-Fermi [12,13], and Fermi-Fermi ones [14—17]
can be realized. Recently, major attention has been placed
on strongly particle imbalanced mixtures where for instance
a single impurity is immersed in a many-body environment.
Here, the concept of a polaron [18], which has been exhaus-
tively studied in solid-state physics, can be recovered where
the impurity plays the role of an effective particle dressed by
the excitations of its surroundings. In this context, the exis-
tence and characteristics of Fermi [19-23] and Bose polarons
[24-31] have been unveiled, mainly focusing on their station-
ary properties [29,32-37] and more recently on the dynamics
[38—41] of these quasiparticles.

The involved confining potentials have a major impact
on the dynamical behavior of the impurity. For instance, it
has been shown that the impurity-medium interaction quench
dynamics in a harmonic trap leads to oscillatory [42], dipole-
like, and dissipative impurity [43] motion depending on the
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impurity-bath coupling strength or to temporal orthogonality
catastrophe events for strong repulsions [28]. Another impor-
tant aspect of such impurity settings concerns their transport
properties through the environment [44]. Indeed, the tunnel-
ing dynamics of impurities confined in a double well and
coupled to a lattice trapped medium has been studied in the
context of an effective potential [45,46]. Additionally, de-
phasing and clustering processes [47,48] as well as distinct
transport pathways [49] were observed for impurities confined
in lattice potentials. Furthermore, the collisional dynamics of
impurities with a Bose-Einstein condensate (BEC) has been
studied experimentally [50,51] and theoretically [52]. In the
latter case, the complete reflection of the impurities from a
harmonically trapped BEC, their trapping within the bath, as
well as the generation of dark and bright solitons have been
revealed in the absence of correlations.

Apart from the above-described intriguing collisional
channels, certainly a much richer dynamical response is ex-
pected to emerge in the presence of a lattice potential. Here,
the periodic structure of the medium’s density imprinted by
the external potential acts as a material multibarrier which
enforces specific tunneling pathways for the impurity. A min-
imal setup of this type consists of a bosonic bath trapped in
a double-well potential, where complex dynamical response
regimes of the impurity are anticipated. For instance, dephas-
ing dynamics of the impurity associated with enhanced energy
redistribution processes can be triggered [43,53] or in the case
of attractive impurity-bath coupling strengths bound states
can emerge. Moreover, the back-action of the impurity on the
bosonic background where the former is expected to induce
tunneling of the medium emulating a Josephson junction [54]
is certainly of interest. Here, also the intraspecies coupling
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of the bath particles enforcing the latter to configure in a
superfluid or Mott state, thus affecting their mobility, is ex-
pected to impact the impurity’s response. In this context the
interplay of the boson-boson interaction with the impurity-
impurity induced correlations is also a relevant direction of
study. Another interesting aspect is whether the emergent
dynamical response regimes, found in the double-well case,
remain robust in a setup where the bath is trapped in a
multiwell potential. Additionally, due to the collision of the
impurities with their environment strong impurity-medium
correlations are expected to emerge, giving rise to beyond-
mean-field collisional channels. To trace the nonequilibrium
quantum dynamics, we employ the multilayer multiconfig-
uration time-dependent Hartree method for atomic mixtures
(ML-MCTDHX) [55-57], which is capable of capturing all
relevant interspecies and intraspecies correlations.

To address these aspects we consider a harmonically
trapped impurity which is coupled via a contact interaction
potential to a bosonic environment confined in a double well.
The dynamics is induced by quenching the initially displaced
harmonic confinement of the impurity to the center of the
double well. By steering the impurity-medium interaction
strength from attractive to strongly repulsive values we are
able to identify five dynamical response regimes in the case of
a single impurity [58]. These regimes range from a bound-
state formation between the impurity and its environment
for strong attractive impurity-bath interaction strengths to
its dissipative oscillatory motion [43,59] within the bosonic
background at weak attractive and repulsive couplings and,
finally, its total reflection from the medium for strong re-
pulsive interactions. For intermediate attractive or repulsive
interaction strengths, the impurity effectively tunnels between
the sites of the double-well potential or it is pinned between
the later, respectively [45]. In all of the above-mentioned cases
we reveal the buildup of a significant impurity-medium entan-
glement [28] which is mostly pronounced in the dissipative
oscillation and the pinning regimes. To unravel the micro-
scopic processes participating in the dynamics, we construct
an effective potential [40,43,49,60]. This picture enables us to
understand the dynamical behavior of the impurity in all re-
sponse regimes and, in particular, uncover hidden excitations
in the pinning regime. Extending our results to the two-
impurity case we identify five qualitatively similar response
regimes as compared to the single-impurity scenario. In this
case we explicate the involvement of single- and two-particle
excitation processes of the impurities within the effective po-
tential [61] and also reveal the interplay of impurity-impurity
induced correlations for different intraspecies interactions of
the bath. To demonstrate the generalization of the identified
dynamical response regimes of the impurity, we additionally
consider a bosonic bath trapped in a triple well. In this context,
we find that the steady bound state, the dissipative oscillation,
and the total reflection regimes remain robust (see in particular
Appendix E).

This work is structured as follows. In Sec. II we introduce
the system under investigation and specify the used quench
protocol. The employed variational method to trace the many-
body dynamics is outlined in Sec. III. Section IV provides a
detailed classification and analysis of the dynamical response
regimes in dependence of the impurity-medium interaction

strength. We extend our results to two impurities in Sec. V
and conclude this work in Sec. VI providing a summary and
an outlook of possible future research directions. In the Ap-
pendices we further elaborate on the features of the identified
dynamical response regimes discussing energy redistribution
processes (Appendix A), the impurity-medium two-body cor-
relation dynamics at strong attractions (Appendix B), the
effective mass of the impurity (Appendix C), and the exposure
of hidden excitations revealed for repulsive impurity-medium
couplings (Appendix D). Appendix E demonstrates the colli-
sional dynamics when considering a bosonic bath in a triple
well.

II. SETUP AND QUENCH PROTOCOL

Our setup consists of two different species of bosons B
and I, also referred to as the medium and impurity species,
respectively. For the two species we consider N and N;
particles of mass mp and my, respectively. We operate in the
ultracold regime and thus s-wave scattering is the dominant
process allowing us to model the interaction between the
atoms with a contact interaction potential [62]. Therefore,
we employ for the impurity-bath interaction a contact inter-
action potential of strength gp;, while particles of the same
species interact with a contact interaction potential among
each other with strengths ggp for the environment and g;; for
the impurity species. Each species is confined in a different
one-dimensional optical potential V,, at zero temperature. This
can be easily achieved experimentally [11,63-65] especially
for the mass-imbalanced case under consideration of, i.e.,
87Rb atoms for the bath and '33Cs atoms for the impurity
species. The resulting Hamiltonian of the system reads as
H=HE +H' + H™ where

) h2 82
He = <__—2 + Vo‘ ()C?) + &oo Za(xf - X}T))
1

2mo (9x7) i<j
(D

is the Hamiltonian of species o € {B,I}. The bosonic
medium and impurity species are coupled via H™ =
gsr Y iy Y0, 8(xP — xl). The impurities are confined in
a harmonic oscillator potential V;(x!) = mjw?(x! + x})?/2,
where w; is the trapping frequency with x{ being the spa-
tial displacement of the trap. The environment is trapped in

B2

a double well Va(xf') = mpe(xF)?/2 + 22— exp(—5its)
which is constructed by superimposing a harmomc oscilla-
tor potential of frequency wp and a Gaussian of width wg
and height hg [29]. We consider for the bosonic medium
N =20 "Rb atoms with mass mp = 1, and for the impurity
species Ny = 1,2 133Cs atoms with mass m; = ”3 [66].

Experimentally, a one-dimensional potentlal can be real-
ized by employing a strong harmonic confinement along the
transverse direction in order to freeze out the relevant degrees
of freedom [62,67]. Subsequently, we provide the energy of
the Hamiltonian A in terms of E = /i, where & is the fre-
quency of the perpendicular confinement. The length scales
and timescales are then expressed in units of ¥ = //i/(mpd)
and @' = hE~!, respectively. Regarding the frequency of
the harmonic oscillator potential of the impurities we use
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FIG. 1. Sketch of the setup under consideration at t = 0 (left
panel). The harmonic trap of the impurity (red circle) is initially
displaced by x} with respect to the center of the double-well potential
of the bosonic medium (blue shaded area). The dynamics is induced
by quenching the potential of the impurity to x} = 0 (right panel).

wy /@ = 0.2. For the harmonic contribution to the double-well
potential we employ a frequency of wg/@ = 0.15 and for the
Gaussian a width of wg/% = 0.8 and a height of hg/EX = 2.0
leading to a central barrier of the double well below which
the six energetically lowest eigenstates of the corresponding
one-body Hamiltonian are located.

We prepare the system in its ground state with the harmonic
trap of the impurities displaced by x{). The spatial overlap
between the species in the noninteracting case is of about
3.5% for x(’, = 8 and increases (decreases) for attractive (re-
pulsive) impurity-medium interactions. After a gg;-dependent
ground state is found the dynamics is induced by quenching,
at t = 0, the trap center of the impurity’s harmonic potential
to the center of the bosonic environment, i.e., setting x{) =0
(see Fig. 1 for t > 0). Thereby, a collision of the initially
displaced impurities with the bosonic medium is triggered, a
process that strongly depends on the impurity-medium cou-
pling strength gg; as we shall demonstrate below.

III. MANY-BODY WAVE-FUNCTION ANSATZ

To calculate the quantum dynamical behavior of the binary
system we employ the ab initio multilayer multiconfiguration
time-dependent Hartree method for atomic mixtures (ML-
MCTDHX) [55-57]. Within this approach we express the
many-body wave function |UMB(z)) of the binary mixture
using the Schmidt decomposition [68,69]

M
WMB(@) = V)| v © ). @)
i=1

For our purposes we expand each species in M = 6 species
functions |¥7) with o € {B, I}. Moreover, the species func-
tions are weighted with the time-dependent Schmidt coeffi-
cients A; which contain information about the entanglement
between the two species. For instance, in the case of only one
nonvanishing Schmidt coefficient the species are considered
to be not entangled since the system can be described by a
single product state (species mean-field ansatz) [69,70]. Next,
each species function is expanded in a set of time-dependent
number states |77 (¢)):

(W7 = Crlig @), 3)

i|N,

with time-dependent coefficients C7;. Each number state
|77 (t)) determines the configurational occupation of N, par-
ticles on d, single-particle functions (SPFs) where, at the
same time, the number of occupied SPFs must add up to the
total particle number N, (indicated by 7i|N, ). In this work we
employed dp = d; = 6 SPFs. Eventually, the single-particle
functions are represented in a time-independent discrete vari-
able representation (DVR) [71]. The propagation in time is
performed by employing the Dirac-Frenkel variational prin-
ciple [72,73] leading to a set of equations of motion for the
system (see for more details [57,74]).

The advantage of this method is its underlying multilay-
ering architecture of the total wave function combined with
its time-dependent basis set [Eqgs. (2) and (3)]. Especially,
with the latter a comoving basis set is utilized leading to a
significant reduction of required basis functions compared,
e.g., to an exact diagonalization approach. On the other hand,
the multilayering structure provides access to all relevant in-
terspecies and intraspecies correlations of the system in an
efficient manner.

IV. DYNAMICAL RESPONSE REGIMES
OF A SINGLE IMPURITY

In the following we analyze the collisional dynamics of a
single impurity (N; = 1) trapped in a harmonic oscillator and
interacting with a bosonic medium confined in a double well.
Initially, the system is prepared in its ground state with the
impurity’s harmonic trap being spatially shifted by x}/% = 8
with respect to the center of the double well. The dynamics
is induced by quenching the harmonic oscillator of the im-
purity to x)/% = 0. Varying the impurity-medium interaction
strength gp; from the strongly attractive to the strongly re-
pulsive regime we discuss the emergent dynamical response
of the impurity and its back-action to the environment. The
intraspecies interaction strength between the medium particles
is fixed to gBB/E)“c =0.5.

To reveal the overall dynamical response of the sys-
tem, we initially inspect the one-body density p{"(x, 1) =
(WMB ()T (), (x)|UMB (1)) of species o, where W, (x) is
the bosonic field operator of the corresponding species. The
spectral decomposition of the one-body density [75,76] reads
as

PP, 1) =) " nJ (@) (x, 1)Dq j(x, 1), )
J

where n? denote the natural populations and @, ; the natural
orbitals of species o.

Figure 2 presents the time evolution of p{1(x, ) for differ-
ent impurity-medium interaction strengths gg; ranging from
strongly attractive to strongly repulsive values. In Figs. 2(al)
and 2(a2) we monitor the one-body density of the impurity
,01( 1)(x, t) and the bosonic environment pél)(x, t) in the course
of the evolution for gg;/ Ex =—-0.9, namely, for strong attrac-
tive couplings. As a result of the quench, the impurity starts to
oscillate with a small amplitude which decays during the time
evolution. Thereby, the spatial maximum of pl(l)(x, t) remains
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FIG. 2. Temporal evolution of the one-body density of (al)—(f1)
the impurity and (a2)—(f2) the bosonic medium. We induce the
dynamics by quenching the initial displacement xj/% =8 of the
harmonic trap to x{, = 0. Different dynamical response regimes are
realized by steering the impurity-medium interaction strength gg/
(see legends). The system consists of a N; = 1 impurity and Nz = 20

bath particles with gzz/E% = 0.5.

in the vicinity of the left site of the double-well potential.!
Also, ,ol(;)(x, t) exhibits a maximum at the same location [cf.
Fig. 2(a2)], a phenomenon that is attributed to the strong
impurity-bath attraction [77]. Due to this behavior, i.e., the
enhanced spatial localization tendency of the impurity and the
medium, and the fact that the impurity dominantly occupies
a state with negative eigenenergy [see for details Fig. 5(al)]
we refer to this dynamical response regime as the steady
bound-state regime. A similar dynamical response where the
impurities localize at the maximum of the medium’s one-body
density has also been observed in the case of a harmonically
trapped bath [52].

For intermediate attractive impurity-medium interactions,
gpi/EX = —0.7, corresponding to the one-body densities
shown in Figs. 2(b1) and 2(b2) the impurity does not localize
exclusively on one site of the double well anymore as in the
above discussed case. Rather, we observe a decay of p,(l)(x, t)
on the left site and a simultaneous increase at the right site of
the double well. This response of the impurity is reminiscent
of the tunneling dynamics of a single particle confined in a
double well [78]. Later on, we will show that the effective
potential encountered by the impurity resembles a double well

"We have checked that also for a longer evolution time /&' =
1600 the impurity remains localized at the left site of the double well.

since it accounts for the effects of the attractive impurity-
medium coupling [cf. Fig. 5(b1)]. In this sense we label this
response region as the (effective) tunneling regime. Note that
the back-action of the impurity on the bosonic medium leads
to a shift of the maximum of p(l)(x, t) following the impu-
rity’s tunneling behavior. Interestingly, this effective tunneling
behavior of the impurity at intermediate attractions resembles
the dynamical response of an impurity trapped in a double
well and repulsively coupled to a lattice-trapped bosonic bath
[45].

The next response regime, which we will refer to as the
dissipative oscillation regime, emerges at weakly attractive
or repulsive impurity-medium interaction strengths, e.g., for
gp1/EX = —0.2,0.3. Here, the impurity-medium coupling is
sufficiently small such that the impurity is able to completely
penetrate its env1ronment Consequently, the impurity initiates
a tunneling of py )(x t) from one site of the double well to
the other which decays in the course of time. The resulting
impurity dynamics turns out to be a decaying oscillatory mo-
tion with an initial amplitude as large as the spatial extent
of pi(x, ) [cf. Figs. 2(c1), 2(c2) and 2(d1), 2(d2)]. We at-
tribute this decay process to a continuous energy transfer from
the impurity to the medium (see Appendix A for details). A
more detailed analysis of this dissipative behavior estimating
also the effective mass of the emergent quasi-particle can be
found in Appendix C. Note that such a dissipative behavior
of impurities is a generic feature caused by the buildup of
impurity-medium correlations and has been reported, e.g., in
[43,52,59].

In the case of intermediate repulsive impurity-bath cou-
plings, e.g., gg;/EX = 1.0, we observe a spatial localization
tendency of the impurity at the trap center accompanied by
vanishing oscillations [cf. Fig. 2(el)]. Therefore, we refer
to this response regime as the pinning regime. During the
impurity’s localization process, an intrawell dynamics is in-
duced on the bosonic background. Here, the central barrier
of the double well is effectively enlarged due to the material
barrier created by the impurity and leading to an oscillatory
motion of the bath cloud in each site of the double well.
Further increasing gp; to strong impurity-medium interaction
strengths, e.g., gg/EX = 2.0, the underlying repulsion be-
tween the impurity and the bath particles in the left site of the
double well becomes sufficiently large such that the impurity
is totally reflected [see Fig. 2(f1)]. In this sense, we shall
address this behavior as the total reflection regime. Thereby,
the bosonic environment experiences a population imbalance
in the double-well potential [cf. Fig. 2(f2)] which is accom-
panied by the phase separation between the medium and the
impurity, a well-known process occurring in the strongly re-
pulsive case [28,52].

In conclusion, we have captured five different dynam-
ical response regimes of the impurity depending on the
impurity-medium interaction strength. Remarkably, by tuning
the impurity-bath coupling gp; it is possible to control the
location of the impurity. Note that, in each of the above-
described regimes, Josephson-type oscillations of the bath
take place induced by the coupling to the impurity. Further-
more, in all response regimes, apart from the total reflection
regime, the impurity exhibits a finite spatial overlap with the
bath in the course of the evolution. Thus, it can be dressed by
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the excitations of the latter, allowing in principle for quasi-
particle, in particular Bose polaron, formation [28,79,80]. In
the total reflection regime, the impurity phase separates from
its environment after the first collision and, therefore, the
polaron, even it is formed for very short evolution times, de-
cays. Similar manifestations of a decaying polaron formation
at strong repulsive impurity-medium couplings in the course
of the evolution have been already reported in the literature,
being referred to as temporal orthogonality catastrophe events
[28,80,81].

In order to further classify the above-discussed response
regimes, we invoke the mean position of the impurity (&/(¢))
[see Fig. 3(a)] for different impurity-medium interactions
corresponding to the aforementioned dynamical regimes. Ev-
idently, (&/(z)) exhibits individual characteristics in each
regime allowing for their clear distinction. For instance, in the
case of weak impurity-bath couplings, e.g., gg;/EX = —0.2,
an oscillatory behavior of (&/(z)) takes place as expected
from pl(l)(x, t) [cf. Fig. 2(c1)]. Turning to the total reflection
regime, e.g., for gg;/EX = 2.0, (X! (¢)) captures the irregular
behavior of the impurity on the left edge of the double well,
thus indicating its total reflection from the bosonic environ-
ment. The long-time evolution of (%/(¢)) for gg;/EX = —0.2
is illustrated in the inset of Fig. 3(a). As can be seen, the
decreasing amplitude of (&/(z)) becomes evident which is
caused by the continuous energy transfer from the impurity
to the bosonic medium (see also Appendix A).

To provide the complete response phase diagram of the
impurity we show the behavior of (#/(¢)) in dependence of
the impurity-medium interaction strength gg;, thus capturing
the dynamical crossover between the aforementioned regimes
[see Fig. 3(b)]. For convenience, the five identified response
regimes are labeled from I to V. Regime I corresponds to
the steady bound-state formation, see the small amplitude
oscillations of pl(l)(x, t) in the vicinity of the left site of the
double-well. In regime II we find the expected behavior of
(&' (1)) represented by its low-frequency oscillations around
the trap center as shown in Fig. 3(a). For weak impurity-
medium interaction strengths, corresponding to regime III, the
dissipative oscillatory motion of (£/(¢)) occurs characterized
by a relatively large amplitude of the underlying oscillations.
Increasing gp; to intermediate repulsive values we reach the
pinning regime (cf. regime III) where the mean position satu-
rates towards x' = 0. For larger gg; the impurity is not able
to penetrate the bath anymore and it is totally reflected at
the edge of the latter. This regime corresponds to the total
reflection one and it is denoted by V in Fig. 3(b). Finally,
we comment on the response regimes in which the mean
position obtains values close to zero, viz., the pinning and the
tunneling regime. Even though the impurity’s mean position
within these regimes is well distinguishable [see Fig. 3(a)] in
a corresponding experiment a clear distinction might be chal-
lenging. To ensure a clear distinction between these regimes,
one can use the experimentally accessible position variance
s = (%)% — (#?) [82,83]. Since in the tunneling regime the
impurity is distributed over the double well the respective
variance is larger than the one in the pinning regime where
the impurity is localized at the trap center (not shown here).

In order to expose the robustness of the impurity dy-
namics with respect to parametric variations, we present in

—=-gp1/Ei=—0.9 ——gp;/Ei=—0.7
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FIG. 3. (a) Time evolution of the mean position of the impurity
for different impurity-medium interaction strengths gg, (see legend).
Each value of gp; corresponds to one of the five dynamical response
regimes of the impurity. The inset of (a) shows the long-time evolu-
tion of the mean position obtained for gg; /EX = —0.2. (b) Temporal
evolution of the mean position as a function of the impurity-medium
interaction strength g, . (¢) Long-time evolution of the von Neumann
entropy SVN(¢) obtained for the same gp; as used in (a).

Fig. 4 (/(¢)) for a wide range of system parameters. As we
emphasized previously, it is possible to distinguish between
the dynamical response regimes by inspecting the behavior
of (2!(t)). Therefore, we choose the impurity-bath coupling
strength gg; such that we obtain a behavior of (%/(¢)) which
can be in turn associated with a specific dynamical response
regime. Figures 4(a) and 4(b) show (%/(z)) obtained for
xh/% =5 and 10, respectively. Here, each mean position ex-
hibits the same behavior as the corresponding one depicted in
Fig. 3(a) for x} /% = 8. As expected within the dissipative os-
cillation regime, an amplification of the oscillation amplitude
occurs as the initial displacement increases. Based on these
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FIG. 4. Time evolution of the impurity’s mean position for varying system parameters (see legends). (a) Corresponds to an initial
displacement x} /% = 5 of the impurity’s harmonic trap and (b) refers to x} /% = 10. In both cases ggg/EX = 0.5. In (c) and (d) the intraspecies
interaction strengths are set to ggg/E% = 0.2 and 1.0, respectively, for fixed x)/% = 8. The impurity-medium couplings gs; are chosen such
that the mean positions exhibit a behavior which can be attributed to the distinct dynamical response regimes.

observations we conclude that the impurity dynamics is robust
with respect to the initial displacement and, more precisely,
for values from x) =5 to 10. We remark that in the limit of
small displacements x} and intermediate repulsive interaction
strengths the ground state is altered, viz., the impurity is
initially located between the two one-body density maxima
of the bath where it remains in the course of the evolution.

Varying the intraspecies coupling strength gpp between
the bath particles we are again able to realize the respective
dynamical response regimes but for shifted gg; [see Figs. 4(c)
and 4(d)]. For smaller intraspecies interaction strengths, e.g.,
gss/E% = 0.2, the dynamical regimes are shifted towards
smaller absolute values of gg; [cf. Fig. 4(c)] and vice versa
in case of a larger ggp, €.g., gsg/E% = 1.0 [cf. Fig. 4(d)]. In
particular, in order to realize the steady bound-state regime
for a larger gpp stronger impurity-medium attractions are nec-
essary than in the case of a weakly interacting medium (small
gpp)- We attribute this property to the mobility of the bath par-
ticles, i.e., the compressibility of the medium, which becomes
smaller (larger) for increasing (decreasing) gpp. Therefore,
in the case of a strongly interacting bath, larger impurity-
medium attractions are needed in order to shift a sufficient
amount of the medium’s one-body density to the left site of
the double well which, eventually, binds the impurity [see also
the mean positions corresponding to the steady bound-state
regime in Figs. 4(c) and 4(d)]. On the other hand, for strongly
repulsive impurity-medium interactions the total reflection
regime emerges in the case of a weakly interacting bath at
smaller gg; compared to the case of a strongly interacting bath.
We attribute this property to the ggp dependence of the spatial
extension of the medium’s cloud. The latter is broadened for
large gpp and becomes narrower at the sites of the double well
for small ggp, leading in the latter case to an increased ef-
fective potential barrier experienced by the impurity [see also
Eq. (6)]. Therefore, it is easier for the impurity to overcome
the bosonic medium at the left site of the double well in the
case of a larger gpg, i.e., for a broadened background, than in
the case of a smaller ggp, .g., compare the mean positions of
gBI/Efc = 2.0 in Figs. 4(c) and 4(d).

Hence, the intraspecies interaction strength ggp indeed
impacts the impurity dynamics. However, the same dynam-
ical regimes can be recaptured by properly adjusting gp; at

least in the considered cases of relatively weak and strong
intraspecies interaction strengths, i.e., ggp /Efc =0.2,1.0
considered herein. We remark that for even stronger repul-
sions where the medium resides in a Mott-type state an altered
dynamical response of the impurity is expected, an investiga-
tion which is left for future studies.

Subsequently, we aim to quantify the associated impurity-
medium entanglement by monitoring the von Neumann
entropy [84], which reads as

M
SNy == i) Ina (1),

i=1

(&)

This expression possesses an upper bound for maximal en-
tanglement between the species, viz., A; = 1/M leading to
SYN =1InM = 1.79 in our case (M = 6), and vanishes when
no entanglement is present, e.g., A; = 1 with A,; =0. In
Fig. 3(c) we provide the long-time evolution of the von Neu-
mann entropy for different values of gg; corresponding to the
five dynamical response regimes of the impurity. We find in all
regimes a finite impurity-medium entanglement [28,43] which
tends to saturate for larger times (t /&' > 1500) besides the
tunneling regime where SYV () performs an oscillatory mo-
tion. Among the investigated regimes, the steady bound state
and the total reflection regime appearing at large attractive
and repulsive gg; couplings experience the smallest amount
of entanglement. Indeed, SVV(¢) is maximized within the
pinning (gp;/E% = 1.0) and the dissipative oscillation regime
(gr/E% = —0.2). Additionally, in the latter response regime
the entanglement increases with time and reaches a plateau at
around 7/&~" = 300. During this time interval the impurity
penetrates the bosonic medium 20 times, thereby enhancing
the entanglement at each penetration. In the pinning regime,
the system becomes maximally entangled after the impurity
penetrates its environment a single time and, subsequently,
becomes pinned between the effective barriers raised by the
bosonic medium.

To obtain a better understanding of the underlying mi-
croscopic mechanisms appearing in the respective response
regimes we analyze, in the following, the impurity dynamics
with respect to an effective potential [40,43,45], which reads
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FIG. 5. (al)—~(d1) Time-averaged effective potential of the impurity VT(x!) (gray solid lines) together with the first six energetically
lowest eigenfunctions (see legend) shifted by the respective eigenenergies obtained from the associated single-particle Hamiltonian H"
(see text). (a2)—(d2) Time-dependent probabilities for the impurity to occupy one of the eigenfunctions shown in (al)-(d1), respectively.
Each column corresponds to a particular dynamical response regime (with a specific value of gp;) which is sorted from left to right by
gp/Ex = —0.9, —0.7, 1.0, 2.0. 3", P! (t) > 0.94 is fulfilled for times later than the threshold time depicted by the gray dashed lines.

as
1 T
Vf“<x’)=; / [Nsgsioy (', 1) + Vi(x")]de.  (6)
0

Here, we choose x}, = 0 for the harmonic confinement V; (x').
This effective potential is based on the assumption of a
product state ansatz [WMB (1)) = |WB(1)) ® |W!(¢)) where the
degrees of freedom of the bosonic medium are integrated
out. Thus, the effective potential is the superposition of the
harmonic confinement V;(x') after the quench and the one-
body density of the environment weighted with the particle
number N and the impurity-medium interaction strength gg;
[45]. Since the bosonic medium remains to a certain extent
well localized at the sites of the double well in the course
of the evolution the averaging of the effective potential over
the total propagation time T /&~ = 200 is justified. Note that
even though we considered a product state ansatz for the con-
struction of V,eff(xl ), beyond mean-field effects are included

in the one-body density pp )(x t) which is calculated with a
many-body ansatz (see Sec. III).

The time-averaged effective potentials (gray solid lines)
for four representative dynamical response regimes corre-
sponding to gg;/EX% = —0.9, —0.7, 1.0, 2.0 are demonstrated
in F1gs 5(al)-5(d1). For the steady bound-state regime, at
gpr/EX = —0.9 the effective potential VF(x) takes the form
of an asymmetrlc double well [cf. Fig. 5(al)] with a deeper left
site since ,oB (x t) is attracted to the impurity and, therefore,
it is shifted to the left site of the double well. For intermediate
attractions, e.g. gps /Efc =-0.7, fof(x’ ) has the shape of a
nearly symmetric double-well potential [see Fig. 5(bl)]. In
this case, the symmetry can be ascribed to the fact that the
averaging in Eq. (6) is performed over the period T /&~ =

200 during which the maximum of pél)(x, t) shifts from one
site of the double well to the other, leading on average to the
observed nearly symmetric double well. This in turn explains
the tunneling behavior of the impurity depicted in Fig. 2(b1).
This picture changes drastically for repulsive impurity-
medium interactions. Here, the bosonic medium imprints a
potential barrier with two maxima located at the two sites
of its actual double well. Therefore, in this case, e.g., for
gpr/EX = 1.0, the effective potential VST(x/) obtains the
shape of a deformed harmonic oscillator having an additional
prominent dip at the trap center [Fig. 5(c1)]. As gp; increases
to %IB’ JEX = 2.0, the aforementioned two density maxima of
(x, 1) become visible, giving rise to two potential barriers.
Due to the superposition of the latter with the initially con-
sidered harmonic confinement V;(x'), the effective potential
of the impurity Vf(x!) deforms to an asymmetric triple well
[see Fig. 5(d1)].
As a next step, we construct for each VFI(x!) the single-
particle Hamiltonian H1) = 2:” 25 + V& and calculate its

first six energetically lowest-lying eigenfunctions ¢, The
corresponding absolute squares of the eigenfunctions shifted
by their eigenenergies are shown in Figs. 5(al)-5(dl). In
the following, these sets of eigenfunctions ¥ are taken as
basis sets in order to analyze the underlying microscopic
mechanisms in the course of the impurity dynamics. The time-
dependent probability for the impurity to occupy the state wfff
reads as

Pl = [(WMB0)]?) ® |wst)|, Q)
J
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where {gpf } is an arbitrary basis set covering the whole sub-
space of the bosonic medium. By summing over all basis
states of the bath we single out the probability to find the im-
purity in ¥ Note that |[U'™MB(¢)) is the full many-body wave
function defined via ML-MCTDX [Egq. (2)], while ¢ serves
as a basis set to unravel the underlying participating dynami-
cal processes. The occupation probabilities for the respective
basis sets [Figs. 5(al)-5(d1)] are presented in Figs. 5(a2)—
5(d2). In order to justify the quality of the basis, we sum up
all nonvanishing occupation probabilities Pi1 (t) and determine
the time at which the sum exceeds and subsequently remains
above 0.94 (dashed gray lines).

For gp; /E% = —0.9 the impurity predominantly populates
the energetically lowest eigenstate on the left site of the tilted
effective double well VT (x"), while the probability to occupy
energetically higher-lying states is strongly suppressed as time
evolves [see Fig. 5(a2)]. Based on this behavior of Pl.1 (),1i.e.,
the spatial localization of the impurity, and the fact that the
eigenenergies are negative we associate the bound-state for-
mation with the energetically lowest eigenstate of the effective
potential fof(xl ) [43]. A further analysis of this steady bound
state is provided in Appendix B in terms of the involved two-
body density. For intermediate attractive impurity-medium
couplings corresponding to the tunneling regime V,eff(xl ) has,
in contrast to the steady bound-state regime, the shape of a
nearly symmetric double well. Accordingly, the impurity dy-
namics is mainly determined by the superposition of the two
energetically lowest eigenstates of fof(x’ ) [see Fig. 5(b2)].

In the case of intermediate repulsive interactions, a pinning
of the impurity between the density maxima of the bosonic
bath is realized [cf. Fig. 5(c2) with gg;/E% = 1.0]. Here,
the occupation probabilities start to saturate after ¢/~ =
50 which in turn leads to the energetically lowest eigen-
state of V£ (x!) being predominantly populated. However, we
observe that the probability to find the impurity in an en-
ergetically higher-lying eigenstate is approximately 40 %. In
this sense, the broadening of pl(l)(x, t) around the trap center
[see Fig. 2(el)] can be interpreted as impurity excitations with
respect to the effective potential. We refer to those excitations
as hidden excitations since they can only be identified by such
a microscopic analysis. It is worth noticing that the spatial
structure of the first three species functions of the impurity
|W!) are in a good agreement with the three energetically low-
est eigenfunctions of V,eff(xl ) (see Appendix D). For strong
repulsive couplings, e.g., ggr/EX = 2.0, the effective potential
exhibits the shape of a triple well where the two potential
barriers stem from the bosonic medium being localized at the
sites of the double-well potential. Since these potential bar-
riers are comparatively large, the impurity is totally reflected
by the left barrier and predominantly occupies the eigenstates
located in the left site of the triple well [see Fig. 5(d2)].

In summary, the analysis of the effective potential enables
us to unravel the underlying microscopic mechanisms of the
impurity dynamics. In particular, it allows for a deep under-
standing of the steady bound-state formation and proves to
be crucial in order to identify the hidden excitations in the
pinning regime. Note that for an analogous analysis of the dis-
sipative oscillation regime, a much larger set of eigenfunctions
has to be taken into account to achieve a comparable quality of
the employed single-particle basis (similar to a coherent state
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FIG. 6. (a) Temporal evolution of the two impurities’ mean posi-
tion for various impurity-medium coupling strengths gg;. (b) Time-
averaged effective potential calculated for the two-impurity case for
gsi/EX = —0.9 [see Eq. (6)]. The associated eigenfunctions wfff of
the effective potential are shifted with respect to their eigenenergies
E;. (¢c) Time evolution of the conditional probability E?j(t) to find
one impurity in ¥ while at the same time the other impurity
occupies the eigenstate 1//?“. Panels (d) and (e) showcase the time
evolution of the one-body densities pl(l)(x, t) for gg;/EX = —1.0 and
2BB /E‘i = 0.5, 1.0, respectively. Each inset illustrates a snapshot of
the respective two-body density p}7(x],x}) at t/&~" = 15 (green
dashed line).

in a harmonic oscillator). In Appendix C we provide a dis-
cussion of the impurity dynamics in the dissipative oscillation
regime where we compare the motion of its mean position to
a damped harmonic oscillator.

V. DYNAMICAL RESPONSE REGIMES
OF TWO IMPURITIES

To generalize our findings, in the following, we consider
two noninteracting impurities (g;; = 0) coupled to the bosonic
environment. Therefore, all interactions between the impu-
rities are induced by their coupling to the bosonic medium
[27,40,85]. The quench protocol is the same as described in
Sec. II.

In order to characterize the dynamics of the two bosonic
impurities, we monitor the time evolution of their mean
position, i.e., their center-of-mass position, for different
impurity-bath coupling strengths gg; [Fig. 6(a)]. Analogously
to the one-impurity case, we identify five dynamical re-
sponse regimes depending on gp; and appearing for similar
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interaction strengths as for N; = 1 [see also Fig. 3(b)]. How-
ever, we find in the response regime II [Fig. 6(a)] that the
mean position is almost constant with (x') = 0, whereas in the
single-impurity case (2/(¢)) oscillates with a small amplitude
around zero. By inspecting the impurity’s one-body density
p,(l)(x, t) for the corresponding regime II (not shown here) it
is observed that p,m(x, t) is almost equally distributed over
the effective double-well potential (mediated by the bosonic
bath) yielding a mean position close to zero. Moreover, the
discrepancy between the tunneling and the pinning regime
regarding the impurities’ mean position can be revoked by
inspecting the variance s analogously to the single-impurity
case [see also Fig. 3(b)]. Additionally, we observe a broad-
ening of the transition from the pinning to the total reflection
regime for increasing gp; with respect to the single-impurity
case where we identified a sharper transition [see Fig. 6(a)].
As a case example we shall focus on the steady bound-state
regime and unravel the microscopic processes in the case of
two impurities.

To provide a qualitative understanding of the dynamics
in the steady bound-state response regime we will describe
the impurity dynamics within an effective potential picture,
similarly to the previously discussed single-impurity case. For
this purpose, we calculate the effective potential VF(x!) [see
Eq. (6)] for gg;/EX = —0.9 which we present in Fig. 6(b).
Additionally, we compute the effective single-particle eigen-
states 1//ieff shifted by their eigenenergies E; [see Fig. 6(b)]. A
comparison with the effective potential in Fig. 5(al) reveals
that the left site of V™ (x) in the two-impurity case is much
deeper. Therefore, the two energetically lowest eigenfunctions

¢ and 5 in the two-impurity scenario are located at the
left site of VT (xl).

Next, we unravel the interplay between the impurities
by studying the conditional probabilities to occupy specific
eigenstates of their effective potential. In particular, we define
Pl-zj () as the probability for one impurity to occupy the effec-

tive eigenstate wi"‘ff while at the same time the other impurity
populates the eigenstate wj‘?ff.

In Fig. 6(c) we demonstrate Pii‘(t) with respect to the five
energetically lowest-lying eigenstates of the effective poten-
tial for gg;/EX = —0.9 [cf. Fig. 6(b)].? Interestingly, we can
infer that the two impurities predominantly occupy simulta-
neously the same energetically lowest eigenstate, which is in
accordance with the observations made in the single-impurity
case [Fig. 5(a2)]. However, also single-particle excitations
in the second eigenstate W5 [P ()] as well as two-particle
excitations contribute to the many-body wave function of the
impurities [45,49]. For instance, we find a small but nonvan-
ishing probability for observing two impurities in the second
eigenstate P5(¢). Notice that an analogous analysis for the
other response regimes, apart from the dissipative oscillation
one, leads to similar observations where one or two impurities

ZNote that Eq. (6) can be also employed in the case of two impuri-
ties.

3The sum of the presented probabilities exceeds 0.94 at /&' ~
100 (dashed gray line).

occupy simultaneously the same or different excited eigen-
states of fof(x’ ) (not shown here).

In the following, we demonstrate that the dynamical re-
sponse of two impurities can be tuned by changing the
intraspecies interactions ggg of the bath, similarly to the
single-impurity case (cf. Sec. IV). As a characteristic exam-
ple, we present in Figs. 6(d) and 6(e) the time evolution of the
impurities’ one-body densities for strong impurity-medium
attractions and two different intraspecies couplings gpg. In the
case of a weakly interacting bath [cf. Fig. 6(d)] the major
portion of the medium’s one-body density is shifted to the
left site of the double well (not shown here) such that the
impurities are permanently bound to the medium at this site.
Therefore, this situation corresponds to the steady bound-
state regime [cf. regime I in Fig. 6(a)]. By increasing the
intraspecies interaction strength, the compressibility of the
bath is reduced and, thus, also the amount of the medium’s
one-body density accumulated at the left double-well site.
In this sense, the impurities cannot be permanently bound
at one site of the double well and distribute over the latter
performing an effective tunneling dynamics.* In particular,
the corresponding one-body density ,01( Dix, 1) splits into two
branches with each one oscillating at an individual site of the
double well [see Fig. 6(e)]. Thereby, this dynamical response
of the impurities resembles the dynamics corresponding to
regime II in Fig. 6(a) in the case of a weakly interacting
medium.

To further shed light on the spatial configuration of the
two impurities, we investigate their reduced two-body density

P2 (xl 1), defined as

p2(xd 2l = /dx?...dx,lf,ﬂ‘\IJMB(x{,xé,xg, )P

®)

In the inset of Fig. 6(d) the reduced two-body density of
the impurities is provided for a weakly interacting bath
at a specific time instant r/&~! = 15. It exhibits an elon-
gated peak along the diagonal which is, in particular, located
at the left double-well site. This behavior indicates non-
vanishing impurity-impurity induced correlations [40]. On
the other hand, for a strongly interacting medium and at
t/@~' =15 (corresponding to the time instance where the
one-body density features the splitting) the two-body den-
sity reveals two dominant maxima in the diagonal and in
terms of the amplitude two smaller ones in the off diago-
nal [see inset of Fig. 6(e)]. Thereby, the diagonal peaks of
p;?,) (x], x) explicate that both impurities move together and
reside in either of the double-well sites. Complementarily,
the smaller off-diagonal peaks hint at a suppressed proba-
bility of finding each impurity at a different site. Thus, a
scenario in which one impurity remains at one double-well

*In order to realize the dynamics corresponding to the steady
bound-state regime occurring for large ggp, the impurity-medium
attraction needs to be adjusted accordingly. For instance, we have
verified for ggg/E% = 1.0 and gz /EX = —2.0 the formation of a
steady bound-state response.
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site while the other impurity tunnels to the other one is less
probable.

In summary, we have deduced that the dynamical response
regimes of two noninteracting impurities are similar to the
single-impurity case with a small modification regarding the
effective tunneling regime. Furthermore, we can gain insights
into the time-dependent microscopic configuration of the two
impurities by investigating the associated conditional proba-
bility to find the impurities in two particular eigenstates of
their effective potential. Particularly, we exemplified that for
the steady bound-state regime the impurities predominantly
occupy simultaneously the lowest-lying eigenstate of VT (x!).
However, we also observed the occurrence of single- and two-
particle excitations in higher-lying eigenstates. Additionally,
for strong impurity-medium attractions we varied the com-
pressibility of the bath by considering a weakly and a strongly
interacting medium. Thereby, we observed an alteration of the
dynamical response of the impurities from a steady bound
state (for small ggp) to a distribution of the impurities over the
double well (for large gpg). The respective two-body density
distributions revealed that in the latter case the impurities
tend to move together manifesting the dominant presence of
attractive induced interactions during the effective tunneling
dynamics of the impurities.

VI. SUMMARY AND OUTLOOK

We have investigated the dynamical behavior of bosonic
impurities colliding with a BEC trapped in a double well. The
impurities are initially confined in a harmonic oscillator which
is spatially displaced with respect to the double well of the
bosonic medium. Upon quenching the harmonic potential to
the trap center of the double well the quantum dynamics is
induced such that the impurities collide with the bosonic envi-
ronment. The correlated nonequilibrium dynamics is tracked
with the variational ML-MCTDHX method which enables us
to access the full many-body wave function of the system,
thereby, including all relevant interspecies and intraspecies
correlations.

By varying the impurity-medium interaction strength gp;
from strongly attractive to repulsive values, we are able to
control the collisional dynamics of the impurity and iden-
tify five distinct dynamical response regimes by inspecting
the associated one-body density evolution. These response
regimes correspond to the steady bound-state regime, the tun-
neling regime, the dissipative oscillation motion, the pinning
regime, and the total reflection regime. We demonstrate that
they can be easily identified by monitoring the mean posi-
tion of the impurity. Moreover, by calculating a crossover
phase diagram of the impurity’s mean position with re-
spect to the impurity-medium coupling strength we obtain
an overview of the emergent dynamical response regimes as
a function of gg; and identify smooth transitions between
two consecutive ones. Additionally, we explicate the robust-
ness of the response regimes for different parametric system
variations, i.e., the intraspecies interaction strength of the
bath and the initial displacement of the impurity’s harmonic
trap.

To provide a better understanding of the involved mi-
croscopic mechanisms, we employ a time-averaged effective

potential picture. By projecting the total many-body wave
function onto the eigenstates associated with this effective
potential allows us to gain insights into the underlying excita-
tion processes for different interactions. In particular, we find
that the impurity is bound to the bosonic medium for strong
attractive impurity-bath interaction strengths corresponding to
the steady bound-state regime and unveil hidden excitations
in the pinning regime occurring for intermediate repulsive
gpr- We extend our study to the two-impurity case where
we showcase the emergence of similar dynamical response
regimes as in the single-impurity scenario. Furthermore,
we unravel the underlying microscopic mechanisms of the
impurities’ dynamics analogously to the single-impurity case.
Here, for the steady bound-state regime the participation of
single- as well as two-particle excitations into energetically
higher-lying states of the effective potential is demonstrated.
Additionally, for strong impurity-medium attractions we show
that the dynamical response of the impurities can be altered
from a steady bound state (for a weakly interacting medium)
to a configuration where the impurities distribute over the
double well (for a strongly interacting medium).

The results of this work are beneficial for future ultracold-
atom experiments of impurity-medium scattering for in-
vestigating the corresponding collisional channels caused
exclusively by presence of the impurity-bath entanglement.
Furthermore, this setup can be extended by implementing an
additional spin degree of freedom for two noninteracting or
weakly interacting impurities. In this case it would be interest-
ing to identify the individual spin configurations and related
spin-mixing processes in dependence of the impurity-medium
coupling and whether the impurities evolve as a “Cooper pair.”
Certainly, the generalization of our results to higher dimen-
sions is an intriguing perspective.
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APPENDIX A: IMPURITY-MEDIUM ENERGY
TRANSFER PROCESSES

Due to the initial quench of the harmonic oscillator po-
tential, the impurities collide with their bosonic background
and, thereby, a transfer of energy to the latter is triggered
[28,58,80]. The total energy of the system can be written
as E = EB + EL + Eip where EZ, = (WMB|H7 [ WMB) rep-
resents the total energy of species o € {B,I} and Ej =
(WMB|Fint| yMBy the jnteraction energy between the species.

In order to capture the quench-induced impurity-medium
energy transfer, we present in Fig. 7 the relative energy of
species o defined as E7 (1) = EZ (¢) — EZ . (0). In each dy-
namical response regime we observe an energy transfer from
the impurity to its environment. The smallest energy transfer
occurs for attractive impurity-medium interaction strengths
where, due to the attraction to the bath, the impurity resides
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FIG. 7. Time evolution of the relative energy EZ () = E2 (t) —
EY (0) of species o € {B, I} for different gz, (see legend). In each dy-
namical response regime the impurity transfers energy to the bosonic
medium.

closer to the trap center, leading to a smaller initial total
energy E[ (0) than in the case of repulsive gp; [compare with
the mean position in Fig. 3(a)].

For weak impurity-bath coupling strengths of either sign,
i.e., gpr /Efc = —0.2, 0.3, the impurity continuously transmits
energy to its environment until the relative energy of both
species eventually saturates for longer times [58,80]. This loss
of impurity energy essentially causes its dissipative oscilla-
tory behavior [cf. Fig. 3(a)]. The largest energy transfer takes
place in the pinning regime. Here, the impurity overcomes the
bosonic medium in the left site of the double well only once
and, thereby, transfers a large amount of energy to the bosonic
medium such that the impurity becomes pinned within the
latter.

APPENDIX B: TWO-BODY CORRELATION IN THE
STEADY BOUND-STATE REGIME

To elucidate the interplay between the bosonic medium and
the impurity in the steady bound-state regime in more detail,
we perform an analysis of the impurity-medium reduced two-
body density :01(32,; (x!, xB;1), defined as

2),.1 _B.
pyel Bt

= /dxf .. .dxf,ﬂ|\llMB(xl,xB,x§, el xf,B;t)|2. (B1)
This quantity provides information about the probability of
finding the impurity at position x’ and one particle of the
bosonic background located at x?.

A snapshot of the one-body density p{V(x?) with o €
{B, I} and the two-body density pg)(x!, xP), respectively, at
t/@~" = 150 and for gg;/E% = —0.9 is depicted in Figs. 8(b)
and 8(c). Here, we find the impurity to be localized at the left
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FIG. 8. (a) Time evolution of the diagonal elements of the
two-body density pir“*(x, t) for gz /EX = —0.9 corresponding to
the steady bound-state regime. (b), (c) Snapshot of the one-body
density matrix p{"(x”) with o € {B, I} and the two-body density

pl(f;(x’,xB), respectively, at t/&~! = 150.

maximum of the bosonic medium corresponding to the left
site of the double well which agrees with the observations
made for the single-impurity case in Figs. 5(al) and 5(a2).
Furthermore, the two-body density indicates that the proba-
bility to find one particle of the bath at the left site of the
double well, i.e., close to the impurity, is enhanced compared
to the respective probability for the right site. In particular,
the diagonal of pé%}(x’ , xB) [dashed white line in Fig. 8(c)]
represents the probability to capture the impurity and one
particle of the environment at the same position which we

will refer to as pg;’diag(x, t). Figure 8(a) shows the time evo-

lution of pg;’diag (x, t) which strongly resembles the one-body

density of the impurity for #/@~' > 100 [cf. Fig. 2(al)] and
designates a high probability for the impurity and one particle
of the bosonic medium to be at the same location [40,43].

APPENDIX C: DISSIPATIVE OSCILLATION RESPONSE
REGIME: EFFECTIVE MASS AND DAMPING OF THE
BOSE POLARON

Let us also analyze the dissipative oscillation regime in
the case of a single impurity in more detail. As observed in
Fig. 3(a), the mean position of the impurity for weak impurity-
medium couplings exhibits a damped oscillatory behavior.
Therefore, in the following we compare the analytical solu-
tion of a damped harmonic oscillator with the mean position
(2!(¢)) and mean momentum (p (¢)) obtained within the ML-
MCTDHX method (see Sec. III). The equation of motion of a
particle subjected to a damped harmonic oscillator [86] reads
as

eff

i+ meﬁx + (@ ™2x = 0, (C1)
where y° denotes the effective damping constant, " the
effective trapping frequency, and m°" refers to the effective
mass of the impurity. Here, we interpret the impurity as a
quasiparticle, namely, a Bose polaron, which is dressed by

the excitations of its surroundings and moves in an effective
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FIG.9. (a) Time-averaged effective potential VFT(x') [see
Eq. (6)] for gg/E% = —0.2 and 0.2 together with the harmonic
oscillator potential of the impurity (dashed gray line). Equations (C2)
and (C3) are fitted to the many-body results of the impurity’s mean
position and mean momentum with respect to the effective mass m°®™,
the damping constant y°, and the effective frequency w®, shown in

(b)—(d), respectively.

harmonic oscillator. The mean position for a particle obeying
Eq. (C1) reads as

yeff
('i.eff(t )> = eXp <_ 2mefft>

X [xo cos(wot) —

Xoy eff

Do (metH)2

. peit 2 ..
with wy = 1/ (0*)? — (5—) . Additionally, we assume that

the particle is initially at rest, i.e., py = 0, and shifted by x" =
(2(0)). The corresponding mean momentum of Eq. (C1) is
accordingly written as

7/eff
(Perr()) = — exp(—mt)

sin(wot)], (C2)

eff\2
%) sin(wot).  (C3)

Subsequently, we fit the analytical results of Egs. (C2) and
(C3) to the mean position and mean momentum calculated
from the ML-MCTDHX approach for the free parameters y°f,
o, and m® [43,60].

In Figs. 9(b)-9(d) we present the fitted parameters
for impurity-medium interactions ranging exemplarily from
gpi/EX = —0.2 to 0.2. We find that the effective mass
[28,60] of the impurity decreases for larger absolute values
of gp;. This property is attributed to the fact that the bath
is confined in a double-well potential. Closely inspecting
Figs. 2(cl) and 2(d1) one can observe that a large part of
the impurity’s density performs a damped oscillatory motion
while a smaller fraction of its one-body density accumu-
lates either in the center of the double well for repulsive
impurity-medium interactions or within the double-well sites
for attractive couplings. Consequently, the corresponding dy-
namics of the mean position and momentum of the impurity
capture this damped oscillatory motion. Thereby, the reason
of this damping behavior is twofold. First, the nonvanishing
impurity-medium coupling and the associated energy transfer

X <m6ffa)ox0 +

[28,43,44] from the impurity to the medium (cf. Appendix A)
enforce a damped oscillatory behavior on the mean position
and momentum. Second, the accumulation of the impurity’s
one-body density around x' = 0 additionally enhances the
damping of the mean position’s and momentum’s oscillation,
i.e., the decrease of the mean position’s and momentum’s
amplitude in time. Interestingly, the fitting procedure reveals
that this damping is not only caused by a damping constant
larger than zero, but is also due to an effective mass smaller
than the bare value. Furthermore, this effect (damping) can
be enhanced by slightly increasing the attractive or repulsive
impurity-medium coupling strength (within a parameter range
corresponding to the dissipative oscillation regime) leading to
a pronounced energy transfer and an accompanied increase of
the amount of density accumulated around the trap center. In
this sense, we relate the decrease of the effective mass (in the
picture of a damped harmonic oscillator) to the accumulation
of density around the trap center which reduces the oscillating
fraction of the impurity’s one-body density. Therefore, the
(unexpected) decrease of the effective mass can be traced back
to the particular choice of the double-well potential experi-
enced by the bath atoms. Finally, we remark that in the case of
a harmonically trapped bath an increase of the effective mass
due to the dressing is anticipated [43].

Moreover, the increase of yeff for increasing attractive and
repulsive couplings can be explained by the corresponding
growing influence of the bosonic environment. Additionally,
we find an approximately linear decrease of the effective
frequency ®. In order to intuitively explain this behavior, we
show in Fig. 9(a) the time-averaged effective potential for the
two considered extrema of gg; (i.e., gBI/Efc = —0.2 and 0.2).
As can be seen, the effective potential is deeper in the case of
attractive gp; compared to the one obtained for repulsive gg,
leading to a higher effective frequency «° in the attractive
case than in the repulsive one.

Finally, we calculate the effective mass for the impurity
in the steady bound-state regime for gg;/EX = —0.9 [cf.
Fig. 2(al)]. Since in this regime the impurity’s one-body den-
sity exhibits small-amplitude oscillations within the left site of
the double-well potential, the above-mentioned procedure can
be applied to the mean position and momentum of the impu-
rity. Thereby, we extract an effective mass m® = 1.96 & 0.06
which is significantly heavier than the bare impurity mass. In
contrast to the dissipative oscillation regime in which the ac-
cumulation of density around the trap center led to a decreased
effective mass, in the steady bound-state regime the complete
one-body density of the impurity undergoes a damped oscil-

latory motion which, eventually, leads to the increase of m°f.

APPENDIX D: ANALYZING THE HIDDEN
EXCITATIONS OF THE PINNING REGIME

The pinning regime appears at intermediate repulsive
impurity-medium interaction strengths where the impurity be-
comes pinned within the bosonic environment residing in the
double well. We attribute the origin of this pinning mechanism
to the comparatively large energy transfer of the impurity
when it penetrates the bosonic medium for the first time (see
Fig. 7). Furthermore, we have verified that the impurity does
not solely occupy the energetically lowest eigenstate of the
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FIG. 10. (al)-(cl) Overlap P;(t) = |(\IJJ’.(z)|1//,.eff)|2 of the jth
highest occupied species function |\IJ§) of the impurity and the ith
eigenfunction of the effective potential [cf. Fig. 5(c1)]. Insets (a2)—
(c2) show the time evolution of the respective densities of the species
functions. In all panels we set gg; /Efc = 1.0 which corresponds to
the pinning regime.

effective potential, but also populates energetically higher-
lying states [Figs. 5(cl) and 5(c2)]. In the main text we
referred to these states as hidden excitations since they are not
apparent b%, merely inspecting the evolution of the one-body
density p, (x, 1) [see Fig. 2(el)].

In the following we aim at investigating these hidden ex-
citations in more detail. To this end, we monitor the time
evolution of the density associated with the individual species
functions |W) for gpr/EX = 1.0 [Figs. 10(a2)-10(c2)]. As
it can be readily seen, the densities of the species functions
remain constant once the impurity is pinned. Moreover, a
careful inspection of the densities of the first three species
functions reveals an ascending number of nodes which is
tantamount to the existence of energetically higher-lying ex-
citations of |W}).

In order to unravel the structure of the aforementioned
species functions we project them on the basis set consist-
ing of the eigenfunctions ¥ of the effective potential [cf.
Fig. 5(c1)] and take the absolute square of the respective over-
lap, i.e., Pyj(t) = (Wj@0)|yF™)?, where j =1,2,3. Indeed,
we find that the three dominantly occupied species functions

——gp1/E3=—1.0 ——gp;/Ei=—0.5
----- gp1/EE=0.3 gp1/E3=0.7
—gpr/Ei=12 g51/E&=2.0

(a)

0 100 200 10 100 200
t/ot t/ot

FIG. 11. Dynamical response regimes of the impurity as cap-
tured by its mean position for the case that the bosonic medium
is confined in a triple well. (a) Time evolution of the impurity’s
mean position for specific values of gp; (see legend) corresponding to
six identified dynamical response regimes. The triple-well potential
of the environment (gray line) is also presented. (b) Dynamical
crossover phase diagram of the impurity’s mean position with respect
to gpr-

correspond to the three energetically lowest eigenfunctions of
the effective potential [see Figs. 10(al)-10(c1)]. In particular,
|W!(x!, £)]* matches with the energetically lowest eigenstate

elf whereas |W1(x!, ) and |Wi(x, 1)|* correspond to the
second and third eigenstates, i.e., weﬁ and S,

APPENDIX E: DYNAMICAL RESPONSE FOR A
TRIPLE-WELL TRAPPED ENVIRONMENT

To extend our basic conclusions regarding the impurity’s
response, described in Sec. II, we replace the double well
of the bosonic medium with a triple well. However, the
harmonic trap of the impurity as well as the employed quench
protocol to induce the dynamics remain unchanged. The
triple well of the bosonic environment reads as V(xB) =
mpwi(x8)?/2 + g_(x8) + g (xP), where a superimposed har-
monic trap with frequency wp/@® = 0.15 and two Gaussians

g+ (x8) = \/gwg exp(_(zfiﬁ)z)z) shifted by A from the trap
center are used. Also, the Gaussians have a width of wg/% =
0.8 and a height of hg/E% = 1.8 while the displacement is
A/% = 2.5. The system consists of Nz = 20 bosons for the
bosonic medium and a single impurity N; = 1. Additionally,
we employ M = 6 species and dg = d; = 6 single-particle
functions for the calculations to be presented below.

Figure 11(a) shows the time evolution of the impurity’s
mean position corresponding to the six identified dynamical
response regimes which are labeled as I-VI in the respective
crossover diagram in terms of gp; illustrated in Fig. 11(b). As
in the double-well case [see Fig. 3(a)], we find that for strong
attractive impurity-medium interactions (regime I) a localiza-
tion of the impurity in the vicinity of the most left site of
the triple well occurs. This behavior is attributed to the initial
large overlap of the impurity with the bath on the left site.’

>Note that for larger attractions the overlap of the impurity with the
medium is initially larger at the central site of the triple well such that
the impurity is initially localized at the trap center, where it remains
in the course of the evolution.
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By decreasing gp; to intermediate attractive couplings, i.e.,
gp1/EX = —0.5 corresponding to the regime II, we observe
that the impurity localizes at the central site of the triple well.
Entering the weak attractive and repulsive impurity-medium
coupling strengths we identify a dissipative oscillation of the
impurity similar to the case in which the bosonic bath is
trapped to a double well [Fig. 3(b)]. For stronger repulsive
g the aforementioned oscillatory character vanishes (regime
IV) and the one-body density of the impurity p,(l)(x, t) (not
shown) exhibits two humps located at the two maxima of the
triple well. Here, (%/(¢)) tends to zero, e.g., for gg;/EX = 0.7.
Note that even though the regimes II and IV show a similar
behavior in terms of (£/(¢)) we can distinguish them by eval-
uating the variance (s) which is in the attractive case smaller
than in the repulsive one (not shown here). A further increase
of the impurity-bath repulsion to gg;/EX¥ = 1.2 leads to a
localization of the impurity at the position between the left and

central sites of the well [cf. regime V in Fig. 11(b)]. For strong
repulsive impurity-medium interaction strengths we reach the
regime VI which corresponds to the total reflection of the
impurity as in the double-well case [45].

In summary, similarly to the double-well scenario we ob-
serve for a triple well continuous transitions between the
emergent dynamical response regimes of the impurity with
respect to gg;. Analogously to the double-well case, the setup
including a triple well also leads to a bound state and a total
reflection regime at strong attractive and repulsive impurity-
medium interactions as well as a dissipative oscillation regime
at weak gp;. Only at intermediate attractive and repulsive
gpr corresponding to the effective tunneling and the pinning
regime in the double-well case, the impurity features an al-
tered tunneling dynamics. Still, we find that the behavior of
the impurity can be steered and controlled via the impurity-
medium coupling strength.
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